
Calhoun: The NPS Institutional Archive

DSpace Repository

Faculty and Researchers Faculty and Researchers' Publications

2014-01

Data-driven simulation of complex

multidimensional time series

Schruben, Lee W.; Singham, Dashi I.

Association of Computing Machinery

L.W. Schruben, D.I. Singham, "Data-driven simulation of complex multidimensional

time series," ACM Transactions on Modeling and Computer Simulation, v.24, no.1

Article 5 (January 2014), 13 pages.

http://hdl.handle.net/10945/39559

Downloaded from NPS Archive: Calhoun

5

Data-Driven Simulation of Complex Multidimensional Time Series

LEE W. SCHRUBEN, University of California, Berkeley
DASHI I. SINGHAM, Naval Postgraduate School

This article introduces a new framework for resampling general time series data. The approach, inspired
by computer agent flocking algorithms, can be used to generate inputs to complex simulation models or for
generating pseudo-replications of expensive simulation outputs. The method has the flexibility to enable
replicated sensitivity analysis for trace-driven simulation, which is critical for risk assessment. The article
includes two simple implementations to illustrate the approach. These implementations are applied to
nonstationary and state-dependent multivariate time series. Examples using emergency department data
are presented.

Categories and Subject Descriptors: General [I.6.0] Model Validation and Analysis [I.6.4]; Types of Simula-
tion: Discrete Event [I.6.8]

General Terms: Data Modeling, Sensitivity Analysis

Additional Key Words and Phrases: Flocking algorithms

ACM Reference Format:
Lee W. Schruben and Dashi I. Singham. 2014. Data-driven simulation of complex multidimensional time
series. ACM Trans. Model. Comput. Simul. 24, 1, Article 5 (January 2014), 13 pages.
DOI: http://dx.doi.org/10.1145/2553082

1. INTRODUCTION

Advantages of simulation include the ability to model complex systems with few unver-
ifiable assumptions, assess decision robustness using sensitivity analysis, and quantify
risk by running replications. Parametric statistical methods for generating multivari-
ate time series (see Biller [2009]) include random noise components for simulating
replications. Sensitivity analysis can be done by changing the values of the model
parameters. These methods rely on statistical assumptions about the data to select
and fit mathematical models. Parametric models cannot be used for some types of
data because they may require unrealistic assumptions. Because the data is only one
example of the past, this single sample of reality cannot be used to test the model with-
out making additional assumptions. Data-driven methods include multivariate time
series resampling such as block bootstrapping [Härdle et al. 2003]. These methods
allow restricted replication and sensitivity analysis by changing the data sequence or
adding noise, and rely on assumptions concerning dependency and stationarity. Time
series bootstrapping can be combined with statistical models if one can justify making
additional assumptions about the data.

Trace simulations are purely data driven. They simply use real data as the inputs for
running a simulation. This is attractive because no assumptions about the data must be

Authors’ addresses: L. W. Schruben, 4141 Etcheverry Hall, University of California, Berkeley, CA 94720-1777;
email: lees@berkeely.edu; D. I. Singham, 1411 Cunningham Road, Naval Postgraduate School, Monterey, CA
93940; email: dsingham@nps.edu.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2014 ACM 1049-3301/2014/01-ART5 $15.00

DOI: http://dx.doi.org/10.1145/2553082

ACM Transactions on Modeling and Computer Simulation, Vol. 24, No. 1, Article 5, Publication date: January 2014.

http://dx.doi.org/10.1145/2553082
http://dx.doi.org/10.1145/2553082

5:2 L. W. Schruben and D. I. Singham

made. However, trace simulation cannot easily be used for either sensitivity analysis or
replication. Rare events that happened in the past are not rare in the simulated future;
they will recur in every run. More importantly, it is impossible for any new important
events to occur, potentially underestimating risk. All these methods assume in some
sense that the future will tend to behave like the past. Trace simulations assume the
future is exactly like the past (regardless of any changes in the system being simulated).
Sensitivity analysis to the future being different from the past is important.

Our objective is to introduce a framework for general resampling from complex data
where parametric models or bootstrapping methods are not appropriate. Purely data-
driven trace simulation is a special case. This method enables replicated sensitivity
analysis to explore how much the future will need to differ from the past before one
might want to change his or her system.

