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Abstract. The open pit mine block sequencing problem (OPBS) seeks
a discrete-time production schedule that maximizes the net present value
of the orebody extracted from an open-pit mine. This integer program
(IP) discretizes the mine’s volume into blocks, imposes precedence con-
straints between blocks, and limits resource consumption in each time
period. We develop a “sliding time window heuristic” to solve this IP ap-
proximately. The heuristic recursively defines, solves and partially fixes
an approximating model having: (i) fixed variables in early time periods,
(ii) an exact submodel defined over a “window” of middle time peri-
ods, and (iii) a relaxed submodel in later time periods. The heuristic
produces near-optimal solutions (typically within 2% of optimality) for
model instances that standard optimization software fails to solve. Fur-
thermore, it produces these solutions quickly, even though our OPBS
model enforces standard upper-bounding constraints on resource con-
sumption along with less standard, but important, lower-bounding con-
straints.

Keywords: mine scheduling, mine planning, open pit mining, surface
mining, integer programming applications

1 Introduction

The open pit mine block sequencing problem (OPBS) is an integer program (IP)
whose solution is critical for the profitable operation of an open pit mine [16].
A solution yields a T -period schedule for the extraction (i.e., “excavation” or
“mining”) of notional three-dimensional blocks of ore that contain valuable min-
erals, or costly waste, or both. (Test bores, coupled with geological prediction
models, yield a reasonable estimate of each block’s content.) The goal is to max-
imize the net present value of the extracted blocks, subject to spatial precedence
constraints and resource constraints. This IP can be extremely difficult to solve,
because: (i) a mine model may have from 104 to over 106 blocks, (ii) the time
? We acknowledge the assistance of Professor Daniel Espinoza of the Universidad de
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horizon may have T = 20 periods or more, and (iii) the resulting model may
have millions of variables and constraints (e.g., [4], [8], and [3]). The purpose of
this paper is to present a sliding time window heuristic (STWH) to solve OPBS
approximately, and to demonstrate the heuristic’s effectiveness on problems with
15 time periods and over 25,000 blocks.

Versions of STWH have been used for other optimization problems (e.g., [10],
[5]), but our paper appears to be the first on this topic in the open-pit mining
literature. Our particular application of Lagrangian relaxation also appears to
be unique.

A typical STWH (e.g., [5]) first solves a “restricted exact model” over a time
window that covers, say, periods 1 through τ of a full time horizon of T > τ
time periods. The heuristic then fixes the first period’s variables to the solution
values found, slides the time window up to periods 2 through τ+1, solves a τ+1
time horion model with the first period’s variables fixed, fixes the second period’s
variables to the solution values just found, slides the time window up to periods
3 through τ + 2, and continues the process until all periods have been covered
in the time window. The user may want to solve a “global model” that covers
all T periods, but that model is simply too difficult to solve. An STWH may
provide an answer to the user’s dilemma by producing good solutions quickly,
even though it temporarily ignores the “out periods” τ + 1, . . . , T .

We have tried the above method for OPBS using, for example, five-period
“exact windows” for a model having T = 20. Sometimes the method works well,
and sometimes its myopia leads to a poor-quality solution. Instead of completely
ignoring the out periods, this paper develops an STWH that maintains an ap-
proximate submodel in the out periods, along with an exact submodel in the
“window” between the fixed and approximate parts of the overall model. Com-
putational results show that this “Lagrangian approximation” produces high-
quality solutions quickly, avoiding the difficulties that some Lagrangian methods
have in even finding feasible solutions for OPBS.

“Precedence constraints” comprise the bulk of the constraints in any OPBS
model and require some explanation. For simplicity, one may think of a mine’s
blocks as uniformly shaped cubes, defined by evenly spaced, parallel planes in
the x-, y- and z-axes of three-dimensional space. Without loss of generality, we
enforce spatial precedence constraints by specifying that for block b at a given
z-level to be extracted: (i) the blocks adjacent to each face of b, but on the level
directly above, must be extracted in the same time period or an earlier one, and
(ii) one of the four blocks facing block b on block b’s level must also be extracted.
Figure 1 illustrates. (The configurations of a partially excavated mine seen in
Figure 2 show how precedence constraints appropriately enforce the extraction
of a sequence of “nested pits.”)

