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ABSTRACT 

 

The purpose of this study was to evaluate the performance of inexpensive, 

passive, omni-directional receivers as a means to detect vocalizing Odontocetes using 

conditional statistics.  To evaluate and predict performance, it was necessary to establish 

probability of detection as a function of a) signal to noise ratio or range at a given source 

level and b) probability of false alarm.  For this purpose, a model of the probability 

distribution function of the detector output was derived from experimental data.  For the 

experiment a series of short duration digital recordings of selected odontocete 

vocalizations were broadcast underwater from a moving platform.   The vocalizations 

were monitored and digitally recorded at a stationary underwater array consisting of three 

vertically distributed hydrophones.  Over a period of three days, several hundred 

iterations of each signal – with the transmitter at ranges varying from 300 meters to 

12000 meters – were recorded.  A monitoring hydrophone (co-located with the 

transmitter) was used to monitor the signal source level.  The raw data was fed to two 

“automatic detectors” consisting of different data processing routines developed in 

MATLAB®.  The output of each detector was subjected to statistical analysis.  Other 

factors also considered in the analysis were: signal used, range, and wind (as a proxy 

indicator of noise generated by surface wave action).  A statistical test was employed to 

systematically find a best fit probability distribution function model of detector output.  

From this empirical model, detector performance was estimated. 
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I. INTRODUCTION 

 

A. BACKGROUND 

 

The U.S Navy has been using sound in the sea for three quarters of a century.  

Today, acoustic research continues to improve our ability to navigate safely and to detect 

and prosecute ever quieter and more distant targets.   But more importantly, sound 

provides an exceptional means with which we may probe into and attain a better 

understanding of the ocean’s structure and variability and with it, a better understanding 

of climate and of our world. 

The effects on marine life of high energy anthropogenic noise is still not well 

understood (Goold, 1997, and Madsen et al., 1999).   It is however, generally accepted 

that the acoustic intensity of navy systems is such that it probably presents health hazards 

to at least some marine species when in the vicinity of the source.  Marine mammals are 

of particular concern due to their already small numbers as well as the evolutionary 

kinship we share.  It is also likely that their own dependence on underwater acoustics 

makes them particularly vulnerable.     

It is in the interest of science, and of the U.S. Navy, to avoid injuring whales and 

dolphins.  To this end, the development and implementation of an automated system for 

the passive-acoustic detection of marine mammals would be of great use.    

There are many physiological and behavioral differences between the two 

cetacean suborders of Mysticete (baleen whales) and Odontocete (toothed whales).  Most 

relevantly, the ranges of frequencies where their respective vocalizations take place are 

considerably distinct.  Consequently the problem of automated acoustic detection must be 

addressed separately for each sub-order.  This thesis concerns itself with the detection of 

Odontocetes.  
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B. THESIS OBJECTIVES AND APPROACH  

 

The objective of this thesis was to evaluate the performance of inexpensive, 

passive, omni-directional receivers as a means to detect vocalizing Odontocetes using 

conditional statistics.   

A seven step approach was used to attain this objective.  The seven steps are listed 

below. 

1. Gather Data.  An experiment was designed to provide a statistically 

significant amount of odontocete call realizations via an underwater transmitter located at 

varying ranges from a stationary receiver.  The receiver output was digitally recorded 

continuously throughout the experiment and stored into chronologically catalogued files.  

2. Extract data.  A combination of automated and manual procedures was 

employed to isolate and catalogue those portions of the collected recordings which 

contained useful data (data recorded during transmissions).   

3. Process data.  The isolated and catalogued portions of the recordings were 

fed through a band-pass filter and two data processing routines here referred to as 

detectors.  Each detector exploited different aspects of the relationship between the whale 

vocalization and the surrounding acoustical environment to produce an output time-series 

in which (ideally) the peak values correspond with times during which a vocalization was 

received.  These peaks are also referred to as “hits”. 

4. Quantify individual detector output.  Once again a combination of 

automated and manual procedures was employed to extract the relevant information from 

each detector’s output.  This information was catalogued alongside range, time, detector, 

and wind information. 

5. Analyze statistics of detector output.  A number of probability distribution 

curves were compared against each detector output using a statistical test as an objective 

comparator of curve fitness.  One of the distributions was then selected on the basis of 

this test.   

6. Empirically recreate detector output statistics.  The selected distribution 

curve was defined by two parameters.  A set of defining parameters were then found (for 
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each range) that best fit the selected distribution to the various actual data sets.  This gave 

an empirical model of detector output distribution as a function of range. 

7. Consider detector performance.  Detector performance could now be 

“measured” via the usual means which consists of integrating the relevant distribution 

curves (for a given range or input SNR) to obtain the areas corresponding to probability 

of detection and probability of false alarm.   

 

C. OUTLINE 

 

 Six different odontocete vocalizations were polled from various internet / marine 

mammal acoustics expert sources and prepared for underwater broadcast by normalizing 

and filtering.  A complete broadcast was assembled which contained fifty iterations of 

each of the six signals as well interspaced synthetic tones to be used as “place markers”, 

useful in the subsequent extraction of the data.  For clarity, I will henceforth refer to a 

single realization of a call as a signal, to the fifty contiguous realizations of a call as an 

ensemble, and to the six ensembles as a broadcast.      

Three hydrophones of the San Clemente Island Underwater Range (SCIUR) were 

chosen as the primary receivers for the experiment.  A G-34 acoustic source was used to 

broadcast the signals at varying distances from the SCIUR range.  The G-34 was 

deployed onboard R/V Point Sur.  The data collected by the range’s three hydrophones 

was digitally recorded in three separate channels (one for each hydrophone). 

At the computer lab the acoustic data was first merged with position and wind 

speed data from ship’s automated logs in order to find the distance corresponding with 

each transmission as well as an indication of sea state.  This was possible because the 

ship and the recording station used the same GPS time reference. 

The collected data was de-meaned to remove potential bias; and then band-pass 

filtered.  Filtering ensured that the signal fed to the detector came only from that range of 

frequencies where the G-34 source was known to behave predictably (linearly).  Then the 

data was run through two different detectors.  These detectors are MATLAB® routines of 

array cross-correlation where the collected data is vector-multiplied with a reference 
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signal or a specific function, and then integrated over time.  The two kinds of detectors 

used are a matched filter, and an energy detector.  

