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ABSTRACT

The future safety of the U.S. Navy warship depends on the development of a directed

energy self-defense cystem to keep pace with the ever-improving technology of anti-ship

missiles. Two candidates are reviewed. The free electron laser (FEL) has the most

advantages, but a chemical laser proposed by TRW is ready for installation on existing ships.

Initial testing of issues related to directed energy use at sea can be conducted with the chemical

laser. When the technology of the FEL matures, it can replace the chemical laser to provide

the best possible defense in the shortest period of time.

Continuous tunability is a key advantage of the FEL over the conventional laser. But

since the output wavelength is dependent on electron energy, it is subject to random

fluctuations originating from the beam source. At the Stanford University Superconducting

(SCA) Free Electron Laser (FEL) Facility, the effects are minimized through negative feedback

by changing the input electron energy proportional to the observed wavelength drift. The

process is simulated by modifying a short pulse FEL numerical program to allow the resonant

wavelength to vary over many passes. The physical effects behind optical wavelength control

are explained. A theory for the preferential nature of the FEL to follow the resonant

wavelength from longer to shorter wavelengths is presented. Finally, the response of the FEL

to a rapidly changing resonant wavelength is displayed as a transfer function for the systcrl.
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I. INTRODUCTION

A relativistic pulse of electrons passing through the transverse, periodic magnetic

field of an undulator in a free electron laser (FEL) oscillator results in an exchange of

energy between the electrons and a co-propagating electromagnetic pulse, which is

stored between the mirrors of an optical resonator [1]. When net energy is transferred

from the electron pulse, the radiation pulse within the resonator is amplified, and

coherent light is produced as the output. A schematic of an FEL oscillator is shown in

Figure 1-1.

Bending Magnet Bending Magnet

Electron Beam
Light Out

f Undulator

Resonator Mirror

Figure 1-1 Major components of a free electron laser (FEL) oscillator. Bending
magnets guide an electron beam through the periodic magnetic field of
an undulator. Co-propagating light interacts with the electrons in the
optical resonator, resulting in amplification. The amplified coherent
light then passes through a partially transmitting mirror at one end of
the resonator.
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First conceived in 1970 [11, by J.M. Madey at Stanford University, the FEL has

since been the subject of considerable research throughout the world. Present FEL

development is focused toward the construction of reliable FELs as sources of coherent

radiation for medical, industrial, and scientific applications. The FEL shows strong

promise for use in military applications as well. The motivation for this research is

discussed in Chapter II. The technology of the anti-ship missile has nearly reached the

point where conventional kinetic energy defenses are no longer effective. Further, the

ever-changing political climate gives rise to the increased possibility that an advanced

weapon will fall into the hands of a terrorist aggressor. A directed energy defense

system is clearly required for the U.S. Navy warship of the future.

For an efficient energy exchange in an FEL, the forces on the electron beam

produced by the undulator and radiation fields must be in a condition of resonance [2].

In a weak undulator, this occurs when the radiation wavelength X, the electron beam

energy tc 2, and the andulmtor period X. combine to satisfy X = X /2-?, where y is the

Lorentz factor, m is the electron mass, and c is the speed of light in vacuum. This

resonance condition leads to one of the primary benefits of the FEL design By

changing the electron beam energy, an FEL may be continuously tuned to operate over

a wide variety of radiation wavelengths (3].

However, the wavelength of the output light may be subject to objectionable

drifts from processes that are not fully understood, and cannot be easily predicted.

Fortunately, by measuring the magnitude of drift and providing negative feedback to

the electron source, the electron energy can be adjusted to compensate and hold the

output wavelength fixed.
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Researchers at the Stanford University Superconducting Accelerator (SCA) Free

Electron Laser (FEL) Facility have already successfully demonstrated wavelength

control in such a manner [4]. But in order to fully optimize the system, detailed

information about the process of wavelength control is required. The goal of of this

thesis is to describe the basic physics involved.

An overview of FEL theory required for the development of optical wavelength

control discussion is presented in Chapter III. In Chapter IV, an FEL simulation

describing the evolution of a multimode short optical pulse is modified to allow the

resonant wavelength to oscillate over many passes. The result is identical to changing

the electron beam energy in the Stanford SCA/FEL experiment. An asymmetry is

observed in the ability of the short optical pulse to follow resonant wavelength. The

FEL preferentially follows shifts from longer to shorter optical wavelengths with

higher corresponding optical power. A theory is presented to explain this

phenomenon.

When the resonant wavelength of the FEL is varied slowly over many passes, the

short optical wavelength easily follows the transition. The ability of the optical pulse

to follow resonant wavelength over shorter time scales is of concern to researchers at

the Stanford SCA/FEL facility, because it can allow faster feedback to the electron

energy source in order to optimize the wavelength control system. In Chapter V,

simulations are used to determine the nature of the change in resonant wavelength over

increasing frequency scales. Two different methods are used to determine the response

of the FEL to a rapidly changing resonant wavelength. The results are displayed as a

transfer functions for the system.

3



1I. THE CASE FOR A MODULAR SHIPBOARD HIGH
ENERGY LASER SYSTEM

A. INTRODUCTION

For many decades, the proliferation of weapons to Third World countries was

subsidized in an attempt to gain alliance with one of the two major superpowers.

Seeking political advantage, missiles and other arms were freely sold to allies of each

power. There was also little or no concern that nations like France and China

routinely traded advanced weapons for monetary gain. With the collapse of the Soviet

Union came drastic changes in the views toward Third World arms proliferation. No

longer would the preoccupation with East-West problems overshadow regional Third

World differences. Today, the US Navy faces the responsibility of peace-keeping in a

world strewn with regional instabilities. Further, since many of these regions of strife

tend to overlap, there is the continued threat of additional arms proliferation. An

attack on the US Navy by a Third World nation, although likely to be much smaller

than a Soviet multi-regiment and coordinated air attack, could still inflict significant

damage upon individual ships. This became apparent in 1982 during the British war

over the Falkland Islands, when Argentina used Exocet missiles supplied by France to

sink a state-of-the-art frigate. Five years later, during the Iran-Iraq War, the Iraqis

nearly sank the USS Stark with the same system [5).

It is also likely that an engagement on US naval forces by a Third World

country will be driven by political rather than military goals. Any type of attack

profile might be used, since positive identification may not be required for actual

targeting. In effect, the damage or destruction of a single ship may be sufficient for
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emL.aTassment of the US [6]. The threat is real. A modem naval war.n•ip must be

defensible against all types of missiles if it is not to become obsolete. However, the

advent and proliferation of long-range, high-speed, low-flying, and jinking anti-ship

missilez makes this a formidable task [7]. One solution could be the installation of a

Modular Shipboard High Energy Laser (MODSHEL) for anti-ship missile self-defense.

B. BENEFITS OF A LASER SYSTEM

The technology to support anti-ship missiles seems to have outreached the means

to defend a ship against them by kinetic means. Missiles produced today are

supersonic sea skimmers that are highly maneuvera' "e and utilize the most advanced

stealth and electronic w:,rfare. In fact, a missile which is proposed for active service

in 1995 as a replacement for the Fxocet is the Aerospatiale/MBB Supersonic Anti-Ship

missile (ANS) [8]. The ANS is intended to be a lcng range (=180 kin), sea-skimming

missile capable of about 10g terminal jinking at speeds greater than 2 Mach, where

g = 9.8 m/s 2 acceleration. A convenient rule of thumb given by Dr. Robert S.

Bradford, Jr., Manager of the Directed Energy Systems Department at TRW, in a

briefing presented to students at the Naval Postgraduate School is that defensive

missiles require at least three times the maneuverability of the offensive missile they

are targeting [9]. Here it is easy to see that a 30g maneuverable missile would be

required to defend a ship against the ANS, and then, the same technology required to

develop that missile could readily be used to create another anti-ship missile. The

advantage is always going to be with the attacker unless a system is designed which is

insensitive to maneuverability advances. A laser is just such a system. At speed of

light delivery, it is not necessary to calculate the trajectory of the missile. If the

missile can be detected, that line-of-sight information is all that is required to kill it.
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Instead of firing physical projectiles or missiles, the MODSHEL would irradiate

the incoming missile with electromagnetic energy, collimating and focusing the beam

as much as possible to increase the effective lethality of the syster.;. Since the laser

fires massless energy rather than bulky, cumbersome missiles, the size of the

"magazine" that can be accommodated in the same amount of space on a ship could be

greatly enhanced [10]. This is often termed magazine depth and is only limited by the

amount of fuel that can be carried in the case of a chemical iwser, or of the amount of

electrical power available if using a Free Electron Laser (FEL).

A laser system for anti-ship missile defense could potentially have a very high

effective lethality. Since current missile defense doctrine usually includes the firing of

two missiles to engage a single incoming missile, the cost per engagement could be

lowered substantially. By design, a laser system would be relatively insusceptible to

electro-optical and electronic warfare countermeasures. It is feasible that the system

would also readily integrate with existing acquisition and fire control systems. In fact,

the beam director optics available to the system would also be available for use in

enhanced line-of-sight surveillance. [9]

C. A MODULAR DESIGN

Modularity in ship design is the utilization of modules or standardized units

which can be assembled or put into place to perform a specific purpose or function

[11]. Modularity is not a new concept. In fact, examples of it are prevalent ranging

from prefabricated homes to the cartridges used in the NINTENDO video game.

Modular weapon design would necessarily require the use of standard foundations,

dimensions and common interfaces for cooling water, power supplies and data cables

[II]. Obviously, this would increase the complexity of design of any new system.

However, the potential benefits can greatly outweigh the initial inconvenience. For

6



example, the modular design permits construction of the ship independent of the

weapon system delivery time. Further, the outfitting time of the system on the ship

can be reduced with a subsequent increase in quality assurance since the module can

be pretested under workshop conditions. It would also be convenient to remove the

system for upgrade, overhaul or even replacement by new systems as technology

allows.

A concept proposed by the TRW Space and Technology Group called for a

shipboard Deuterium Fluoride (DF) High Energy Laser (HEL) which could be installed

in the B module of a MK-41 Vertical Launch System (VLS). In response to a request

by the Deputy Chief of Naval Operations, Naval Warfare (Op-07) in July 1990, the

Center for Naval Analysis began to evaluate this concept. The results of this

evaluation are published in a secret report, CNA Research Memorandum 91-81 [6].

From the unclassified portions of this report many interesting facts can be obtained.

The CNA analysis found that current technologies could easily allow installation of a

shipboard modular HEL on existing ship platforms for the use of initial testing of

critical issues concerning laser shipboard operation. The HEL would replace existing

weapon systems on any of three ship classes: (1) replace the NATO Seasparrow in

DD-963 destroyers, (2) replace the forward Phalanx Close-in Weapon System (CIWS)

and VLS module in DDG-51 destroyers, (3) replace one 5-in/54 caliber gun mount in

CG-52 cruisers.

The major components of MODSHEL would include: (1) reactant storage for the

chemicals pressurized in cryogenic tanks; (2) the laser device; (3) laser cooling

systems including turbine water pumps and connected equipment; (4) an extensive

exhaust management system designed to prevent hazard to humans and also to prevent

beam attenuation caused by small amounts of deuterium fluoride entering the laser

beam path; (5) a beam transfer system which would be designed to automatically

7



maintain alignment in spite of ship vibration and flexing at sea; and finally, (6) a safe

replenishment system in which chemicals could be replaced at sea via helicopter or

delivery ship. The CNA study narrowed the list of feasibility criteria to three critical

issues. First, if the system is to be successful, it must fit in the desired area. The

capability of other remaining weapon systems and the overall operation of the ship

must not be degraded. And most importantly, the ship's architectural safety margins,

i.e. stability and maneuverability, must not be diminished.

Another study conducted by CNA in August 1990 [121 further investigated the

shipboard design issues associated with the installation of the MODSHEL in the

configurations listed above. Since current technology would call for a chemical high

energy laser, it was noted that the ultimate design and feasibility criteria would be the

safe handling of the toxic effluents (hydrogen fluoride and deuterium fluoride) so as

not to put topside personnel at hazard. Further, the laser system would be a great deal

larger than any system it would replace, requiring reconfiguration and design of those

systems nearby which would not be replaced. Also under consideration was the

increased peak electrical demand which the MODSHEL would place on the

engineering system. Finally, the study evaluated the ultimate cost of emplacement of

the MODSHEL.

Obviously, there are more issues which must be considered when designing a

laser weapon system for use at sea. For example, the structure of a ship is subject to

significant motion due to wave action [121. The MODSHEL must be capable of

withstanding these vibrations and stresses without loss of effectiveness. There is also

the likelihood of frequent inundation by sea water in heavy seas--a hazard to any

intricate weapon system but an effect which must be designed for. Using all these

criteria, the CNA studies concluded that the installation of MODSHEL in the above

configurations could be realized with little effect on stability of the ships involved.
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The peak electrical demand would not impose a significant burden to the existing

engineering plants, and the overall performance of the ships would not be degraded.

The CNA study did find one operational disadvantage worthy of note.

Installation of the MODSHEL would require replacement of a large number of long

range offensive and defensive missiles by a system which is designed to be defensive

with a range on the order of a few kilometers. However, it was concluded that a truly

modular system could be designed such that only a few would be produced, installed

pierside or by tender to specific ships expecting missions requiring additional defensive

capability, i.e. single-ship power projection or escort operations.

D. EXISTING TECHNOLOGY

The Department of Defense has been interested in the possibility of directed

energy weapons (DEWs) since the mid-1970s. The first effort directed toward this

goal was the gas dynamic CO 2 laser developed under -- ,mra called the Airborne

Laser Laboratory (ALL) [13]. A 400 kilowatt version was installed on a KC-135

aircraft, along with a high technology beam director. After the ability to shoot down

missiles in flight was demonstrated [141, the program was considered to be a success.

However, due to schedule slippages, complexity, cost and susceptibility to

countermeasures, it was considered unsuccessful relative to competitive air-to-air

kinetic defense methods. At the time, it was thought that missiles could be hardened

easier than it would be to make a more powerful CO 2 laser. The main results from

ALL were the need for a type of DEW which could readily scale to higher power

levels and utilize a less complex fire control system. [131

The Navy's first interest in DEWs stemmed from the possibility that the threat of

missiles launched against a battlegroup of ships could be minimized by shipboard laser

weapons. These DEWs would be less complex due to the relatively stable sea

9



environment compared to the rigorous demands imposed on an airborne beam director

[13]. Moreover, chemical DF lasers had reached a level of technology which could

allow scaling to significantly higher power levels than the CO 2 versions. Under these

assumptions, the Navy funded several programs resulting in the MIRACL (Mid-

Infrared Advanced Chemical Laser) device developed by TRW, and the Sea Lite Beam

Director (SLBD) developed by Hughes Aircraft Co. [13] The MIRACL device is a

continuous-wave DF chemical laser which can produce power in excess of I MW [15].