The method in this article is inspired by flocking agents, called boids, popular in
computer animations and the study of emergent social behaviors (Reynolds [1987]
introduced the concept of boids). Although data resampling is completely different from
previous flocking agent applications, we use some of the concepts and terminology
to provide intuition. The basic notion is analogous to scripted agent flocking where
a flock of boids follows the path of one or more leaders. Scripted boids are widely
used in animations of flocks of birds, schools of fish, or crowds of people. Unless true
replications of the data are available, there will only be a single leader boid whose path
is the real data. We refer to the real data path as the alpha boid. Intuitively, imagine
an n-dimensional time series of data as the coordinates of the flight path for a bird
in n-dimensional space; this is the path of the alpha boid. If we wish to resample this
data k times, we create a flock of k agent boids who swarm around this alpha boid. We
then use the coordinates of the locations of each member in the flock as the values of k
n-dimensional simulated times series.

To enable replication and sensitivity analysis, we need a way to control the degree
that the simulated flock tends to swarm around the alpha boid. We do this by changing
two classes of parameters. Affinity parameters control how closely members of the flock
(different futures) want to swarm around the alpha boid (the past). We are quantifying
the degree of affinity (or repulsion) the flock has to the alpha boid. There are also
random noise parameters that model information or innovations in the future that
cannot be fully determined from the past data.

In sensitivity analysis, we vary affinity parameters to control how much a future
replicate tends to behave like the past. We vary noise parameters to model what
cannot be known about a future replicate from its affinity to the past. We present
two implementations of this method, using a single affinity parameter, λ, and additive
white noise with variance σ 2. The affinity parameter in these algorithms is similar in
spirit to the correlation between a future and the past. The closer the affinity is to one,
the more a future tends to behave like the past. The lower the affinity, the more the
future will behave differently from the past. When affinity is negative, the replicated
futures are repulsed by the past.

Schruben and Singham [2010] proposed the idea of using flocking algorithms to sim-
ulate data that has similar properties to a stream of multivariate-dependent data.
This concept has been used for modeling simulation input and for generating pseudo-
replications of expensive simulation output [Schruben and Singham 2011]. This article
presents easily implementable algorithms as examples and demonstrates how these
can be used for replication and sensitivity analysis of multidimensional data for com-
plex systems. Input to a trace simulation can be replicated to enable sensitivity analysis
for a trace-driven simulation. Output of a simulation can be replicated to test the sensi-
tivity of a decision to the simulation output if the cost of running the simulation is high.

First, we present an overview of current methodology and a motivation for the
approach using emergency department data. The general framework is defined in

ACM Transactions on Modeling and Computer Simulation, Vol. 24, No. 1, Article 5, Publication date: January 2014.

Data-Driven Simulation of Complex Multidimensional Time Series 5:3

Section 2 and two specific implementations are presented in Section 3. In Section 4,
the two algorithms are applied to generate arrival processes from the emergency
department data and the results are compared to a simple nonhomogeneous Poisson
process simulation. We conclude the article and provide some suggestions for future
research in Section 5.

2. EXAMPLES OF FLOCKING FOR DATA MODELING

Hospital admission processes provide the context for this article. Patient arrivals to
hospitals come in two general categories, scheduled and unscheduled. It is the unsched-
uled demand processes that need to be generated to drive a simulation run. Modeling
admissions is a major problem, but not the only one, in creating a credible hospital
simulation [Gunal and Pidd 2007]. By far the largest source of unscheduled patient
admissions to many hospitals is the Emergency Department (ED), even when there is
no precipitating event such as an epidemic or terrorist attack. Patients present with a
variety of symptoms to an ED and are assigned a classification level (called an “acuity
level”) based on the severity of their symptoms. Even if two individual patients did ar-
rive independently of one another (say, heart attacks, not traffic accidents), the overall
demand process is observably nonstationary (Saturday nights are usually worse than
Tuesday mornings) and state dependent (waiting room queues can be discouragingly
large, even for critically ill patients).

Emergency departments in the United States and elsewhere are increasingly dys-
functional and risky to patient health and welfare [Johnson 2008; Eitel and Samuelson
2011]. There is a systemic operational issue that has put EDs in crisis. A major ED
problem is patient “boarding,” when patients who are ready for hospital admission are
bedded in the hallways of the ED waiting for an empty bed in the appropriate ward.
The movement from the ED to the hospital floors is, in the vernacular of industrial
engineers, a “pull” system. This lack of buffering between the hospital floor and the
ED makes unscheduled floor admissions state dependent. This problem has been ad-
dressed in desperate and creative ways. A particularly successful method is simply
using a “push” approach for patient transfer, where patients are moved to the hallways
of the hospital wards, not left in the ED hallway [Viccellio et al. 2009]. Unscheduled
hospital admissions from the ED can be high dimensional, nonstationary, censored, and
state dependent. Additionally, it can be hard to distinguish between nonstationarity
and state dependency in the observed data.