Every OPBS model enforces upper bounds on resource consumption, but
ours, somewhat unusually, also enforces lower bounds. The need for upper bounds
is obvious: limited time and limited availability of equipment (shovels and trucks)
lead to (upper-bounding) production-capacity constraints, and limited time and
the finite capacity of milling facilities lead to (upper-bounding) processing-
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Fig. 1. Spatial precedence constraints in OPBS imply that block 1 cannot be extracted
until blocks 2-6 have been extracted in the same or an earlier time period. Additionally,
extraction of block 1 also requires that at least one of the blocks directly under blocks
2, 3, 5 or 6 be extracted.

capacity constraints. But, lower bounds can be important, too: the scale and
nature of production and processing operations in an open-pit mine imply that
large set-up costs accrue if operations are stopped and started repeatedly. Placing
lower limits on production and processing reduces the potential for such effects.
Contractual agreements and the chemical and physical properties of the milling
process may also necessitate positive lower bounds on production and processing
rates. Section 2 provides additional details on lower bounds, and points out that
their inclusion in an OPBS model may hamper certain, specialized computa-
tional methods that have appeared in the literature.

The remainder of the paper is organized as follows. Section 2 reviews rele-
vant literature and motivates our work further. Section 3 defines our version of
OPBS as a monolithic IP. Section 4 describes our STWH and the “restricted
Lagrangian subproblem” that this heuristic solves repeatedly. Section 5 presents
computational comparisons of the STWH to two alternative solution approaches,
namely, direct solution of the monolithic IP, and a Lagrangian-based heuristic
that does not use a sliding time window. Section 6 concludes the paper.

2 Literature Review

The seminal work of Lerchs and Grossman [18] provides an exact and compu-
tationally tractable method for “open-pit design;” Hochbaum and Chen [14],
among others, extend this work. A solution to the design problem identifies the
economically viable envelope of profitable blocks to be extracted given pit-slope
requirements.

The design model relates structurally to OPBS, but it cannot schedule mine
operations directly, because it ignores both time and limits on resources. Time
periods, typically a few months to a year in length, must be modeled for schedul-
ing purposes, so OPBS incorporates these. OPBS also constrains production
(extraction) quantities and processing quantities in each time period to produce
implementable schedules. Unfortunately, the generality of OPBS means that a
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typical mathematical-programming model for OPBS is at least an order of mag-
nitude larger, and much harder to solve, than the corresponding design model.

For computational reasons, early work on OPBS aggregates blocks into strata
(e.g., [6]), or ignores the discrete nature of the block-extraction decisions (e.g.,
[23]); unfortunately, both approaches reduce solution fidelity. Other early work
investigates heuristics, but none that provides an indication of solution quality
(e.g., [22], [21]; see also [24]). In contrast, our STWH avoids aggregation and,
empirically, produces solutions with consistently good quality.

Early work in the literature on an OPBS IP uses variables that specify in,
or “at,” which time period a block is to be mined. Caccetta and Hill [7] improve
this formulation by incorporating variables that represent whether a block is
mined “by” time period t. They demonstrate the computational attractiveness
of this modification by solving problems with as many as 210,000 blocks and 10
time periods, although optimality gaps range from 5% to 10% after 20 hours of
computation. This model is one of the most general in the literature, as it: (i)
handles inventory, and (ii) represents a “variable cutoff grade,” meaning that
the model determines whether an extracted block is to be processed for valuable
ore or is to be classified as waste and left unprocessed. This model omits lower
bounds on resource consumption, however.

Some OPBS models, including ours, incorporate a “fixed cutoff grade” rather
than a variable one. A fixed cutoff grade implies that if a block contains a
sufficiently high mineral content, it is always processed if extracted; otherwise,
it is never processed. “Sufficiently high” is defined by the cutoff grade. Although a
fixed cutoff grade might seem more appropriate for long-term strategic models,
and a variable grade for short-term, tactical models, no hard and fast rules
appear to exist about when one paradigm should be used over the other, and
both are used in practice.