Operation is based on a combustion-driven process in which atomic fluorine, F, reacts

with molecular deuterium, D2, to produce deuterium fluoride in any of several excited

states with an inherent population inversion of states. Subsequent atomic transitions

between the various energy levels produce output wavelengths between 3.7-4.0

micrometers. The MIRACL/SLBD combination was subject to a series of tests at

White Sands, New Mexico. First, a stationary missile booster was destroyed. Then, a

drone was shot down while in flight. Finally, in a key demonstration, the

MIRACL/SLBD device was used to destroy a Mach 2.2 Vandal anti-air missile in

flight [9]. Unfortunately, by the time the MIRACL Laser was operational, shipborne

missiles and guns proved to be a more attractive choice to the Navy due to their lower

cost and more mature technology.

The ever-increasing sophistication and wide proliferation of anti-ship missiles

has since L ought the MIRACI.SLBD program back into the spot-light. Improved

miniaturization and increased performance design have made it possible to create a

self-contained, modular HEL package suitable to replace the weapon systems discussed

earlier. An advanced concept recently proposed by TRW and considered by the Navy

is the High Energy Laser Weapon System (HELWEPS) designed primarily for anti-

ship missile defense [9]. This presents the latest HEL weapon system candidate for

use on Navy warships, and it seems to correspond nicely to the type of system

10



previously considered by the Center for Naval Analysis. HELWEPS produces power

equivalent to the MIRACIJSLBD system. As shown in Figure 2-1, it is packaged to

be weight and size equivalent to a 5-in/54 caliber gun. The chemical used, deuterium

fluoride, allows an output wavelength of 3.8 micrometers. It is designed to have a

pointing accuracy of 5 microradians from an aperture of 1.5 meters. The estimated

cost of the system is 70 million dollars. TRW estimates the magazine depth to be at

least 50 shots with a response time of 1 second and a corresponding cost per kill of 10

thousand dollars. Further, the extrapolated kill range is purported to be 2-5 kilometers

under nearly all weather conditions with an effective lethality of 96 percent.

Modular HEL-ASMD Concept

Ed-

CM TICONDEROGA-CLASS SHIPBOARD INSTAUATION

"* Complements ships existing anti-air warfare capability

"* Self-contained MIRACLJSLBD sized system
"* System weight equivalent to 5 /54 gun
"* Allows for easy installation and logistic support on a combatant ship

"• Provides wide aspect sea-skimmer and high diver engagement capability

HEL-ASMD system fits in a VLS or 5" gun envelope. facilitating weaponization

Figure 2-1. The High Energy Laser Weapon System (HELWEPS) concept for Anti-
Ship Missile Defense (AMSD). Proposed by TRW, this system can be
the prototype for evaluation of "speed of light" defense at sea. [9]
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TRW also suggests the addition of a "green", 550 nanometer wavelength, low-

power laser within the module designed to provide auxiliary missions [9]. These

missions could include submarine periscope or mine detection and secure, line-of-sight

communications. The optics for this system would be small, and thus could be placed

in several locations throughout the ship.

E. EFFECTIVENESS MODEL

The numbers proposed by TRW are relatively easy to verify using standard laser

propagation equations. Since the laser aperture, D = 1.5 meters, and radiation

wavelength, X = 3.8 micrometers, are given, the spot size, A, at an incoming missile

at range R = 5 kilometers can be calculated by: [15]

r.R 2)L22
A = = 5.0 cm2  (2.1)

Fluence, F (in J/cr 2) , is the common measure of "hardness" of a missile, since it

describes the amount of energy absorbed by the skin which destroys it. Fluence is

calculated by: [15]

F = Pt ,(2.2)
A

where P is the actual power received at the missile, and At is the dwell time that is

required to incapacitate it. A moderately hardened missile might require a fluence of

10 kj/cm 2. TRW states a total response time of 1 second, the dwell time must be a

fraction of this, accounting for acquisition time and slew rate of the beam director. If

a 0.1 second dwell time is assumed, the total power required at the missile, calculated

from equation (2), is P = 500 kilowatts. The extinction coefficient due to aerosols in

the atmosphere is ax = 5xlC-21km, and through e' describes the removal of power at

X = 3.8 micrometers wavelength over a distance z. Therefore, the power required to
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leave the ship at 5 km range to destroy the missile, P., is given by:

e0 = P = (500-0) = 640 kW (2.3)• ýM e-(°'°050 .°)

Since TRW reports a design power approximately equivalent to the MIRACLISLBD

device, or about 1 MW, the reauired output power of 640 kW is well within

capability. If the missile is assumed to be traveling at about Mach 3 or 1000 m/s, the

time for the laser beam radiation to reach the missile at 5 km is:
T1h = (5000.0 m) = 16.7 ps (2.4)

(3.0xo m1s) /s )

Meanwhile, the distance the missile can travel during this time is:

D,,•a, = (1000 m/s )(16.7 pjs) = 16.7 mm . (2.5)

So the missile moves very little during this time--even at Mach 3, which effectively

eliminates the threat of a terminal jinking maneuver by the missile. All in all, these

calculations attest to the viability and effectiveness of the system.

F. DISCUSSION

The world political outlook is murky at best. The collapse of the Soviet Union

has indeed brought an end to the Cold War, but regional instabilities remain.

Correspondingly, the United States has assumed the role of the single superpower in

the New World Order. However, recent military spending cuts have brought a

decrease in force structure, emphasizing the significance of the modern naval warship

as an extremely valuable asset. Anti-ship missile technology has progressed to the

point where survival by ordinary kinetic means is at question. Projectile and missile

self-defense systems face critical problems. They have limited speed, range, lethality,

and they require calculation of ballistics and trajectories to hit the target. Missile
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systems requiring update information from the ship are highly susceptible to electronic

warfare countermeasures. Terminal jinking or maneuvering of the attacking missile

can also serve to reduce the effectiveness of these systems. In effect, the time has

come for the consideration of a weapon system capable of delivering destructive

energy at the speed of light.

A modular shipboard high energy laser like the HELWEPS, proposed by TRW,

seems well suited to the task of providing effective close-in defense in conjunction

with weapon systems already in use. Fire-control systems are compatible, and the

advanced optics of the beam director can actually enhance target detection,

identification, and kill assessment for all shipboard systems. The power requirements,

weight and size of the system readily allow emplacement on existing ships, thus

making HELWEPS a logical first choice as an initial testbed for laser related at-sea

reliability, effectiveness, and system integration. Even though the system is designed

only for short range defense, it can be particularly effective for a single ship involved

in forward-deployed patrol operations. The modularity of the HELWEPS provides the

means for changing a ship's configuration to meet the requirements for such a mission.

Still, there are many crucial areas of concern when considering successful long

term use of the HELWEPS. The depth of magazine of the laser depends upon the

amount of chemical fuel which can be stored onboard. Further, the toxic effluents of

combustion must be safely routed away from topside personnel. Also, since the laser

depends upon quantum transitions from excited molecular states, the output wavelength

is tied to the properties of the chemicals used and thus is not readily controllable.

Anti-ship missiles designed with shielding against the small range of wavelengths

available to the laser can eliminate the effectiveness of the system.
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G. TRANSITION TO THE FEL

The FEL is not subject to the same limitations that plague the chemical laser.

First, the radiation source is a relativistic beam of electrons which emit coherently

when subject to the accelerating forces of a periodically changing magnetic field, so

the depth of magazine is only limited by the amount of electrical power available from

the ship's turbine generators. Additionally, the FEL is completely and relatively easily

tunable to a wide range of wavelengths by various means, as will be discussed in

Chapter II1. This provides the FEL with an advantage over the chemical laser--being

able to select the operating output wavelength for optimum atmospheric transmission

and missile lethality. FELs have already successfully operated in the infrared and

ultraviolet spectral ranges with wide tunability [161. Another advantage of the FEL is

the potentially high overall or wallplug efficiency of the system. The wallplug

efficiency of a FEL is defined as the ratio of average emission power output to the

electric power input, and is dependent upon energy extraction efficiency of the

undulator and design technology of the electron beam source. Through extensive

beam recovery and well-designed beam transport, it is likely that a wallplug efficiency

as high as 40% can be achieved [161.

However, the technology to support FEL use at sea is not complete. FELs have

indeed demonstrated high peak powers on the order of a gigawatt, but high average

power in the megawatt range is yet to be shown. The primary problem is not FEL

design, but rather the production of an electron beam with sufficient quality to support

the required conditions for FEL operation [17]. Moreover, the size of a typical FEL

system is usually quite large disproportionally due to the immense size of the electron

beam source. Technological improvements in electron beam quality, compactness of

design and high average power are on the forefront of FEL research, but will take

time. Meanwhile, the U.S. Navy can benefit from implementation of a program
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involving a system like HELWEPS. Then, shipboard use issues (i.e., operation and

accuracy in the hostile sea environment) can be addressed and solved at the same time

FEL design issues are solved. The technology already exists to install and use the

HELWEPS. The HELWEPS seems to be the logical stepping stone to the future of

warfare at sea--" speed of light" defense.
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IMl. FREE ELECTRON L SER THEORY

A. BASIC FREE ELECTRON LASER PHYSICS

Emission from a FEL oscillator is the result of an interaction among three basic

elements: a relativistic electron beam supplied by an accelerator, a co-propagating

electromagnetic wave, and finally, a spatially periodic magnetic field produced by an

"undulator" [2,18]. The interaction space is the length of the undulator, L = NA,

where N is the number of magnetic undulator periods, and A, is the corresponding

wavelength. As the electrons in the beam travel through the undulator, forces from the

magnetic field cause their trajectories to "wiggle" in the transverse direction.

Accelerating from side to side, the electrons can spontaneously emit light in a forward

cone along the beam path. Spherical mirrors placed on the beam axis beyond the ends

of the undulator allow a fraction of the radiation to collect and resonate. Stimulated

emission then arises through coupling between the growing optical field and

subsequent electrons entering the undulator, coherent radiation is output [3].

Before reaching the undulator, the electrons are accelerated to the relativistic

energy, 'nc 2, where m is the electron rest mass and c is the velocity of light. The

Lorentz factor is y = Ar/W- , where u/= c, and u is the electron velocity

magnitude.

Th7 properties of the undulator fully determine the properties of the resulting

optical radiation. Magnetic polarization of an undulator defines the trajectory for

electron deflection and is accomplished either by permanent magnets or

electromagnets. Linear or helical polarization is possible with the emitted radiation

having linear or circular polarization respectively [19]. The strength of the undulator
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characterizes the magnitude of deflection of the electrons, and is defined as the
"undulator parameter",

eik,
K = - (3.1)

where A is the root-mean-square (rms) magnetic field strength. Electrons are subject

to constant acceleration in a helically polarized undulator, so A = B, the peak magnetic

field strength. On the other hand, the sinusoidal electron path in the linearly polarized

undulator requires the correction A = B/4, due to non-constant acceleration.

Quantum mechanical processes are involved in the FEL interaction. For

example, as an electron emits a photon, it is subject to a small recoil. But the loss of

energy is so small that many such events are required to effectiveiy change the

interaction characteristics of a single electron. Since the electron density of the

injected beam is usually very large, recoil effects are negligible. Similarly, the

interaction volume of the FEL contains a large number of photons, so statistical

fluctuations in the optical wave can be ignored. The net result is that classical

electromagnetic theory correctly predicts the interaction between the electrons, light

and undulator. [31

The classical approach to the FEL interaction is summarized in Figure 3-1 [201.

At the top, electrons enter the undulator and begin to oscillate in the presence of

transverse magnetic fields. Radiation is emitted in a forward cone, and this optical

wave propagates with the electrons. The middle portion of Figure 3-1 expands a

single period within the undulator. Electron motion is in the y-z plane. If oscillation

in the negative y direction occurs while the magnetic field from the optical wave is in

the negative x direction, (shown at the bottom), an opposing Lorentz force will cause

the electron to lose energy to the optical wave. This qualitative description illustrates
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the importance of the relative phase of each electron to the optical wave. Electrons in

the wrong phase will gain energy from the radiation field, countering amplification.

With electrons spread equally over all phases of the optical field, some gain energy

and some lose energy. Overall, the electrons form into bunches on the scale of the

optical wavelength. Over many optical wavelengths, the bunches of electrons produce

coherent radiation at the end of the undulator [3].

B. RESONANCE CONDITION

In an FEL, the electrons travel through the undulator as free particles in vacuum,

rather than being attached to atoms as in a conventional lasing medium. As a result,

the wavelength of light emitted is not confined to a particular atomic energy level

transition. Instead, the electrons emit radiation by shifting energies in a continuum

[181. Further, the electrons are relativistic, so the magnetic periods of the undulator

appear Lorentz contracted to the effective wavelength V'. = X/y in the beam frame.

The radiation field passing over the electrons during the interaction appears Doppler

shifted to the longer effective wavelength V = (1 + 1. )yX = 2yX, where X is the optical

wavelength in the lab frame [2]. Efficient energy exchange between the electrons and

the optical wave is contingent upon a condition of resonance. Resonance occurs

between the undulator and the radiation field forces in the beam frame when V" =

When converted to the undulator frame, the FEL resonance condition becomes,

X0 •(1 + K 2)

2 ) (3.2)
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As shown in Figure 3-2, the electromagnetic wave travels the distance of one

undulator period plus one optical period in the time that the electron moves one

undulator period, causing the radiation to continuously slip ahead of the electron beam

[211.

L Xo

S "1

S s S

1 I

2N N

Figure 3-2. A resonant electron slips back one optical wavelength X as it traverses
one undulator period k.

Two of the most attractive features of the FEL are inherent in Equation (3.2).

First, the FEL is continuously tunable; shifts in optical wavelength are accomplished

by changing the electron energy Vnc 2, the magnetic field strength B, or the undulator

wavelength ). Researchers have demonstrated this property by varying all three of

these variables [221. Second, the FEL has great design flexibility.
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Particularly useful is the ability to change the properties of the undulator along

its length to compensate for electrons falling out of resonance as they give up energy

to the optical wave. By tapering the undulator, i.e., decreasing k,, resonance is

extended over more of the undulator length, thereby improving the efficiency of the

interaction [23].

