“Lalhoun

Institutional Archive of the Naval Pastgraduate School

Calhoun: The NPS Institutional Archive
DSpace Repository

Theses and Dissertations 1. Thesis and Dissertation Collection, all items

1993-03

The relational-to-object-oriented cross-model
accessing capability in @ multi-model and
multi-lingual database system

Johnston, Richard Karl.

Monterey, California. Naval Postgraduate School

https://hdl.handle.net/10945/39867

This publication is a work of the U.S. Government as defined in Title 17, United
States Code, Section 101. Copyright protection is not available for this work in the
United States.

Downloaded from NPS Archive: Calhoun

Calhoun is the Maval Postgraduate School's public access digital repository for

‘: DUDLEY research materials and institutional publications created by the NPS community.
lﬂ“‘ Calhoun is named for Professor of Mathematics Guy K. Calhoun, NPS's first

I(N D}E appointed — and published — scholarly author.
"m.‘“ LIBRARY

Dudley Knox Library / Maval Postgraduate School
411 Dyer Road / 1 University Circle
Monterey, California USA 93943

hitp://www.nps.edu/library

NAVAL POSTGRADUATE SCHOOL @

Monterey, California

L

AD-A264 911

THESIS

THE RELATIONAL-TO-OBJECT-ORIENTED
CROSS-MODEL ACCESSING CAPABILITYIN A
MULTI-MODEL AND MULTI-LINGUAL
DATABASE SYSTEM
by
Richard Karl Johnston

March 1993

Thesis Advisor: David K. Hsiao

Approved for public release; distribution is unlimited.

23-11902
R,

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE

AR

DR

REPORT DOCUMENTATION PAGE

1a. HEPORT SECURITY CLASSIFICATION UNCLASSIFIED 1b. RESTRICTIVE MARKINGS

Za SECURITY CLASSIFICATION AUTRSAITY 3 DISTRIBUTIONAVATLABILITY OF REPOAT
- Approved for public release;

distribution is unlimited

« [4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)
D Ea NAME OF §ERFORM G ORGANIZATION 6b. OFFICE SYMBOL 7a. NAMe OF MONITORING ORGANIZATION
| Lomputer Science Dept. (f applicable) Naval Postgraduate School
Naval Postgraduate School (&
6c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (Cuy, State, and ZIP Code)
Monterey, CA 93943-5000 Monterey, CA 93943-5000
8a. NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMpeN
ORGANIZATION (if apphcable)
8¢c. ADDRESS (City, State, anc ZiP Code) 10. SOURCE OF FUNDING NUMBERS
PROGRA PROJECT TASK WORK UNIT
ELEMENT NO NO NO 1ON

11. TITLE {include Security Ciassification)
THE RELATIONAL-TQ-OBJECT-ORIENTED CROSS-MODEL ACCESSING CAPABILITY IN A MULTI-MODEL (Continued}

Johnston, Richard K.

ﬁa‘ TYPE QFREF{ORT 130, TIME COVERED 14. DATE OF REPORT (Year, Month, Day) | 15. PAGE GOUNT
aster’s [hesis FROM 10 - March 1993 g9

16. SUPPLEMENTARY NOTATION The views expressed in this thests are thosc of the author and do not retlect tie
official policy or position of the Department of Defense or the United States Government.

17, COSAT! CODES 18. SUBJECT TERMS (Continue on reverse i necassary and identify by block number)

FED GROUP SUB.GROUP Cross-model accessing capability; Database design: Duatabase

implementation; Database management systems; (Continued)

19. ABSTRACT (Continue on reverse if necessary and identify by black number)))
Conventional database management systems (DBMS) are stand-alone, each supporting a single data model and

corresponding data language (ML). One organization might operate several stand-alone DBMS independently. each
of which requires the knowledge of a different ML to operate. The multi-model and multi-lingual database system
offers a different approach. This system supports muiltiple MLs in a single database system. Thus, a relational data-
base user of the multi-model and mulii-lingual database system can create and manipulate a database according to the
relational model and the SQL data language. On the same system, a hierarchical user can create and manipulate a
database according to the hierarchical model and DL/I data language, and so on.

Besides supporting many different models and languages on a single system, the multi-model and mukti-lingual
database system also allows the user to access a database created according to one ML as if it were created according
tc another. Thus, a relational user could manipulate a hierarchical database as if it is relational, i.e., the user would
use a relational schema and SQL commands to manipulate a hierarchical database. The (Continued)

20. DISTRIBUTION/AVAILABILITY OF ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATION
[X UNCLASSIFIED/UNLIMITED [SAME ASRPT.] DTICUSERS | UNCLASSIFIED
a. N RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Include Area Code) |22¢ E SYMBOL
Bavid'k Fisae (108} 6442743 1228
S N - AR L
DD FORM 1473, 84 MAR 83 APR edition may be used until exhausted SECURITY CLASSIFICATION OF THIS PAGE

All other editions are obsoletg UNCL ASSIFIED
i

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE
—————— e ——————

11. AND MULTI-LINGUAL DATABASE SYSTEM.

18. Object-Oriented Databases; Relational databases; Schema transformations; Multi-model and
multi-lingual database system.

19. base-model and base-language (i.e., hierarchical and DL/I) are invisible to the user. This addi-
tional capability is termed the cross-model accessing capability .
At this time the multd-model and multi-lingual database system supports the following MLs:

relational and SQL., hierarchical and DL/I, ne:work and CODASYL.-DML, and object-oriented and
the object-oriented data language. The system also supports a relational-to-hierarchical cross-
model accessing capability. The work of this thesis adds to the system a relational-to-object-orient-
ed cross-model accessing capability. A relational user can now access an object-oriented database
using SQL commands and viewing the object-oriented database via a relational schema. The thesis
analyzes the semantic equivalencies of the relational and object-oriented data models. The analysis
is necessary in order o ostablish the rules for transforming the object-oriented schema into an
equivalent relational schema. The work also describes the software design and integration with the
existing system and outlines futu.e development steps for new cross-model accessing capabilities.