Various techniques have been applied to improve solution times for variants
of the OPBS IP. Ramazan [20] addresses a model with a fixed cutoff grade,
blending constraints, and production and processing constraints; the model also
enforces lower-bounding constraints on processing, but not on production. Ra-
mazan constructs aggregated “fundamental trees” to reduce model size. Specif-
ically, his case study contains about 12,000 blocks, which are aggregated into
about 1,600 fundamental trees. A four-period model solves to near-optimality in
about 30 minutes. Boland et al. [4] develop a model with a variable cutoff grade
but with no blending constraints and no lower bounds on resource consumption.
These authors aggregate blocks according to precedence rules and solve instances
with over 96,000 blocks and up to 25 time periods in a few hundred seconds.
The fidelity of their solutions appears good, but it is unclear if their aggrega-
tion and disaggregation methods would apply in the presence of lower-bounding
constraints. Gleixner [13] adapts the work in [4] to an alternative aggregation
scheme and also presents ideas for applying Lagrangian relaxation.

Amaya et al. [2] present a model similar to that in [4] but with a fixed cut-
off grade; they enforce upper bounds on resource consumption but not lower
bounds. They develop a local-search heuristic that seeks to improve on a heuris-
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tically generated incumbent solution by iteratively fixing, relaxing and solving
parts of the full model. This heuristic produces approximate solutions for the
largest instances of OPBS reported in the literature to date, and uses the linear-
programming (LP) relaxation of the OPBS IP to bound solution quality. For
instance, one mine model has about four million blocks and 15 time periods (al-
though the quality of the solution obtained is unclear in this case, because the
bounding LP relaxation cannot be solved). Chicoisne et al. [8] solve the same
formulation, but reduce computational effort by more efficient solution of the LP
relaxations that guide the heuristic. Bienstock and Zuckerberg [3] develop a ver-
sion of OPBS with a variable cutoff grade, but only solve LP relaxations. (They
do solve those models quickly, however. For instance, one model with more than
100,000 blocks and 25 time periods solves in just hundreds of seconds.)

Lagrangian relaxation is key to the efficiency of our STWH, so we review
previous work related to OPBS models here. (See Fisher [11] for a general dis-
cussion of Lagrangian relaxation.) Dagdelen and Johnson [9] present the earliest
work, describing a model for extracting a fixed tonnage from a mine subject
to precedence constraints; they solve a small, ten-block, two-period, illustrative
example. Akaike and Dagdelen [1] suggest a different scheme for updating La-
grangian multipliers for instances with up 129,500 blocks and 5 time periods,
but their solutions are not always feasible. Kawahata [17] applies similar tech-
niques to a version of OPBS with a variable cutoff grade for instances with up
to 58,970 blocks and 15 time periods; similar to other work, he is unable to con-
sistenly find feasible solutions. Apparently, feasibility of resource constraints is
difficult to obtain in a Lagrangian relaxation and, consequently, this technique
has helped to solve only small instances of OPBS to date.

We can now better frame the current paper’s contributions to the research
literature on OPBS. We study a model variant that is more general than some
(cf. [2], [8]) in that this variant enforces lower bounds on resource consump-
tion. These constraints are important for practical applications, but can add
significantly to solution effort. Even a small problem with lower bounds on re-
source consumption can be dramatically harder to solve than the same problem
with those lower bounds omitted. For example, using the computer with the
specifications given in section 5, one 2,880-block, five-period test problem hav-
ing no lower bounds requires 176 seconds to solve with CPLEX, yet requires
3,688 seconds to solve when lower bounds are added. (Interestingly, the added
restrictions reduce the optimal objective value by less than 0.1%.) On the other
hand, our model omits certain features of other OPBS models, for instance, an
inventory of mined but unprocessed material (e.g., [7]). Incorporating inventory
constructs should be easy—this might involve adding fewer than a hundred new
variables and constraints—but other generalizations would surely be more diffi-
cult (e.g., a variable cutoff grade). An attractive feature of our method is that it
avoids aggregation and the complications that aggregation can entail (see [20],
[4], [13]). Finally, we note that others have attempted to use Lagrangian relax-
ation to solve OPBS more quickly, but fail to obtain feasible solutions for even
modest-sized problems. Our sliding time window heuristic exploits Lagrangian
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relaxation for speed, and it reliably produces high-quality, feasible solutions in
large test problems.