C. ELECTRON DYNAMICS AND THE PENDULUM EQUATION

The FEL electron dynamics are described by solving the Lorentz force equations

of motion for a single electron in the presence of the undulator magnetic and optical

wave electromagnetic fields [23]. A helical design is assumed for the undulator, the

corresponding magnetic field will be circularly polarized which, in ideal form, is given

by

A = ( B) B, B. ) = B cos(kz), sin(kg,), 0) , (3.3)

where ko = 21,JXO is the undulator wavenumber, and z is the direction along the

undulator axis. For the optical field within the undulator, a circularly-polarized plane

wave is assumeil of the form

4E = E( cos', -sinTP, 0) , = E( sin'F, cos'V, 0) , (3.4)

where E is the optical field magnitude. Here, TF = kz - ot + ý, where k = 2x/X is the

optical wave number, o is the radial frequency, and ý is the optical phase angle.

The Lorentz force equations governing the electron motion are written:

dog-) -----[ + X (9 + BA] (3.5a)
dt mc

A = - R•. ,(3.5b)
dt mc

122_ - (3.5c)
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where $c defines the electron velocity vector. Only four of the five Equations (3.5)

are required for complete solution since there are only four unknowns, namely x (t),

y (t), z (t), and )(t). To solve, the undulator magTietic field (3.3) and the optical wave

electromagnetic fields (3.4) are substituted into the Lorentz force equations (3.5).

When the transverse and longitudinal components are separated, the equations become:

d(C 1 ) = -e [E(I - P,)(cosT, -sin', 0) + 0,B(- sinkoz, coskoz. 0)] , (3.6a)
dt mc

d('13,) = -e[E(P1 cosT - PysinP) + B(oxsinkoz - ycoskoz)] , (3.6b)

dt mc

d= = --eE [0, cosT' - PY sinWP] , (3.6c)
dt mc

where 0 = yi3, ,O). The electrons trave'ling in the z direction are subject to a

transverse force from the optical electromagnetic fields. For relativistic electrons, this

is proportional to E(1-0,) = E/2-?, which is negligible; the transverse force on the

electrons is primarily determined by the undulator magnetic field. Applying this

approximation to (3.6a) yields

d') -e I3PB(-sinkoz, coskoz, 0) , (3.7)
dr mc

which can then be integrated, resulting in the transverse electron velocity,

K1 = (cskz, sinkz, 0) (3.8)

Integration constants are zero assu.ing perfect electron injection. Insert (3.8) into

(3.6c) to get the time rate of change of the electron energy,

= "s) = eKE co~s( + (3.9)
M Vn
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where y = d-#dt, and • = (k + k)z - ox is a dimensionless variable determining the

relative phase of an electron with respect to the optical and undulator fields. Note for

time t = 0, the initial value of phase is C. = (k + k,)zo, but since k3sko, the initial phase

is approximately given by . = kzo. Thus ý determines the approximate electron z

position relative to a single optical wavelength. Using the relations 'y 2 - - 2 2

and [ = K/y, the second derivative of the electron phase with respect to time becomes

S =2•-re" Cos(C + •).(3.10)

where cO, = 0o(l + K 2)/2-?. To make (3.10) dimensionless, define z = ctIL. Then an

electron makes a single pass down the undulator in dimensionless time T = 0 -4 I.

Further, the dimensionless optical field is defined a = la le", with magnitude

la I = 4txNeKLEI/ymc2 . Inserting these into (3.10) shows that an electron in the FEL

evolves according to the simple pendulum equation [24]

00

v = la lcos( +*) . (3.11)

where v(t) = C = L [ (k + k.)O, - k ] is the dimensionless phase velocity of the electron,
0 00

(.. ) = d( .. )/dr, and ( .. ) = d2( .. )/d'c. If an electron has v = 0, then it is at resonance

with the optical wave and Equation (3.2) applies. A decrease in electron energy

corresponds to a decrease in phase velocity. The lost energy is given to the optical

wave. Inspection of (3.11) reveals that maximum energy loss occurs when the phase

(ý + ý) is near x. For all the electrons within the beam, each is identified uniquely by

its initial phase C, and phase validty vo, and will individually evolve according to

(3.11). The beam preferentially loses energy to the optical wave when bunching of

electrons occurs near (C + z) = it, thus amplifying the optical field.
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D. THE FEL WAVE EQUATION

The evolution of the complex optical wave is governed by Maxwell's wave

equation driven by the transverse electron beam current i',. [251:

2_ -1 -'r= - • ý ill (3.12)

where X is the vector potential for a circularly polarized plane wave, and is given by

A= - (sin'Y, cos•, 0) . (3.13)
k

Equation (3.13) assumes no x or y dependence, so V2 
- a2/iaz2 in the wave equation

(3.12). For optical coherence to be maintained, the optical field amplitude and phase

must vary slowly during the interaction [23]. This requires E < oE and C Wc o; so

after inserting the vector field (3.13), all second derivatives and terms with two

derivatives can be dropped from the wave equation (3.12) obtaining

2- +- -+ -a -ER I ] cC 1 , (3.14)

where the two orthogonal unit vectors have been defined as C, = (cos'V, - sin'P, 0) and

t2 = (sinT', cos'P. 0). As the electron moves in the z direction, the undulator magnetic

field forces the transverse electron velocity to rotate as the optical field passes over it

[19]. Maxwell's wave equation (3.14) is projected onto C, and t2, forming two first

order scalar equations:

ER +cat 2
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The contribution to the transverse beam current from a single electron is

= - ecO,8()C - ?i), where ? is the position vector of the ith electron, and 80)( .. )

is the three dimensional Dirac delta function [25]. Using $1 from (3.8), and summing

over all single particle currents, the total transverse electron beam current becomes

7j= cK(coskoz, sinkz,0 -)• (3.16)
SY

Projecting (3.16) onto the the unit vectors t1 and E results in the following two

equations:

"= ecK cos(C + )0)83(r -(3.17a)
I )'

and

ti"2 = • -sin(C + O)80k)( - ?i) . (3.17b)

The wave equations (3.15) evolve slowly over several optical wavelengths. The beam

current must be averaged over a small volume element a few optical wavelengths long.

Since an electron pulse from the accelerator is much greater in scale than this volume

element, the electron density p can be assumed fixed [23]. Applying this, and

substituting (3.17), the new wave equations are

I -Ee ... p < cos( + )> , (3.18a)C at y

and

ER _.= 2eK < sin( + )> (3.18b)

where p< .. > represents the electron beam average over sampled electrons weighted by

the electron density p. Equations (3.18) are expressed in final form by inserting the

26



dimensionless beam current j = 8N (e xKL )2p/y 3mc 2

laI=-j< cos( + )> . 0= -J--<sin( +*)> (3.19)F la I

or simply,

0

a -j< e4 > (3.20)

where a = la lei# is the complex dimensionless optical field, with

lal= 4xNeKLE/y 2mc 2. Inspection of (3.19) reveals that bunching of electrons around

the phase (C + 0) = x will lead to amplification of the optical wave, while bunching of

electrons near (ý + 0) = r/2 will drive the optical phase. Increasing the electron beam

current density j will produce increased gain and optical phase evolution; the resulting

increase in the optical field magnitude, however, will act to reduce the effect on phase

evolution.

E. THE LOW GAIN FEL

The simple pendulum equation (3.11) and the optical wave equation (3.20)

combine to form the Maxwell-Lorentz theory for the FEL [2]. The evolution of each

electron traveling through the undulator follows (3.11), while the evolution of optical

phase and amplitude is determined by (3.20). The dimensionless current j provides

coupling between the two equations because it determines the response of the optical

wave to bunching in the electron beam. In effect, a particular gain regime is identified

by the magnitude of j [26]. The Maxwell-Lorentz theory is generally valid for both

weak (la I -c x) and strong (la I - x ) optical fields, and also for high (Q • 1) or low

(j < 1) gain conditions [19].

Gain in the low-gain FEL oscillator develops from coherent electron bunching

on the scale of the optical wavelength [26]. The bunched electron beam radiates
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coherently and amplifies the radiation within the undulator. Each pass provides only a

fractional increase in optical power at the resonant wavelength, but the resonator

collects each increase such that substantial power is available after several hundreds of

passes. When the electron beam enters the undulator, maximum coupling will occur

between the electrons and optical wave if the initial dimensionless phase velocity for

each electron is at -resonance, vo = 0. But since the electrons will likely enter with a

random distribution in phase ý, just as many electrons will gain energy as will lose

energy from the optical wave; net gain is not achieved [3]. Useful gain is produced

when the incoming electrons have velocities slightly above resonance. Then, more

electrons tend to lose energy to the optical wave and the cancellation process is

disrupted.

An important tool for understanding the operation of the FEL is obtained by

displaying the evolution of electrons in (C. v ) phase-space according to Equations

(3.11) and (3.20). The initial phase C, and initial phase velocity v. uniquely determine

the evolution of each electron, and therefore constrain it to follow a particular orbit or

path in phase-space [271. In the low gain FEL, the path followed by an electron is the

same as that of the simple pendulum, and is represented analytically by

v 2 = V,2 - 21a I[sin( ý + 0 )-sin( C ) (3.21)

Relating an electron in phase space to a mechanical pendulum, unstable fixed points

located at positions (-3r,/2, 0) and (Vr.12, 0) correspond to the pendulum sitting at the top

of its arc. Electrons with phase-space positions near these points evolve slowly. The

point (r/2, 0) is a stable fixed point corresponding to the pendulum resting at the

bottom of its arc. An electron with an open orbit is similar to a pendulum of sufficient

energy such that it continuously rotates in a single direction about its pivot. An

electron with a closed orbit is like a pendulum with small amplitude oscillation about
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the stable fixed point. The curve in phase space which separates the open and closed

paths of an electron is called the "separatrix" and is given by

v,2 =2af I[ -sin( ý,+#)] . (3.22)

By inspection of (3.22), the separatrix has peak-to-peak height 4 la 11a2 and its horizontal

position depends on the optical phase *.

The particles in an electron beam are assumed to be spread uniformly over all

wavelengths of the co-propagating radiation. Since the electron evolution in (•,. 0 )

phase-space is periodic over each optical wavelength, the FEL interaction can be

effectively modeled by tracking only the sample electrons distributed over one optical

wavelength [27).

The phase-space evolution in Figure 3-3 is obtained by solving the Maxwell-

Lorentz theory numerically for a low gain FEL with j = 1.5. The undulator consists of

N = 120 magnetic periods, and the electrons enter at time 'I = 0 with initial phase

velocity v, = 2.6. The electrons are given a uniform distribution in initial phase

S= -r/2-- 3i '2, each interacting in the initial optical field of m agnitude a. = 5. A t

first, the electrons are displayed as light grey. As they evolve in r they become darker

until they are finally black at -r = !. The separatrix is drawn for ease in identification

of open and closed electron orbits in the pendulum phase-space. Electrons initially

positioned such that they lose energy to the optical wave will drop in phase velocity v,

and fall behind the average flow of electrons. Others will gain energy, moving ahead

of the flow [3]. The net result is spatial bunching of electrons, which is observed near

phase ý = x at z = I. As discussed earlier, bunching near this phase provides overall

gain to the optical wave.
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Figure 3-3. Electron (•. *) phase-space for a low gain FEL. Electron bunching near
phase ; = x results in gain and optical phase growth.

Gain is defined as the fractional increase in optical power per unit time [28],

[a(E)2 _a2, (3.23)
a o

and is shown at the upper-right in Figure 3-3, along with the progression in optical

field phase 0 at the lower-right. At the beginning, there is no gain or phase shift, since

the electron beam is uniformly distributed. As bunching develops with increasing time

,r, the gain increases with a corresponding shift in optical phase.

An analytical expression for low current FEL gain G (t) in weak optical fields is

obtained using energy conservation [3]. The pendulum equation (3.11) is expanded in

orders of the initial optical field a,. Electrons in the beam are assumed uniformly

distributed in phase C and each have the same initial phase velocity v,.
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Near resonance, the expression for the electron phase vlocity is

v() = L[ko - k(l + K 2)/2y2]. A change in the electron energy Atpnc2 results in a

corresponding change in electron phase velocity Av = 4xNA-#y. For gain to occur, net

energy must be transferred from the beam of electrons to the optical wave. The

average energy lost by an electron is -pc 2(<v> - vY)4xN, and the corresponding

contribution to optical gain is G = 2j(v, - <v>)/ao2. The phase velocity average <v> is

found from the pendulum equation expansion, resulting in the small signal gain

equation [3]

G (c) = j[2 2cos(vj) 3 vjsin(vj) (3.24)

For weak optical fields and low gain, the gain per unit current, G Ij, depends only on

the initial electron phase velocity of the electrons [3).

Figure 3.4 is a plot showing the final gain spectrum for a low gain FEL at time

S= I versus the initial phase velocity v . The spectrum is anti-sym m etric about vo = 0

with a peak gain of G = 0.17j at v, = 2.6. Exactly at resonance, v, = 0, there is no

gain. Negative values of phase velocity near resonance correspond to net absorption

of optical power by the electrons. Electrons with positive phase velocities near

resonance amplify the optical wave.

Phase velocities far off resonance, Ivol ;P x, result in many small amplitude gain

oscillations shifting between amplification and absorption; FEL coupling is effectively

diminished. The range of good FEL coupling is roughly Iv0I!<t, and since positive

gain takes place for about half these values, the FEL natural gain bandwidth is

Av. = x. Using the relation Av. = 41rNV y the FEL natural gain bandwidth becomes

4y _ 2 (3.25)
3 2N
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Figure 3-4. Weak-field gain spectrum G (v.) for low current FEL.

Changes in electron beam energy and resonance act to shift the gain spectrum

along the phase velocity axis. When subject to a change in electron beam energy

Ay = yAvS/4xN, the v,-aixis becomes a function of the resonant energy

y = (k.(1 + K2)/2.)"2. When subject to a change in optical wavelength AX = AAvo/2rN,

the vo-axis is centered about the resonant wavelength X = ).,(l+K 2)/2y 2 . [3]

F. GAIN DEGRADATION DUE TO BEAM QUALITY

The results of the previous section assumed perfect electron beam injection into

the undulator. The electrons were distributed uniformly throughout the optical

wavelength each with the same initial energy, v,. Realistically, an ideal beam cannot

be achieved. An experimenter wishing to optimize an FEL's performance must

consider a design trade-off between the current density and the quality of the electron

beam [29]. For a fixed wavelength ., the dimensionless current

j = 8N(eYKL)2p/13mc2 . IN3I./2 must be maximized. Increasing the beam current

I -p reduces beam quality. With increased N the gain spectrum bandwidth is

reduced, and the FEL becomes more sensitive to electron beam quality. Poor beam
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quality reduces coherent electron bunching and therefore degrades the performance of

the FEL [31.