The matched filter compares the data with one of the broadcast Odontocete 

vocalizations (prior to broadcast).  This is the ideal detector when the source signal is 

exactly known (Urick, 1983).  For the energy detector the same time series is first 

squared and then integrated in time over a time-window specified by a gate function of 

unit amplitude and length equal to that of the reference signal.  This results in “detection” 

whenever enough acoustic energy reaches the receiver, regardless of the signal’s 

structure (so long as the frequencies are within the passed band).  The energy detector is 

the optimal detector when no information about the source signal is known (Urick, 1983). 

The detectors’ performance at various ranges, times and sea states (wind speeds) 

was then subjected to statistical analysis.  This analysis ultimately led to estimates of 

sonar performance. 
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II. METHOD 

 

A. EXPERIMENT – GATHERING THE DATA 

 

1. Hardware 

 

This section gives a brief description of the three major pieces of equipment used 

during the experiment: the transmitter, the receiver, and the monitoring hydrophone.   

 

a. Transmitter 

 

A type G-34 transducer (rented from the Underwater Sound Reference 

Division of the Naval Undersea Warfare Center) was used for the transmission of all 

signals.  The propagation frequencies of interest – where the majority of odontocete 

vocalization takes place – are in the 1-10 kHz band (Sjare et al. 1985).  But, as shown in 

Figure 1, the G-34 has an advertised frequency range of 200 Hz – 5 kHz. 

 

 
Figure 1:  Manufacturer specified Transmit Voltage Response (TVR) curve (Ivey, 1991).   
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However, an analysis of the data from previous tests with the G34 

revealed a slightly larger usable range of up to 8 kHz.  By usable it is meant that the 

frequency dependent response curves extracted from a series of transmissions (100 Hz – 

10 kHz up sweeps), remained relatively smooth and stable through this range.  As an 

example, four empirically derived response curves made at different times are shown in 

Figure 2.  Note that for frequencies below 8000 Hz, the four curves are overlaid without 

showing great difference among them.  However, above 8000 Hz, a divergence of the 

curves is clear and it indicates that the source is no longer reliable.  The major difference 

between the manufacturer and the experimental curves is the higher energy at low 

frequencies for the experimental curves.  This is due to background noise.  

 

 
Figure 2: Four experimentally derived transmission voltage response curves correspond to the 
spectra of four continuous up-sweep transmissions broadcast at different times. 

 

If a response curve is reproducible, it can later be compensated or 

accounted for in the analysis.  This expanded usage was also important because most of 

the background noise within the band-pass occurs in the lower half, below 5 kHz (Wentz, 

1962).  By transmitting up to 8 kHz the signal structure can be better exploited.    
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For efficiency, all signals were filtered prior to transmission to ensure that 

the transmitted signal energy was contained within this pass band.  Signals were filtered 

in MATLAB® using an 8th order Butterworth filter.  A transmission depth of 30 meters 

was assumed to be a realistic depth where Odontocetes could be expected to vocalize. 

The G-34 is powered through the winch cable.  Earlier experiments 

revealed that the voltage output of this winch cable (the input to the G-34) has its own 

frequency dependent transfer function.  It was speculated this effect was due to inductive 

effects resulting from the cable coiling around the winch.  Though interesting, the effect 

does not negatively influence this experiment since source level was determined as 

described in section C.1., from a “third party” calibrated hydrophone at a known 

(estimated) range from the transmitter. 

 

b. Monitoring Hydrophone  

 

A model HTI-96-MIN hydrophone (0-30kHz, Sensitivity: -164.7 dB re 

1V/µPa) built by High Tech was deployed from the R/V Point Sur during all 

transmissions.  Transmissions were recorded via this monitoring hydrophone at a sample 

rate of 33333 Hertz.  For all deployments, the hydrophone was streamed from the stern of 

the ship with 30 meters of scope.  Gain was set at 10 and sensitivity (manufacturer 

specified) was -164 dB re 1V/µPA. 

 

c. Receiver 

 

All other acoustic data used in this thesis was collected by the San 

Clemente Island Undersea Range (SCIUR).  The receiver for this experiment was the 

Naval Undersea Warfare Center’s (NUWC) Ship Self-Radiated Noise Measurement 

(SSRNM) array located on San Clemente Island.   The hydrophones in this array are 

broadband hydrophones built by International Transducer Corporation (Model ITC – 

6050 C).  They are in a fixed vertical line array (VLA).  The array is located at 33 00’ 

35.1” N, 118 31’ 49.8” W.  It has three operating hydrophones at depths of 75.29, 136.55, 

and 165.81 meters. 
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2. The Whale Calls 

 

The experiment was designed to provide a statistically significant amount of 

odontocete call realizations to the receiver.  The receiver output was digitally recorded 

continuously throughout the experiment and stored into chronologically catalogued files.  

Later, the relevant data in these files was extracted and analyzed.  Some important 

characteristics of the transmitted data are discussed in this section.  

 

a. Vocalizations 

  

The term “whale call” is here used in a broad sense.  There are actually 

three types of odontocete vocalizations:  whistles, clicks, and pulsed sounds.  Their 

significance and their use vary, and are objects of much study and speculation.  The only 

assumption relevant to this thesis as regards the meaning of these vocalizations is that 

they are a manifestation of some very common odontocete pattern of behavior.  In other 

words, the choice of an acoustical detector begins with the conditional premise: given 

that an odontocete is vocalizing.   

Each signal (or call) used here is approximately one second in duration 

and is a fragment of a larger sequence of sounds.  The structure of this fragment, 

however, is such that it has a clear beginning and end.  It is also generally apparent that 

the same – or a similar – structure can be found repeatedly throughout the larger 

sequence.   

The calls used were obtained as digital recordings from the sources listed 

in the list of references.  Six calls were selected from among approximately fifty 

available, based on the quality of the recording as well as the richness of signal content in 

the desired (1 kHz to 8 kHz) band.  

An attempt was made to compile a sample of manageable size (given the 

time available for the experiment) that was nonetheless adequately representative of the 

variability found within the repertoire of Odontocetes.  Since Orcas and Pilot Whales are 

among the most acoustically active (and frequently recorded) in the suborder, two signals 

from each of these were included in the compilation. 
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The calls used in the experiment were: two Orca (Orcinus orca) whistles, 

two Pilot Whale (Globicephala macrorhynchus) whistles, a click train from a Risso’s 

Dolphin (Grampus grisseus), and a click train from a Sperm Whale (Physeter 

macrocephalus).  Henceforth they will be referred to by the following abbreviated names: 

orca1, orca2, pilo1, pilo2, risso, and sperm.  Of these six signals, only orca2 and pilo1 

were analyzed due to time constraints. 