3 An Integer Programming Model for OPBS

Our OPBS IP applies the following assumptions to a three-dimensional dis-
cretization of an orebody, i.e., to a block model: (i) each block must be mined
in its entirety, or not at all, (ii) each block requires exactly one time period to
mine, (iii) precedence constraints restrict how adjacent blocks may be extracted,
(iv) each block contains a known amount of ore (mineral content) and waste,
(v) a fixed cutoff grade applies, (vi) both lower and upper bounds apply to pro-
duction and processing quantities in each period, and (vii) the mining operation
holds no inventories of mined but unprocessed material. The following specifies
a complete “by formulation” of OPBS as an IP (see [7]):

Indices, Indexed Sets, and Parameters:
b ∈ B mine blocks
t ∈ T time periods defining the time horizon
r ∈ R production and processing resources
Bb blocks above b that must be extracted directly before b
B̂b blocks at the same level as b, and adjacent, one of which must be ex-

tracted in order to extract b
vbt net present value of block b if extracted in period t ($)
nrb consumption of resource r associated with the extraction of block b (tons)
Crt amount of resource r available in time period t (tons)
Crt minimum level of resource r to be consumed in time period t (tons)

Variables:
ybt 1 if block b is extracted by time period t, 0 otherwise (Note that ybt −

yb,t−1 specifies whether or not block b is mined at time t.)

Formulation of OPBSIP :

max
∑
b∈B

∑
t∈T

vbt(ybt − yb,t−1) (1)

subject to ybt ≤ yb′t ∀b ∈ B, b′ ∈ Bb, t ∈ T (2)

ybt ≤
∑
b̂∈B̂b

yb̂t ∀b ∈ B, t ∈ T (3)

yb,t−1 ≤ ybt ∀b ∈ B, t > 1 (4)∑
b∈B

nrb(ybt − yb,t−1) ≤ Crt ∀r ∈ R, t ∈ T (5)∑
b∈B

nrb(ybt − yb,t−1) ≥ Crt ∀r ∈ R, t ∈ T (6)

ybt ∈ {0, 1} ∀b ∈ B, t ∈ T (7)
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The objective function (1) maximizes the net present value of blocks ex-
tracted from the mine over the model’s time horizon. Constraints (2) and (3)
enforce spatial precedence on block extraction. Constraints (4) enforce “tem-
poral precedence,” that is, if a block is extracted by time t − 1, it must also
be extracted by time period t. Constraints (5) and (6) limit the maximum and
minimum resource consumption in each time period, respectively. Constraints
(7) require that all variables assume binary values.

4 A Sliding Time Window Heuristic

OPBSIP is well known to be NP-hard (see [14]), and is also difficult to solve
in practice. Instances comprising 10,000 blocks and 15 time periods can require
hours to solve to near-optimality on a fast computer using state-of-the-art opti-
mization software such as CPLEX [15]; modestly larger instances may not solve
at all. This section describes a sliding time window heuristic that greatly extends
the size of problems that can be solved. We note that “preprocessing” usually
reduces solution times for OPBS dramatically (e.g., [2]), and is now a standard
tool. Since we use preprocessing in all three methods compared in our paper,
this section begins with a short description of the technique.

4.1 Preprocessing

A set of spatial precedence constraints can imply that a particular block b can-
not be accessed until many thousands of overlying blocks b′ have been extracted.
Because this extraction occurs at rates restricted both by maximum production
and maximum processing capacities, an “earliest start time” (earliest extraction
period) for each block can be established by a “preprocessing routine.” All vari-
ables that correspond to extracting a block before its earliest start time can then
be eliminated, as they must equal 0 in any feasible solution. See [2], [8] and [19]
for more detailed descriptions.

Conversely, spatial precedence constraints imply that not extracting a given
block precludes extraction of underlying blocks. These underlying blocks can
remain unextracted only as long as mining rates do not fall below minimum
production and processing limits. Thus, a “latest start time” for each block can
be established, and all variables corresponding to extracting a block at or after its
latest start time can be fixed to 1. The above-cited papers that employ “earliest-
start-time preprocessing” do not apply the latest-start-time analog because the
relevant models omit lower bounds on resource consumption, or because demand
requirements imply that lower bounds are elastic. We do apply that analog; see
Gaupp [12] for a full description.

