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Abstract 

Problems of linear time-dependent dispersive wa.ves in an un­
bounded domain arc consfrlcrcd. The infinite domain is truncated 
via. an artificial boundary B. A high-order :>J"on-Refiecting Boundary 
Condition (l\RBC) is imposed on B, and the problem is solved by 
a Finite Difference (FD) scheme in the finite domain. The sequence 
of l\RBCs proposed by Higdon is used. However, in contrast to the 
original low-order impkmentation, a new scheme is devised which 
allows the easy use of a Higdon-type l\RBC of any desired order. 
In addition, the problem is considered for a stratified media. The 
performance of the scheme is demonstrated via numerical example. 

1 Introduction 

In various applications one is often interested in solving a dispersive wave 
problem computationally in a domain which is much smaller than the actual 
domain where the governing equations hold. One of the several methods 
that exist for solving a wave problem in a limited computational domain is 
that of using NRBCs. In this method, the original domain is first truncated 
by introducing an artificial boundary B, which encloses the computational 
domain n. Then a special boundary condition is applied on !3. This bound­
ary condition should not give rise to reflections when v-mves that. propagate 
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from \Vithin n impinge on it. Boundary conditions that generate no spuri­
ous reflection arc called "perfectly non-reflecting," "perfectly absorbing," or 
simply "exact'' and arc rcvciwcd in [1]. l\fost NRBCs arc approximate and 
generate some a.mount. of reflection. However, as long as the reflect.ion is 
small (e.g. the order of magnitude of the discretization error) the KRBC is 
considered adequate. The simplest NRBC is the Sommerfeld-like boundary 
condition, 'vhich has the same form as the Sommerfeld radiation condition 
that holds at infinity. In the last three decades several improved NR.IlCs 
that reduce the spurious reflections have been proposed [2]. 

To design a KRBC, one usually assumes that the governing equations in 
the exterior are linear. This does not prevent the KR.BC from being used 
with nonlinear equations inside n. In terms of the complexity of designing 
accurate ='JRDCs, one can distinguish between three types of linear wave 
problems: time-harmonic vrnve problems, non-dispersive time-dependent 
wave problems, and dispersive wave problems. The prototype governing 
equations for these problems arc, respectively, the Helmholtz equation, the 
scalar \vavc equation, and the Klein-Gordon equation. Technically more in­
volved equations, but \Vith similar properties, are of interest in each of the 
three categories. 

The case of time-harmonic 'Naves is, to a large extent, solved as far as 
l\RBCs arc concerned. Effective, exact, and high-order NRBCs arc avail­
able; sec [3]-[5]. The case of time-dependent waves is much more involved. 
For three-dimensional waves where t3 is a sphere, Grote and Keller [6] 
and Hagstrom and Harihara.n [7] constructed exact NRBCs. In two di­
mensions, Hagstrom and Hariharan [7] proposed a high-order asymptotic 
KR.BC. Dispersive wave problems, in \vhich waves of different frequencies 
propagate 'vith different speeds, arc the most difficult. High-order NRBCs 
have been constructed by the authors [8]-[10]. \Ve propose a high-order KR.­
BCs scheme, in the context of the two-dimensional Klein-Gordon equations 
in stratified media. It is associated with a sequence of NRBCs of increasing 
order and the .Ith-order KR.BC is exact for any combination of \vavcs that 
have specified wave number components (ka,) j and (k11 )j for .i = 1, ... , J. 
This methodology originates from the observation that the solution of a 
dispersive \vave problem is an infinite superposition of single \vaves, each 
characterized by its wave number components (or, equivalently, by its phase 
speed component). 