 

c. Variability  

 

The usefulness of the detectors, particularly of the matched filter, depends 

greatly upon the variability to be encountered in real-world odontocete acoustic activity.   

It is expected this kind of detector will perform poorly when the signals being transmitted 

are not nearly identical to the reference signal.  It is known that at least some species have 

a vast inventory of available calls.  This, however, does not necessarily mean the matched 

filter is doomed to fail when confronted with real world data.   

Reference calls may be found which are both simple and pervasive 

(examples of such ubiquitous “calls” in human vocalization would be the sounds Ah, Hey 

or No which may be found not only in most conversations in English, but also in nearly 

every other language – yet they remain characteristically human “calls”).  If this is the 

case with Odontocetes, the matched filter may yet prove useful; especially because – 

unlike the energy detector – the matched filter has the ability to detect a signal even when 

the signal to noise ratio is poor. 

   On the other hand, the matched filter’s sensitivity to signal structure can 

be exploited if employed as a means to classify after detection by an energy detector. 

 

d. Transmission 

 

Each broadcast was structured as follows.  Each of the six calls 

(approximately one second long) was repeated fifty times.  The individual realizations 

were separated by a one second period of no transmission.  The ensembles of fifty 

repetitions (approximately one minute long) were themselves separated by a five second 
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period.  This five second period was further divided into one second of no transmission, 

followed by a 3 kHz tone for three seconds, followed by one second of no transmission.   

The entire broadcast of six calls, fifty times each was done while the ship 

hove-to and idled declutched, and it took approximately fifteen minutes.  Once 

completed, the ship then transited to the next station, and there commenced a new 

broadcast.  The complete set of broadcasts from shortest to longest range (or vice versa) 

is referred to throughout this work as a run.   

The first run of the experiment carried the ship out to 10 km (at 1 km 

intervals) from the SCIUR range.  Figure 3 shows the ship’s track for the first run.  

Based on real-time spectrograms of receiver data during this run it was estimated that the 

signal was no longer detectable at ranges beyond 7 or 8 km.  Consequently the four 

subsequent runs of the experiment carried the ship no further than that. 

 

Figure 3:  Ship’s track for the first run.  Receiver array is indicated by red box (■).  Note the ship 
drifted to the southeast while “on station”.   Chart depths are in meters.  
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Upon looking at the energy detector output it first became evident that 

energy from the 3 kHz tone was contaminating the first signal of each ensemble (due to 

multi-path delayed arrivals).  The energy detector showed this first signal as being 

consistently louder than the other forty-nine.  Therefore the MATLAB® routine was 

made to automatically exclude that first call.  For simplicity, however, an ensemble will 

continue to be referred throughout this work as though it were composed of fifty calls. 

For a given voltage, the G-34 produces the highest power output when 

transmitting at 3 kHz.  For this reason, the 3 kHz  pulses, marking the start and end of 

each ensemble, were always easily located in a spectrogram.  Once a pulse’s location was 

determined, it could be used as a point of reference.  A MATLAB® routine anchored on 

this point of reference then partitioned and extracted the desired ensemble for analysis. 

 

B. EXTRACTING THE DATA 

 

At the SCIUR range, data was recorded almost without interruption for three 

days.  In order to find the desired information within the vast amounts of collected data, 

the broadcast time (as logged by personnel on watch) was used to provide a coarse idea 

of where to begin the search.  Next, a series of spectrograms were generated for the time 

series corresponding to the vicinity of this logged time.  Within these spectrograms a 

specific point was located: the leading edge of the second 3 kHz tone.  The name of the 

file containing this point and the sequential location of the point within the file were then 

integrated into rows in a locator matrix. 

From this point onward, since the size of each ensemble is exactly known, the 

process of pulling the desired data could be automated.  All later MATLAB® routines 

made reference to the locator matrix to first locate the point.  The routines then used 

incorporated “knowledge” of where the sought data rested relative to the point.  

Figure 4 shows a “map” of the relative sizes and locations of the first three 

assemblies in each transmission.  This map was used to implement the automated 

extraction of data.  Note how the starting points of several assemblies can be found once 

a reference point is established.  The reference point chosen in this case was CWO2: the 

leading edge of the 3 kHz tone which marks the start of orca2 (the second 3 kHz tone on 
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each broadcast).  In this example, CWO2 is found within the file daqX+2.  The size of 

each file is exactly known:  2000000 data points (2M), as are the lengths of each of the 

assemblies.  Therefore CWO1 and CWP1 are also known and can be determined by the 

relationship 

CWO1 = (4M+CWO1) – ORCA1 

CWP1 = (CWO2+ORCA2) – 4M 

 
Figure 4:  A Map of the first half of the transmission.  The red rectangles represent the 3 kHz tones.  
The vertical black lines show the successive files (.daqX, .daqX+1 …).  The numbers in parentheses 
are the sizes (number of data points) of the corresponding files or signals. 
     

Although automated, the process described was nevertheless time-consuming due 

to the vast amount of data (a considerably high sample rate of 33333 Hz) being loaded 

each time.  A practical limit of three daq files was incorporated into the routine to bring 

up the speed of the data analysis process to a tolerable level.  The entire ensemble then 

had to be contained within three files or the routine would not find it.  Note that due to the 

length of orca1 (it exceeds 4M) it necessarily often spanned more than three files.  

Consequently, a smaller amount of useful data was available from orca1.  This doesn’t 

mean the data is not there, but that it was – for practical reasons – overlooked. 
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The starting time of each ensemble was established based on the starting (trigger) 

time of the daq-file, and the location of the ensemble within this file.  This time was then 

matched with the corresponding time on the ship’s log (SAIL data).  In this manner, 

corresponding ship’s position and average wind speed information were merged with the 

data extracted from each ensemble.  Since the transmission of an entire ensemble only 

lasted approximately two minutes – during which the ship hove to while de-clutched – it 

can be assumed that the position and wind corresponding to its start remained valid for 

the duration of the transmission.  A table containing position and wind information for 

each extracted ensemble is found in Appendix A. 

 

C. PROCESSING THE DATA 

 

Once extracted, the data was processed.  The processing had three main 

objectives:  a) to determine the source level (SL) of the calls, b) to filter and correlate the 

data to produce detector output, and c) to calculate input signal to noise ratio at the 

receivers.    