L R R ﬁ

SECURITY CLASSIFICATION OF THIS PAGE
UNCLASSIFIED

il

Approved for public release; distribution is unlimited

THE RELATIONAL-TO-OBJECT-ORIENTED
CROSS-MODEL ACCESSING CAPABILITY
IN A MULTI-MODEL AND MULTI-LINGUAL

DATABASE SYSTEM
by
Richard Karl Johnston
Lieutenant Commander, United States Navy Srceicn far -
A.B., University of Georgia, 1975 s J,,:,“‘mv{‘
Ll TES
! led i
Submitted in partial tulfillment of the R LA
requirements for the degree of b:“ T i
& wt o
MASTER OF SCIENCE IN COMPUTER SCIENCE oo oo
_D’“ Hu:i},:j:.ra'! v
from the
NAVAL POSTGRADUATE SCHOOL A-l J
March 1993

Author:

Richard Karl Johs€ton

A pprovcd B y: __v\

David K. Hsi_z;o, Thesis Advisor

omas wu, decond Reader

CDR G Hnghes, Acding
Department of Computer Science

iil

ABSTRACT

Conventional database management systems (DBMS) are stand-alone, each
supporting a single data mode! and corresponding data language (ML). One crganization
might operate several stand-alone DBMS independently, each of which requires the
knowledge of a different ML to operate. The multi-model and multi-lingual database
system offers a different approach. This system supports multiple MLs in a singie database
system. Thus, a relational database user of the multi-model and multi-lingual database
system can create and manipulate a database according to the relational model and the SQL
data language. On the same system, a hierarchical user can create and manipulate a
database according to the hierarchical model and DL/ data language, and so on.

Besides supporting many different models and languages on a single system, the
multi-model and multi-lingual database system also allows the user to access a database
created according to one ML as if it were created according to another. Thus, a relational
user could manipulate a hierarchical database as if it is relational, i.e., the user would use a
relational schema and SQL commands to manipulate a hierarchical database. The base-
model and base-language (i.e., hierarchical and DL/I) are invisible to the user. This
additional capability is termed the cross-model accessing capability

At this time the multi-model and multi-lingual database system supports the
following MLs: relational and SQL, hierarchical and DL/, network and CODASYL-DML,
and object-oriented and the object-oriented data language. The system also supports a
relational-to-hierarchical cross-model accessing capability. The work of this thesis adds to
the system a-relational-to-object-oriented cross-model accessing capability. A relational
user can now access an object-oriented database using SQL commands and viewing the
object-oriented database via a relational schema. The thesis analyzes the semantic
equivalencies of the relational and object-oriciited date models. The analysis i3 1ecessary

in order to establish the rules for transforming the object-oriented schema into an

iv

equivalent relational schema. The work also describes the software design and integration
with the existing system and outlines future development steps for new cross-model

accessing capabilities.

IL

.

Iv.

TABLE OF CONTENTS

INTRODUCTION.....ctntitimiiteiniecciitee vttt st sttt aas s s s e
A. SOLUTIONS TO THE PROLIFERATION OF DBMS ..o
B. SCOPE OF THE THESIS ..ot
THE MULTI-MODEL AND MULTI-LINGUAL DATABASE SYSTEM
A. THE MULTI-BACKEND DATABASE SUPER-COMPUTER
B, THE KERNEL.....ccccomiiiitiiiice it eceivtene et smena e et esae s es e sne s

1. TheData Model ..ot vt

2. TheData Language.......ccocviiiienierneeirriniene st sreer et cese s seees
C. THE MULTI-MODEL AND MULTI-LINGUAL CAPABILITY
D. THE CROSS-MODEL ACCESSING CAPABILITYcccoeiiiininciinne.
THE OBJECT-ORIENTED DATABASE......oovioiiiecicet et
A, THESCHEMA ...ttt sttt st et e e
B. THEDATABASE ...ttt st
C. THE TRANSACTIONS ..ottt aen e e

1. Creating the Databasecoveeviriiieiiieciieece e

2. Accessing the Database...........ccccveeveriieieeicecciienecee e
EQUIVALENT RELATIONAL SEMANTICSccoooiiiiiniere e
A. GENERALIZATION, SPECIALIZATION, AND AGGREGATION

..

1. The Object Identification Value as the Key

2. THE ClaSS .. tieiiinriiie ettt ettt enae s

vi

.5

25

26

B. TRANSFORMING THE SCHEMA ...t e 27

1. The Class-based Approach.........cccoovenciinviv e et 28

) 2. The Object-based APProach......c...coocveccnininiiriinininineceins vereeeccncnns 29
- 3. The Combined APProach......cocovviiiiiiiiiccini e 29
C. THE TRANSACTIONS ..ottt e 31

L. SELECT cieeicinieveiiteet et scs et et en ettt seens b sees s emarie 32

2. UPDATE ...ttt e see et e st b sttt st es e e st eae e seeaeen 33

3. INSERT ...ttt ere e et st sr e s st sm e cmsaen 33

4, DELETE. .ottt en ettt en s e ee s 33

V. THE CROSS-MODEL ACCESSING SOFTWAREccccoiininiiiiicnnines 34

A, THE DESIGN.....ouiciiiriiiteriieeeneensresestssesrenestesesas et e st ssesereseessseensescassncs 34