4.2 A Restricted Lagrangian Subproblem for STWH

The STWH algorithm repeatedly solves a restricted Lagrangian subproblem which
we describe here. This subproblem, denoted OPBSH, (i) partitions the time pe-
riods T of OPBSIP into three sequential subsets T = T1 ∪ T2 ∪ T3, (ii) fixes
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all variables in the earliest group T1 to feasible values, (iii) represents a “time
window” T2 in which all constraints of OPBSIP are enforced, and (iv) enforces
only a relaxed version of the model for the out periods t ∈ T3. We present the
formulation OPBSH after making three additional definitions:

ŷbt fixed value for ybt for all b ∈ B and t ∈ T1 (all fixed variables constitute
a portion of a feasible solution to OPBSIP )

µbt non-negative Lagrangian multiplier for relaxing precedence constraint
(3) for b ∈ B and t ∈ T3

λrt, λrt non-negative Lagrangian multipliers for relaxing upper- and lower-
bounding resource constraints, (5) and (6) respectively, for r ∈ R and
t ∈ T3

Formulation of OPBSH:

max
∑
b∈B

∑
t∈T

vbt(ybt − yb,t−1) +
∑

t∈T3,r∈R

λrt

(
Crt −

∑
b∈B

nrb(ybt − yb,t−1)

)

−
∑

t∈T3,r∈R

λrt

(
Crt −

∑
b∈B

nrb(ybt − yb,t−1)

)

+
∑

t∈T3,b∈B

µbt

∑
b̂∈B̂b

yb̂t − ybt

 (8)

subject to precedence constraints (2), (3) and (4), and

ybt ≤
∑
b̂∈B̂b

yb̂t ∀b ∈ B, t ∈ T1 ∪ T2 (9)

∑
b∈B

nrb(ybt − yb,t−1) ≤ Crt ∀r ∈ R, t ∈ T1 ∪ T2 (10)∑
b∈B

nrb(ybt − yb,t−1) ≥ Crt ∀r ∈ R, t ∈ T1 ∪ T2 (11)

ybt ∈ {0, 1} ∀b ∈ B, t ∈ T1 ∪ T2 (12)
0 ≤ ybt ≤ 1 ∀b ∈ B, t ∈ T3 (13)

ybt ≡ ŷbt ∀b ∈ B, t ∈ T1 (14)

It is easy to interpret OPBSH if we first look at extreme cases.

1. If T1 = T3 = ∅, and T2 = T , OPBSH is identical to OPBSIP .
2. If T1 = T2 = ∅, and T3 = T , we have a full Lagrangian relaxation of OPBSIP ,

as described in [12]. Note that the constraint matrix is totally unimodular
in this case—it is the dual of a single-commodity network-flow model—and
binary solutions are automatically obtained from extreme-point solutions
(see [14]). It is unlikely that such a solution is feasible, but the structure
of this model implies that standard optimization software like CPLEX can
solve this mixed-integer problem quickly.
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3. If T2 = T3 = ∅, and T1 = T , all variables are fixed to values which are
presumed to satisfy all constraints. (Moot constraints remain in the model.)

When none of the sets T1, T2 or T3 is empty, a general mixture of the three
cases appears: all variables associated with T1 are fixed, a complete OPBS IP
is represented in the “exact window” T2, and a Lagrangian relaxation of that
model is represented in the out periods T3. In practice, we solve the full LP
relaxation of OPBSIP and use the optimal dual variables from constraints (5)
and (6) as Lagrangian multipliers λrt and λrt, respectively. It also seems natural
to use dual variables from constraints (3) to define µbt, but empirical testing
has shown that µbt = 0 provides faster solutions with almost no reduction in
solution quality. None of these multipliers are ever recalculated (“updated”), as
we have not found this to be worthwhile computationally.

The STWH solves a sequence of OPBSH subproblems, each of which can be
viewed as an approximation to OPBSIP . It is natural to think that a better
approximation would derive from using the full LP relaxation of OPBSIP in
periods T3, rather than a Lagrangian relaxation. Experiments show that compu-
tational times using the LP relaxation can increase by a factor of 20, however,
without any improvement in solution quality. The number of simplex iterations in
the branch-and-bound solution process for the LP-based approximation increases
only modestly compared to the number in the Lagrangian-based approximation,
so the difference must be explained by the ease with which those iterations are
executed. Apparently, the large dual network structure that OPBSH presents to
the solver is especially tractable.