 

1. Source Level 

 

Source level (SL) of two different whale calls was established using the method 

described in the following paragraphs.   

 

a. Finding Range  

  

With the exception of logging cable lengths, no method was devised – 

during the experiment – to determine with precision the location of either the G-34 or the 

monitoring hydrophone (nor their relative positions).  Consequently the following 

assumptions were made: 

1) The G-34, due to its heavy weight, hung vertically – or nearly so – 

below the winch. 



14 

2) The monitoring hydrophone was located somewhere between hanging 

directly below its deployment point (at the stern rail of the Point Sur), and streaming 

directly aft of the Point Sur (near the surface).  As shown in Figure 5 two boundary 

ranges can be established.  If a theoretical source level is calculated for both ranges (and 

if all other assumptions are correct) then actual source level will necessarily be found 

somewhere between the two values obtained.    

 

 

Figure 5:  Relative positioning of G-34 source (■) and Monitor Hydrophone (●):  maximum (56.1 m) 
and minimum (12.2 m) ranges. 
 

b. Gain and Sensitivity 

 

The equipment setup for SL monitoring is shown in Figure 6.  Note that 

the digitally recorded data – before any manipulation or processing has been applied – 

has units of volts.   
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Figure 6: Box diagram of equipment setup for SL estimates. SL is expressed in units of dB re 1 µPa 
@ 1m.  To obtain these units from the data (digital recording) amplifier gain, hydrophone sensitivity 
and range extrapolation must all be taken into account.  Note that the extrapolation is carried to a 
position 1m from source (marked x) not to the source itself. 

 

Dividing the data by the amplifier gain (volts upstream of the amplifier) and then 

by hydrophone sensitivity returned sound pressure in micro Pascals.  This pressure 

corresponds to a measurement in the water, exactly at the receiver’s location.  Both gain 

(setting) and sensitivity (manufacturer specified) were logged for each transmission.  

They were constant at 10, and -164 dB re 1V/µPA, respectively.  Note that since the 

sensitivity is given in dB re 1V/µPA, it needs to be converted to linear scale before the 

division.  

                        20
8.164

10
−

=linearySensitivit  
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c. Extrapolation to 1 meter 

 

For Source level estimates, the value of interest is the pressure at a point 1 

meter distant from the source.  In spherical spreading the intensity decreases as the 

square of the range, and the pressure therefore decreases linearly with range.  For near 

distances where the direct path dominates, spherical spreading can be assumed (Urick, 

1983).  Therefore   

Ps(t) = D Pr(t) 

where Ps(t) is the pressure one meter from the source, D is the distance separating the 

source from monitoring hydrophone, and Pr(t) is the pressure exactly at the receiver’s 

location. 

 

d. Calculating Source Level 

 

The Data time-series, originally in terms of volts at the receiver has now 

been manipulated to show micro-Pascals one meter from the source.  It remains only to 

solve for source level.  Source level is defined as 
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where T is the duration of the signal.  Individual calls were cropped and isolated out from 

the relevant time-series to form the time series Po
2(t). 

 

e. Results 

 

The two SL values for each call are listed in Table 1.  Again, recall that if 

all other assumptions are correct, the actual value of SL for the given signal is found 

somewhere between the two boundary values. 

   

 

 



17 

 
 Table 1:  SL calculations for orca2 and pilo1 

 

2. Matched Filter 

 

A matched filter is a coherent detector.  That means its performance is highly 

dependent upon the similarity between the signals being compared.  It takes advantage of 

two facts.  First, signal and noise are not correlated.  Second, the matched filter exploits – 

in addition to the signal’s energy content – the characteristics of the signal waveform.  

The matched filter performs the following operation 

       ∑
=

∆+=
N

n

tnRnmWmC
1

)(*)()(    

where R is the reference digital signal, W is the digitized received data, Τ (= Ν∆t) is the 

integration time, ∆t is the sampling time interval, and C is the detector output (Units of 

Volts2Seconds).  The above equation is implemented in MATLAB® by the function 

XCORR. 

W is the time series spanning one ensemble.  In order to asses the performance of 

the detector, C is partitioned into fifty windows and the maximum value within each 

window is extracted and made part of a fifty element X vector (See Figure 10).   

Note that signal length Τ isn’t the same for orca1, orca2 or pilo1. Therefore all 

reference signals must be normalized the same way if we are to meaningfully compare 

the detector output using different reference signals.  For convenience, each reference 

signal is normalized to have unit energy.  Given a broadcast signal B, of length N, the 

normalization is 
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3. Energy Detector 

 

An energy detector is an incoherent detector:  it remains unaffected by spatial or 

temporal structure of the signal.  The energy detector exploits the following aspects of the 

signal:  its energy content, the fact that signal and noise are uncorrelated, and the 

incoherence of noise.  The energy detector performs the following operation 

                                      ∑
=

∆+=
N

n
tnUnmWmC

1

2 )()()(  

where U(n) describes a box function duration Ν∆t with unit amplitude.  

The detector is insensitive to the actual characteristics of the signal waveform.  

This presents both an advantage and a disadvantage over the matched filter.  The 

advantage is that its low sensitivity to waveform characteristics results in a less 

discriminating detector.  If classification of the source is not an objective, low 

discrimination is desirable.  The main disadvantage of the energy detector is that it has a 

much lower processing gain (Urick, 1983) than the matched filter and is therefore less 

likely to detect a signal whose intensity has fallen to the level of background noise. 

 

4. Input Signal to Noise Ratio (SNR) Estimates  

 

Throughout this thesis various references are made to the input signal to noise 

ratio measured for a given ensemble time-series.  The word input points to the fact that 

this is a ratio of signal energy to noise energy at the receiver’s location before any signal 

processing takes place. The measurement of input SNR is derived from the energy 

detector output.  Recall that the energy detector integrates the time-series of pressure 

squared (proportional to power) over a sliding time window.   Therefore when the time 

window position corresponds with a signal in the time-series the corresponding C value is 

equal to the acoustical energy of the received signal plus background noise energy.  

