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Abstract: Response surface methodology is widely used for process 
development and optimisation, product design, and as part of the modern 
framework for robust parameter design. For normally distributed responses, the 
standard second-order designs such as the central composite design and the 
Box-Behnken design have relatively high D and G efficiencies. In situations 
where these designs are inappropriate, standard computer software can be used 
to construct D-optimal and I-optimal designs for fitting second-order models. 
When the response distribution is either binomial or Poisson, the choice of an 
appropriate design is not as straightforward. We illustrate the construction of 
D-optimal second-order designs for these situations and show that they are 
considerably better choices than the standard designs. We present an example 
applying this approach to optimisation of an etching process. 
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1 Introduction 

Response surface methodology (RSM), introduced by Box and Wilson (1951), has 
become the standard framework for much of industrial experimentation, including 
process development and optimisation and product design and development. RSM is also 
the basis of the modern approach to robust parameter design (see Myers et al., 1992). For 
a recent review of RSM, see Myers et al. (2004). There are also three books devoted 
exclusively to various aspects of RSM; Khuri and Cornell (1996), Box and Draper (2007) 
and Myers et al. (2009). 

Fitting a second-order model to the response variable(s) of interest is an integral 
aspect of RSM. Consequently, the development of appropriate second-order designs and 
guidance on how to use them is extremely important. There are many standard  
second-order RSM designs, including the central composite design (CCD) and its 
variations (the rotatable CCD, the spherical CCD, the small composite design, and the 
face-centred cube), the Box-Behnken design, the hybrid family of designs, and the Hoke 
designs. There are situations where standard designs are not always appropriate, such as 
unusual sample size requirements, non-standard blocking conditions and variations from 
the standard model. For these scenarios, optimal designs have been suggested and are 
used frequently in practice. Both D-optimal and I-optimal designs can be easily 
constructed using commercial software. 

Another non-standard situation arises when the distribution of the response variable is 
non-normal. For example, the response may be a proportion such as a fraction  
non-conforming in which case the response distribution is binomial, or it may be a count 
such as the number of defects on a unit of product in which a logical choice for the 
response distribution is the Poisson. A widely-used approach to handing a non-normal 
response is to use a variance-stabilising transformation, such as a power family 
transformation, and to conduct the RSM model fitting and optimisation in the 
transformed metric. Another approach is to fit an appropriate generalised linear model to 
the response data. This is often a better approach than the use of transformations. For 
example, Myers et al. (2002) present an example where the response variable is a Poisson 
count and a square root transformation is employed. The resulting second-order model 
gives negative predictions of the transformed response in the region that is most likely to 
be of interest to the experimenters, clearly an impossible result. A generalised linear 
model with a Poisson response would be a better modelling approach because the 
predicted counts cannot be negative. Lewis et al. (2001) show that a generalised linear  
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model is often preferable to a data transformation because it results in shorter confidence 
intervals on the mean response, a measure of model fit quality as well as potential 
prediction accuracy. 

If the experimenter plans to fit a second-order model and has a response that is known 
to be non-normal but is a member of the exponential family (which includes the 
binomial, Poisson, exponential and gamma distributions), he or she must select an 
appropriate response surface design. One alternative is to use a standard design. Another 
alternative is to use an optimal design for the specific response distribution. Until 
recently, the construction of a D-optimal design for a generalised linear model was 
computationally prohibitive. We discuss this problem in the next section, construct 
several examples of D-optimal designs for the binomial and Poisson response distribution 
cases, and then compare the resulting designs with standard designs. The D-optimal 
designs are considerably better than the standard designs for both binomial and Poisson 
responses. We also present an example of using a D-optimal design for a Poisson 
response surface model applied to optimisation of an etching process. 

2 Optimal designs for generalised linear models 

A generalised linear model is an extension of ordinary normal-theory linear regression 
that encompasses both linear and non-linear models, and admits any response distribution 
that is a member of the exponential family. This includes the familiar normal distribution, 
as well as the binomial, negative binomial, Poisson, geometric, exponential, gamma and 
inverse normal distributions. A generalised linear model contains three elements: 

1 a response distribution 

2 a linear predictor that involves the design variables, say !x !  