B. THE DATA STRUCTURES......ccoiitineinccnrcren st eresasrenannes 35

C. THE IMPLEMENTATION.....ccoontniniriniricnicirienrsce vt 40

1. The Schema TransfOrmer.........cccoeminnciicnnniicee e 40

2. The Transactionscccocrmvirurmrconesrnineriessisenssiissssssss e saensssesesessssnss 41

a. SELECT and UPDATE ..ot e 41

B, INSERT .ottt sheressse s 41

€. DELETE ...ttt an s 43

VL CON(ELUSION S ettt her et b et s e e bbb e er e R et h b e 44

. A, SHORTFALLS ...ttt et srevceebess st sn s s 44
B. FUTURE RESEARCH......ccccomiiiiiiinciritcc b 44

APPENDIX A - THE SCHEMA DATA STRUCTURESccccoiiiiiies 46

vii

APPENDIX B - THE USER DATA STRUCTURESc.iciireececcerc e a7
APPENDIX C - THE SCHEMA TRANSFORMERccccoooiiiiiiniiein e 4%
APPENDIX D - INSERT TRANSACTIONS ..ot 58
APPENDIX E- DELETE TRANSACTIONS ..o 69
LISTOFREFERENCES ..o 76
INITIAL DISTRIBUTION LIST ..o 78

viii

LIST OF FIGURES

Figure 1. The Multi-model, Multi-lingual, and Cross-Model Accessing Capability 4
Figure 2. The Multi-Backend Database Super-Computer e 7
Figure 3. The Vehicle Database SChemaccooviieieiiiiec e Y
Figure 4. The Vehicle Databasecocovieiiiiiiii e 1
Figure 5. The Software Design of a Language Interfacecccocceiiinociinnniniiieiee el 12

Figure 6. The Modular, Conceptual Software Design for the Multi-Model and

Multi-Lingual Interfacescoooioiiiii e 14
Figure 7. The Cross-Model Accessing Capabilityccccoviviiniiiiiininiiis e e 16
Figure 8. The Object-Oriented Schema of the Vehicle Database ool 19
Figure 9. A Vehicle ObBJECT ..ottt ettt ea et s 21
Figure 10. Creating the Object-Oriented Databasecooeieoiniiinicniinccec e 23
Figure 11. The Class-Based Transformation of the Vehicle Databaseccoooooveeeeeenei o, 28
Figure 12. The Object-Based Transformation of the Vehicle Databasec.c.ccccooeevenenen.. 30

Figure 13. The Combined Class- and Object-Based Transformation of the

Vehicle Databasecc.coocveoviiiienirii e b 3
Figure 14. Object-Oriented Database Node StruCturesocooecivevenercrirnciiiiiicere e 360
Figure 15. The Object-Oriented Schema Data STUCLUTEScccvoeveerevirienniceniiieeeee e 37
Figure 16. The User Data SHUCIUIESccoveviiiiimrieiniiecieiciteiee ettt eva e eeen s 38
Figure 17. The sql_info Data STuctureccccoevviiriiec o2 39

X

LIST OF ACRONYMNS

ABDL - Attribute-Based Data Language
ABDM - Attribute-Based Data Model
KCS - Kernel Controller System

KDL - Kernel Data Language

KDM - Kernel Data Model

KDS - Kernel Database System

KFS - Kernel Fomatting System

KMS - Kernel Mapping System

MDBS - Multi-Backend !satabase Super-Computer
ML - Model and Language

LI - Language Interface

LIL - Language Interface Layer

UDL - User Data Language

UDM - User Data Model

I. INTRODUCTION

T.atabase management systems (DBMS) have proliferated in response to a demand for
data models and languages which are capable of expressing and accessing a wide variety
of data relationships for specific applications. Unfortunately. these DBMS are stand-ulone
systems. The user of one system is unable to access the data maintained by a different one.
These databases and DBMS are termed heterogeneous databases and systems.

Since DBMS have evolved over an extended period, by now many organizations have
two or more different systems, purchased at different times and run independently, among
which data sharing and resource consolidation are impossible. Moreover, the introduction
of new stand-alone DBMS into the workplace continues, complicating the work
environment of organizations even more. The multi-model and multi-lingual database
system at the Naval Postgraduate School is a research platform that offers a : olution to these

problems.

A. SOLUTIONS TO THE PROLIFERATION OF DBMS

A comprehensive solution to the problem of heterogeneous databases and systems will
address the issues of both data sharing and resource consolidation. Obviously, if it were
possible to establish a single model ond language (ML) as a universal database standard,
this problem would cease to exist. A single, universally-accepted ML, however, is nowhere
in sight. Despite the popularity of the relational model, for example, the older hierarchical
and network models continue to survive. Although their persistence owes much, no doubt,
to the cost associated with converting to a new system, it is also in great part due to the
preference of databasc users for these other models as more accurate representations of
their applications. The interest in development of the object-oriented data - .el.
moreover, portends that new data models will continue to appear as the result of new

applications.

Effectively, this multitude of stand-alone systems in the workplace restricts data
accesses to those workers trained to use a particular ML on a particular set of database
system and computer hardware. Any database system that resolves the problems of
database interoperability, therefore, must accomplish the seemingly contradictory
objectives of (1) providing the user with access to databases created according to many
different MLs and (2) at the same time, not requiring the user to learn those new MLs. The
user of such a system would access a database using whatever ML he desires. Such u
system is “‘federated”, i.e., each database retains its autonomy. The key to achieving
autonomy and resolving the mutually contradictory objectives is to separate the data itseif
from the user’s view of the data. For though a database is stored and accessed in an unique
way for a specific ML, the storage structure and access method are of no concern to the
user. In this sense the data model is a special pair of “glasses™ through which the user views
the data stored on the disk. The glasses transform the data into whichever model the user
prefers.