When the time window position corresponds with a period of no transmission, the 

corresponding C value is equal to the background noise energy.  Therefore by taking the 

mean of the energy detector output peaks for a given ensemble, and dividing it by the 

mean of the output minima (which closely approximates noise energy, i.e. the values 



19 

between adjacent peaks) a value SNNR is obtained which approximates the Signal plus 

Noise to Noise Ratio.  From this value, an estimated SNR can be obtained as follows 

 

SNR(linear scale)=SNNR(linear scale) - 1  
 

As SNNR approaches 1, SNR (linear scale) approaches zero.  But as SNR approaches 

zero, it is increasingly less likely that the assumption that a peak corresponds with a hit 

still holds true.   

 Figure 7 shows how a range-dependent SNR “function” was obtained by 

interpolation from the collection of estimates.  The values shown in Figure 7 are also 

summarized in Table 2. 

 
Figure 7:  An estimate of input SNR as a function of range estimated from the  individual values 
obtained from the energy detector output.   
 

 
Table 2:  SNR as a function of range 
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III. ANALYSIS AND RESULTS 

 

A. DETECTOR OUTPUT PDF  

 

The primary goal of this thesis was to assess the performance of an omni 

directional receiver in detecting odontocete vocalizations using statistical measures.  

With the detector output, this was accomplished using the methods outlined in the 

following paragraphs. 

 

 1. Quantifying Individual Detector Output 

   

Given that the band passed data vector (W) being fed to the detectors spans the 

period over which an ensemble (50 calls) was transmitted (and received), the output time-

series (C) then must contain fifty hits.  A hit is a peak in the cross-correlation of the 

reference call (or box-function) with a part of the received time-series which contains 

exactly one of the transmitted calls.  Figure 8 presents a simplified diagram summary of 

the MATLAB® implementation of the matched filter.  Figure 9 graphically summarizes 

the implementation of the energy detector.  The two figures highlight the key differences 

between the detectors as well as show what typical outputs looked like in the presence of 

a clear (high input SNR) signal.  The output of both detectors is given in units of volts 

squared seconds.  In order to obtain units of energy this output needs to be multiplied by 

the sampling time interval ∆t.   
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Figure 8: Matched filter.  On the left the possible inputs (W) to the detector are represented as 
simplified spectrograms.  These spectrograms each “show” the input which consists of  an ensemble 
of signals.   On the top, a simplified spectrogram shows the possible reference signals (R) used by the 
detector.   A reference signal is chosen which matches the input ensemble.  On the right, a typical 
(clean) detector output shows a hit for each realization of the input ensemble.  
 

 
Figure 9: Energy detector.  On the left the possible inputs (W2) to the detector are listed.  The 
diagram shows that the box function is of the same duration as the reference signal (R).  On the right, 
a typical (clean) detector output shows a hit for each realization of the input ensemble. 
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In order to extract the desired information, the detector output was partitioned into 

fifty segments (or WINDOWS) of equal length, each of which contained one hit.  Recall 

that the structure of the transmitted ensemble consists of fifty iterations of the reference 

signal interspaced by one second intervals. This one second interval advantageously 

insures that the partitioning of the output will not result in an error-inducing amputation 

of part of the cross-correlated signal.   

Figure 10 illustrates the process whereby the detector output peaks for each 

ensemble are extracted to form a vector of hits X.  Recall that there are three receiver 

hydrophones, therefore for any given signal, range, time, detector combination three 

separate X vectors are produced. 
 

            

Figure 10:  The upper portion of the figure shows the matched filter output given an ensemble input 
(with adequate SNR).  The lower portion of the figure demonstrates the process whereby peak values 
of the output corresponding with “hits” are extracted to form a fifty element vector X.   Once a X 
vector is produced for each received ensemble, a statistical analysis of detector output peaks can 
proceed.  
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The validity of the assumption that peak value in each window corresponds with 

the value of a “successful” correlation/hit depends upon the input SNR.  Figure 11 

illustrates (left side) a case where the value of the hit is lost in the background, and (right 

side) a case where individual hits still show (barely) above the background.  This 

transition was observed to occur at an SNR of approximately 0.25 (linear scale). 
 

 
Figure 11:  Detector outputs for both detectors with fairly poor input SNR.  On the left: Estimated 
SNR (linear scale) is 0.17 – The individual “hits” are not discernible in either detector’s output 
(Therefore MAX (WINDOW) = HIT) is probably not a valid assumption.  On the right: Estimated 
SNR is 0.28 – The individual “Hits” are still (though barely) discernible.  MAX (WINDOW) = HIT, 
may still be a valid assumption.   
 

2. Analyzing the Statistics of Detector Output  

 

In order to find a best fit continuous probability function (PDF) to describe the 

statistics of detector hits/peaks, Normal, Gamma, and Weibull distributions were tried.  

These were chosen because they are the most general forms of their corresponding 

“families” of distributions.  In other words, they were chosen for their flexibility. 

The fitness-test performed was a Kolmogorov-Smirnov test of the distribution of 

one sample.  In MATLAB®, KS = KSTEST (X, CDF, S) performs the Kolmogorov-
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Smirnov test to compare the distribution of X to the hypothesized distribution defined by 

the two-column matrix CDF. Column one of CDF contains a set of possible x values in 

X, and column two contains the corresponding hypothesized cumulative distribution 

function values.   

The null hypothesis for the test is that X conforms to the distribution specified by 

CDF. The alternative hypothesis is that it does not.  Therefore, KS = 1 if we can reject the 

hypothesis that X has a CDF-like distribution. KS = 0 if we can’t reject.   

S specifies the significance level; or the tolerated probability of incorrectly 

rejecting the hypothesis.  In other words, the probability that for a distribution which is 

CDF-like, and erroneous verdict of KS = 1 will be assigned.  S is a useful parameter in 

that it can be adjusted such that it optimizes the ability of KSTEST to discern between 

the relative fitness “competing” distributions.  S was fixed at 0.5 for the all tests referred 

to in this thesis. 

The MATLAB® Kolmogorov-Smirnov requires a hypothetical cumulative 

distribution function as one of the input arguments.  It was derived using MATLAB® as 

follows: 

 

1) P = DIST FIT (X) returned the maximum likelihood estimates for the 

parameters of distribution DIST (NORMAL, GAMMA, or WEIBULL) given the 

data in the vector X.  For instance, P = NORMALFIT (X) yields the two 

parameter vector P, where P (1) is the mean of X, and P(2) is its standard 

deviation. 