The effects of electron beam quality are evaluated analytically by combining the

pendulum equation (3.11) and the optical wave equation (3.20) to form the FEL

integral equation [29,301

a( ) = ao + 0de' eF(€)e"Voa(T - r') , (3.26)

where

F( T" f dq f (q)e-O€" (3.27')

is the characteristic function of f (q). The function f (q) is a normalized distribution of

initial electron phase velocit.es vi = v. + q about v. such that fdq f(q) = 1 [3]. By

using (3.26), the electrons within the undulator are no longer labeled by their initial

phase-space coordinates. Initial electron phases are indistinguishable, but an average

over the distribution of initial electron phase veloc,,., is retained. As an example,

two electrons having different z velocities, as a result of an initial energy difference

A-ymc2, will be separated in phase by 4r.NAy at the end of the undulator [301.

Therefore, in a Gaussian distribution of phase velocities, the standard deviation

measuring the energy spread takes the form (;G =4xNAT/y, and ti, distribution

function becomes

- q212a3

f G(q) = e - G (3.28)

Evaluating (3.27) with (3.28), Lne corresponding characteristic function for a Gaussian

distribution in phase velocities is

FG e) = -oA,/2 (3.29)
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When the beam quality is perfect, cG = 0, so F(r) = 1. During the FEL interaction,

the optical field in (3.26) begins to grow exponentially through feedback from the

integrand a(r--''). However, with an imperfect electron beam IF(T')I decays rapidly in

time, deteriorating the optical feedback mechanism by reducing the ability of the FEL

to bunch electrons. [3]

Figure 3-5 is a surface plot showing the degradation of the gain spectrum G (v,)

with increasing electron energy spread Oc. The current density is j = 3. For a mono-

energetic beam. aG = 0, the gain spectrum is antisymmetric with a peak at phase

velocity v. = 2.6 as in Figure 3-4. As the beam energy spread is increased, the

maximum available gain decreases while the phase velocity for peak gain increases

away from resonance [30]. Further, the overall gain spectrum becomes broader in v.

around the maximum so that optical growth is allowed over a greater range of initial

phase velocities. Even though maximum gain is reduced, the gain bandwidth

increases.

in (i+G)

j=3 .0.46

0

-19 -4111 VV 'o 193

Figure 3-5. Weak-field gain G(vo) spectrum for low current FEL with increasing
electron energy spread (;G.
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G. MODE COMPETITION

In the low gain FEL oscillator, the optical wavefront is generated by

spontaneous emission from electrons in the beam. Mode competition serves to narrow

the frequency spectrum and to increase the coherence length of the light wave. The

weak-field gain equation (3.24) solves the evolution of gain in a single optical mode

over a single pass. For low gain, separate modes in an FEL oscillator evolve

independently. The coherence development of output frequency and optical power are

analyzed using (3.24) to follow the various modes simultaneously over many passes n.

In the longitudinal z dimension, modes are scaled by the gain bandwidth (3.25) and

normalized to the electron-optical slippage distance N4, [3). The slippage distance

refers to the length a resonant electron lags behind a point in the optical wave at the

end of the undulator 'r = 1. The lag arises because of the difference between the

electron speed co3, and the speed of light c, resulting in (c - 0,)(L/c) = NX, where Lic

is the interaction time [3]. In the transverse direction, modes are scaled by the

approximate radius of the optical beam, (L;Jl)I2. Since the electrons in the beam are

relativistic, intermode spacing is Av(k)= y -, which is small compared to the size of

the mode. The FEL is therefore considered to have a continuum of modes across the

gain spectrum bandwidth Av = x [3].

Each longitudinal mode is identified by a particular phase velocity

v(k) = L [(k + o)P, - k I corresponding to an output wavelength X = 2rik. During

each pass n, optical power in each mode is increased by the spontaneous emission

spectrum s (v) - (sin(v/2)/(v/2))2 and the FEL gain spectrum G (v). Optical losses at the

resonator mirrors are described by Q so that e ""Q determines the total optical loss per

mode over n passes. Typically, Q ranges from 10 -4 100 depending on resonator

cavity design. The incremental change in optical power P, = Ia(n )12 on the nth pass

is given by
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AP, (v) = s (v) + P. (v)[G (v) - 1/QJ , (3.30)

where P (v) is the optical power in mode v(k) [3).

The plots in Figure 3-6 show how the normalized optical spectrum P(v.n )IP,

evolves from spontaneous emission into a narrow specurum over n=1000 and n = 8000

passes. For both plots, the peak gain is G = 0.17j = 26% for j = 1.5. The spontaneous

emission spectrum is shown at the bottom. The gain spectrum G (v) is plotted above

showing the level of loss Q = 30, depicted as a horizontal line. The final optical

spectrum Pf (v) is given at the top of the plots after a designated number of passes n.

After n = 1000 passes, the final spectrum is centered around the phase velocity v = 2.6

for peak weak-field gain, but retains a wide distribution of optical modes. After

n = 8000 passes, however, the spectrum has narrowed significantly, and the coherence

length of the peak mode is about four times greater than the modes surrounding it.

H. TRAPPED PARTICLE INSTABILITY

When the incremental change in optical power, AP. (v), from Equation (3.30) is

positive, the optical field will grow until saturation is reached. At the onset of strong-

field saturation, more electrons in the beam have closed phase-space orbits, so the FEL

efficiency is increased. However, electrons also begin to interact with each other in

the presence of the growing optical field. Overbunching of electrons occurs as some

electrons overtake, or fall behind others in the electron beam, and gain is diminished

[3).

The trapped particle instability is observed in strong optical fields near the onset

of saturation. Some electrons in the beam become trapped in deep potential wells in

phase-space, created by the combined optical and undulator field forces (31].

Electrons in harmonic orbits oscillate at the synchrotron frequency, v, = la 1"2. The
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Coherence Evolution
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Figure 3-6. Coherence development resulting from mode competition in low-gain
FEL for n = 1000 and n = 8000 passes.

oscillation of these electrons couples to the optical wavefront, mixing the synchrotron

frequency with that of the optical carrier wave. This results in the nucleation and

growth of optical sidebands. Any coherence established by mode competition in

weak-fields is subsequently modified or destroyed [3].

Electrons trapped in the potential wells in the presence of an optical field

strength la I = 4x2 = 40 will make one complete synchrotron oscillation as they traverse

the undulator. The corresponding peak-to-peak separatrix height is 41a 12= 25.

Figure 3-7 shows a phase-space evolution for 100 sample electrons subject to a field

strength of a0 = 40. The dimensionless beam current is j = 1.5, and there are N = 120
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magnetic periods in the undulator. Electrons in the beam are equally distributed in

phase •, each with an initial energy v. = 7.

F** Mre,. Phase spaCe eo VOlut ron da p
1-1.5 &o-40 vo,'7 N-120

, 0.03

U/ 0

Figure 3-7. Phase space evolution of 100 sample electrons demonstrating trapped
particle instability.

The stable fixed phase-space point W =/2 corresponds to the bottom of the

trapped particle potential well. Electrons near this initial phase execute one complete

synchrotron oscillation during the time r = 0 -+ I. The plots at the right show the

evolution of gain G (r) and optical phase *. As bunching develops, the gain and

optical phase grow. Overbunching causes optical saturation and a decrease in the gain

to nearly zero.

38



I. SHORT PULSE THEORY

Radio-frequency (RF) accelerators are typical electron beam sources for the FEL.

In an RF accelerator, a series of waveguides are used to slow a traveling microwave

field to just above the velocity of a beam of injected electrons. As the electrons and

the electromagnetic field move down the guide, electrons tend to bunch near the crest

of each microwave wavelength, riding much like a surfer on an ocean wave. Since

only a fraction of the electrons in the RF cycle survive full acceleration, the output

from an RF accelerator is a series of short picosecond long pulses [31].

When the electron pulses enter the FEL oscillator, short optical pulses generated

from spontaneous emission begin to bounce between the resonator mirrors [3]. The

pulses in the optical wavefront are separated by a distance S, the length between the

mirrors. Each rebounding optical pulse arrives at the beginning of the undulator at

time -t = O, and the interval between consecutive pulses is 2S1c. The timing of the

FEL has to be such that a light pulse and an electron pulse enter coincident with each

other for successful optical wave amplification. Short pulse effects dominate the FEL

interaction when the length of the electron pulse approaches the slippage distance N X.

[3].

In short pulse theory, all longitudinal distances are normalized to the slippage

distance such that Z/(N ?--+ z. The Maxwell-Lorentz theory is extended to track

multiple sites along the complex wave envelope. So a -- a (z) and is equivalent to an

extension to longitudinal wavenumbers a -- a(k). With this extension, the pendulum

equation (3.11) and the optical wave equation (3.20) are modified to become

00

Ia..-a Icos(. + )(3.31)
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and

0a, =-JS.<e-• > (3.32)

The subscript : corresponds to a particular optical site along the undulator, while z-4

denotes an electron site that has slipped back to the optical site in time - because of

the lower velocity of the electron pulse. As electrons travel along the undulator they

slip back over a range of sites in the optical wave envelope. In doing this, the

electrons actually pass information from one optical site to another [3]. The extension

for the electron current density is j -- j(z) = 8N(xeKL)2p(z)/y3mc 2, where p(z) is the

actual electron density at the particular longitudinal site z. The electron pulse shape is

taken to be parabolic in form:

j,(1 - 2z2/q,2) for j(z) > 0

j=-tO (3.33)
0 for j(z) -- 0

where J. is the peak beam current, and o = I,/N)X normalizes the actual electron pulse

length 1, [3].

Desynchronism, d, refers to the normalized displacement between the electron

and optical pulses at the beginning of each pass x = 0. Exact synchronism occurs for

d = 0, where the electron pulse time interval is 2S5c. Desynchronism is adjusted by

moving the resonator mirrors a short distance, increasing or decreasing the optical path

length 2S [3].

The optical wavefront is tracked over a number of longitudinal sites Nw. The

particular value of N. depends on the amount of detail desired in the optical spectrum.

The calculational window width is measured in slippage distances NX, and is given by

W = NwAz, where Az is the dimensionless spacing between longitudinal sites. Optical

modes v(k) are followed according to
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vI =vo- W" (21 -Nw) for I=0, 1,2. ..... Nw- 1 (3.341-

where I is an integer [3]. The spacing between optical modes is &v = 2%/W.

Longitudinal site spacing Az is made proportional to the integration time step AM, so

the electron pulse slips back a known distance each time step. At each site z, the

simulation follows a number of electrons in phase and phase velocity as they interact

with the optical field. For short pulses, a calculational window width W slightly larger

than the extent of the light and electron pulses provides adequate detail to characterize

FEL performance [3]. Figure 3-8 demonstrates short-pulse behavior for a low gain

FEL.

**** FEL Pulse Evolution ****
j=2 yZ=2 Q=50 d=0.02
N=120 V0 =3 a0=5

la(z,n)_ _ 035 P(v,n) f_(v,_n)

n

-12.5 z 12.5-31 V 31-31 V 31

-12.5 z 12.5-31 v 310 n 1000

Figure 3-8. Short pulse evolution in a low-gain FEL oscillator.
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The calculational window is W = 19 slippage distances long, and stays with the

optical pulse. Shown at the lower-left, the electron pulse j(z - r) has a pulse length

a, = 2 with a peak current j = 2. The initial position of the electron pulse is

determined by desynchronism d = 0.02 and is indicated in light grey at 'r = 0. The

electron pulse is slower than the light pulse, and slips back to the position indicated in

dark grey at v = 1. The weak-field gain spectrum G (v) centered at v = 0 is plotted for

reference. The undulator contains N = 120 magnetic periods, and resonator losses are

determined by Q = 50. The electrons are mono-energetic at a phase velocity vo = 3.

They interact with an initial optical field a. = 5 around the regime of peak gain.

During simulation over n = 1000, passes the optical field evolves subject to

amplification by consecutive electron pulses and to uniform loss described by Q [3).

Each pass, a new electron pulse slips back in z and bunches as it passes through

the local radiation field a(z, n). As coherent bunching develops, the optical field is

amplified. Over many passes, the optical spectrum P(v, n) narrows through mode

competition around peak gain, and the optical power P(n) grows to steady state. The

pointed tick mark at the top of the final power spectrum P(v) indicates the central

wavelength of the initial radiation at resonance. The rectangular tick mark shows the

center of the final power spectrum

The peak optical field, la(z, n)I = 35, is large enough to permit the trapped

particle instability. The optical power, P(n), grows to saturation early and remains

steady for about 200 passes; then the power increases again with the onset of the

instability. The extra power is a result of sideband growth, since the fundamental

optical mode remains saturated [31].
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A stable optical sideband appears in P (v. n) near the fundamental at v. + v,.

This corresponds to a shift away from the fundamental wavelength by A"I= v, /2xN

[3]. As the electrons which are trapped in the potential wells execute synchrotron

oscillations, they continually modulate the optical wavefront. This modulation is seen

in la(z, n)l after about n = 300 passes.

Many of the electrons in the phase velocity distribution are tightly bunched in

closed orbits, as indicated by the dark band in f (v, n). The pointed tick mark at the

top of the final phase velocity spectrum f(v) indicates the phase velocity of the

electrons at the beginning of each pass n. Initially inserted with phase velocity v. = 3,

they lose energy to the optical wave and bunch slightly below resonance v. = 0. The

value of the electron beam's averaged phase velocities at the end of the interaction is

marked by a rectangular tick above f(v). After n = 300 passes, the trapped particle

instability causes the distribution f (v, n) to modulate, but the electrons still remain

closely bunched.

J. DESYNCHRONISM EFFECTS

When the electron and optical pulse are both synchronized at d = 0, they enter

the undulator at the same time. The leading edge of the optical pulse immediately

begins to over-take the electron pulse. However, for small time r c I the weak-field

gain equation (3.24) can be written G (t)= jvoj 4/12. The optical wave experiences no

gain at the beginning of the undulator and the electron bunching is slow to occur.