We use on the artificial boundary Bone of the Higdon �N�R�B�C�.�~� [11 ]. For 
a straight boundary t3 normal to the :r direction, the Higdon NRBC of order 
J is 

H.1 (1) 

Here, t is time, and the Ci are parameters which have to be chosen and 
which signify phase speeds in the x direction. The boundary condition (1) 
is exact for all combinations of \vavcs that propagate with x-dircction phase 
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\Ve now truncate the semi-infinite domain by introducing an artificial 
cast boundary rE, located at ;i:: = xs (sec Figure 1). To obtain a well-posed 
problem in the finite domain !1 \YC need a single boundary condition on rE. 

\Ve shall apply a high-order ::--JRilC for the variables 'Ii. A discussion on 
this KRB C follows. 

3 Higdon 's NRBCs 

On the artificial boundary r R we use one of the Higdon NRBCs. The 
Higdon ::--JRBC of order J is given by (1) and involves up to .Ith-order normal 
and temporal derivatives. These l'\TIBCs were presented and analyzed in a 
sequence of papers [13]-[16] for non-dispersive acoustic and elastic waves, 
and were extended in [11] for dispersive \vaves. 

The first-order condition H 1 is a Sommerfeld-like boundary condition. 
If \VC set C\ = Co \YC get the classical Sommerfeld-like �~�R�B�C�.� A lot of 
work in meteorological literature is based on H 1 with a specially chosen 
C1 . Pearson [17] used a special but constant value of C1 , while in the 
scheme devised by Orlanski [18] and in later improved schemes [19] [21] 
the C1 changes dynamically and locally in each time-step based on the 
solution from the previous time-step. Sec also [22)-[24). For other parameter 
choices, the Higdon KRI3Cs are equivalent to KRI3Cs derived from rational 
approximation of the dispen:ion relation (the Engquist-Ivlajda conditions 
being the most well-knmvn example). This was proved by Higdon in [11] 
and in earlier papers. 

The Higdon �~�R�B�C� has many advantages including: 

• They are robust. Higdon shmved that the reflection eoeffieient is a 
product of J factors, each of which is smaller than 1 [11]. This implies 
that the reflection coefficient becomes smaller as the order J increases. 
A good choice for the Ci would lead to better accuracy 'vith a lmvcr 
order J, but even if we rnisR the correct CJ 's considerably, we \vill still 
reduce the spurious reflection as we increase the order J. 

• They are very general and apply to a variety of wave problems, in one, 
two and three dimensions and in various configurations. They can 
be used, without any difficulty, for �d�i�8�p�f�;�r�-�.�~�i�v�e� wave problems and for 
problems \Vith layers. lVIoRt. other available NR.IlCs are either designed 
for non-dispersive media (as in acoustics and electromagnetics) or are 
of low order (as in meteorology and oceanography). 

The scheme used here was developed in [8] and is different. than the 
original Higdon scheme [11]. Discrete Higdon conditions were developed in 
the literature up to third order only, because of their algebraic complexity. 
Here \Ve use the implementation to an arbitrarily high order. 
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3.1 Discretization of Higdon's NRBCs 

The Higdon condition H.J is a product of J operators of the form Ji, + Cj �r�~�·�.� 
Consider the following Finite Difference (FD) approximations: 

8 31 - 45- + (S-)2 - �~� x x 
8x 2ilx 

(7) 

In (7), ilt and il:z: arc, respectively, the time-step size and grid spacing in 
the :r direction, I is the identity operator, and Si and 5,--; are shift operators 
defined by 

S- n n-1 
t 71;,pq = T/i,pq (8) 

Here and elsev,r here, r1i'.vq is the FD approximation of r7; ( x, y, t) at grid point 
(;rp, yq) and at time t,,. \Ve use (7) in (1) to obtain: 

(9) 

Here, the index E correspond to a grid point on the boundary r b'· Higdon 
has solved this difference equation (and also a slightly more involved equa­
tion that is based on time- and space-averaging approximations for g1 and 
J/x) for J :S 3 to obtain an explicit. formula for 'IJl'.Eq. This formula is used 
to find the current values on the boundary r F; after the solution in the in­
terior points and on the other boundaries has been updated. The algebraic 
complexity of these formulas increases rapidly \Vith the order .J. \Ve have 
implemented the Higdon NRDCs to any order using a simple algorithm [8]. 