2.1. Nonstationary Example

As an example, we consider the ED data collected as part of a research experiment in a
large urban hospital. Patients arriving to the ED are evaluated by a triage nurse and
are assigned a number to represent their acuity level. We consider three aggregated
classification levels, with category 1 reserved for patients with the most severe symp-
toms. The likelihood of hospitalization of a patient in each category appears to be quite
stable, but the populations in each vary in a complex manner.

One way to look at the data is by looking at the number of patients who are in the ED
in each category at discrete time points. We define the patients in the system as those
who have arrived to the ED and either are awaiting a bed or have been assigned a bed
in the ED and are being treated before being discharged or sent to the hospital ward.
Although we have a three-dimensional time series (one for each category), we show an
example using two categories (1 and 2) to visually explain the method. Figure 1 shows
the progression of the number of category 1 and 2 patients in the system throughout
1 day, from midnight to midnight, plotted against each other. Each arrow shows the
transition over one half-hour increment of time. The arrows reveal the dependence by

ACM Transactions on Modeling and Computer Simulation, Vol. 24, No. 1, Article 5, Publication date: January 2014.

5:4 L. W. Schruben and D. I. Singham

Fig. 1. The number of category 1 and 2 patients in the ED system, collected every half hour for 1 day. The
arrows show the transitions over each increment of time.

Fig. 2. Left plot: Data boid (solid line) with follower simulated boid (dashed line). Right plots: Original data
(solid line) with simulated boid data (dashed line).

showing the state transitions over time. For an n-dimensional time series, this path
would travel through n-dimensional space.

We next simulate a boid that follows the same general direction of the data boid in
Figure 2. Of course, any number of such boids in a flock can be generated for multiple
replications. Depending on how closely we want the simulated data to follow the real
data, we can adjust this simulated boid path. The left plot of Figure 2 shows one such
simulated boid, and the right plots show the simulated boid data along with the original
time series. We round the values of the simulated boid to integers in order to provide
meaningful values for an ED simulation. Qualitatively, we see that the simulated data
captures the nonstationary properties of the original time series. Because the simulated
boid follows the joint motion of both time series, dependence is captured as well.

ACM Transactions on Modeling and Computer Simulation, Vol. 24, No. 1, Article 5, Publication date: January 2014.

Data-Driven Simulation of Complex Multidimensional Time Series 5:5

Fig. 3. Left: Interarrival times for a state-dependent arrival process with observed data (solid line) and
simulated boid data (dashed line). Right: A plot of the simulated boid (dashed line) generated by following
the data boid (solid line) that maps the interarrival time against the queue. Initialization bias and state
dependency can be observed.

2.2. State-Dependent Example

Most service systems experience demands that behave in a nonstationary or state-
dependent manner, and it might be difficult to distinguish these behaviors. For example,
people might join long queues at a lower rate (state dependency) and/or long queues
also occur during rush hour (nonstationarity). In either case, realistic modeling of
the demand process can be difficult. In the simplest nonstationary case, modeling
a nonhomogeneous Poisson process simply by estimating the arrival rate is difficult
and certainly challenging to account for the uncertainty because of the fact that this
estimated rate is itself a random process. For references on estimating parameters of
nonhomogenous arrival processes, see Arkin and Leemis [2000], Gerhardt and Nelson
[2009], and Kuhl [2011]. If the arrivals are state dependent, say, in reluctance to join
long queues, then there may be censoring (latent demand is higher than observed
demand). Regardless of the reasons, it is important to be able to model complex service
demand processes. Our approach holds promise in addressing these issues because we
follow the data without fitting a parametric model.