This results in a delay of the electron-optical gain mechanism which is termed

"lethargy" [3]. The initial part of the optical pulse is poorly coupled to the electron

beam and begins to decay. As time continues, the increased gain and corresponding

bunching of electrons provides good interaction coupling. This causes the back of the

43



optical pulse to grow, distorting the optical pulse. This distortion continues on each

subsequent pass as gain is preferentially deposited on the trailing edge of the pulse [31.

In effect, the centroid of the light pulse travels at a speed slightly slower than c. Over

many passes, gain continues to grow on the trailing edge at the expense of the front of

the pulse. Finally, the optical pulse centroid actually moves away from the electron

pulse, and the optical wavefront is no longer driven by bunched electrons and power

decays. Steady state FEL power is zero at exact desynchronism.

The slower speed of the light pulse is more properly matched to the speed of the

electron pulse by adjusting desynchronism, d = -2AS/NX, to reduce the optical path

length S. Figure 3-9 plots the normalized steady state optical power and weak-field

gain over a range of desynchronism distances d = 0 -.+0.061 for a low-gain, short-pulse

FEL.

Near d = 0, lethargy effects restrict FEL coupling and steady state power is zero.

Increasing desynchronism to d = 0.003 leads to a sharp peak in optical power, where

the electron and optical pulse repetition rates are most nearly matched. Here, the FEL

is subject to the trapped particle instability and the development of optical sidebands

arising from strong optical fields. Also, mechanical vibration of the optical cavity in

an FEL oscillator can cause unpredictable changes in desynchronism. Even though

power is at a peak, operation of the FEL at this desynchronism will likely lead to

unstable optical output.

When d is increased further, power falls off steadily, but weak field gain grows

to a maximum at d = 0.028. In this region, the FEL is less likely to be affected by

optical vibration or noise since gain at the maximum peak is fairly level and the

incremental change in power is nearly linear.
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Figure 3-9. Simulated desynchronism curve for a low-gain, short-pulse FEL.

When d is very large, the compensation is too severe, and overlapping of the

electron and optical pulses cannot occur over a sufficient number of passes n. FEL

interaction coupling deteriorates, again resulting in decreased power and gain.
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IV. RESONANT WAVELENGTH MODULATION THEORY

A. ELECTRON BEAM ENERGY MODULATION

The resonance equation (3.2) governs the interaction between the electrons and

the optical wave in an FEL. The change in resonance due to a variation in the

electron beam energy A'nc2 is given by Av = 4%NA&r1y. The corresponding fractional

wavelength variation is A"X. = -Av/2nN. Over many passes, beam energy changes are

simulated by superimposing a sinusoidal variation in electron phase velocity around vo.

The resonant phase velocity then becomes

v(n) = vo+ Ao+ n Asn ] (4.1)

The electron beam phase velocity is modulated by amplitude A. and makes one

complete oscillation after N. incremental passes n. Since an optical pulse travels

twice the length of the resonator, S, in a single pass, the time per pass is At = 25/c.

The frequency of electron beam modulation becomes fo = cl2SNo. The sensitivity of

an FEL to electron beam energy modification can be explored using coherence and

short-pulse theory.

B. COHERENCE AND MODE COMPETITION EFFECTS

Figure 4-1 shows the coherence evolution over n = 7500 passes for an FEL with

N = 120 undulator periods and beam current density j = 2. Optical loss per pass is

determined by Q = 50. The input electron beam energy is modulated with amplitude

A0 = Ix, taking N, = 1000 passes to complete each oscillation. The modulation is

centered about v. = 3, corresponding to the position for peak gain. The weak field
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Figure 4-1. Coherence evolution for low-gain FEL with constant small-ampliiude
electron beam modulation.

gain spectrum G(v) and the spontaneous emission spectrum s (v) are shown at their

initial positions at pass n = 0. The resonance equation (3.2) requires that G(v) and

s (v) shift along the phase velocity v-axis as the electron beam energy changes. When

the electron energy varies sinusoidally, the spectrum moves back and forth in v.

Optical power starts from s (v) and grows through G(v). The optical spectrum P (v, n)

is normalized to the maximum power at each pass n, so that net power growth and

decay are not shown. Over the firstn = 1000 passes, the optical spectrum is broad and

readily follows changes in electron beam energy. However, mode competition forces

P(v, n) to narrow with each successive pass. As the optical spectrum narrows, it
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becomes more resistant to resonant beam energy modulation, and cannot follow. The

magnitude of oscillation of the optical spectrum decreases, and steady-state optical

wavelength modulation is never achieved.

An increase in electron modulation amplitude to A, = 3m is demonstrated in

Figure 4-2, forn = 1500 passes. All other FEL parameters remain the same.

Pf(V)

1500 P (v, n)/P max
Coherence Evolution

j=2 Q=50
n vo=3 N=120

Ao=3x No=1000

000

~G(V)1

-9 v 15

Figure 4-2. Coherence evolution for low-gain FEL with large amplitude electron
beam modulation.

The optical spectrum P (v. n) initially follows the shift in G (v) and s (v). The first

maximum of the modulation is reached at n = 250 passes. When sin(2itn/NI) is at its

maximum value, both G (v) and s (v) stay near the same optical mode v(k) = - 6 for a

longer period of time, and mode competition during that time begins to narrow
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P(v. n). As the optical spectrum narrows, it becomes resistant to resonant electron

beam changes. When the resonant electrons move away from v(k) = - 6. the light

remains in a single mode and decays according to Q. When the electron energy

modulation reaches the next maximum of sin(2xn I/N,) at n = 750 passes, both G (v) and

s (v) again remain near a single mode for a longer period of time. Optical power starts

from s (v) and grows through G (v). As the optical mode again narrows, the resonant

electrons move away from v(k) = 12, and the optical spectrum P(v) remains near that

mode to narrow and decay.

The simulations used for Figure 4-1 and Figure 4-2 only show coherence

development and mode growth trends based on Equation (3.30). Strong fields are not

considered, and therefore the trapped particle instability cannot be simulated. The

broadening of the optical spectrum and increased power that accompanies the trapped

particle instability can serve to enhance the ability of an FEL to respond to changes in

the electron beam energy. Further, short electron pulses inherently broaden the optical

spectrum, again allowing an FEL to follow the resonant electron energy modulation.

Short pulse theory provides the perfect medium for studying related effects.

C. LOW AMPLITUDE, HIGH FREQUENCY MODULATION

The response of a short-pulse FEL to resonant electron beam energy modulation

is examined using the same FEL dimensionless parameters as in Figure 3-8. The input

electron energy v. is subject to the sinusoidal variation described by (4.1). Figure 4-3

shows one such simulation. The energy of consecutive electron pulses oscillates with

amplitude A. = zc and period N, = 150 passes per oscillation. Just over three energy

oscillations are completed over n = 500 passes.
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FEL Pulse Evolution **'
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Figure 4-3. Short pulse evolution for low-gain FEL oscillator subject to very high
frequency electron beam energy modulation.

Both the optical power spectrum P(v, n) and the electron energy distribution

f (V, n) are plotted with respect to the dimensionless electron phase velocity v. The

phase velocity can be expressed in the form

v 2= 1 +_K8](4.2)

showing the dependence on electron energy y and optical wavelength X. The optical

power spectrum is given in terms of v(.), so P(v, n) -4P(v(.), n). The electron phase

velocity distribution becomes a function of v(y), so f (v, n) -+ f (v(y), n).
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Increasing values of phase velocity v correspond to longer wavelengths X. and higher

electron energies y.

The phase velocity distribution f (v(y), n) shows the electron energy oscillation

directly. During each cycle, bunches of electrons below resonance give energy to the

optical wave, increasing the optical field a (z, n) and the optical power P(n).

Conversely, electrons that bunch above resonance take energy from the optical wave,

and both a(z, n) and P(n) decrease. The result is that optical power P(n) oscillates

with the frequency of the input electron energy. The peak optical power P = 60 is

nearly the same as the steady state power in Figure 3-8, but the average power P = 40

is much less.

The optical spectrum P(v(X), n) appears to undergo variation in width, but the

wavelength does not modulate with significant amplitude. Electron energy oscillation

is too rapid for the resonant wavelength to follow. The spectrum remains within a

small variation AX about the center of oscillation of the weak field gain spectrum G (v).

Small sidebands attempt to form on either side of the fundamental power, but rapidly

die away each cycle. The final optical spectrum P(v(.)) is broader than that in Figure

3-8, but not subject to large amplitude sidebands. Pulse modulation in a (z, n), which

is seen in Figure 3-8, has diminished.

In Figure 4-4, the modulation frequency has been decreased. One complete

electron energy oscillation takes place every N. = 500 passes. The band of electrons

below v = 0 in the phase velocity distribution f (v(,), n) is more even throughout the

simulation, indicating more consistent bunching. The added bunching coherence

produces a peak optical power P =74, which is greater than that shown in Figure 4-3.

Again, bunches of electrons periodically form to the right of v = 0 in f (v(y), n). They

take energy from the optical wave, causing the optical power P (n) to oscillate.
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**** FEL Pulse Evolution i**
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Figure 4-4. Short pulse evolution for low-gain EEL oscillator subject to high
frequency electron beam energy modulation.

Variation of the optical wavelength is also illustrated. Movement of the

electrons in f (v(y). n) to the right along the phase velocity v-axis corresponds to an

increase in electron beam energy. The resulting change in the resonance equation (3.2)

shortens the optical wavelength at the output, which is marked as movement to the left

in P (vQ..), n). The optical wavelength follows at the frequency of the electron energy

oscillation.

As shown in Figure 4-5, an increase in modulation amplitude to A, = 2z

suppresses the effects of the trapped particle instability. The peak optical pulses in

a(z, n) are highlighted by st white contour line. They are markedly smoother, but
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decrease slightly in longitudinal length z near the middle of each cycle. This results in

a slight dip near each peak in the modulation of optical power P (n).

**** FEL Pulse Evolution ****
j=2.2 Z=l .8 Q=50 N=120 d=0.024
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Figure 4-5 Short pulse evolution for low gain FEL. The optical spectrum
P(v(.), n) preferentially follows resonant electron energy y toward
shorter wavelengths X.

Wavelength modulation is clearly visible, but power in the optical spectrum is

only significant when the electron beam is slewed toward increasing energy, which is

depicted as movement to the right in f (v(y), n). Through the resonance condition

(3.2), the optical pulse must shift toward shorter wavelengths X, so the optical

spectrum P( %). n) moves to the left. Optical power preferentially follows change

toward shorter wavelengths. This is because of changes in the optical gain spectrum

G (vN) in response to the stronger initial optical fields.
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Figure 4-6 illustrates the change in G(vd as the initial optical field strength a. is

increased [321. The gain spectrum is calculated for each point in the (v0. ad plane for

an electron beam current of j = 2 injected into an undulator consisting of N = 120

magnetic periods. In weak fields ao < x, the gain spectrum is independent of a. and

looks like G (v) shown in Figure 4-5.

in (1+G)

j=2 N=120 -- 0.29

0

ao
0

-1.0 V 12 25

Figure 4-6 Gain spectrum G(vd for low gain FEL with increasing optical field
strength a..

The spectrum is antisymmetric about v. = 0 with a maximum value G = 0.29

located at v. = 2.6, and a minimum value G = - 0.29 located at v. - 2.6. As the

initial optical field grows, the phase velocity corresponding to peak gain increases

away from resonance v. = 0. The value for peak gain decreases and becomes broader

in the phase velocity v.. At the initial optical amplitude a, = 25, the peak gain has

decreased to G = 0.035 and is spread over phase velocities v. = 4 -+ 8.

As optical power P (n) grows to saturation, electrons in f (v(y), n) bunch and lose

energy to the optical wave. Meanwhile, the initial phase. velocity corresponding to
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peak gain increases, so the optical wave changes frequency to follow maximum gain.

Recall in Figure 3-8 that the steady state power for a constant energy electron beam

with a beam current j = 2 is P = 61 at v = 5.

At saturation the entire gain spectrum G(vo, a.) shifts back and forth along the

v-axis as the resonant electron energy is modulated. When the electron energy is

increased through modulation, the electrons in f (v(y). n) move to the right along the

v-axis. The gain spectrum moves to the left along the v-axis according to the

resonance condition (3.2). See Figure 4-7.

Resonance condition
causes gain spectrum
to shift to left in '

phase velocity.
Gain

Sff'•As optical power increases
/ • "• the phase velocity for peak

ResoancePhase Velocity

Electron energy increases and bunched electrons shift right in phase velocity.

Figure 4-7 Schematic illustrating the primary effects that allow an FEL to slew
preferentially toward shorter optical wavelengths X. in response to
electron energy modulation. Here electron energy y increases and
electrons in f (v(y), ii) shift to the right. The gain spectrum G (v0•), n)
shifts to the left, but peak gain moves away from resonance to the right.
FEL interaction between the bunched electrons and peak gain takes
place over a longer period of time, and power is more able to follow theresonant energy shift.
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If, at the same time, optical power P increases at either end of modulation, then the

phase velocity corresponding to peak optical gain also increases. All three of these

events combine to create a favorable condition under which resonance is maintained

for a longer period of time than for normal steady state operation. The effect results

in peak power P = 65 which is greater than the normal saturation power. Conversely,

when the electron energy is decreased through modulation, and power P (n) increases,

movement of the gain spectrum G (v) to the right along the v-axis forces electrons to

fall out of resonance more rapidly. The net result is for the FEL to shift more readily

toward shorter optical wavelengths in response to electron beam modulation.

D. LOW FREQUENCY MODULATION

Other effects are observed by decreasing the frequency of the resonant energy

modulation. Shown in Figure 4-8 is the result of a simulation with NI = 4000 and with

increased amplitude A. = 2x. To better show detail in the FEL behavior, the

simulation only follows one electron energy modulation period over 4000 passes.

The electron energy varies slowly in time, so many of the characteristics found

in Figure 3-8 for a constant energy electron beam apply. The oscillation in f (v(y), n)

causes wide variation in the optical wavelength, which is depicted as movement along

the v-axis in P(v(,), n). Optical power P(n) oscillates with amplitude variation. The

average power is as large as the steady state power achieved in Figure 3-8. Since

higher power is achieved, the trapped particle instability has returned. Because the

variation in resonant beam energy is slow, the optical sidebands are able to form and

grow to stable power. The fundamental optical power spectrum remains narrow

throughout the modulation. However, as the optical sidebands follow alongside, the

final optical spectrum is widened.
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**** FEL Pulse Evolution ****
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Figure 4-8. Short pulse evolution for low-gain FEL with low frequency electron
beam energy modulation.