4.3 The Heuristic Algorithm, ASTWH

We can now provide details of our sliding time window heuristic algorithm
ASTWH. The algorithm assumes: (i) a window of τ time periods, i.e., |T2| = τ ;
(ii) τ < |T |; and (iii) no subproblems become infeasible.

Algorithm ASTWH

1. T1 ← ∅; T2 ← {1, . . . , τ}; T3 ← {τ + 1, . . . , |T |}; t′ ← 1; ŷ← 0;
/* t′ is always the first period of the window T2 */

2. Define OPBSH with respect to T1, T2, T3 and ŷ, and solve for y∗;
/* Note that ŷ is irrelevant in the first iteration */

3. For (all b ∈ B) ŷb,t′ ← y∗b,t′ ; /* That is, fix all variables in period t′ to the
values just found */

4. T1 ← T1 ∪ {t′}; t′ ← t′ + 1; T2 ← {t′, . . . ,min{t′ + τ − 1, |T |}}; T3 ← {τ +
t′, . . . , |T |}; /* That is, slide the window ahead one period, adjusting for the
finite horizon, as appropriate */

5. If (T3 6= ∅) go to Step 2;
6. Print (“Solution from STWH is,” y∗) and halt.

In computational experiments, we apply a window width of τ = 1. In nu-
merous tests, any small improvements in solution quality derived from using
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τ > 1 are outweighed by the increase in computational effort. As a final note, we
point out that ASTWH’s myopic strategy is not guaranteed to find a feasible
solution if one exists. If a subproblem becomes infeasible, a method that relaxes
fixed variables, expands T2 and to tries to recover feasibility would be necessary.

5 Computational Results

We first test ASTWH on five instances of OPBSIP comprising 10,819 blocks
and 15 time periods [12]. These include a baseline instance denoted “10,819A,”
and four variations, denoted by suffixes B through E. The variations are obtained
by randomly and independently perturbing mineral content in each block in the
range [−5%,+5%] according to a uniform probability distribution. Figures 2 and
3 illustrate the mine’s layout and provide a rough idea of a block-sequencing
solution for 10,819A.

We also test ASTWH on four larger 15-period problem instances, each of
which is a subset of the 53,668-block mine model known as “Marvin.” Marvin is
included as a test problem in the Whittle Four-X mine-planning software, and
comprises an artificially constructed copper-and-gold orebody with 17 vertical
levels. All test problems are derived from horizontal “slices” of the mine. In-
stances “18,300A” and “18,300B” represent the same slice of 18,300 blocks, but
with slightly different mineral content. Instances “25,620A” and “25,620B” are
similar, but have 25,620 blocks. We have created these “submines” for testing
purposes because they are larger and more challenging computationally and,
admittedly, we cannot yet solve the full, 53,668-block model.

All models are generated in AMPL 12.1 and solved with CPLEX 12.1 (see
[15]) on a 64-bit workstation running the Linux operating system. The worksta-
tion has four Intel processors running at 2.27 GHz and is supplied with 12 GB
of RAM. “Branching priorities” for branch-and-bound solutions are set so that
high-profit blocks are branched on before low- or negative-profit blocks; other
branching rules state “branch up first on positive-valued blocks,” and “branch
down first on negative-valued blocks.” We apply these CPLEX options (see [15])
for solving the LP relaxation of OPBSIP : “predual 1,” “netopt 2” and “pri-
malopt.” In addition, “mipbasis 0,” “mipemphasis 3” and “mipcuts 2” apply
when solving any OPBSH subproblem.