For illustration, consider a simple capacitated queue where the unobservable latent
arrivals are according to a stationary Poisson process, but the number of actual arrivals
who enter the system is inversely proportional to the queue length and the rate is
unknown. A single path of the interarrival times (all you see in the real world) of
this process looks like the left plot of Figure 3. This plot shows the real interarrival
times along with those from a simulated boid. It is tempting to model this process as a
cyclic nonstationary process, but the pseudo-cycles occur because of the underdamped
feedback control loop due to the state dependency. The latent demand process actually
had a constant rate. If this system were to be replicated with a different seed, the same
pseudo-cycle would appear at the same frequency but perhaps with a phase shift. Phase
shifts in apparent cyclic behavior can be introduced into the simulated boids by simply
delaying their input to the model. Distinguishing actual cyclic nonstationarity from
state dependency using only data in a single short real sample path may be impossible;
however, one can simulate for sensitivity analysis using random phase shifts in a flock
of simulated boids to see if this actually matters in the simulation performance.

ACM Transactions on Modeling and Computer Simulation, Vol. 24, No. 1, Article 5, Publication date: January 2014.

5:6 L. W. Schruben and D. I. Singham

The right plot of Figure 3 shows the interarrival time plotted against the queue size.
Here we observe the initialization bias in the system, which starts empty and idle.
We also see the state dependence, in that when the queue gets large, arrivals to the
system are less frequent until the queue size drops. By using the interarrival times
and the queue sizes as dimensions of a flight path, a flock of replications can be created
without having to estimate the state dependency or nonstationarity. One issue with
the simulated boid is that it produced interarrival times that are less than zero (we
can take the positive parts of each dimension, which qualitatively works well). Our
basic flocking algorithm follows the data without adding any constraints on the output
space, but constraints can be added by incorporating them directly into a flocking
algorithm implementation. Wall-following algorithms are used in robotics models to
address boundary or region avoidance problems [Borenstein and Koren 1989].

3. IMPLEMENTATION

Previous work in Schruben and Singham [2010] and Singham et al. [2011] introduced
flocking algorithms to replicate data. In this article, we develop the statistical prop-
erties of two general improved flocking algorithms. Different flocking algorithms may
be appropriate depending on the data and the requirements of the modeler. The point
here is to show that simple geometric models can be used to replicate data in a way
that systematically produces output that exhibits qualitatively similar properties, like
an observable trend or a level of variation in the data. As in Figure 1, we take each time
series of the data as the coordinates of one dimension of a path in space. We simulate
paths that follow the path formed by the alpha boid according to the two algorithms
described next.

3.1. Algorithm 1

Suppose the real multivariate data (n time series) is indexed by time as x1, . . . , xt,
where each vector xi has length n. We wish to simulate a multivariate time series
y1, . . . , yt, which follows the real data series x with affinity λ, which can take any
real value. A value of λ = 1 means the simulated data follows the real data exactly,
and λ = 0 means the simulated data is random and has no relation to x (except for
initializing the algorithm). Negative values of λ mean the simulated data moves in the
opposite direction of the real data and λ > 1 means the simulation data overshoots in
the direction of the real data.

Assume that we have simulated a boid that follows the real data up to time t − 1
as y1, . . . , yt−1, and we wish to generate yt from these previous values and xt. Because
this algorithm is recursive, generated values of y1, . . . , yt−1 will have taken into account
x1, . . . , xt−1. The value of y1 can be initialized as N (x1, σ

2In), where In is the identity
matrix with dimension n. Define Rt as the distance between yt−1 and xt in Euclidean
space. Let θ t be the normalized direction vector xt −yt−1. This means that yt−1 + Rtθ t =
xt. Next, let φt be the direction vector formed by the origin and a point that is normally
distributed in Rn with a mean vector of zeros and a covariance that is the identity
matrix with dimension n. In other words, φt is a random vector whose values are
distributed as N (0n, In).

The simulated flocked data is generated according to the following recursion:

yt = yt−1 + Rt[λθ t + (1 − λ)φt]. (1)

We derive the conditional distribution of yt given yt−1 as:

yt|yt−1 ∼ N
(
yt−1 + Rtλθ t, R2

t (1 − λ)2In
)
.

The unconditional distribution of yt could be found by recursively integrating over
possible values of yt−1, yt−2 . . . , which are normally distributed, so we leave it in

ACM Transactions on Modeling and Computer Simulation, Vol. 24, No. 1, Article 5, Publication date: January 2014.