E. HIGH AMPLITUDE MODULATION

In Figure 4-9, the amplitude of modulation has been increased to A, = lOx with

No = 1000 passes per oscillation. The electron phase distribution f (v(y), n) is narrow

and slews rapidly back and forth along the v-axis. Electron bunching occurs at both

ends of the slew, but the largest optical gain occurs only below v = 0. The optical

spectrum P(v(k), n) is much like that shown in Figure 4-2, but in contrast the optical

spectrum briefly follows resonance on each sweep.

The contour plot of the optical field a(z, n) shows alternating large and small

amplitude peaks. Each optical peak is short-lived in n. The optical pulses are
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**** FEL Pulse Evolution ****
j=2 az=2 Q=50 N=120 d=0.02

N =1000 AO=10ir

Ia(z,n) I 0E8 P(V,n) f(V,n)
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Figure 4-9. Short pulse evolution for low-gain FEL. Large amplitude electron beam
energy modulation produces steady-state optical macropulses in P (n).

observed to move ahead in z due to desynchronism d as the number of passes n is

increased. The larger amplitude optical peaks are produced when electrons bunch

below v = 0 in f (v(y), n). The smaller optical peaks come from electrons bunched

above v = 0 in f (v(y), n). The picture at the top-left profiles the final optical pulse

after pass number n = 4000 showing a peak in a (z, n). Modulated subpulses along z

are indicative of trapped particle instability which takes place during periods of

maximum bunching.

The optical field is observed to grow rapidly only when electrons are bunched

below v = 0 in f(v(y), n). The result is that the optical power P(n) peaks in n

58



periodically with peak power greater than that achieved from the constant energy FEL

in Figure 3-8. The peaks in optical power are produced by electrons bunched at lower

phase velocities, so that the output wavelength is longer.

In effect, the FEL interaction is timed by the electron energy modulation. This

process appears to be related to Q-switching in conventional lasers, where the optical

cavity losses Q, are artificially raised in order to build up a much larger than usual

population inversion inside the cavity. Then, Q, is suddenly lowered producing a high

power "giant pulse" at the output [3]. In the case of the short pulse FEL, Q remains

constant, but the off-resonant electrons reduce the interaction. When the optical pulse

and electrons become resonant for a significant time, they provide gain above the loss

for a few passes, and the optical power pulses.

The optical power spectrum P (v(X), n) shown in Figure 4-9 is normalized with

respect to the maximum power at each pass so that movement along v can be more

clearly followed. Figure 4-10 plots the actual power P(n) over the range of

dimensionless phase velocities v at each pass n. The result is a three dimensional

optical spectrum in which optical wavelength information is obtained directly from the

phase velocity axis since v -- v(,). The four large-amplitude peaks in power have the

same wavelength, magnitude, and pulse shape. Note that the optical power attempts to

follow the resonant electron energy but rapidly decreases in amplitude as the resonant

electron energy moves away from the maximum wavelength.

F. ELECTRON PULSE LENGTH EFFECTS

In short pulse theory, the electron pulse shape is assumed to be parabolic. On

each pass, the electron pulse is inserted just ahead of the optical pulse as determined

by desynchronism. The interaction takes place as the optical pulse passes over the

electron pulse while both traverse the undulator. The net electron beam current
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Three Dimensional Optical Spectrum
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Figure 4-10. Three-dimensional optical spectrum. Optical power P is displayed as a
function of dimensionless phase velocity v(.) and time n. Simulation
parameters are the same as those used in Figure 4-9.

increases with increasing pulse length ;, for fixed peak current j. Increasing the net

current leads to higher net gain.

In Figures 4-11 through 4-13, the electron pulse length is increased over the

range a, = 0.3 -- 3.0. All other FEL parameters are held constant. The electron beam

energy is modulated with a period N. = 1000 passes per oscillation at a relatively large

amplitude of A. = 8z. Figure 4-11 has low net gain with a short pulse of 0, = 0.3.

The resulting optical field strength is low with a maximum value la I = 6, so there is no

trapped particle instability throughout the simulation. The optical spectrum P(v, n) is
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normalized with respect to the maximum power at each pass in order to show

movement of the resonant wavelength. But the optical power P(n) is only significant

when the electrons in f (v. n) bunch below v = 0. The optical power peaks occur at

the maximum in optical wavelength modulation, where the change in resonance is

slowest. The peaks are seen as dark areas in the optical field contour map Ia (z. n )

and as spikes in the optical power P (n). The peak optical power is low with a value

P 3.

**** FEL Pulse Evolution *
J=2.2 az-=0.3 Q-50 N=120 d=0.024

Ao-8n No-1000
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Figure 4-11. Pulse evolution simulation for FEL oscillator with electron pulse length
a, = 0.3.

Figure 4-12 illustrates the effects of lengthening the electron pulse to o, = 0.8.

Many of the characteristics shown in Figure 4-5 are observed here. Optical power

preferentially follows resonant wavelength shifts toward shorter optical wavelengths.

The optical power between modulation maximum and minimum values is more

substantial because of the higher net gain. The secondary optical peaks in P(n)
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FEL Pulse Evolution t
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Figure 4-12. Pulse evolution simulation for FEL oscillator with electron pulse length
, = 0.8.

correspond to electron bunching above v = 0. The peak optical power increases

because the FEL interaction efficiency improves with enhanced net gain. However, the

maximum optical field magnitude la (z, n) I is still below the threshold for trapped

particle instability. As a result, the optical pulse la(z. n)I is smooth.

In Figure 4-13 the electron pulse length has been increased by ten times the

original value to a, = 3. Electron bunching occurs at both extremes in modulation,

but the optical field grows only for bunching below v = 0. The characteristics are the

same as those shown in Figure 4-9. The increase in net gain produces an optical field

strength at each peak that is sufficient to cause the trapped particle instability. The

large optical power peaks at P(n) = 113, occur on the long wavelength side of the

modulation. The increased field strength la(z, n)1 in this region allows the optical

spectrum P (v. n) to narrow, since the resonant wavelength remains near the same
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**** FEL Pulse Evolution ****
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Figure 4-13. Pulse evolution simulation for FEL oscillator with electron pulse length
i = 3.

phase velocity for a longer time. As the optical spectrum narrows, it resists shifts in

resonant electron energy and remains at the same optical wavelength to die out until

the next cycle occurs.

Figure 4-14 summarizes the effects of increasing pulse length on the power

evolution during electron beam modulation with large amplitude A. = 8z at moderate

frequency of N, = 1000 passes per oscillation. As the electron pulse length is

increased through the range a, = 0.3 -+ 3, the peak power increases through the range

P = 3 -- 113. The peaks corresponding to electron bunching below v = 0 in electron

phase-space remain throughout the increase in pulse length. As the electron pulse

length is increased, the net gain increases and the power pulses sharpen and grow.

The smaller peaks in optical power corresponding to electron bunching above v = 0 do

not appear until the pulse length is increased to a, = 0.5. Note that the optical power
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*** FEL Power Evolution *t
j=2 Q=50 N=120 d=0.02
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Figure 4-14. Progression in optical power P(n) as net gain increases for large
amplitude electron beam energy modulation. Gain increases
coincidentally with increasing electron pulse length a,.

fills the passes between peaks in this regime because the net gain is sufficient to allow

the resonant optical wavelength to follow the electron beam energy modulation. As

optical power P (n) grows, mode competition narrows the optical spectrum, so that it

resists the resonant wavelength shift. Finally, at (7, = 3.0, gain causes power to grow

so rapidly at the peaks that mode competition allows the narrow optical spectrum to

completely restrict resonant wavelength shifts. The result is high amplitude power

switching with an optical wavelength longer than v = 0.

G. MODULATION AT VARIOUS VALUES OF DESYNCHRONISM

Recall from Figure 3-9 that weak-field gain and steady state optical power vary

with dimensionless desynchronism d = - 2ASINk. Operation at a small value of

desynchronism d > 0 maximizes optical power, but the weak-field gain is barely above
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threshold. Approximately midway through the range of practical desynchronism

values, weak-field gain is at a maximum and steady state power is decreasing linearly

with increasing desynchronism. Increasing gain at moderate values of desynchronism

increases the ability to follow the optical wavelength modulation. Decreasing

desynchronism narrows the optical spectrum through mode competition so that the

optical pulse resists wavelength modulation. The combined effects are shown in

Figure 4-15, where the optical power evolution P(n) is followed over the range of

desynchronism values d = 0.01 -+ 0.1.

**** FEL Power Evolution **
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Figure 4-15. Progression in optical power P(n) as steady state power increases for
large amplitude electron beam energy modulation. Steady state power
increases with decreasing desynchronism d.

The picture at the top left shows power evolution P(n) for a large

desynchronism d = 0.1. Gain is slightly above threshold, and the steady state power is

small. The power pulses in n are wide, indicating that the optical spectrum is

following resonant energy over a range of wavelengths. As desynchronism decreases,
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the increase in the optical power at the extremes of the modulation leads to resistance

of the resonant wavelength movement. A dip in power between the optical peaks is

produced as resonance shifts from long to short wavelengths. At d = 0.03, the optical

power between the modulation extremes is negligible. Since gain is large, the optical

power at each peak grows rapidly. Finally, at a small value of desynchronism,

d = 0.01, the optical power is only large during periods of maximum electron bunching

below v = 0 in electron phase space.

H. MODULATION AT VARIOUS VALUES OF LOSS

In the low gain FEL oscillator, coherence length and width of the optical

spectrum is determined by mode competition through Equation (3.30). The weak field

gain per pass in each optical mode is given by Equation (3.24). Over many passes n,

the optical spectrum narrows as modes with the largest gain continue to grow at the

expense of surrounding modes. These modes grow in optical power to saturation,

which is determined by resonator losses. To describe resonator losses in the absence

of gain, the quality factor Q is defined so that optical power decays proportional to

e-' 1 for each mode.

A narrow optical spectrum P (v(X), n) degrades the ability of a FEL to follow

resonant wavelength modulation. When resonator losses are decreased by increasing

the value of Q, the optical modes surrounding the resonant mode remain for a longer

period of time. If "he resonant wavelength shifts as a result of the electron energy

modification, optical power in the newly resonant modes does not have to grow

entirely from spontaneous emission. Figure 4-16 illustrates the progression in optical

power P(n) as the resonator loss per pass is decreased by increasing the quality factor

over the range Q = 20 -+ 130.
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The electron beam energy is modulated with amplitude A.= 8x and with

No = 1000 passes per oscillation. The simulation for each value of Q follows optical

power P (n) over n = 4000 passes. At Q = 20, resonator losses am large. The optical

power only grows for electron bunching below v =0, and the power profile is

characteristic of giant power switching discussed earlier.

**** FEL Power Evolution ****

j=2 Yz=2 N=120 d=0.02

Ao8ic No=1000
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Figure 4-16. Progression in optical power P(n) for decreasing resonator loss in a
low gain FEL subject large amplitude electron beam modulation.
Optical loss per pass is determined by e 4/9

As Q increases, resonator losses decrease, and the power peaks corresponding to

electron bunching above v = 0 begin to show. Peak optical power also grows with a

decrease in resonator loss as expected. For low resonator loss Q >90, optical power for

passes between the peaks becomes measurable.
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Note, however, that the optical power peaks resulting from electron bunching at

the modulation extremes retain their shape. Even for Q = 130, optical power at the

peaks is substantially greater than the power between the peaks. Still, decreasing the

resonator loss appears to help the optical field follow the resonant wavelength

modulation.

I. OPTICAL PHASE PROGRESSION

Each short optical pulse that travels along the undulator is described by

a = la lei#, where la I = 4xNeKLE/y2mc2 is the optical field amplitude and * is the

optical phase. The evolution of the optical field amplitude and phase is given by

Equation (3.19). Recall that bunching of electrons near the phase (4 + 0) = x amplifies

the optical wave amplitude, while electron bunching near (C + 0) = V2 drives the

optical wave phase. From Equation (3.13), the magnitude of the optical field vector

potential can be written A exp(ikz - io( + i*). For fixed time t = 0, the change in

the vector potential A with respect to longitudinal distance z is

-- = i(k + dO/dz)A = ik'A , (4.3)dz

where the modified wavenumber is k' = (k + d#/dz). When k' is inserted into the

expression for dimensionless phase velocity, the result is

v = L [(ko + k'A)3 - k' 1 (4.4)

After rearranging terms, (4.4) becomes

v = L [(k.0, - (k + d#/dzXI - 0,)] (4.5)

Using the relation L = NX, the resulting change away from the normal phase velocity

v, is
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=Nk--(l- )=N-- ,(4.6)

where X, = (! - 03,) near resonance. When the longitudinal distance is made

dimensionless z -4 z IN ý, the final form of (4.6) is

AV = v(Z) - Vo --- - A_ *(4.7)
dz

The slope in optical phase O'(z)= dý/dz is therefore proportional to the change in the

optical wavelength away from resonance vo [31].

In Figure 4-17, the output of a short pulse evolution simulation has been

modified to show optical phase evolution V(z, n) for a low gain j = 1.5 FEL with

electron beam energy modulation amplitude A. = 3z and period N. = 3000. The

electron pulse length is a, = 1.2, and each pulse is injected ahead of the optical pulse

with dimensionless desynchronism d = 0.005. The undulator contains N 120

magnetic periods, and the optical losses per pass in the resonator are given by Q 30.

The optical pulse amplitude la(z, n)l = 25 remains nearly constant throughout the

simulation, so that changes in the optical power are small relative to the peak power of

P = 14. The oscillation of the optical power is smooth and the power spectrum is

centered about the phase velocity corresponding to peak gain for the optical field

amplitude a, = 25. As illustrated in Figure 4-18, the peak in optical gain is spread

over the range of phase velocities v = 4 --+ 8. The curve in Figure 4-18 shifts back and

forth along the v-axis as the resonant wavelength changes. The resonance condition

(3.2) forces resonant wavelength to change when the electron beam energy is modified.