Table 1 presents computational results for three different solution procedures:
(i) direct solution of OPBSIP with CPLEX, (ii) Gaupp’s optimization-based
heuristic [12], and (iii) ASTWH. All procedures begin with early- and late-
start preprocessing; computational times are negligible and are not reported.
The Gaupp procedure applies Lagrangian relaxation with subgradient updates
and a special “feasing heuristic” that attempts to convert infeasible Lagrangian
solutions into feasible ones. Lagrangian multipliers are obtained for ASTWH
by first solving the LP relaxation of OPBSIP , and this computation time is
included in the total solution times reported.
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Fig. 2. A three-dimensional block extraction schedule, in five-period increments, for
the baseline OPBS instance, “10,819A;” the sheer walls in the far left diagram represent
awkward initial conditions.
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Fig. 3. A two-dimensional slice of the block-extraction schedule, in five-period incre-
ments, for the baseline OPBS instance “10,819A.”

Table 1. Numerical results comparing direct solution of OPBSIP , Gaupp’s method
(“Gaupp;” see [12]) and our sliding time window heuristic ASTWH. A time limit of
36,000 seconds, i.e., 10 hours, applies. All methods first employ early- and late-start
preprocessing. The IP OPBSIP fails to solve in most instances: † indicates that the
problem could not be solved to a tolerance of 2% within the time limit, and ‡ indicates
that no feasible solution was obtained within that limit.

OPBSIP Gaupp STWH

Instance Solution Optimality Solution Optimality Solution Optimality
name time (sec) gap (%) time (sec) gap (%) time (sec) gap (%)

10,819A † ‡ † 4.2 1,596 1.9

10,819B † ‡ 35,370 2.3 1,463 2.0

10,819C † ‡ 14,376 1.8 1,405 1.9

10,819D † 6.3 16,770 2.2 1,949 2.0

10,819E † ‡ 28,572 2.3 1,466 2.0

18,300A † ‡ † ‡ 2,461 2.4

18,300B † ‡ † ‡ 1,250 1.4

25,620A † ‡ † ‡ 3,045 1.6

25,620B † ‡ † ‡ 9,823 4.3
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The solution quality for the two heuristics is given with respect to the optimal
objective-function value from the LP relaxation of OPBSIP . The Gaupp proce-
dure terminates when the optimality gap drops to 2% or less, so that heuristic
might produce somewhat better solutions given more time. Of course, this crite-
rion cannot be successful unless the LP relaxation for OPBSIP is quite tight, but
it is for problems tested here. ASTWH does not prespecify an overall optimal-
ity criterion, but simply solves each mixed-integer subproblem to within 0.1% of
optimality. (A near-optimal solution procedure for the first OPBSH subproblem
can provide an upper bound for SWTH that is better than the LP bound. This
improvement is marginal, however, so we simply use the LP bound for all gap
computations.)

For the 10,819-block instances, Table 1 shows that ASTWH produces re-
sults of similar or better quality than the Gaupp heuristic, but 10 to 20 times
faster. Within the ten-hour limit, OPBSIP cannot solve these problems reliably.
ASTWH also successfully solves the four larger problem instances, although the
optimality gap for one instance rises modestly to 4.3%. The gap stays below 2.5%
for the other three instances, and the longest computation time is only about
two and three-quarter hours. These are promising results for an IP that con-
tains as many as 200,500 variables and over 1,173,000 constraints (after CPLEX
eliminates extraneous variables and constraints in its “presolve” routine). Note
that neither the Gaupp procedure nor CPLEX can even find a feasible solution
to these problems in ten hours of computation.

6 Conclusions

This paper has presented a sliding time window heuristic (STWH) for approx-
imately solving an integer-programming formulation (IP) of the open pit mine
block sequencing problem (OPBS). OPBS models the extraction of blocks of ma-
terial from a mine over a discretized time horizon, subject to spatial precedence
constraints and subject to lower and upper limits on production and processing
in each time period. The STWH is based on solving a sequence of mixed-integer
programs that have fixed variables in early time periods, a full model representa-
tion in at least one middle period, and a relaxed representation in later periods.
The use of Lagrangian relaxation is critical for computational efficiency.

Many papers on OPBS report results on problems that only enforce upper-
bounding constraints on production and on processing. But lower-bounding con-
straints can be important to maintain smooth mine operations and to meet con-
tractual agreements. Consequently, we test difficult problems that include lower
and upper bounds on both production and processing. We solve problem in-
stances with 15 time periods and up to 25,000 blocks. On average, the largest
problems require about one and a quarter hours to run on a fast workstation,
and exhibit an average optimality gap of 2.4%.
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