Data-Driven Simulation of Complex Multidimensional Time Series 5:7

Fig. 4. Distribution of data generated for Algorithm 1 using σ 2 = 0, for different values of λ and n = 2.
The simulated values of yt|yt−1 are normally distributed with means at the circle centers and standard
deviations shown by the radius of each circle.

conditional form for simplicity. By conditioning on yt−1, the values of Rt and θ t be-
come known for the purposes of calculating the distribution and φ is the only random
term. We show how this distribution can be simplified for key choices of λ. For λ = 0,
we have yt|yt−1 ∼ N (yt−1, R2

t In). This means the real data does not determine the di-
rection of the simulated data, but the next point is normally distributed around yt−1
with a standard deviation equal to the distance to the next point xt. For λ = 1, we have
yt|yt−1 ∼ N (yt−1 + Rtθ t, 0nn), where 0nn is an n× n matrix of zeros, which is equivalent
to yt|yt−1 ∼ N (xt, 0nn), so yt = xt as in a trace-driven simulation. Figure 4 shows the
distribution of yt|yt−1 for different values of λ using circles centered at the mean of the
distribution and the standard deviation as the radius.

An additional noise term can be added so that even for λ = 1, there will be ran-
domness in the flocked data. Suppose we let εt be a random vector with distribution
N (0n, σ

2In). Consider the modified algorithm:

yt = yt−1 + Rt[λθ t + (1 − λ)φt] + εt. (2)

The conditional distribution for yt in (2) is:

yt|yt−1 ∼ N
(
yt−1 + Rtλθ t,

[
R2

t (1 − λ)2 + σ 2]In
)
.

In this version, there is an additive noise component that is independent and nor-
mally distributed along each dimension with mean 0 and variance σ 2In. If λ = 1, the
method would simply result in yt|yt−1 ∼ N (xt, σ

2In), which may be desired if multiple
perturbed data boids are to be generated for sensitivity analysis. For any λ, if σ 2 > 0,
the circles in Figure 4 would be centered at the same location but would be larger to
reflect the added variance.

3.2. Algorithm 2

We again generate the next data point yt based on yt−1 and information from x. Here,
instead of a random direction component, we move away from yt−1 in the same direction

ACM Transactions on Modeling and Computer Simulation, Vol. 24, No. 1, Article 5, Publication date: January 2014.

5:8 L. W. Schruben and D. I. Singham

Fig. 5. Pictorial representation of Algorithm 2. The dashed line shows how we would move from yt−1 in the
same way that xt−1 moved to xt. The dotted line shows the weighted average of the two directions considered.

that xt moved away from xt−1. Figure 5 shows the two directions that determine the
movement from yt−1 to yt. We have the direction Rtθ t as before, which is xt − yt−1, but
now we also consider R′

tθ
′
t = xt − xt−1.

Using λ as the weighting for the linear combination of the two direction vectors,
construct the recursive algorithm:

yt = yt−1 + λRtθ t + (1 − λ)R′
tθ

′
t + εt. (3)

For this algorithm, the only random component is the εt term, which must be included
in order to generate replications. Incorporating the behavior of xt−1 to xt helps the
simulated boid maintain the directional momentum and trends of the data. Because
there is no random direction component, there are fewer random jumps in the output
time series. This may be beneficial if the user is looking for output time series with
similar levels of variability as the data.

If we start the algorithm using y1 ∼ N (x1, σ
2In), then the conditional distribution of

yt using (3) is:

yt|yt−1 ∼ N
(
yt−1 + λRtθ t + (1 − λ)R′

tθ
′
t, σ

2In
)
.

Let λ = 1, and the algorithm reduces to yt ∼ N (xt, σ
2In). As in Algorithm 1, if σ 2 = 0,

then yt = xt. If λ = 0, then we have yt|yt−1 = N (yt−1 + R′
tθ

′
t, σ

2In). By recursively
breaking down yt−1 and using the fact that xt−1 + R′

tθ
′
t = xt, we derive the distribution

of yt as N (xt, tσ 2In). If there is no noise term (or if σ 2 = 0) and 0 < λ < 2, then yt
converges to xt as t → ∞. The noise term is needed not just to provide replications, but
to prevent this convergence.

3.3. Choosing Implementations

While we have suggested two specific algorithms that can be used to replicate mul-
tidimensional time series, much research remains to explore what methods are best
applied to different types of data. We have proposed the parameters λ and σ to con-
trol the types of output that are produced, but there may be entirely different ways of
approaching the problem. Variations on these algorithms can be made on an ad hoc
basis in order to meet the needs of the user (e.g., if nonnegativity or integer values are
required). It is not necessary to use normally distributed random errors, and the choice
of distribution may depend on the specific dataset being analyzed. Shifts in the data
values, or along the time axis, can be simple ways of testing model sensitivity and can
be used in conjunction with the algorithms provided.