3 a link function g that relates the natural mean of the response distribution to the 
linear predictor, say ( ) .g " !# x !  

See Myers and Montgomery (1997) for a tutorial on generalised linear models and Myers 
et al. (2002) for a more comprehensive presentation. 

We are focusing on second-order response surface models, so the linear predictor will 
always be of the complete second-order model 

2

1 1 2# # $ #

! # % % %& & &&
k k k

i i ii i ij i j
i i i j

x ! ! x x x x' ' '  (1) 

where k is the number of design variables. The number of parameters in this model is 
( 1)1 2 .

2
(

# % %
k kp k  For the binomial response distribution, we will use the logistic link, 

so that the model the experimenter fits is 
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the familiar logistic regression model. For the Poisson response distribution, we will use 
the log link, resulting in the model 

) *E ey !# x !  (3) 

Now consider finding D-optimal designs for these models. For the case of a linear model, 
finding a D-optimal design involves selecting the n design points so that the determinant 
of the information matrix !X X  is maximised, where X is the n × p model matrix 
constructed by expanding the design matrix to model form. In linear models, the model 
matrix and consequently, the !X X  matrix contains only functions of the design points. 
Generalised linear models are non-linear models and the D-optimal design must be 
chosen to maximise the determinant of the asymptotic information matrix ,!X VX  where 
V is the n × n diagonal matrix of weights that depends on the specific generalised linear 
model that has been used. For equation (2), the logistic regression model, the diagonal 
elements of V are 

) *21
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#

%

x !

x !
 (4) 

and for the Poisson model 

i
iiV e !# x !  (5) 

Because the information matrix !X VX  contains the unknown model parameters ', the 
usual approach to finding a D-optimal design for a linear model will not work. In general, 
the covariance matrix for any non-linear model will contain the unknown model 
parameters. 

Box and Lucas (1959) have applied the D-criterion to find designs for non-linear 
regression models. There are reviews of designs for non-linear models in Ford et al. 
(1989) and Atkinson et al. (2007). Chernoff (1953) proposed choosing values for the 
unknown model parameters and finding the design that maximised the determinant of the 
covariance for this specific set of parameters. This leads to the idea of a local D-optimal 
design. This approach can work well if the estimates of the unknown parameters are close 
to the actual values. Another approach is to use a sequential design strategy; begin with a 
design that is smaller than the size of the final design, run this experiment and obtain 
preliminary estimates of the model parameters, then use these parameter estimates as if 
they were the true values of the parameters and augment the original design with 
additional runs to produce the final design. 

A Bayesian approach uses a prior distribution f(') to specify the uncertainty in the 
parameter values. This leads to a design criterion 

) *log f d+ # !, X VX ''  (6) 

This is the expectation of the logarithm of the determinant of the information matrix. This 
criterion was proposed by Chaloner and Larntz (1989) for single-factor logistic 
regression. The difficulty in using equation (6) as a design criterion is that the  
p-dimensional integral must be evaluated a very large number of times. Gotwalt et al. 
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(2009) have recently developed a novel quadrature scheme that greatly improves the 
computing time to evaluate the integral in equation (6) and which exhibits excellent 
numerical accuracy. This procedure is implemented in the non-linear design platform of 
JMP, and uses a coordinate exchange algorithm as the basis of design construction. 

We will use this approach to construct D-optimal design for second-order response 
surface designs for both the logistic and Poisson regression models for k = 2, 3, and 4 
design factors. Consider first the case of a logistic regression response surface model with 
k = 2 factors. Suppose that the prior information on the model parameters can be 
summarised by a normal distribution with means and ±2- limits as follows: 
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The 12-run D-optimal design from JMP is shown in Table 1 and Figure 1. A logical 
‘standard’ 12-run design to compare this design to would be a face-centred cube with 
four centre runs. The D-optimal design has 12 distinct design points where the  
face-centred cube has only nine, and the D-optimal design shares only two points in 
common with the face-centred cube. The two designs are quite different. 