 

2) Figure 12 shows a “typical” cumulative distribution used in the test.  It was 

obtained by Y = NORMALCDF (Xr, P (1), P (2)), where Xr is an incremental 

vector which contains the range of X, and P(1) and P(2) were obtained from 1) 

above. 
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Figure 12:  A normal cumulative distribution curve defined by a mean of 50 and a standard deviation 
of 10 and given an Xr = [1:100] 
 

3) The two column matrix CDF = [Xr, Y] constitutes the second argument – along 

with X – required by KSTEST (as explained above).  

 

The MATLAB® function PDF DIST works like CDF DIST but its output is the 

specified probability distribution function.  This function was used to generate the 

curves which were then superimposed on the histograms of corresponding X.  Several 

examples of detector output peak distribution histograms and their corresponding best fit 

PDF curves are shown in Figure 13.  These curves were useful because they allowed 

some measure of visual validation of the Kolmogorov-Smirnov test results.  
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Figure 13:  Various samples of fitted probability distribution functions.  The distributions tested: 
Red – Normal, Green – Gamma, and Blue – Weibull.  These samples are taken from the matched 
filter data, channel-three, for ranges between 1000 and 7000 meters.  All have estimated input SNR 
(linear scale) greater than 0.3.  
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3. Best Fit PDF as a Function of Range 

 

Two hundred and sixty-four X vectors, corresponding to the outputs from both 

detectors where an orca2 ensemble was the input, were curve-fit tested.  The X vectors 

were first separated by visual estimate of the corresponding filter output © into high and 

low SNR in order to contrast detector output statistics in mostly noise conditions with 

detector statistics in the presence of a clear signal.  The results of the tests are shown in 

Tables 3 and 4  

 
Table 3:  Number and percent of rejections of “fits” of energy detector PDF to normal, gamma, and 
Weibull distributions by the Kolmogorov-Smirnov test of the distribution of one sample. The data 
was grouped into three general types:  data with high SNR (upper third of table), data with low SNR 
(middle third), and pure background noise (bottom third).   
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Table 4:  Number and percent of rejections of “fits” of matched filter PDF to normal, gamma, and 
Weibull distributions by the Kolmogorov-Smirnov test of the distribution of one sample. The data 
was grouped into three general types:  data with high SNR (upper third of table), data with low SNR 
(middle third), and pure background noise (bottom third).   
 
 

The figures in the highlighted rows represent the total number (and percentage) of 

rejections of the hypothesis that the given distribution (at the top of each column) 

matched the distribution of X.  So for instance, out of 66 high SNR X vectors, the 

hypothesis that they exhibited a Weibull distribution was rejected 66 times (100% 

rejection).  However, for the same 66 X vectors, the hypothesis that they exhibited a 

gamma distribution was rejected only 15 times (23% rejection).  From a comparison of 

the various results, it is clear that the best fitting distribution (the one least often rejected) 

is the gamma distribution.  It is furthermore apparent that the gamma distribution is a 

better fit for detector performance in the presence of signal.  Also, the matched filter 

performance is more closely approximated by the gamma distribution than that of the 

energy detector.  
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Like the normal, the gamma distribution is a two-parameter curve.  It is a non-

symmetric curve expressed mathematically as   
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The gamma scale parameter (g1) and the gamma shape parameter (g2) are related to the 

mean x  and the variance s2 as follows    
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The MATLAB® function GAMMAFIT was used once again to obtain the values of g1 

and g2 for each range, time, and detector.  This time the values were tabulated according 

to range and then plotted versus range.  Using these plots, a representative value for g1 

and g2  for each range  could be approximated by interpolation.  The individual values 

and the interpolation are shown on Figure 14 and Figure 15 for the matched milter and 

the energy detector respectively.  Parameters g1 and g2 were estimated only up to 5000 m 

for the energy detector and 9000 m for the matched filter.   

   
Figure 14:  Estimated  g1 and g2 values for the matched filter output.  The blue/green dots represent 
the values estimated for each X vector.  From these, for each range (300 m, 1000 m, 2000 m, 3000 m, 
4000 m, 5000 m, 6000 m, 7000 m, 8000 m, 9000 m) a single value of g1 and g2 was estimated (red/blue 
line). 



31 

 

 
Figure 15:  Estimated g1 and g2 values for the energy detector output.  The blue/green dots represent 
the values estimated for each X vector.  From these, for each range (300 m, 1000 m, 2000 m, 3000 m, 
4000 m, and 5000 m) a single value of g1 and g2 was estimated (red/blue line). 
 

It is evident in Figure 15 that the g1 parameter value is more scattered for the 

energy detector suggesting the effects of higher sensitivity of the energy detector to 

discrete noise which is non-stationary.  Consequently the energy detector results must be 

considered less reliable as those for the matched filter.  As will be discussed on a later 

section, the energy detector is very sensitive to discrete noises to which the matched filter 

is relative immune.  Discrete noises are transient noises, such as those produced by a 

passing fast boat, or an active navy sonar.  In the presence of said discrete noise sources 

the energy detector invariably produces anomalous g1 values.   

The estimated values of g1 and g2 used to calculate detector performance 

measures (shown as solid lines in Figures 14 and 15) are listed in Table 3.  Figure 16 

shows the gamma probability distribution functions that best fit the detector output peaks.  

Each detector’s output distribution is thus described in terms of a continuous curve for 

each range.  These curves provide the basis for discussion and comparison of detector 

performance.  
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Table 5:  Estimated values of g1 and g2 versus range for both detectors.   These values were used in 
the best fit PDF curve.   Note that the column labeled “noise” describes the distribution of detector 
output for ranges greater than 4000 m (energy detector) or 8000 m (matched filter).  
 

 
Figure 16: Best fit distributions of the output of matched filter (left) and energy detector (right) 
based on the interpolated values for g1 and g2 for various ranges given a source level of 143 dB re 
1µPa @ 1m. 
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As shown in Figure 17, for a given threshold (x-axis), the probability of false 

alarm, P(FA), is equal to the area under the noise (leftmost) curve, to the right of 

threshold.  The probability of detection P(D) at a given range is likewise the area under 

the respective curve to the right of threshold.  A useful way to summarize the information 

contained in the PDF curves is to tabulate P(D) as a function of range and P(FA) as 

shown in Table 4 below.  

 

 
Figure 17:  Example of how the PDF curves are used to provide P(D) and P(FA).  Integration of a 
PDF curve from some point T (indicated by the vertical line) to infinity yields the probability (given 
the conditions that define that curve, such as SL, SNR, range etc…) that an outcome M equal to or 
greater than T will occur.  If T is a detection threshold, then the integration from T to infinity is the 
probability that M will be “detected.”      
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Table 4:  Probability of detection P(D) as a function of probability of false alarm P(FA) and range. 