ACM Transactions on Modeling and Computer Simulation, Vol. 24, No. 1, Article 5, Publication date: January 2014.

Data-Driven Simulation of Complex Multidimensional Time Series 5:9

When choosing values of λ and σ , there are two possible approaches. One approach
is to try multiple combinations of λ and σ and plot the output time series against the
real data. Some parameter values may replicate the properties of the data well; others
may provide very different properties. To test the model’s sensitivity to input data,
we suggest using replications that appear different from the data in order to see how
the model performs under extreme or nonusual circumstances. A second approach is
to use multiple data series to calibrate the choices of λ and σ and use these values to
replicate the data. While it is certainly useful to be able to replicate the properties of the
data, we emphasize the importance of sensitivity analysis using different parameter
choices.

Schruben and Singham [2010] recommended rescaling the data by mapping it to the
[0, 1]n hypercube. This rescaling is not necessary to implement the previous algorithms
but is helpful when the relative scale of each time series component is different. The
choices of λ and σ then affect each series equally, and the simulated flock of boids can
be mapped back to their appropriate values using an inverse transformation.

4. EMERGENCY DEPARTMENT PATIENT ARRIVAL SIMULATION

Using the algorithms described in Section 3, we simulate boids that model the arrival
of patients in the ED for each acuity level. The boid that models the state of the system
(the number of patients present in the ED) could also be replicated to provide input
to another hospital simulation or inform a staffing decision, but in this section we
focus on patient arrivals to compare the results to simulation using a nonhomogenous
Poisson process.

We take the alpha boid as the number of patients arriving each hour in each category
over 1 week of time. Because the data in category 3 has a much smaller scale than the
values for categories 1 and 2, we map the alpha boid to [0, 1]3 before running the flocking
algorithms by taking each time series and rescaling it linearly to values between [0, 1].
The simulated boid values are rounded to the nearest integer, and values less than
zero are changed to zero to provide realistic values.

We run Algorithm 1 on the hospital data using different sets of parameters. One
simulated boid is plotted in Figure 6 using λ = 0.55 and σ = 0.01, along with the
original time series for the three categories. We see that the time series for the ED
data are complex cyclical, with peaks occurring in the afternoon and early evening.
The boid follows these cycles seen in the actual data, but with some variation. There
are a few spikes in the simulated data that do not appear in the original data. These
can be induced for sensitivity analysis to test the simulation model’s behavior when
there are high-impact rare events. In Singham et al. [2011], waypoints of hostile agents
in a border-crossing scenario were varied in extreme ways using boids (sometimes the
agents were sent in the opposite direction of the border). This revealed situations in
which the simulation was not properly accounting for agent movement. Using “unre-
alistic” input was useful in detecting when the logic of the simulation code, based on
implicit assumptions, might be broken.

Figure 7 shows the results for Algorithm 2 using parameters λ = 0.08 and σ =
0.12. The affinity parameter has a different interpretation here, and we find that
using a small value of λ produces time series that might be appropriate for an ED
simulation. Here, the boid produces similar types of peaks and valleys as the original
data, appearing to maintain its directional momentum.

The methods presented can also be used in conjunction with parametric models. If
the arrival of patients to a hospital is thought to be a nonhomogenous Poisson process,
the rate function can be estimated (according to a method such as that in Kuhl and
Wilson [2000]). The estimated rate function for each of the three time series can be

ACM Transactions on Modeling and Computer Simulation, Vol. 24, No. 1, Article 5, Publication date: January 2014.

5:10 L. W. Schruben and D. I. Singham

Fig. 6. Algorithm 1: Number of patients in the ED for 10 days of data for each category. Parameters used:
λ = 0.55, σ = 0.01. Solid line is the real data; dashed line is simulated data.

Fig. 7. Algorithm 2: Number of patients in the ED for 10 days of data for each category. Parameters used:
λ = 0.08, σ = 0.12. Solid line is the real data; dashed line is simulated data.

ACM Transactions on Modeling and Computer Simulation, Vol. 24, No. 1, Article 5, Publication date: January 2014.