Table 1 A 12-run D-optimal second-order design for a logistic regression model with k = 2 
using the normal prior in equation (7) 

Run x1 x2 

1 0.52660431 1 

2 –0.0961586 0.16409345 

3 0.55196771 –1 

4 0.94182103 1 

5 –1 –0.4836986 

6 –1 –1 

7 –0.2905524 –1 

8 1 0.79805201 

9 –0.1779733 0.51622555 

10 0.17065821 –1 

11 –1 0.5440364 

12 –1 1 
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Figure 1 A 12-run D-optimal second-order design for a logistic regression model using the 
normal prior in equation (7) 

 

Now, consider the case of a logistic regression response surface model with k = 3 factors. 
Suppose that the prior information on the model parameters can be summarised by a 
normal distribution with means and ±2- limits as follows: 
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The 18-run D-optimal design that we constructed for this scenario is shown in Table 2. 
The face-centred cube with four centre points would be a logical standard design to 
compare to this optimal design. The face-centred cube has 15 distinct design points while 
the optimal design in Table 2 has no replicates, and it does not share any points in 
common with the face-centred cube. As we saw in the k = 2 case, the optimal design is 
very different from a comparable standard design with the same number of runs. 
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Table 2 An 18-run D-optimal second-order design for a logistic regression model with k = 3 
using the normal prior in equation (8) 

Run x1 x2 x3 
1 1 0.25099569 –1 
2 –1 0.86782641 –0.111647 
3 1 –1 –0.6774065 
4 –1 0.79028727 1 
5 0.97686529 1 1 
6 1 0.59129776 1 
7 –1 0.2905937 –0.0783575 
8 0.82631504 –1 –1 
9 0.6240754 –1 1 
10 1 0.9309025 –1 
11 –0.0101792 –0.2270992 –0.4353463 
12 –1 –1 –0.2404986 
13 1 1 –0.1553708 
14 0.01560598 0.59108721 0.27055434 
15 –1 –0.9824465 0.45133389 
16 –1 0.01873152 1 
17 –1 –0.0726914 –0.6309818 
18 –0.1770412 –1 1 

The final case that we consider for logistic regression is for k = 4 factors. We assume that 
the prior distribution for the model parameters is normal with means and ±2- limits as 
follows: 
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The second-order model for k = 4 factors has 15 parameters. We constructed both an  
18-run design and a 28-run design for this model. These designs are shown in Tables 3 
and 4 respectively. There is no ‘standard’ 18-run design to compare to the 18-run optimal 
design in Table 3 so we constructed an 18-run D-optimal design for a normal-theory 
second-order response surface model using JMP. This design is shown in Table 5. The  
D-optimal design in Table 3 does not share any points in common with this design. A 
logical standard design to compare to the 28-run design is a face-centred cube with four 
centre runs. The optimal design in Table 4 does not share any runs in common with the 
face-centred cube and it does not have any replicates. The face-centred cube has 25 
distinct design points. 

Table 3 An 18-run D-optimal second-order design for a logistic regression model with k = 4 
using the normal prior in equation (9) 

Run x1 x2 x3 x4 

1 –1 1 –0.3363465 0.99348799 

2 0.45267715 –0.9391371 –0.7879299 0.32836793 

3 –1 0.19250867 –0.3824655 –1 

4 –0.9009019 0.70049754 0.93145648 0.24578529 

5 0.81057841 –1 –0.8042694 1 

6 –0.5243816 –1 0.26722678 1 

7 –1 –0.4940153 0.58633327 –1 

8 0.32453861 0.69716532 –0.8952356 1 

9 1 0.12937652 –0.8938286 –1 

10 0.99617027 0.9955783 –0.0877292 –0.1810068 

11 0.03493221 0.23251933 0.36978483 –1 

12 1 0.30859526 1 –0.8050969 

13 0.27984215 0.92497963 1 0.90649769 

14 0.46444282 –1 –0.4516155 –1 

15 –0.1357471 –0.042767 –0.2318467 –0.0237575 

16 –1 –0.5058793 –0.5341066 1 

17 0.04918482 –1 1 –0.0600287 

18 –1 –0.9927485 –0.1590322 –1 
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Table 4 A 28-run D-optimal second-order design for a logistic regression model with k = 4 
using the normal prior in equation (9) 