 
B. GENERAL OBSERVATIONS 

 

Here I list a few points which are thought to be relevant to follow-on research 

even though they were not mentioned in the body of the thesis.   

 

1. Signal Modulation 

 

As illustrated in Figure 18, when SNR was high, a pattern of oscillation 

modulated the outputs of both detectors.  The cause of this was not determined.  A 

periodicity of approximately 4 cycles per minute suggested that this modulation was 

induced by ocean swell.  Another possibility is that the oscillation was produced by some 

rotation of the transducer.  This would imply some directionality in the transmission.    
The assumption was made that, regardless of its source, this modulation and its 

effects are a natural consequence of the interaction between an afloat-platform and the 

marine environment.  In other words, no attempt should be made to remove the 

oscillation in the processing of the data, but rather it should be assimilated into the 

assessment of performance.  
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Figure 18:  Two sets of detector outputs from different days show a similar “modulating” oscillation 
with a frequency of approximately four cycles per minute. 

 

2. Discrete Noise Sources 

 

 During the course of the experiment, there were a few instances when a tactical 

bow mounted navy sonar was operated in the vicinity of the SCIUR range.  This 

unplanned circumstance presented the opportunity to observe the effects of a discrete 

noise source on detector performance.  The navy sonar constituted a source of high 

energy, in band (around 3 kHz) noise.  Figure 19 shows energy detector output and 

matched filter output corresponding to the same input containing a SONAR ping in the 

vicinity of 3 kHz.  

 The unit amplitude box function used in the energy detector acts essentially as the 

shutter on a camera.  The longer the box function is, the higher the exposure on the 

detector.  Since the box is one or more seconds long, the energy detector, like a camera, 

can be easily overexposed by a high energy source. 

The matched filter response to a high energy coherent noise is not as simple.  It 

looks not at pressure squared (power), but at pressure.  Because it takes full advantage of 
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the fact that the whale call and the loud noise waveform are not correlated, it is very hard 

to overexpose (cause a false hit) the matched filter.   

 

 
Figure 19:  Detector response to 3 kHz navy sonar.  The two upper panels are for the matched filter.  
The two lower panels are for the energy detector.  Detector output is shown on the left, and 
histograms of peak output are on the right (hydrophone-1 output in blue, hydrophone-2 output in 
green, and hydrophone-3 output in red)  
 

3. Hydrophone-1 

 

Data from hydrophone-1 was found to be unreliable.  Most of the time, this 

hydrophone shows a markedly reduced sensitivity.  However, the data from this 

hydrophone cannot simply be made useful by applying a sensitivity correction since 

often, it “returns” to the same sensitivity level as the other two hydrophones.  Figure 20 

illustrates this erratic behavior of hydrophone-1.  Note that the distribution of X for 

hydrophone 1 is sometimes considerably to the left (reduced sensitivity) and sometimes 

alongside that of the other two hydrophones.  For that reason, no data from hydrophone 1 

was used in this thesis.  However, it is possible that this data is yet useful, provided that 

care is taken to ascertain the faulty hydrophone’s sensitivity on a case by case basis.   
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Figure 20:  Matched filter detector outputs for the three hydrophones of the San Clemente Island 
Underwater Range.  Four examples are shown.   Output peaks are blue for hydrophone-1 green for 
hydrophone-2, and red for hydrophone-3. 
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 IV. CONCLUSIONS 

 

The end result of this thesis is summarized by the detector performance curves.  A 

qualitative assessment is made of the effects of range and sea state. 

 

A. PERFORMANCE CURVES 

 

The ultimate objective of this study was to obtain statistical measures of the 

detector performance.  These measures are summarized in the following two figures.  

Figure 21 displays the expected performance of the matched filter in terms of the 

probability of detection as a function of range and as a function of estimated input SNR 

for a given probability of false alarm.  Figure 22 does the same for the energy detector. 

Both detectors’ performance is similar in certain respects.  Given the source level 

of 143 dB re 1µPa @ 1 m, a range of 3000 m or less yields a probability of detection near 

100% while maintaining a negligible probability of false alarm for both detectors.   

For comparison purposes, a maximum detection range can be defined (more or 

less arbitrarily) as one within which probability of detection is no lower than 90% while 

probability of false alarm is no greater than 5%.  In that case, maximum detection range 

for the energy detector is approximately 3700 m which corresponds to an input SNR of 

approximately 0.45.  Conversely, the maximum detection range of the matched filter is 

4500 m with an input SNR near 0.35 (these ranges are valid given the source level 

mentioned above).  The performance seems comparable, especially when we recall that 

the matched filter is evaluated using ideal signal conditions (i.e. the source signal is 

exactly known).  However, the energy detector is essentially blind at an input SNR of 

0.40 or lower (that is why the curves do not extend beyond this value).  On the other 

hand, the matched filter can be useful with an SNR as low as 0.19 (this, of course would 

require allowing a greater P(FA) or demanding a lower P(D))      
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Figure 21:  Performance of the matched filter given a SL of 143 dB re 1µPa @1 m.  

 
Figure 22:  Performance of the energy detector given a SL of 143 dB re 1µPa @1 m. 
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B. RANGE DEPENDENCE 

 

The comparative performance of the detectors as a function of range is adequately 

summarized in the results listed in Table 4.  Both detectors show a very high probability 

of detection (with minimum probability of false alarm) at short ranges.  Probability of 

detection decreases rapidly to beyond a certain range.  Given the source level of 143 dB 

re 1µPa @ 1 m, this range for the energy detector was usually around three or four 

thousand meters.  For the matched filter, this range was approximately doubled.  It must 

be kept in mind that this performance reflects a matched filter used under ideal 

circumstances:  the reference signal is identical with the “found” signal.  When the 

matched filter was used in non-ideal circumstances (for example, trying to detect pilo1 

using orca2 as reference), its range dependent performance was equal to or lower than 

that of the energy detector. 

 

C. SEA STATE DEPENDENCE 

 

There are two ways in which sea state can be expected to affect SNR.  First, the 

surface turbulence may act as a source of background noise (Wenz, 1962).  Second, 

increased surface turbulence will result in increased scattering of sound energy traveling 

along surface-interacting propagation paths. 