Such transformations could occur in _everal different ways. A standard terminology

appears below [Hsia01992]

» Single-Model-and-Language-to-Multiple-Models-and-Languages

» Single-Model-and-Language-to-Single-Model-and-Language

» Multiple-Models-and-Languages-to-Multiple-Models-and-Languages
» Multiple-Models-and-Languages-to-Single-Model-and-Language

Briefly, the first of the above four technical aporoaches would restrict the user to a
single, universal ML which is unlikelv either to satisfy everyone or to provc easy to master.
The second also presunposes a single acceptable ML, but with the additional, significant
burden of converting all of the existing heterogeneous databases to this ML. The third
possibility, the Multiple-Models-and-Languages-to-Multiple-Models-and-Languages.
appeals to the D partment of Defense and similar large, multi-department organizations.

which often require data sharing via networks over great distances. This appreoach,

however, is intractable from a technical standpoint. Furthermore, it would solve the data
sharing problems of existing systems without replacing them. Even if this approach were
practical, it fails to address the problem of resource consolidation and, in general, would
further complicate an already complex database installation.

The last approach, the Multiple-Models-and-Languages-to-Single-Model-and-
Language, is used in the Naval Postgraduate School Laboratory for Database Systems
Research [Hsiao1989]. This approach takes advantage of the separation of base data from
viewed data. All of the base data are stored according to a single, kernel model. Similarly.
there is a separation of transactions written from transactions executed. All written
transactions are translated into a single. kernel language for execution. An immediate
benefit gained from having a single data ML is a consolidation of resources. since now only
one database system is needed to support the base data and to execute the transactions.
This system will support any number of data models and languages via software interfaces
that transform schemas and translate languages into those of the kernel. This feature of the
system is referred to as the multi-model and multi-lingual capability. Software interfaces
also allow a user, using a familiar ML, to access a database created according to an
unfamiliar ML by further transformations and translations between the models. This is
referred to as the cross-model accessing capability. To the user, the transformations and
translations are transparent.

By adding the interface software, the multi-model and multi-lingual database system

with cross-model accessing capabilities achieves two objectives:

» It supports any number and type of MLs.

« It allows a database user to access a heterogeneous database as if it is homogeneous to
the user. --

Figure 1 depicts graphically the multi-model, multi-lingual, and cross-model accessing

capabilities.

A kernel
database user

A hierarchical
database user

An object-oriented
database user

‘The kernel data model and |
kernel data
z language interface

A kernel

database schema

The hierarchical data

model and DL/I
interface

A hierarchical
database schema

;{ The object-oriented data
| model and object-oriented
! data language interface

An object-oriented
database schema

database schema

The network data model
and Codasyl-DML
interface

A network
database user

/ N
A A A _ An
A network hierarchical relational object-oriented
kernel database datz}base database datgbase
database . in . in
in in
the kernel the kernel the kernel the kernel
K form form form form J
A relational database schema A relational database schema
for the hierarchical database for the object-oriented database
A network

A relational
databasq schema

The relational data model
and SQL interface

A relational
database user

Figure 1. The Multi-model, Multi-lingual, and Cross-Model Accessing Capability

B. SCOPE OF THE THESIS

The design and implementation of software interfaces for databases and languages is
contained in works on relational and SQL [Rollins1984], network and CODASYL-DML
[Emdi1985], hierarchical and DL/l [Benson1985]. functional and DAPLEX [Mak 1992},
and object-oriented and the object-oriented language [Moorel993]. Each of these data
models is translated into the kernel data language (KDL). Past contributions also inciude
the design and implementation of a relational-to-hierarchical cross-model accessing
capability, which enables a relational database user to access a hierarchical database as if it
is relational, i.e., using SQL commands to access the data according to a relational schema
of a hierarchical database.

This thesis adds to the existing system a relational-to-object-oriented cross-model
accessing capability. A relational database user now can access an object-oriented database
using SQL commands and viewing the object-oriented database via a relational schema.
Though similar in concept to the relational-to-hierarchical, the relational-to-object-oriented
cross-model accessing capability requires a schema transformer and language transiator
that differ significantly. The thesis compares semantic equivalencies between the object-
oriented and relational models and identifies methods and deficiencies in the
transformation. The thesis also elaborates the design and implementation of the cross-
mode! accessing capability in order to facilitate the integration into the system of future.

similar capabilities.

I1. THE MULTI-MODEL AND MULTI-LINGUAL DATABASE SYSTEM

The multi-backend database super-computer (MDBS) at the Laboratory for Database
Systems Research supports research into the problems of heterogeneous databases. The
MDBS hardware and the software (i.e., the multi-model and multi-lingual database system
it supports) demonstrate the feasibility of a federated database design based on the
Multiple- Models - and - Languages - to - Single - Model - and - Language transformations

articulated in Chapter L

A. THE MULTI-BACKEND DATABASE SUPER-COMPUTER

Requirements for the MDBS design included optimal performance as well as resource
consolidation and a capability for data sharing. The following five features, identified as
requisite characteristics of federated databases in [Hsiao1992], have guided the system

design and development of the MDBS software and hardware:

« Transparent access to heterogeneous databases

¢ Local autonomy of each database

» Multiple-model and multiple-lingual capabilities
» Multiple-backends

+ Effective and efficient access and concurrency control

Figure 2, taken from [Hsiaol991], depicts the configuration of the MDBS. Each
backend contains portions of the base data as well as a complete copy of the meta datz. as
indicated. The base data is divided evenly into clusters across the backends. A single
controller iss;es commands to the backends simultaneously over a network. On receiving
a command from the controller, each backend performs manipulations of data coming from
the secondary storage disk, using the “processing-on-the-fly” technique first proposed for

CASSM [Su79] and the “logic-per-head” design first proposed in DBC [Bannerjee 1979].