There are four peaks in optical power P(n) in Figure 4-17, each corresponding

to an extreme in electron beam energy modulation. Between the two center peaks, the

electron energy is increasing and the optical spectrum P(v(Q), n) is shifting toward

decreasing values of phase velocity. This implies that the resonant wavelength is
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Figure 4-17. Modified pulse evolution simulation showing the progression of optical
phase q(z. n) for a low gain FEL with moderate electron beam energy

:modulation.

shifting toward shorter wavelengths. Since the FEL shifts toward shorter wavelengths

easier than toward longer wavelengths, the optical power between the two center

power peaks in P(n) is slightly greater in magnitude than that in the vicinity of the

outer peaks.

The final phase profile is shown at the top in O(z, n). It is scaled to the

maximum and minimum phase attained during the simulation. The grey scale to the

left helps to identify phase amplitudes in the contour plot of V(z, n) below. Outside

the electron pulse located at the center of the window, the optical phase does not

evolve. To the left of the electron pulse, the optical pulse remains at its initial value
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Figure 4-18. Strong-field gain spectrum G (v.) for low current j = 1.5 FEL.

of * = 0. At the center of the window, the optical phase is at the value necessary to

shift the optical pulse to resonance as determined by the modulated electron beam. On

the right of the window, the optical pulse is no longer interacting with the electron

pulse and shifts right each pass through desynchronism. Actual phase amplitudes in

V(z, n) sho, i running history of the slope of phase over many passes. The electron

energy modulation given by (4.1) is sinusoidal. Since the slope in the optical phase is

related to the change in electron phase velocity in (4.7), the behavior of optical phase

is characterized by

d# A.sin(Žf!] (4.8)
dzI
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Equation (4.8), together with the relation for shifting by desynchronism along the

longitudinal distance, z = nd, are used to derive the peak-to-peak amplitude of optical

phase along z

A*a, = M (4.9)
X

Figure 4-19 provides a series of snapshots of the optical phase profile along the z -axis

for the range of passes n = 3000 -+ 6000. The peak-to-peak amplitude in phase

AO.. = 14x remains constant throughout the simulation, but shifts up and down

according to the slope at the beginning of the interaction between the optical wave and

the electron pulse. The maximum and minimum optical phases are reached for

electron bunching at the extremes of modulation. Optical power P(n) grows to its

peak value at these extremes, and decreases at all other times.

The maximum phase is attained when electrons bunch above v = 0. The

resulting optical spectrum is on the short wavelength side of modulation. The

minimum phase occurs when electrons bunch below v = 0, so the optical spectrum is

on the long wavelength side of modulation. The phase slope at the interaction point in

the center indicates the direction of wavelength movement. When the phase slope is

negative, the optical spectrum is shifting toward longer wavelengths. When the phase

slope is positive, the optical spectrum is shifting toward shorter wavelengths. The

changes of the optical spectrum P (v. n) in response to resonant electron energy

modulation are thus revealed by the evolution of the optical phase O(z, n).
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** Optical Phase Evolution **
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Figure 4-19. Optical phase evolution for low gain FEL subject to sinusoidal electron
beam energy modulation.
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V. WAVELENGTH STABILIZATION THEORY

A. INTRODUCTION

Design flexibility and choice of output wavelength are two of the most exciting

advantages of the FEL over conventional lasers. The reliability of the technology used

in design is such that an FEL may be used as a research tool, operating for long

periods of time to supply light at of a wide range of wavelengths to users conducting

experiments [2]. But the effectiveness of an FEL as a user facility is dependent on the

stability of the power and wavelength of the light received by the user. Even though

continuous tunability is normally considered to be an asset, the FEL system is complex

and can be subject to undesired drifts in optical wavelength due to shifting in the

parameters inherent in the resonance condition (3.2).

The Stanford University Superconducting Accelerator (SCA) Free Electron Laser

(FEL) Facility is configured as an oscillator with a mirror separation of S = 12.68

meters. The magnetic field in the undulator is produced by stationary magnets forming

N = 120 periods. The laser is driven by electron micropulses approximately 3

picoseconds long with an 85 nanosecond interval between micropulses. Nearly

120,000 micropulses are emitted within a single macropulse approximately 10

milliseconds long. Consecutive macropulses are separated by about 100 milliseconds.

The average macropulse current in the electron beam is I = 100 microamps, with the

corresponding energy adjustable to produce optical wavelengths in the range of

X = 0.5 -- 5.0 PIm. [33,34]

In the Stanford SCA/FEL Facility, the optical wavelength around X = 4 gim is

observed to fluctuate randomly. The magnitude of fluctuation can be a fraction of a
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percent over times less than a millisecond. Many experiments conducted at the

Facility require that shifts in frequency be held to within a few parts in i04 at all times

[35]. At the Stanford SCA/FEL, the optical wavelength is stabilized by measuring the

deviation from the wavelength desired by the user, and proportionally adjusting the

electron energy to correct the deviation [351. Note that conventional atomic lasers

may also have problems with output wavelength stability. However, this kind of

control would not be possible in a conventional laser because the basic emission

characteristics of the atom or the molecule are beyond the control of the experimenter.

B. MODULATION TRENDS

If the resonant electron energy is varied slowly over many passes, the optical

pulse in the FEL is likely to follow with sufficient power. The rate at which the

optical pulse is able to follow a given change affects the speed of the wavelength

control system to be used. The performance of the wavelength control system is

optimized by understanding the response of the FEL to variation of the resonant

wavelength over decreasing time scales. In simulation, this is accomplished by

observing the steady-state response to a sinusoidal variation in resonant electron phase

velocity described by Equation (4.1). As shown in Figure 5-1 and Figure 5-2, both

amplitude A. and period N. play a role in optical wavelength modulation.

In Figure 5-1, the power evolution P (n) is shown for a low gain FEL oscillator

in which the amplitude is varied over the range A, = 0.3xt --* 8z. This corresponds to a

wavelength variation of A)Ak = Ao/2xN = 1W3 -4 0.03 for Stanford. The period of

modulation is No= 1000 passes per oscillation, or = 0.1 milliseconds. All other

parameters are held constant and are the same as simulations used earlier. For a small

amplitude A5 < 0.3nc, the optical wavelength easily follows the modulated electron

beam, and optical power P (n) oscillation is minimal. As the amplitude is increased to

75



**** FEL Pulse Evolution ****
j=2 Yz=2 Q=50 N=120 d=0.02

N =1000

AO-0.3x Ah.5O=2.5

0 n 4000 0 n 4000 0 n 4000

AO=3.O0 Ao-4.O0 AO=8.0i

0 n 4000 0 n 4000 0 n 4000

Figure 5-1 Progression in optical power P(n) for a low gain FEL as the amplitude
of e~lectron energy modulation A0 is increased with frequency of
modulation held constant.

A 0 = 1.5n, the magnitude of optical power variation becomes substantial, but oscillates

smoothly throughout the simulation. Above A,0 = 2.5x, a small dip in power at each

peak becomes distinguishable. Recall that the FEL preferentially the follows resonant

wavelength shifts from longer to shorter wavelengths since the bunched electrons tend

to stay in resonance for a longer time. The small dips in power correspond to these

preferential shifts. The large decreases in power correspond to shifts in the resonant

wavelength from shorter to longer wavelengths because the bunched electrons tend to

fall out of resonance faster. At A0 = 4x, the power peaks resulting from electron

bunching at either extreme in modulation are clearly visible. For large amplitude

modulation A,0 2t 8z, the peaks corresponding to electron bunching above v = 0 in

phase space begin to die out. The electron energy slew rate at these amplitudes is so

76



large that shifts in wavelength are not followed. Optical power of appreciable

magnitude is only obtained during periods of maximum electron bunching.

**** FEL Power Evolution ****
j=2 cz=2 Q=50 N=120 d=0.02

Ao=2w

N0-200 NoM400 No-800

0 n 4000 0 n 4000 0 n 4000

No-1600 No-2200 N -3000

" p()7 P (n)69 
P(n) 6

0 n 4000 0 n 4000 0 n 4000

Figure 5-2 Progression in optical power P(n) for a low gain FEL as the period of
electron energy modulation N. is decreased with amplitude of
modulation held constant.

Figure 5-2 displays the power evolution P(n) for modulation at an amplitude of

A0 = 2z over the range of periods from N. = 200 -+ 3000 passes per oscillation. At

high frequency modulation of No < 200, peaks in optical power corresponding to

bunching at modulation extremes are observed, with significant power loss between

each peak. Decreasing the frequency of modulation decreases the rate of electron

energy shift in either direction. At No = 400, the power peaks resulting from nanximum

electron bunching are still observed, but power begins to fill the space between peaks

when the resonant wavelength shifts from longer to shorter wavelengths. This again

shows the preferential nature of such a shift. Above N, = 800, the separate peaks
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become indistinguishable, and the optical power P(n) begins to oscillate smoothly at

the frequency of the electron energy modulation. Note that the peak power remains

near the same order of magnitude P = 67 until the electron energy is modulated with a

high frequency of No < 200. Then, the maximum power decreases significantly,

indicating a possible roll-off in the response of the FEL at high frequency modulation.

C. DISCRETE TRANSFER FUNCTION

The FEL transfer function is a measure of the amplitude and phase response of

the optical pulse as a result of electron beam energy variation. The fractional change

in the optical wavelength determined from the resonance condition (3.2) is

"k/, = - 2Ay/y for for a small incremental change ApnC 2 in electron energy. If it is

also assumed that the overall response of the FEL to continuous resonant shifts in

wavelength is dependent on the modulation frequency f = c/2SNo, then the FEL

transfer function H (f) is characterized by

AX 2X _ H(f) (5.1)Ay y

So the magnitude of the transfer function at a particular frequency determines the

peak-to-peak amplitude of Lhe variation in output wavelength for a given variation in

electron energy. If H(f') -+ 0 then the optical wavelength will not follow resonant

electron energy movement. If H(f) -- I then the ol..ical wavelength will readily

follow an energy shift.

An estimate of the amplitude response of the FEL can be obtained by measuring

the magnitude of the variation of the optical wavelength and comparing it to the

magnitude of the input electron energy variation over a discrete number of modulation

frequencies. The range of modulation frequencies selected is f = 103 + 106 Hz,

corresponding to a range of periods N, = 10,000 -+ 10 passes per oscillation. At the
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selected frequencies, short-pulse simulations are run for at least ten full periods of

electron energy modulation. One simulation is shown in Figure 5-3.

**** FEL Pulse Evolution ****
j=3 %z=1.2 Q=30 N=120 d=0.02
Ao=lI N0=400 0G=3

Ia(z,n)I 01 17 P(v,n) f(v,n)

4000---

n

-25 z 25-31 V31-31 V31

i oFZ7IZ 4 P .4 (n)8

-25 z 25-31 V 310 n 4000

Figure 5-3 Example of short pulse evolution simulation used to prepare a discrete
FEL transfer function. Optical wavelength variation is observed in
P (vJ), n) and electron energy modulation is observed in f My). n).

For each simulation the electron beam current is taken to be j = 3 with an input

energy spread described by oG = 3. Recall from Figure 3-5 that increasing the

electron energy spread causes the overall gain spectrum to broaden in phase velocity v,

at the expense of a decrease in peak gain. The electron pulse length is a, = 1.2, and

each pulse is injected with dimensionless desynchronism d = 0.02. The undulator

consists of N = 120 magnetic periods.
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The amplitude of modulation is Ao = x for all frequencies simulated. At each

pass in a particular simulation, the phase velocity with maximum optical power in the

optical spectrum P(v(k). n) is extracted to observe modulation in resonant wavelength.

After steady-state oscillation is achieved, the peak-to-peak wavelength modulation

distance is measured in units of dimensionless phase velocity v. This is compared to

the known peak-to-peak electron energy modulation distance in f(v(y). n), also

measured in dimensionless phase velocity v. The resulting ratio gives a measure of

A)/Ay, which is plotted with respect to frequency f as a single point in the discrete

transfer function magnitude graph. Curves for resonator loss quality factors Q = 30

and Q = 100 are shown in Figure 5-4.

For low frequency electron energy modulation f s 10 kHz, the resonant

wavelength follows with maximum amplitude. Above f = 10 kHz, both curves

experience a roll-off in magnitude. The degree of roll-off is measured in decibels per

decade of frequency increase (dB/decade). A decibel is defined

dB =20 log091-LX, (5.2)

where AX and A. are the peak-to-peak amplitudes of the resonant wavelength

modulation and the electron energy modulation, respectively. For Q = 30 the initial

roll-off is = - 6 dB/decade, and for Q = 100 the roll-off is =-12 dB/decade. The

steepest degree of roll-off for both curves occurs at frequencies beyond f >_ 60 kHz.

The Q = 30 transfer function falls = - 60 dB/decade, and the rate of decrease for

Q = 100 is = - 80 dB/decade. The shapes of both curves are similar, but the transfer

function for Q = 100 falls off more rapidly than that of Q = 30. This indicates that

decreasing loss in the optical resonator hampers the ability of the FEL to follow

resonant wavelength at higher frequencies. It appears that an FEL oscillator with
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Discrete Transfer Function Comparison
100

10-I

2 0.
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Figure 5-4. Discrete amplitude response of the transfer function H (f) for a short
pulse, low-gain FEL for two different values of the loss term Q.

lower resonator loss tends to r.sist fast resonant wavelength motion to new optical

modes, because it "remembers" optical power at the previous mode for a longer period

of time.

D. LINEAR FEEDBACK THEORY

In the previous analysis, the discrete transfer function curves provided only

amplitude information. The phase relationship of the FEL transfer function is not easy

to deterrnine in such a way. More detail is obtained by applying Linear Time-
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Invariant (LTI) feedback theory. The causality condition of LTI theory assumes that a

given output sequence y(n) is formed by the convolution of some linear transfer

function h with an input sequence x, so that after discrete time n > 0

y(n)= h (m)x(n -m) (5.3)
n•0

To convert the sequence (5.3) into the frequency domain, the Fourier transform

F • • • is applied to both sides,

F (y(n)) ' h (m)F (x(n - m)) (5.4)

But a property of the Fourier transform is that

F (x(n - m)) = e-"'"t' FJx (n)) (5.5)

which when substituted into (5.4), gives the output function in the frequency domain,

Y(f)=F{y(n)}= j h(m)e-24x/'X(f) , (5.6)
M~ - 0

where X(f)-Ffx(n)). Divide both sides of (5.6) by X(f) to obtain the transfer

function in the frequency domain H (f),

Y(f) = j h(m) e" 2xf' ==F{h(m)) =H() . (5.7)
XWf) M-0

The linear transfer function operator, H((f), is often displayed as an amplitude and

phase angle plot as a function of the frequency f. [361
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E. CONTINUOUS TRANSFER FUNCTION

The response of the FEL to a continuous range of electron energy modulation

frequencies can be simulated using the following function for the input resonant

electron phase velocity:

v(n) = vo + A, sin 2n 1 (5.8)
IV NFU -nNJ J

NFM

where N,,,. is the longest electron energy modulation period desired, and NFM is the

total number of passes to be simulated. When the pass number is small n -C NFM, then

v = vo + Aosin(2n INNm,) and the resonant electron energy modulates with period near

NmAX. As n increases, the frequency of modulation increases. When n = NJFM, the

frequency of modulation approaches infinity. However, the modulation period is tested

separately in the program so that only values in the range No = N,= -- 10 passes per

oscillation are allowed.