Data-Driven Simulation of Complex Multidimensional Time Series 5:11

Fig. 8. Medians (dots) and interquartile ranges (whiskers) for simulated arrival data generated using
Algorithm 2 and simulated nonhomogeneous Poisson processes. The dashed line shows the real number of
arrivals.

mapped as a data boid, and corresponding simulated boids generated. The user could
then check how sensitive the model is to variations in this rate function using flocking
algorithms to generate the time series of rate functions having similar dependency
structures. These simulated rate functions could be used to generate replications. If
the user could make the assumption that all weeks were driven by the same process,
the data could be divided into weeks, and an ensemble average taken to derive a trend.
While this would result in an alpha boid smoothed from averaging over the variation
from different weeks, the noise could be inserted back in using λ and σ .

Assessment of these algorithms is mainly qualitative at this point. In practice, Turing
tests can be used to see whether the simulated boid data appears realistic to domain
experts [Schruben 1980]. Visually observing the simulated time series allows one to see
whether the algorithms are generating values that appear appropriate. The flocking
methods presented here appear most appropriate in trying to replicate data with trends
or cycles. The authors tested a previous version of the first algorithm in Schruben and
Singham [2010] on vector autoregressive data. Although the algorithm could mimic
the behavior of this data by simulating boids that had similar best-fit autoregressive
parameters, it followed the specific peaks and valleys given by a particular realization
of the process. Clearly, in this case one would prefer to fit the correct parametric
model to the data and simply generate new vector autoregressive series as input to the
simulation runs.

We compare Algorithm 2 to a simple heuristic for fitting and simulating a non-
homogenous Poisson process (NHPP). We estimate a sample rate function for the
NHPP by taking the number of arrivals in each 1-hour interval over 2 days’ worth
of our data. We simulate 1,000 replications from this estimated rate function using
a thinning process and then calculate the number of arrivals in each hour for each
replication. Additionally, we simulate 1,000 replications of the same rate function using
Algorithm 2 to generate the number of arrivals in each hour. Figure 8 shows the medi-
ans and interquartile ranges for the number of simulated arrivals during various hours.
For clarity, we only show the results from every third hour. The dashed line shows the
data that was used as the real rate function. The figure reveals that for our particular

ACM Transactions on Modeling and Computer Simulation, Vol. 24, No. 1, Article 5, Publication date: January 2014.

5:12 L. W. Schruben and D. I. Singham

choice of parameters (λ = 0.08 and σ = 0.12), the variability is greater than that of
the NHPP simulation. While statistical properties of the NHPP simulation can be
calculated analytically, we can control the desired level of variability in Algorithm 2 by
changing the parameters used. The assumption of an NHPP is valid in this case, but the
algorithm can deliver useful inputs to a simulation without making that assumption.

5. CONCLUSIONS

This article is intended to introduce the fundamental concepts of this new approach
to simulation of multivariate time series and replicating complex trace data. This
proposed method is different from current methods in many ways. The approach has
many of the positive aspects of trace-driven simulations but eliminates two of its main
shortcomings, allowing replication and sensitivity analysis. The two example algo-
rithms presented simulate data directly from the real data, so simplifying statistical
assumptions or resource-intensive data fitting algorithms are not required. The affinity
parameter to model the sensitivity to the data is directly included in the model and the
user can easily vary it. The method is simple and flexible enough that it can be applied
to complex, high-dimensional data.

Like any new methodology, there are many open questions for future research. Among
these are including both simulation input and output time series as coordinates of the
flight paths with reward or penalty fields for performance measurement, and extend-
ing the affinity parameter to an affinity matrix to model more complex serial and
cross-dependencies among the components of multivariate time series. Multivariate
initialization truncation to warm up simulation runs is another promising area of re-
search. In order to be effective for practitioners, methods should be able to adapt to
changing conditions and generate input that can go directly into a simulation model
for decision making. As automatic data collection techniques become more widespread,
modeling techniques that can take data directly as input without making additional
assumptions are uniquely flexible. Decision makers can easily adjust the affinity and
noise parameters to see how their proposed system might react in different future
scenarios.

Although these flocking algorithms are general and can be applied to any time series,
they cannot guarantee that the simulated data will meet the needs of the modeler. The
theory for this method has not yet been fully developed, but its anticipated flexibility in
handling high-dimensional data suggests that it may be useful for modelers who do not
have statistical requirements for their simulation input but simply want qualitatively
similar time series with which to stress test their model. The methods introduced here
provide an alternative way of thinking about the input modeling process and an easy
way to generate simulation replications without fitting a model. These simulated boids
can be generated in a systematic way and used for sensitivity analysis when only one
set of trace data is available.