Meta data disk Base daw disks

B —

Back end
Paging disk
Meta data disk Base data disks
=
Back end
Controller Paging disk
Back end

2 S Z

Data clusters

Figure 2. The Multi-Backend Database Super-Computer

The use of multiple backends combined with the “logic-per-head” processing of the
disk data allows the MDBS to achieve a high degree of parallelism, concurrency, and
pipelining. An intelligent clustering algorithm divides the base data across the backends in
such a way as to best facilitate the execution of database transactions in parallel. An index,

which is searched and stored with a dedicated set of meta-data tracks on discs, indicates the

tracks on which requested data are stored. All of the backends process a data transaction
simultaneously.

The use of multiple backends offers the advantages of response-time reduction and
response-time invariance. The addition of parallel backends results in a corresponding
reduction in response time that is directly proportional to the number of backends added.
To halve a response time, one doubles the number of backends. Similarly, if the size of a
database is increased, the response-time is invariant if a proportional number of backends

is added to the MDBS.

B. THE KERNEL

All data in the MDBS is stored in the kernel database system (KDS) according to the
KDM and KDL. While any one of many MLs (the relational for example) would suffice for
the kernel, the attribute-based data model (ABDM) and attribute-based data language
(ABDL) best support the MDBS architecture, especially its reliance on parallelism and data

clustering [Hsiao1991].

1. The Data Model

In the ABDM each piece of data occurs as an attribute-value pair, notated by

enclosing angular brackets:
<ATTRIBUTE, Value>
The basic structure of the ABDM is the record. A group of attribute-value pairs forms a
record, and the record is notated by enclosing the list of attribute-values in parenthesis:
(<TEMP, Value>, <ATTRIBUTE, Value>, <ATTRIBUTE, Value>)

The first attribute-value pair is always the attribute “TEMP” and the name of the record
type (or file) lS its value. Formally, in a record no two attribute-value pairs may have the
same attribute. Thus, the database consists of thousands or even millions of these records.
A sample “Vehicle” database the form of the ABDM appears in Figure 3. In the sample data

model, it is possible to identify various common values which could serve as keys. For

(<TEMP, Vehicle>, <ID, int>, <MODEL, string>, <MANUFACTURER, string>)
(<TEMP, Commercial>, <VEHID, int>, <COMPANY, string>, <KREVENUE, int>)
(<TEMP, Automobile>, <AUTOID, int>, <PASSENGERS, int>)

(<TEMP, Fornauto>, <FORNAUTOID, int>, <CATEGORY, string>)

(<TEMP, Truck>, <TRUCKID, int>, <TONNAGE, int>)

(<TEMP, Company>, <CONAME, string>, <LOCATION, string>)

(<TEMP, Fornco>, <FORNCONAME, string>, <COUNTRY, string>)

Figure 3. The Vehicle Database Schema

example, one could relate Company, Fornco, and Vehicle (via the MANUFACTURER

attribute) using the common value of a company’s name as a key.

2. The Data Language

Though simple, the ABDL is a rich, complete data language which also supports
a parallel search algorithm used in the MDBS. The ABDL includes the transactions
RETRIEVE, DELETE, UPDATE, INSERT, and RETRIEVE COMMON.

The syntax for the INSERT operation appears below:

[INSERT (Record)]

The MDBS uses a series of INSERT transactions to create a database. The series of
INSERTS in Figure 4 would create a “Vehicle” database according to the schema

developed in the previous section.

[INSERT(<TEMP. Vehicle>, <ID, 01>, <MODEL, Mustang>, <MANUFACTURER, Ford) |

[INSERT(<TEMP, Vehicle>, <ID, 02>.<MODEL F100>. <MANUFACTURER. Ford>) |

{ INSERT(<TEMP, Veh.icle>, <ID, 03><MODEL, Accord>, <MANUFACTURER, Honda>)]

[INSERT(<TEMP, Commercial>, <VEHID, 01>.< CUSTOMER, National> < REVENUE. 290>) }
[INSERT(<TEMP, Commercial>, <VEHID, 02>.< CUSTOMER. National>,< REVENUE, 290>) |
[INSERT(<TEMP, Commercial>, <VEHID, 03>,< CUSTOMER, National>.< REVENUE,. 290>}]
{ INSERT(<TEMP, Automobile>, <AUTOID, 01>,<PASSENGERS. 6>) |

[INSERT(<TEMP, Automobile>, <AUTOID, 03>,<PASSENGERS, 6>)]

[INSERT(<TEMP, Fornauto>, <FORNAUTOID, 03>,<CATEGORY, Compact>)]

{ INSERT(<TEMP, Truck>, <TRUCKID, 02> <TONNAGE, 3>)]

[INSERT(<TEMP, Company>, <CONAME, National>, <LOCATIUN, Newyork>)]

[INSERT({<TEMP, Company>, <CONAME, Ford>, <LOCATION, Newark>)]

[INSERT(<TEMP, Company>, <CONAME, Honda>, <LOCATION, Tokyo>)]

{ INSERT(<TEMP, Fomco>, <FORNCONAME, Honda>, <COUNTRY, Japan>) |

Figure 4. The Vehicle Database

The ABDL syntax for the remainder of the transactions includes a query

composed of booleans and logical AND/OR connectors. The syntax for the DELETE

request is indicated below:

[DELETE (Query)]

The following series of transactions would delete from the Vehicle database the Vehicle

with ID number O1. This is a Mustang and it refers to the Automobile record with AUTOID