Run x1 x2 x3 x4 

1 –1 1 –0.2986801 0.77642356 

2 –1 –1 –0.4277555 –1 

3 –1 –0.0257634 –0.6122526 0.16880807 

4 –0.1529687 1 1 –1 

5 1 0.30033218 –0.8961585 –1 

6 –0.1028279 1 1 1 

7 0.92285744 0.86082361 0.5166954 –1 

8 –1 0.52432952 0.96863738 0.2513297 

9 –0.1992239 –1 –0.2964621 1 

10 –1 –0.9521252 0.4319682 –1 

11 0.34805939 0.3208145 –1 1 

12 –0.0686026 0.21083069 –0.1185675 –0.2036811 

13 0.6848592 –1 –0.9198524 –1 

14 –0.0264656 –1 1 1 

15 0.22814041 –1 1 –1 

16 –1 0.7274504 –0.3455637 0.78861117 

17 –1 1 –0.3092668 –1 

18 0.84729468 0.44784216 1 0.12152886 

19 –1 0.14556659 –0.2487869 –1 

20 0.98082583 1 –0.5931724 0.32152327 

21 1 1 1 0.0349432 

22 0.88574221 –1 –0.916611 0.77818126 

23 –1 0.53356433 1 –1 

24 –1 –0.4184638 –0.432 1 

25 –0.8563488 –1 1 0.35430086 

26 –1 –1 –0.4080704 –1 

27 0.66478864 –0.9144135 –0.3335624 –1 

28 1 –1 1 –0.9944456 
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Table 5 An 18-run D-optimal design for second-order linear model with k = 3 

Run x1 x2 x3 x4 

1 1 –1 0 –1 

2 1 1 –1 1 

3 1 1 1 –1 

4 –1 1 –1 1 

5 –1 –1 0 1 

6 0 –1 –1 –1 

7 1 –1 –1 1 

8 –1 1 1 1 

9 –1 1 –1 –1 

10 0 1 0 0 

11 1 1 –1 –1 

12 –1 –1 –1 0 

13 0 0 –1 1 

14 1 1 1 1 

15 1 0 1 0 

16 0 –1 1 1 

17 –1 0 0 –1 

18 –1 –1 1 –1 

We now consider the case of a Poisson regression response surface model with k = 2 
factors. Suppose that the prior information on the model parameters can be summarised 
by a normal distribution with means and ±2- limits as follows: 
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The 12-run D-optimal design from JMP is shown in Table 6 and Figure 2. A logical 
‘standard’ 12-run design to compare this design to would be a face-centred cube with 
four centre runs. The D-optimal design has eight distinct design points compared to nine 
for the face-centred cube, but the D-optimal design only shares five points in common 
with the face-centred cube. 
Table 6 A 12-run D-optimal second-order design for a Poisson regression model with k = 2 

using the normal prior in equation (10) 

Run x1 x2 

1 –1 –0.1510261 

2 –1 1 

3 0.48006024 –1 

4 1 –1 

5 1 1 

6 1 1 

7 1 –1 

8 –1 –1 

9 –1 1 

10 0.34793736 –0.2587646 

11 1 –0.2330349 

12 1 –0.2330349 

Figure 2 A 12-run D-optimal second-order design for a Poisson regression model with k = 2 
using the normal prior in equation (7) 
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Table 7 shows the 18-run design for the Poisson regression response surface model with  
k = 3 factors and a normal prior distribution specified as follows: 
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Once again, we see that there are a number of runs in common with the face-centred cube 
and four replicated runs. 
Table 7 An 18-run D-optimal second-order design for a Poisson regression model with k = 3 

using the normal prior in equation (11) 