ACKNOWLEDGMENTS

The authors would like to acknowledge the associate editor and two anonymous referees for many helpful
comments that improved the substance and presentation of this article.

REFERENCES

B. L. Arkin and L. M. Leemis. 2000. Nonparametric estimation of the cumulative intensity function for a
nonhomogeneous Poisson process from overlapping realizations. Management Science (2000), 989–998.

B. Biller. 2009. Copula-based multivariate input models for stochastic simulation. Operations Research 57,
4 (2009), 878–892.

J. Borenstein and Y. Koren. 1989. Real-time obstacle avoidance for fact mobile robots. IEEE Transactions on
Systems, Man and Cybernetics 19, 5 (1989), 1179–1187.

ACM Transactions on Modeling and Computer Simulation, Vol. 24, No. 1, Article 5, Publication date: January 2014.

Data-Driven Simulation of Complex Multidimensional Time Series 5:13

D. Eitel and D. A. Samuelson. 2011. OR in the ER. ORMS Today 38, 4 (2011).
I. Gerhardt and B. L. Nelson. 2009. Transforming renewal processes for simulation of nonstationary arrival

processes. INFORMS Journal on Computing 21, 4 (2009), 630–640.
M. M. Gunal and M. Pidd. 2007. Interconnected DES models of emergency, outpatient, and inpatient de-

partments of a hospital. In Proceedings of the 39th Conference on Winter Simulation: 40 years! The Best
Is Yet to Come, S. G. Henderson, B. Biller, M.-H. Hsieh, J. Shortle, J. D. Tew, and R. R. Barton (Eds.).
Institute of Electrical and Electronics Engineers, Inc., Piscataway, New Jersey, 1461–1466.

W. Härdle, J. Horowitz, and J. P. Kreiss. 2003. Bootstrap methods for time series. International Statistical
Review/Revue Internationale de Statistique 71, 2 (2003), 435–459.

C. K. Johnson. 2008. Hospitals ease ER crowding with ward beds in halls. Online at USAToday.com. (October
2008). Retrieved from http://www.usatoday.com/news/health/2008-10-27-188502636_x.htm.

M. E. Kuhl. 2011. Nonstationary Input Processes. Wiley Encyclopedia of Operations Research and Manage-
ment Science (2011).

M. E. Kuhl and J. R. Wilson. 2000. Least squares estimation of nonhomogeneous Poisson processes. Journal
of Statistical Computation and Simulation 67, 1 (2000), 75.

C. W. Reynolds. 1987. Flocks, herds and schools: A distributed behavioral model. In Proceedings of the 14th
Annual Conference on Computer Graphics and Interactive Techniques. ACM, 25–34.

L. W. Schruben. 1980. Establishing the credibility of simulations. Simulation 34, 3 (1980), 101.
L. W. Schruben and D. I. Singham. 2010. Simulating multivariate time series using flocking. In Proceedings

of the 2010 Winter Simulation Conference, B. Johansson, S. Jain, J. Montoya-Torres, J. Hugan, and E.
Yücesan (Eds.). Institute of Electrical and Electronics Engineers, Inc., Piscataway, NJ, 1048–1054.

L. W. Schruben and D. I. Singham. 2011. Agent Based Output Analysis. In Proceedings of the 2011 Winter
Simulation Conference, S. Jain, R. R. Creasey, J. Himmelspach, K. P. White, and M. Fu (Eds.). Institute
of Electrical and Electronics Engineers, Inc., Piscataway, New Jersey.

D. I. Singham, M. A. Therkildsen, and L. W. Schruben. 2011. Applications of flocking algorithms to input
modeling for agent movement. In Proceedings of the 2011 Winter Simulation Conference, S. Jain, R. R.
Creasey, J. Himmelspach, K. P. White, and M. Fu (Eds.). Institute of Electrical and Electronics Engineers,
Inc., Piscataway, NJ.

A. Viccellio, C. Santora, A. J. Singer, H. C. Thode Jr., and M. C. Henry. 2009. The association between transfer
of emergency department boarders to inpatient hallways and mortality: a 4-year experience. Annals of
Emergency Medicine 54, 4 (2009), 487–491.

Received September 2011; revised April 2012; accepted June 2012

ACM Transactions on Modeling and Computer Simulation, Vol. 24, No. 1, Article 5, Publication date: January 2014.