= (1 as well as to the Vehicle record with ID = Q1. The user must delete both records in

10

order to maintain the integrity of the database:
[DELETE((TEMP = Vehicle) and (ID =01)) }
[DELETE((TEMP = Automobile) and (AUTOID = 01))]

For the UPDATE transaction, one adds a modifier:

[UPDATE ((Query) (Mcodifier))]

The following transaction changes the location of the Ford company from Newark to

Detroit:

[UPDATE((TEMP = Company) and (NAME = ‘Ford*) (LOCATION = ‘Detroit’))]

For the RETRIEVE transaction, additional fields indicate desired attributes and
grouping characteristics. The retrieved attributes are designated the target list. A “‘group-
by clause” indicates the grouping of the records:

[RETRIEVE ((Query) (Target list) BY group-by clause) |
The transaction below would retrieve the ID numbers of all of the Fords ordered by ID
number:
[RETRIEVE(((TEMP = Vehicle) and MANUFACTURER = Ford)) (ID) BY ID)]

The final transaction, RETRIEVE COMMON, is similar to the relational EQUI-
JOIN. The transaction request includes a field for attributes common to two records. The
generic syntax follows:

[RETRIEVE ((Queryl) (Target listl))
COMMON (Attributel, Attribute?)
RETRIEVE ((Query2) (Target list2)) }

The transaction below would retrieve the models and ID numbers of all of the vehicles
manufactured in Newark, ordered by ID number:

{ RETRIEVE((TEMP = Vehicle) (MODEL, ID) BY ID)

COMMON (Manufacturer, Name)

RETRIEVE((TEMP = Company) and (LOCATION = Newark)) |

Il

C. THE MULTI-MODEL AND MULTI-LINGUAL CAPABILITY

The multi-model and multi-lingual database system is based on the Multiple-Models-

and-Languages-to-Single-Model-and-Language transformations discussed earlier. The

single ML consists of the KDM and KDL, i.e., the ABDM and ABDL. The Language

Interface (LI) software, therefore, must transform each of the multiple MLs into the

attribute-based ML. This capability, which allows users to create, maintain, and manipulate

databases of many different MLs on a single system, is designated the multi-model and

multi-lingual capability.

Figure 5, taken from [Hsiaoc1992}, depicts the modular software design of the LI. The
four modules inside the dashed box (i.e., LIL, KMS, KFS, and KCS) perform the

..

&

il LIL KCS

<« KDS

...

(®

......

- User Data Model

System Module UDL
- Language Interface Layer

. Kernel Mapping System

KCS .
O Data Model KDM

KDL

KES

KDS
@ -Data Language

User Data Language

Kernel Controller System
Kernel Data Model
Kernel Data Language
Kernel Formatting System

- Kernel Database System

Figure 5. The Software Design of a Language Interface

12

transformations and translations from the user data mode! and user data language (UDM/
UDL) to the KDM/KDL and back again. Extensive literature documents the functions of
these software modules, including that of [Demurjian1987] and {Benson1985). Briefly, the

function of each follows:

« LIL - Performs the functions necessary for hand-shaking with the user interface and
routing results to the user.

« KMS - Builds the schema according to the UDM and parses the language requests. The
KMS maps each transaction into the kernel ML (i.e. the attribute-based ML).

« KCS - Passes ABDL commands to the KDS for execution and receives results in the
kernel form.

» KFS - Performs the functions of the KMS in reverse. When executing an ABDL
transaction, the KDS returns the result via the KFS, which re-formats the result into the
equivalent UDM and UDL.

Figure 6 depicts the modular software design of the muiti-model and multi-lingual
database system. The MDBS supports interfaces for relational, network, hierarchical, and
object-oriented databases. An interface design for the Functional database also is
complete, but lacks a working implementation at this time. For each of these different user
models and its respective language, the four modules described briefly above are necessary.
Since the basic functionality of the interface is the same regardless of the requirements of

a specific user model and language, much of the software of these four modules is similar.

D. THE CROSS-MODEL ACCESSING CAPABILITY

The multi-model and multi-lingual capabiiity does not solve entirely the problems of
heterogeneous databases. For though the user does have the capability now to create and
manipulate a database using any of the four models and languages discussed in the
preceding section, the multi-model and multi-lingual capability alone does not enable

another user of a ML to access this database which was originally created on a different data

13

............

o vikys: .
§'/I,J' _______ e - ,,,'. _______ ; :’
; 'LIL KCS i3
Network/CODASYL-DML SR
KMS
.@ . / 4
LIL KCS
Hierarchical/DL/1 —
Kyis @
/'\ 3 \
LIL KCS KDS
Relational/SQL
KDL
@ KMS
2 S —
LIL KCS

Object-Oriented/Object-Oriented Language

KMS
1

Pl

W
haNp gl

Figure 6. The Modular, Conceptual Software Design for the Multi-Model and

model and for transactions in a different data language.

Multi-Lingual Interfaces

For this, one requires additional

capability, designated the cross-model accessing capability [Hsiao1992].

The subject of th

user to access an obj

is thesis is such a cross-model accessing capability that will enable a

ect-oriented database as if it is relational. For example, an object-

oriented database user working on the multi-model and multi-lingual database system can

14

create an object-oriented database that he can access using an object-oriented lunguage.
Now, the cross-model accessing capability will enable a second, relational database user
to log onto the same system and access the object-oriented database as if it is relational. The
system will display to this new user a relational schema and will respond to SQL
commands. Although, theoretically, such cross-model accessing is possible among all of
the four databases in any combination, prior to this thesis the cross-model capability existed
only for accessing a hierarchical database using the relational model and SQL language
[Zawis1987].