Run x1 x2 x3 
1 0.37810329 0.05695444 1 
2 1 –1 –1 

3 –1 –0.0296346 –1 

4 1 –1 1 

5 –1 –1 –1 

6 1 –1 0.17146872 

7 –1 1 –1 

8 –1 –0.0959812 1 

9 1 1 1 

10 1 1 1 

11 1 –0.1219659 –1 

12 1 –0.1546912 0.38893985 

13 0.00067289 1 1 

14 1 –1 –1 

15 –1 1 1 

16 –1 1 1 

17 1 –0.0420354 1 

18 1 –1 1 

Finally, we constructed both an 18-run design and a 28-run design for the second-order 
model for k = 4 factors. These designs are shown in Tables 8 and 9 respectively.  
Recall that there is no ‘standard’ 18-run design to compare to the 18-run optimal design 
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in Table 8 so we will use the 18-run D-optimal design for a normal-theory second-order 
model from JMP, shown previously in Table 5. The 28-run design is compared to a  
face-centred cube with four centre runs. The normal prior on the parameters and the prior 
information on the model parameters is as follows and the designs are shown in Table 8 
and Table 9. 
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Table 8 A 18-run D-optimal second-order design for a Poisson regression model with k = 4 
using the normal prior in equation (12) 

Run x1 x2 x3 x4 
1 –1 1 1 –1 
2 1 –1 –1 –1 
3 –1 1 1 0.230603 
4 1 –1 –1 1 
5 –1 1 –1 1 
6 1 1 1 –1 
7 1 0.052321 1 1 
8 –1 1 1 1 
9 1 1 1 1 
10 1 –1 –1 0.322907 
11 –1 –0.87965 –1 1 
12 1 –1 1 1 
13 0.111111 1 1 1 
14 1 –0.77832 0.077451 1 
15 1 –1 1 –1 
16 –1 0.192072 1 1 
17 1 0.090304 –1 1 
18 1 –0.03498 1 –1 
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Table 9 A 28-run D-optimal second-order design for a Poisson regression model with k = 4 
using the normal prior in equation (12) 

Run x1 x2 x3 x4 

1 1 1 1 –1 

2 1 –1 –1 –1 

3 –1 –0.8367479 –1 1 

4 1 –1 –0.0084293 1 

5 1 1 1 1 

6 1 0.03760119 1 1 

7 1 0.07620255 0.32317288 1 

8 0.11112387 1 1 1 

9 –1 1 1 1 

10 1 –1 1 1 

11 1 1 1 1 

12 1 –1 1 1 

13 –1 1 1 –1 

14 1 –0.0754533 1 –1 

15 –1 –0.1834005 1 –1 

16 1 –1 1 –1 

17 0.11110748 1 1 1 

18 1 –1 –1 –1 

19 1 –1 –1 1 

20 –1 1 1 –1 

21 1 0.13852609 –1 1 

22 1 –1 1 –0.0032746 

23 1 0.22289572 1 0.30628991 

24 –1 1 –1 1 

25 1 –1 –1 1 

26 –1 0.18573968 1 1 

27 –1 1 1 1 

28 –1 1 1 0.24602819 

3 Efficiency of standard designs 

We have observed that the D-optimal response surface design for a generalised  
linear model can differ quite a bit from a response surface standard design, such as a 
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face-centred cube. It is of interest to more formally compare the D-optimal design with 
the standard design. We will do this using a measure of design efficiency based on the 
design criterion in equation (6). Specifically, for a particular scenario (type of generalised 
linear model, prior distribution, and design), we will use Monte Carlo methods to 
randomly sample 1,000 times from the prior distribution for that scenario and for each 
choice of the parameter vector evaluate log !X VX  for the standard design and the  
D-optimal design to produce a local efficiency at that set of prior parameters. The 
average of these log !X VX  values for each design is an approximation of the integral in 
equation (6). We take as the efficiency of the standard response surface design relative to 
the D-optimal design the ratio 

1000 1000

1 1

log log

1000

i iFactorial D optimal
i i

pE e

(
# #

! !(

#

& &X V X X V X

 (13) 

where p is the number of parameters in the model. Values of this ratio that are less than 
unity indicate that the standard design is less efficient than the D-optimal design for that 
particular scenario. 

