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Abstract

Pioblems of linear time-dependent dispersive waves in an un-
bounded domain are considered. The infinite domain is truncated
via an artificial boundary B. A high-order Non-Reflecting Boundary
Condition (NRBC}) is imposed on B, and the problem is solved by
a Finite Difference (FD) scheme in the finite domain. The sequence
of NRBCs proposed by Higdon is used. However, in contrast to the
original low-order implementation, a new scheme is devised which
allows the easy use of a Higdon-type NRBC of ony desired order.
In addition, the problem is considered for a strefified media. The
performance of the scheme is detmonstrated via numerical example.

1 Introduction

In various applications onc is often interested in solving a dispersive wave
problem computationally in a domain which is much smaller than the actual
domain where the governing equations hold. One of the several methods
that exist for solving a wave problem in a limited computational domain is
that of using NRBCs. In this method, the original domain is first truncated
by introducing an artificial boundary 5, which encloses the computational
domain £2. Then a special boundary condition is applied on B. This bound-
ary condition should not give rige to reflections when waves that praopagate



from within £ impinge on it. Boundary conditions that generate no spuri-
ous reflection are called “perfectly non-reflecting,” “petfectly absorbing,” or
simply “cxact” and arc reveiwed in [1]. Most NRBCs arc approximate and
generate some amount of reflection. However, as long as the reflection is
small (e.g. the order of magnitude of the discretization error) the NRBC is
considered adequate. The simplest NRBC is the Sommerfeld-like boundary
condition, which has the same form as the Sommerfeld radiation condition
that holds at infinity. In the last three decades several improved NRBCsy
that reduce the spurious reflections have been proposed [2].

To design a NRBC, one usually assumes that the governing equations in
the exterior are linear. This does not prevent the NRBC from being used
with nonlincar cquations inside £2. In terms of the complexity of designing
accurate NRBCs, one can distinguish between three types of linear wave
problems: timme-harmonic wave problems, non-dispersive time-dependent
wave problems, and dispersive wave problems. The prototype governing
cquations for these problems are, respectively, the Helmholtz equation, the
scalar wave cquation, and the Klein-Gordon equation. Technically more in-
volved equations, but with similar properties, are of interest in each of the
three categories.

The case of time-harmonic waves is, to a large extent, solved as far as
NRBCs arc conecrned. Effective, exact, and high-order NRBCs arc avail-
able; sce [3]-[3]. The case of time-dependent waves is much more involved.
For three-dimensional waves where B i a sphere, Grote and Keller [6]
and Hagstrom and Hariharan [7] constructed exact NRBCs. In two di-
mensions, Hagstrom and Hariharan [7] proposed a high-order asymptotic
NRBC. Disgpersive wave problems, in which waves of different frequencics
propagate with different speeds, arc the most difficult. High-order NRBCs
have been constructed by the authors [8]-[10]. We propose a high-order NR-
BCs scheme, in the context of the two-dimensional Klein-Gordon equations
in stratified media. It is associated with a sequence of NRBCs of increasing
order and the Jth-order NRBC is ezact for any combination of waves that
have specified wave number components (&.); and (k,); for j = 1,...,J.
This methodology originates from the observation that the solution of a
dispersive wave problem is an infinite superposition of single waves, each
characterized by its wave number components (or, cquivalently, by its phase
speed component).

We use on the artificial boundary B one of the Higdon NEBCs [11]. For
a straight boundary B normal to the # direction, the Higdon NRBC of crder
J is

g - ot /gax nle.y. t) = Enp .

Here, ¢ is time, and the C; are parameters which have to be chosen and
which signify phase speeds in the z direction. The boundary condition (1)
is cxact for all combinations of waves that propagate with @-direction phasc



speeds C1, ..., Cj.

2 Statement of the Problem

Consider the shallow water equations (SWEs) in a semi-infinite channel
(Figure 1). For simplicity, assume that the channel has a flat bottom and
that there is no advection. Rotational (Coriolis) effects are taken into ac-
count. A Cartesian coordinate system (z,y) is introduced such that the
channel is parallel to the z direction, as shown in Figure 1. The width of
the channel is b.
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Figure 1: A semi-infinite channel

Stratification with regards to the shallow water model, we are referring
to changes in density of the fluid. Van Joolen [12] has shown that for a 2
layer model, the linearized equations about a zero mean flow are given as a
system of 2 Klein-Gordon equations

62171

o2 — 961V (1 +m2) + fPm =0, (2)
32772 P1

— gl 2= 2 = .
5z Y 2V <p2771 +772> + fm2e=0 (3)

Here t is time, n;(z,y,t) is the unknown water elevation above 6;, f is the
Coriolis parameter, and g is the gravity acceleration. On the north and
south boundaries 'y and I's we specify the Neumann condition:

%—Z":o on Ty & Ts. (4)
On the west boundary T'yy we prescribe 7; using a Dirichlet condition, i.e.,
nz(oayvt) = Nw; (yat) on FW ) (5)

where nw, (y,t) is a gi
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