Figure 5-5 shows the result of simulation in a low-gain FEL with NI,. = 10,000

over NFM = 30,000 total passes. The effective range of modulation periods is

NO = 10,000 -- 10 passes per oscillation. The electron beam current is j = 1.5 with a

pulse length a, = 1.2, providing about 20 percent gain in the weak-field regime. The

optical power P(n) follows the increase in modulation until very high frequencies are

reached. Then, power cuts off completely. Peak optical power is P = 26, and

although it oscillates, P (n) remains about the same magnitude until the cut-off.

The same method is applied to the FEL input data used to compile the discrete

transfer function H (f), for Q = 30, in Figure 5-4. The resonant wavelength phase

velocity is extracted from P(v(k), n) at each pass and plotted with the resonant

electron energy phase velocity from f (v(y), n). Figure 5-6 displays the result. Using
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FEL Pulse Evolution ***

j=l.5 rz=l.2 Q=30 N=120 d=0.02
Ao=1i No=10000 * 10

a (z,n)I ) E 5 P(v,n) f(v,n)

30000 ---
n

01
-25 z 25-31 V 31-31 V 31

-25 z 25-31 v 310 n 30000

Figure 5-5. Short pulse evolution for low gain FEL illustrating frequency
modulation in electron energy input.

the Stanford FEL parameters, each pass n is 85 nanoseconds long. The simulation

runs for n = 30,000 passes, equivalent to approximately 2.5 milliseconds real time.

The increase ir electron energy modulation is shown at the top. The effective range of

periods is No = 10,000 -. 10 passes per oscillation, corresponding to modulation

frequencies in the range f = l03 -+.106 I-z. The amplitude of electron modulation,

A 0 = z, remains the same throughout the simulation. The resonant wavelength

information is plotted at the bottom. The amplitude of wavelength oscillation

decreases significantly at high frequencies, indicating that the FEL behaves like a low-

pass filter for optical wavelength control through resonant electron energy modulation.
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Figure 5-6. Resonant optical wavelength phase velocity and resonant electron energy
phase velocity for frequency modulated input electron energy in a short
pulse FEL with Q = 30.
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Before equation (5.7) is applied to the input and output functions to obtain the

continuous FEL transfer function H (f) response, the Welch method of power spectrum

estimation is used [38]. The purpose of the method is to make the result less

susceptible to noise at the beginning and at the end of the frequency range due to

truncation errors of the Fast Fourier Transform (FFr) [37]. The input and output

signals are divided into consecutive sections of M-point sequences. Then, a Hanning

window is applied to each section by FFT convolution. The Hanning window uses a

method of statistical weighting to decrease the importance of the beginning and end of

each M-point section. The effect is to force the ends of a section to approach the

same amplitude value, thereby reducing sidelobes of the spectral output when the FFT

is performed. [36,38]

Next, the windowed M -point sections are accumulated, and (5.7) is applied. The

resulting transfer function H(f) is complex. The real part is plotted as the amplitude

response, and the imaginary pan is plotted as phase response. Figure 5-7 displays the

result for the input and output shown in Figure 5-6, with an FFT sampling size

M = 1024 points.

The amplitude response is shown at the top. It demonstrates the same

characteristics as the discrete transfer function shown in Figure 5-4, but the roll-off is

slightly smoother. A series of spikes occur near f = 2 x lcs and f = 5 x lo0 Hz.

These are assumed to be noise resulting from the choice of the FFT sampling size M.

To further investigate, figure 5-8 shows the transfer function amplitude response for

three different FFT point sizes with all other variables held constant. Note that the

overall shape of the transfer function remains the same for frequencies of interest

f S 4 x Wos Hz. The spikes at the end of the curves grow substantially as M is

increased, so FFT sampling noise must be the cause. The curve with M = 1024 points

per FFT seems to provide the best information in the region desired.
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Conzuwous Transfer Function Magnitude - Q =30
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Figure 5-7. Amplitude and phase response of the continuous transfer function H (f)
for low gain FEL with Q = 30.
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Transfer Function Comparison
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Figure 5-8. Transfer function comparison for low gain FEL. Each curve represents
the result obtained for a different FFT point size with all other variables
held constant.

The bottom of Figure 5-7 shows the phase response of the continuous transfer

function H(f). Below f < 10 kHz, the phase response is relatively fiat. Above this

value, tht; phase response begins to drop. Then, a transition occurs at f = 10 Hz, and

the phase begins begins to increase. The transition point corresponds to the region of

maximum drop-off in the amplitude response curve above. Near f = 5 x 10W Hz the

phase becomes chaotic and actually experiences a complete shift from = + 150 degrees

to - 150 degrees.
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The input signal for initial electron energy phase velocity, generated by (5.8),

provides a linear increase in modulation frequency. The length of the signal is

determined by NFM. The dependence of the output wavelength transfer function H (f)

on the length of the signal NFM is shown in Figure 5-9. Three different frequency-

modulated short pulse evolution simulations are performed for NFM = 20.000,

NFM- 30,000, and NFM = 40,000 passes. The maximum period is held constant at

N,•= 10,000 passes per oscillation. Resonator losses are given by Q = 30. All other

FEL input parameters remain the same.

Transfer Function Comparison
100 .Frequency Sweep Lngth

S..... 20,000 Passes

................ 30,000 Passes
40,000 Passes

10-1

10.2

10 -3 
j0 6 i i !i i

104 106

Frequency(Hz)

Figure 5-9. Continuous transfer function H(f) comparison for low gain FEL with
Q = 30 illustrating the effect of varying the modulation signal length
NFM.
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As the modulation signal increases in length NF-, more time is spent in passes n

at each value of frequency f, so the resolution of the transfer function H (,f) should

improve. However, lengthening the signal can cause the program to become costly in

terms of time required to compute the result. As shown in Figure 5-9, all the transfer

function curves display the same general behavior for frequencies of interest

f < 4 x I05 Hz. Therefore, the result is relatively insensitive to the choice of

modulation signal length in this region. A modulation signal length NFU = 30,000

passes provides a reasonable compromise between transfer function accuracy and

length of computing time.

The benefit of using a frequency-modulated electron energy input is the relative

ease in which the transfer function is obtained. The discrete transfer functions shown

in Figure 5-4, require completion of many short-pulse evolution simulations. Each

simulation provides response information for only one frequency. With the continuous

transfer function method, a single short-pulse evolution is run with a frequency-

modulated signal. This way, other FEL input parameters are easier to change in order

to observe trends in the behavior of the transfer function.

For example, Figure 5-10 shows the input electron energy phase velocity and

optical output phase velocity plots for an FEL with the quality factor increased to

Q = 100. The amplitude of modulation is still A. = z, and the input modulation

frequency ramp is the same as before. Note at higher frequencies, i.e., at passes

n >- 25,000, the amplitude of the optical wavelength modulation decreases significantly

more than for Q = 30 in Figure 5-6. The amplitude and phase response of the transfer

function for this system is shown in Figure 5-11.

The amplitude response shown at the top has the same shape as the discrete

transfer function for Q = 100 shown in Figure 5-4. The roll-off point occurs near the
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Figure 5-10. Resonant optical wavelength phase velocity and resonant electron
energy phase velocity for frequency modulated input electron energy in
a short pulse FEL with Q = 100.
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Figure 5-11. Amplitude and phase response of the continuous transfer function H (f)
for a low gain FEL with Q = 100.
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same frequency at f = 20 kHz. Above f = l&s Hz the curve fluctuates randomly, but

appears to level off near the relative amplitude 10-3. The phase response of H (f) is

plotted at the bottom. The first increase in phase occurs near f = 3 x 104 which also

corresponds to the point of maximum roll-off in relative amplitude above. The

complete phase-shift occurs at f = 3 x dc), much sooner than that for Q = 30 in Figure

5-4.

F. DISCRETE VS. CONTINUOUS TRANSFER FUNCTION COMPARISON

Understanding the response of the FEL to a rapidly varying resonant wavelength

is important in the design of a linear feedback system. The most stable optical output

is achieved only when the feedback system is optimized to perform at same amplitude

and phase as the FEL transfer function H(f). Applying a numerical simulation as

discussed in the previous section helps to increase knowledge of the FEL parameters

that affect the transfer function response.

The discrete and continuous amplitude responses of the FEL transfer functions

are compared directly in Figure 5-12. Recall that the discrete and continuous curves

are obtained in two completely distinct ways. The first method plots each response

point at a single frequency with a simulation that is run only at that frequency for a

long period of time. It takes many simulations to obtain such a curve. The second

method uses FFT analysis to obtain a transfer function from a single output

wavelength signal and a single input electron energy frequency modulated signal. The

preferred method is that used to obtain the continuous curves because it is less time

consuming and uses only a single short-pulse evolution simulation. That the

continuous and discrete curves compare so favorably in both cases attest to the

accuracy of the continuous method for frequencies near the amplitude cut-off.

Because the continuous method enables any FEL input parameter to be varied in a
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Figure 5-12. Comparison of the discrete and continuous amplitude response of the
tansfer function for a low gain FEL with Q = 30 and with Q = 100.
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single short-pulse evolution simulation, the corresponding effect on the dynamic

response of the FEL transfer function can be explored with relative ease.
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VI. CONCLUSIONS

The current world political climate is extremely volatile, and the threat of wide

proliferation of advanced weapons is high. With the technology of anti-ship missiles

increasing every year, a time may come when the ordinary methods of ship defense

will be obsolete. Directed energy may be the only means available with the capability

to destroy anti-ship missiles on their path to the target. Two high energy laser systems

seem feasible for shipboard use. Both are compatible in the design of a self-defense

weapon system if modularity is considered. The FEL appears to have the best

advanta6, for use at sea in the long run, but the technology needed to support its use

is not complete. Meanwhile, a more mature chemical laser system, using deuterium

fluoride as a fuel, has been designed by TRW. The power requirements, weight, and

size of the system readily allow emplacement on existing ships, making it a logical

choice for testing directed energy effectiveness at sea.

Design flexibility and continuous tunability are two of the principle advantages of

the FEL over the conventional laser. The promise of high efficiency and high average

power has made the FEL the subject of extensive research. Most of the present

research is focused toward utilization of the FEL as a reliable source of stable,

coherent light for user facilities. The Stanford University Superconducting Accelerator

(SCA) Free Electron Laser (FEL) Facility, provides light for physics and medical

research. The optical wavelength is observed to fluctuate randomly by a fraction of a

percent over times less than a millisecond. Experiments conducted at the facility

require at least ten times more stability.

In an FEL, the optical wavelength is proportional to the input electron energy

through the resonance condition, X = . /2y2 , where y is the Lorentz factor, m is the
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electron mass, and c is the speed of light in vacuum. Researchers at the Stanford

SCA/FEL have successfully accomplished optical wavelength stabilization by

measuring wavelength drift and adjusting the input electron beam energy through

negative feedback [4]. The effect is simulated by modifying a short pulse FEL

numerical program to allow the resonant wavelength to vary over many passes.

Through simulation of various modulation parameters, the effects on the optical

pulse, optical power, and the output wavelength are observed. Modulation at high

frequencies and low amplitudes has little effect on the wavelength, but the optical

power is observed to oscillate with significant magnitude. The trapped particle

instability is also suppressed. As the period of oscillation increases, the optical

wavelength begins to follow and the relative magnitude of optical power variation is

reduced. However, the trapped particle sidebands are also able to follow the resonant

wavelength modulation, and the accompanying side effects return. At high modulation

amplitudes, the electrons and the optical wave cycle rapidly in and out of resonance,

so that periodic optical power "giant pulses" occur.

Net gain and resonator loss both have significant effects on the behavior of the

resonant wavelength during electron beam energy modulation. Higher gain and lower

loss aid the resonant wavelength motion, but the high optical power that results tends

to narrow the optical spectrum through mode competition. As the optical spectrum

narrows, it resists wavelength changes because less optical power is available in

neighboring modes.

Desynchronism also affects the ability of the FEL to follow resonant electron

energy modulation. The maximum steady-state power and the maximum weak-field

gain occur at different values of desynchronism. When the steady-state power is at a

peak, gain is low, and the optical spectrum is more susceptible to narrowing through

mode competition. Here, the FEL is more likely to resist resonant wavelength
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modulation. When the gain is at a peak, steady-state power is relatively low, and the

FEL is more likely to accept resonant wavelength shifts. For other values of

desynchronism, the combination of both effects determines the amount of optical

power available at the resonant wavelength during modulation.

The short pulse FEL is observed to preferentially follow shifts from longer to

shorter wavelengths. During this type of shift, the dimensionless phase velocity of the

electron beam increases. At the same time, the resonant wavelength moves toward

values of decreasing phase velocity. But on an increase in optical power, the optical

field strength increases, causing the gain spectrum to broaden in phase velocity. These

effects combine to produce a favorable condition under which resonance is maintained

for a longer period of time than would normally occur at steady-state. The FEL is

thus able to follow the resonant wavelength in this direction with greater optical

power.

As the frequency of electron energy modulation increases, the peak-to-peak

amplitude of the resonant wavelength modulation decreases. The nature of this

decrease is important to the design of a wavelength stabilization system. The ability

of the optical pulse to follow resonance at higher frequencies allows the use of faster

feedback to the electron beam source. Knowing the exact cut-off enables optimization

of the feedback system. Simulations modified to allow a ramp of frequencies produce

plots showing the amplitude and phase response of the FEL to a rapidly shifting

resonant wavelength. The result is called the continuous FEL transfer function. A

separate method is used to obtain a curve describing the discrete amplitude response

for a short pulse FEL with two different values of the quality factor Q. Curves of the

continuous and discrete transfer function compare favorably in both cases tested. The

continuous method can now be used to effectively simulate the short pulse transfer

function behavior for a variety of FEL input parameters.
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