Table 10 shows the average of the local efficiencies for the optimal designs for the 
logistic and Poisson regression models compared to the standard design choices. The 
efficiencies vary from about 16% to slightly over 80%, with the standard designs 
exhibiting higher efficiencies for the Poisson case than for the logistic regression case. 
The efficiencies for the 18-run D-optimal design for the linear model for k = 4 are lower 
that the efficiencies for the face-centred cube with 28 runs. This is not unexpected, as the 
18-run design is nearly saturated and additional runs often improve design efficiency in 
these situation. 

Table 10 Average relative efficiency of a standard response surface design to the D-optimal 
design for a second-order logistic or Poisson regression model 

Averaged relative efficiency standard design to D-optimal 
Factors Runs 

Logistic second-order Poisson second-order 

2 12 0.561992239 0.816186271 

3 18 0.334293209 0.499726763 

4 18 0.156658721 0.293492748 

4 28 0.274875301 0.362560773 
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Figures 3 and 4 present the histograms and summary statistics for the local  
efficiencies for all designs considered. Figure 3 contains the results for the logistic 
regression model and Figure 4 presents the Poisson regression model results. The 
histograms indicate that the local efficiencies can vary considerably. For example,  
in the logistic regression case with k = 3, the local efficiencies vary from about 14.5% to 
over 83%, and in the Poisson regression case with k = 3 and n = 18, the local efficiencies 
vary from about 38.5% to almost 66%. Generally, there is less variability in  
the local efficiencies for the Poisson case than for the logistic regression model 
(binomial) case. This variability in local efficiency is a reflection of sampling  
different parameter vectors from the prior distribution. It is interesting to note, and not 
unexpected, that there are no situations where the local efficiency of the standard design 
exceeds the local efficiency of the optimal design chosen from that particular response 
distribution. 

Figure 3 Local relative efficiencies of the standard design versus the D-optimal logistic 
regression design (see online version for colours) 

 

Note: All standards designs are face-centred cubes except for k = 4 and n = 18 where a  
D-optimal design for a linear model was used. 

 
 
 
 



   

 

   

   
 

   

   

 

   

   18 R.T. Johnson and D.C. Montgomery    
 

    
 
 

   

   
 

   

   

 

   

       
 

Figure 4 Local relative efficiencies of the standard design versus the D-optimal Poisson 
regression design (see online version for colours) 

 
Note: All standards designs are face-centred cubes except for k = 4 and n = 18 where a  

D-optimal design for a linear model was used. 

4 An application to plasma etching 

Semiconductor wafers usually undergo a series of repeated processing steps, one of 
which is plasma etching. This is often accomplished in a single-wafer tool in which the 
factors pressure, anode-cathode gap, and RF power are among those that can be 
controlled. Sometimes, the mixture of gas species is studied as well, but those 
components were fixed in this experiment. The objective of the experiment was to reduce 
and if possible, eliminate surface defects on the wafers that arise during etching.  
Previous experiments had determined operating conditions on pressure, anode-cathode 
gap and RF power that resulted in a satisfactory etch rate and near-optimal uniformity of 
the etched surface. The boundaries on those operating conditions cannot be exceeded, so 
a face-centred cube would be a reasonable choice of design if a standard design is to be 
used. However, the experimenter did not want to use this design because the response 
variable most likely has a Poisson distribution and a generalised linear model is going to 
be required to model the response. Therefore, an 18-run D-optimal design for a  
second-order Poisson regression model was selected. Based on previous experience with 
this etching tool and from conducting earlier experiments to study the occurrence of 
defects, the experimenters selected a normal prior with means and ±2- ranges on the 
parameters as follows: 
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The design is shown in Table 11 and the output from JMP for fitting a Poisson 
generalised linear model to this data is shown in Table 12. There is no indication of  
lack-of-fit of the model, but some of the model terms, specifically 2

1 3 2 3 3,  and ,x x x x x  
have large P-values. We eliminated these terms and fit the reduced model shown in Table 
13. This model is also an excellent fit to the data. 