Like the individual LIs, the cross-model accessing capability becomes a reality by
developing additional software. Moreover, the additional software i1s much less
complicated than the conceptual and modular LIs depicted in Figure 6. Figure 7 illustrates
the cross-model design. A user of database i wishes to access database j using i’s model
and language. To accomplish this, it is not necessary to implement another L1. As depicted
in Figure 7, Lli obtains database j’s schema, which is transformed into that of i. Using this
transformed schema, now the user of database i can manipulate database j using i's
language. The new software required for the cross-model accessing capability includes the

schema transformer and a number several other procedures, which are added to i's L1. The

cross-model access is entirely transparent to the user of database i.

3

Lli - Llj .. LIn

/.
Schema
2)
Schema i)
\(3)

i-to-] SCHEMA
€ TRANSFORMER

)

6 ©

(0) A user of database j has been using the database j with the the schema j.
(1) A user of 1 requests the use of a database, j.

(2) The schema of database j, i.e., schema j, is fed into the i-to-j schema
transformer.

(3) The output from the transformer is an equivalent schema, schema ij, for the
same database, j.

(4) The user of i can now access database j with the new schema, ij

Figure 7. The Cross-Model Accessing Capability

16

III. THE OBJECT-ORIENTED DATABASE

The object-oriented data model is the most expressive yet developed. Unlike the
relational and other established DBMS, however, the object-oriented lacks a standard
specification of its model and language, or any standardized set of capabilities beyond the
general features which distinguish the object-oriented paradigm.Thus, like all object-
oriented databases, the object-oriented LI in the multi-model and multi-lingual database

system is unique [Moore1993].

A. THE SCHEMA

The object-oriented schema is based on the abstract concepts of specialization and
generalization expressed through the fundamental object-oriented data structure, the class.
In an object-oriented database a class consists of a named set of attributes and transactions.
A class is a specialization of another class if it contains all of the attributes and transactions
of the other class plus some additional attributes and/or transactions the other class does not
contain. A specialization of a class is called a subclass of that class. A generalization of a
class, on the other hand, contains some, but not all, of the attributes and transactions of
another class. A generalization of a class is called a superclass of that class. The term
inheritance also describes this relationship. A subclass, as a specialization of a superclass,
acquires (i.e., inherits) all of the attributes and transactions of its superclass. Conversely,
the superclass, as a generalization of its subclasses, does not acquire any of the attributes
and/or transactions of its subclasses. A subclass may inherit attributes and transactions
from more than one superclass, a relationship termed multiple inkeritance. [Elmasri1986].

The schema defined thus far forms a directed lattice of an unlimited number of levels.
The additional abstract concept of aggregation completes the object-oriented schema
structure. Aggregation describes a class which includes as attributes one or more other

classes termed component classes [Elmasril986]. A class that includes one or more

17

component class auributes is called a composite class. A component class may itself
include component class attributes which are in turn composite classes in themselves. A
component class may have its own inheritance lattice as well. The schema’s lattice can
extend on indefinitely in this way.

Figure 8 depicts an object-oriented version of the attribute-based Vehicle database
referred to earlier in Figure 3. Key values of subclasses have been dropped. The solid lines
indicate the inheritance relationship, and the dashed lines indicate components. The
phrases ‘“is-a-kind-of” and ‘“is-a-part-of” further describe the inheritance and the
component relationships respectively. Since the schema is a directed lattice, these
descriptors work one way only. Thus, an Automobile “is-a-kind-of” Vehicle, but the
converse is not true, i.e., the Vehicle is not “a-kind-of” Automobile. Similarly. the
Company class “is-a-part-of’ the Vehicle class, but the opposite is not true.

Since any marketable DBMS allows the user to modify the schema after instantiating
the database, operational systems such as ORION, IRIS, and GEMSTONE include this
capability [ACM1989]. Schema modification, however, is not necessary to demonstrate the
Multiple-Models-and-Languages-to-Single-Model-and-Language concept in the mulu-
model and multi-lingual database system. The system, therefore, lacks this capability,

though it could be added in the future if desired.

B. THE DATABASE

An instance of a class is an object. As the class defines the structure of the object-
oriented schema, the object defines the instantiation of the classes. The Vehicle database
could include any number of objects of the classes Vehicle, Commercial, Automobile,
Fornauto, Truck, Company, and Fornco, each of which would correspond to an actual thing
or concept in-the real world. It is important to note that an object of the class Fornauto, in

addition to its own attributes, includes all of the attributes and transactions from its

18

Root

Database Transactions:
INSERT
UPDATE
DELETE
RETRIEVE
/ is-a-kind-of \
is-a-kind-of | . .
Commercial is-a-kind-of
CUSTOMER |,
Vehicl “
ehicle REVENUE
ID o
is-a-part-of
MODEL / ., Company
- is-a-part-of /...
MANUFACTURER| “# P T B NAME
is-a- - LOCATION
x
1s-a-kmgf is-a-kind-of *
Truck is-a-kind-of
is-a-kind-of I TONNAGE I l
Fomnco

l COUNTRY l

Automobile
{ PASSENGERS |

!

is-a-kind-of
|

Sornauro
_ |CATEGORY |

—— Inheritance
................ Component

Figure 8. The Object-Oriented Schema of the Vehicle Database

19

superclasses Automobile, Vehicle, Commercial, and Root via class inhenitance. An object
which is an instance of the class Vehicle, however, will include, in addition to its own, only
those attributes and transactions in the Root class. To illustrate, Figure 9 depicts a Vehicle
object with a foreign manufacturer.