4 The Interior Scheme 

Higdon [11] has proved, in the context of the scalar Klein-Gordon equation 
(2), that the discrete �~�R�B�C�s� (9) are stable if the interior scheme is the 
standard second-order centered difference scheme 

n+I _ 2 n _ n-·1 + (C'o1il1) 2 
( n _ 2 n + n ) 

1/i,pq - ·1Ji,,,q T/1,pq ilx 7Ji,1i+l,q 1h,pq 7Ji,1i-l,q 

( Co16.t)
2 

(· n 2 n . n ) + ilx TJ2.p+l.q - 7/2,pq + TJ2.p-l,q 

•) 

+ ( �c�'�S�.�~�t�)� �~� (TJr,,,,q+l - �2�r�/�1�'�~�p�q� + r1r,p,q-l) 
(10) 

2 

+ ( �c�A�.�:�~�t�)� (n21
.r.q+1 - 2112,pq + TJ21.p.q-1) - u ilt) 2n11

.pq 
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,.n+l _ ,n _, n-1 �(�C�o�2�i�l�t�)�~� ( n _" n n ) 
'12,pq - 2112,pq �r�1�~�.�p�q� + 6.:c T/2,v+l,q 2r/2.pq + T/2,p-l,q 

+ ( Co·,6.t ) 
2 r1 ( n 2 n + n ) 

�~� P2 1/J ,p+l ,q - 7/J ,pq 1/J ,p-1 ,q 

(11) 

') 

+ (erg;')-�~� ( r1r.p,q+l - �2�1�1�r�'�~�p�q� + r1r.1;,q-l) - (f D.t )2r]g,,,q 

where Coi = V(iH;. \Ve use this interior scheme in the numerical experi­
ments presented in the next section. Since (9)-(11) are explicit, the whole 
scheme is explicit. 

5 A Numerical example 

\Ve apply the ne\v scheme to a simple test problem using the \vave-guide 
depicted in Figure 1. The channel 'vidth b is 5 and the channel depth is 1. 
The medium is stratified with two layers. The upper layer has a thickness 
of 81 = .2 and a uniform density p1 = 1. The 10\ver layer has a thickness 
of 82 = .8 and a uniform density of p2 = 1.25. A gravitational parameter 
g = 9.8 and a dispersion parameter f = 1 are used. 

The initial values arc zero everywhere, and the boundary function IJlV 

on the west boundary f1v is zero evcr:pvhcre for the first layer. A wave 
pulse is generated at r \'\/ in the second layer and given by: 

{ 

.1582 COS [;r (11 - 110)] 
11w(y, t) = 

if IY - 110 I <::: r & 0 <::: t <::: to , 

0 othcnvisc, 
(12) 

where the pulse center, radius and duration are '.l/O = 2.5, r = 1.5, and 
to = 0. 75 respectively. 

An artificial boundary B is introduced at x = 5, thus defining as the 
computational domain n a 5 x 5 square. In n a mesh of 20 x 20 is used, 
with linear interpolation for all the variables. The extended domain for 
the reference solution 'IJr,,J is a 15 x 5 rectangle, with a mesh of 60 x 20 
elements. Ko artificial boundary is imposed on the extended domain and 
therefore 17,,, 1 is not polluted by spurious reflections. 

T\vo cases \vith artificial boundaries arc investigated and juxtaposed to 
n,.cf· In the first case a Higdon l\RBC \Vith J = 5 is constructed \vith 
parameters cj = VY· The respective numerical solution '/Is is compared to 
T/ref to obtain a measurement of error I lei I at time t which was calculated 
by the following formula: 

[IJrcf(Xi , Yj, t) - 7/;,(J:;,yj, t)J2 
NxiVy 
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