Table 11 The D-optimal design for the plasma etching experiment 

Run x1 = pressure x2 = gap x3 = power y, defects 

1 0.011279 –1 –1 4 

2 1 0.298655 1 12 

3 0.182845 0.306462 1 6 

4 –1 –0.01709 –1 7 

5 1 –0.188 –1 22 

6 1 1 1 13 

7 –1 1 –1 23 

8 0.349073 1 0.414667 12 

9 –1 –1 –1 2 

10 1 1 1 13 

11 –1 1 1 11 

12 1 1 0.402996 16 

13 1 1 –1 27 

14 –1 1 1 11 

15 1 –1 –1 19 

16 1 –1 1 9 

17 1 1 –1 27 

18 0.26895 1 1 10 
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Table 12 JMP output for the full second-order Poisson regression model 
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Table 13 JMP output for reduced second-order Poisson regression model 

Generalised linear model fit 
Weight Variance of Y 
Response Defects 
Distribution Poisson 
Link Log 
Estimation method Maximum likelihood 
Observations (or sum wgts) 1118 

Whole model test 
L-R 

Model -LogLikelihood ChiSquare DF Prob > ChiSq 
Difference 509.154603 1018.309 6 <.0001* 
Full 2388.05727    
Reduced 2897.21187    
Goodness of fit statistic ChiSquare DF Prob > ChiSq 
Pearson 3.6651 11 0.9787 
Deviance 3.6722 11 0.9785 
AICc 
4801.3145    

Effects tests 
L-R 

Source DF ChiSquare Prob > ChiSq 
x1 1 446.01513 < .001* 
x2 1 542.36627 < .001* 
x3 1 594.94919 < .001* 
x1*x1 1 53.37396 < .001* 
x1*x2 1 296.14918 < .001* 
x2*x2 1 2.830613 0.0925 

Parameter estimates 

Term Estimate Std error ChiSquare Prob > 
ChiSq Lower CL Upper CL 

Intercept 1.8949772 0.0449511 1045.4678 < .001* 1.8058067 1.9820546 
x1 0.6307513 0.0379366 466.01513 < .001* 0.5583088 0.7071012 

x2 0.7302926 0.0398101 542.36627 < .001* 0.6540568 0.8101906 

x3 –0.367087 0.0143953 594.94919 < .001* –0.395217 –0.338786 

x1*x1 0.2661641 0.0374249 53.37396 < .001* 0.1933563 0.3400761 

x1*x2 –0.546541 0.0390759 296.14918 < .001* –0.625142 –0.471887 

x2*x2 –0.039879 0.0236517 2.830613 0.0925 –0.086122 0.0065949 
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Figures 5 and 6 present the prediction profiler and contour plot from JMP for the reduced 
model. From examining these plots, it is apparent that operating this process in the 
vicinity of low pressure, small gap and high power presents the best opportunity for 
defect reduction. Because the operating conditions are near the extremes of the region, 
one might be tempted to conduct further experiments outside of these boundaries. 
However, it has been established that operating outside of this region leads to 
unacceptable etch rate and uniformity. 

Figure 5 Contour profile plots from JMP (see online version for colours) 
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Figure 6 Contour plot from JMP with x1 = 1 (see online version for colours) 

-1

-0.5

0

0.5

1

x2

Defects

2

5.125

8.25

11.375

-1 -0.5 0 0.5 1
x1

0
x1

x2

Defects

 



   

 

   

   
 

   

   

 

   

    Choice of second-order response surface designs 23    
 

 

    
 
 

   

   
 

   

   

 

   

       
 

5 Conclusions 

We have demonstrated that modern computer software implementation of the Bayesian 
criterion makes it relatively straightforward to generate D-optimal designs for generalised 
linear models. For two specific cases, second-order response surface models involving 
logistic and Poisson regression, we have shown that a standard design choice has 
relatively low efficiency in comparison to the D-optimal design. We also showed that a 
D-optimal design for a second-order response model and a logistic regression model was 
superior to a D-optimal design for a linear model with a second-order polynomial in the 
exponent when that design was used to fit the generalised linear model. While our study 
is limited, we suspect that in many situations, these optimal designs will significantly 
outperform standard designs when fitting generalised linear models. We have developed 
a relatively straightforward procedure to evaluate the efficiency of these comparisons. 
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