An attempt was made to analyze detector performance as a function of surface 

wave activity (i.e. of homogeneously distributed noise).  To this end, average wind speed 

(taken from two shipboard anemometers) was to be used as a proxy for sea state.  

However, for this effort to succeed, it would have been necessary to have substantial data 

gathered while a) range was held constant and b) sea-state changed noticeably.  

However, there were only five runs of the experiment and consequently only five 

sets of constant-range data to compare.  Even then, due to the somewhat uncontrollable 

nature of a ship at sea, range itself was not exactly constant.  In the data that was 

analyzed, no obvious relation between SNR and wind speed or between detector output 

wind speed was noticed. 
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Both effects may have in fact been absent during the experiment explaining the 

absence of correlation between wind and observed acoustics.  In the first place, wind 

generated noise dominates the lower frequencies (30-800 Hz) which are excluded by the 

detectors’ band-pass filters (Kewley, 1989).  In the second place, given a downward 

refracting sound path it is possible that the dominant path for the transmission was non-

surface-interacting  
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APPENDIX A: LOCATION AND WIND DATA  

         
   TIME(DD) RUN STATION LAT (deg) LONG(deg) DISTANCE (m) WIND (kts) 
   ORCA1       
   25.7016      1      1    33.0196   118.5256        1180.58           1.67 
   25.8859      1      7    33.0565   118.4805        6972.64          15.00 
   25.9109      1      8    33.0634   118.4731        8003.43          13.79 
   26.1366      2      2    33.0232   118.5168        1964.85          18.34 
   26.1559      2      3    33.0300   118.5089        3020.08          14.78 
   26.1953      2      5    33.0432   118.4955        4938.22          17.31 
   26.6391      3      3    33.0297   118.5091        2981.17          10.00 
   26.6022      3      5    33.0441   118.4939        5115.28          13.52 
   26.8578      4      2    33.0252   118.5188        2027.96          11.70 
   26.8916      4      3    33.0310   118.5109        2985.98          13.46 
   26.9984      4      6    33.0514   118.4894        6005.20          16.75 
   27.6891      5      1    33.0162   118.5236         957.85           3.21 
   27.6559      5      3    33.0299   118.5090        2996.64           1.98 
   27.6066      5      6    33.0492   118.4887        5861.01           4.54 
   ORCA2       
   25.7047      1      1    33.0200   118.5256        1222.08           1.46 
   25.7341      1      2    33.0242   118.5155        2119.97           7.96 
   25.7541      1      3    33.0317   118.5088        3165.66           6.77 
   25.7703      1      4    33.0373   118.5013        4091.99           8.08 
   25.7959      1      5    33.0435   118.4937        5077.68           9.24 
   25.8678      1      6    33.0489   118.4854        6047.28          15.65 
   25.8891      1      7    33.0564   118.4794        7030.65          15.05 
   25.9141      1      8    33.0629   118.4718        8045.34          14.77 
   25.9316      1      9    33.0698   118.4648        9055.76          16.43 
   25.9503      1     10    33.0753   118.4574        9970.19          17.95 
   26.1203      2      1    33.0122   118.5292         289.88          14.97 
   26.1397      2      2    33.0223   118.5161        1926.82          14.37 
   26.1591      2      3    33.0293   118.5081        3013.26          14.99 
   26.1984      2      5    33.0423   118.4946        4930.75          15.93 
   26.7316      3      1    33.0158   118.5218        1049.34          13.42 
   26.6603      3      2    33.0222   118.5140        2068.39           9.94 
   26.6422      3      3    33.0294   118.5082        3007.03          10.17 
   26.6234      3      4    33.0363   118.5013        4011.67          13.59 
   26.6053      3      5    33.0440   118.4933        5148.92          14.09 
   26.8609      4      2    33.0247   118.5173        2061.45          13.04 
   26.8947      4      3    33.0299   118.5095        2974.88          13.95 
   26.9159      4      4    33.0374   118.5012        4107.18          13.16 
   26.9778      4      5    33.0429   118.4942        4993.18          16.37 
   27.0016      4      6    33.0515   118.4912        5907.78          16.04 
   27.0378      4      7    33.0580   118.4815        7040.71          17.88 
   27.6922      5      1    33.0166   118.5239         975.74           1.12 
   27.6591      5      3    33.0297   118.5089        2990.30           2.38 
   27.6416      5      4    33.0356   118.5025        3876.34           3.44 
   27.6259      5      5    33.0443   118.4956        5031.86           2.42 
   27.6097      5      6    33.0485   118.4897        5740.55           2.69 
   27.5834      5      7    33.0579   118.4808        7073.03           3.81 
   PILO1       
   25.7097      1      1    33.0207   118.5254        1298.26           1.62 
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   25.7397      1      2    33.0248   118.5153        2184.53           8.04 
   25.7759      1      4    33.0377   118.5009        4154.46           8.24 
   25.8941      1      7    33.0563   118.4775        7144.28          14.87 
   25.9191      1      8    33.0628   118.4695        8190.39          16.77 
   25.9559      1     10    33.0747   118.4550       10074.23          18.06 
   26.1259      2      1    33.0112   118.5269         377.07          14.18 
   26.1447      2      2    33.0217   118.5143        2007.10          14.25 
   26.1641      2      3    33.0287   118.5065        3064.72          14.55 
   26.2041      2      5    33.0412   118.4927        4959.53          17.38 
   26.7366      3      1    33.0152   118.5201        1138.23          13.48 
   26.6472      3      3    33.0287   118.5064        3082.29          12.39 
   26.8659      4      2    33.0236   118.5149        2119.42          11.57 
   26.9003      4      3    33.0279   118.5065        3008.41          15.14 
   26.9834      4      5    33.0415   118.4969        4713.87          18.93 
   27.0072      4      6    33.0514   118.4945        5707.51          16.50 
   27.6978      5      1    33.0177   118.5241        1059.90           0.53 
   27.6641      5      3    33.0299   118.5091        2994.17           2.78 
   NOISE       
   27.2559      5      1    33.0896   118.4460       11854.72          11.09 
   27.3197      5      2    33.0880   118.4883        9526.05           8.08 
   27.4584      5      3    33.1188   118.5493       12217.58           7.76 
   27.4584      5      3    33.1188   118.5493       12217.58           7.76 
   27.5284      5      4    33.0608   118.4827        7208.25           5.59 
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