Instances of component and composite classes, are referred to as component objects
and composite objects respectively. A component object is an independent thing in itself,
separate from the composite object of which it is a part. Thus, a single object may occur as
an attribute value in many composite objects. In an object-oriented database instantiated
with the data in Figure 4, the CUSTOMER attribute would have the value “National” for
all instances of the composite class Commercial. The object named “National,” however,
exists only once in the database. The component attribute includes the entire inheritance
hierarchy as well. Thus, the CUSTOMER attribute could have been an instance of the
subclass Fornco.

In most object-oriented databases the system uniquely defines each object by
assigning to it an object identification value [KimA1990]. In the mult-model and multi-
lingual database system, however, the user assigns this unique identification value in the
same way that he would an attribute. The value is a one-up sequence number of type integer
and is called “OBJECTID.” This value is assigned in the left, highest superclass in the
inheritance hierarchy, excluding the Roor class. Any object which is an instance of a
subclass will inherit its OBJECTID from this superclass. In the case of multiple inheritance,
a single value is assigned to the OBJECTID in all of the superclasses.

It is important not to confuse the object identification value with the relational primary
key. Although in this implementation it resembles an attribute, the OBJECTID field should

be invisible to the object-oriented database user.

20

Root
Database Transactuons:

INSERT
UPDATE
DELETE
RETRIEVE

\

is-a-kind-of

/

1s-a-kind-of

is-a-kind-of

Commercial
CUSTOMER |,
Vehicle REVENUE
ID / ista-part-of
MODEL e
; " pany
-aspart-of / el)
issa-kind-of [20 V77T NAME
LOCATION
/ is-a-kind-of *
is-a-kind-of
is-a-kind-of | TONNAGE [
Formco

[COUNTRY |

Automobile
| PASSENGERS |

}

is-a-kind-of
l

Fomauto
|CATEGORY |

—— Inheritance
................. Componen‘

Figure 9. A Vehicle Object

21

C. THE TRANSACTIONS

The capability which allows the user to specify those operations which manipulate the
attributes in a class is called encapsulation. Encapsulation is an important feature of object-
oriented databases since it allows the user to control data accesses. Plans for future research
include implementing this capability in the multi-model and multi -lingual database system.
In the meantime, the object-oriented LI is restricted to the four standard database operations
of RETRIEVE, UPDATE, INSERT, and DELETE.

The Root class, a standard feature of most object-oriented DBMSs, contains all of
those system features that it is desirable or necessary for all of the classes in the database
to inherit. In the multi-model and multi-lingual database system, all of the classes in the
data model inherit the transactions in the Root class and have no transactions of their own.
Further, of the four transactions listed in Figure 8, only RETRIEVE has been implemented.

The RETRIEVE transaction is limited to two levels of the inheritance hierarchy. The
remaining three transactions and the capability to query across more than two levels of
inheritance will be added in future work on the object-oriented LI. This thesis aims only to
demonstrate relational-to-object-oriented cross-model accessing via schema
transformations. Completing the object-oriented transactions, therefore, is not an objective

of this work.

1. Creating the Database

To create an object-oriented database all of the attributes of each object are listed
in the order of a descending traversal of the inheritance hierarchy. The traversal begins with
the left, highest superclass and ends with the last attribute of the object’s class. The object-
oriented KMS maps the schema to an equivalent ABDM in which each class corresponds
to a single attribute-based record. The KMS adds the OBJECTID field to each of the
attribute-based records in order to link all of the classes of an object. The KMS then

translates the list of attributes into a series of ABDL INSERTS, and the KCS enters them

22

into the system. Figure 10 depicts the INSERTSs which would create an object-oriented

version of the Vehicle database.

[INSERT(<TEMP, Vehicle>, OBJECTID, 1>, <Id, 01>, <MODEL, Mustang>, <MANUFACTURER, 5) |
[INSERT(<TEMP, Vehicle>, <OBJECTID,2>, <Id, 02> <MODEL. F100>, <MANUFACTURER, 5>) |

[INSERT(<TEMP, Vehicle>, <OBJECTID, 3>, <Id, 03>,<MODEL., Accord>, <MANUFACTURER, 6>) |
[INSERT(<TEMP, Commercial>, <OBJECTID, 1>,< CUSTOMER, 4>.< REVENUE, 290>)]

[INSERT(<TEMP, Commerciai>, <OBJECTID, 2>.< CUSTOMER, 4>,< REVENUE, 290>) |

{ INSERT(<TEMP, Commercial>, <OBJECTID, 3>.< CUSTOMER, 4>.< REVENUE, 290>) |

[INSERT(<TEMP, Automobile>, <OBJECTID, 1> <PASSENGERS, 6>)]

[INSERT(<TEMP, Automobile>, <OBJECTID, 3>,<PASSENGERS, 6>)]

[INSERT(<TEMP, Formnauto>, <OBJECTID, 3>,<CATEGORY, Compact>)]

[INSERT(<TEMP, Truck>, <OBJECTID, 2>,<TONNAGE, 3>)]

{ INSERT(<TEMP, Company>, <OBJECTID, 4>, <NAME. National>, <LOCATION, Newyork>) |
[INSERT(<TEMP, Company>, <OBJECTID. 5>, <NAME, Ford>, <LOCATION, Newark>)]
[INSERT(<TEMP, Company>, <OBJECTID, 6>, <NAME, Honda>, <LOCATION, Tokyo>)]

[INSERT(<TEMP, Fomco>, <OBJECTID, 6>, <COUNTRY, Japan>)]

Figure 10. Creating the Object-Oriented Database

In the case of composite objects, the user assigns an OBJECTID value to the
component class attribute rather than a key as in the attribute-based database. This
artificiality would normally be hidden from the user, who would make a selection from a

list of existing database objects.

23

2. Accessing the Database

Because only the RETRIEVE query is functioning at this time, the comments on
object-oriented transactions which follow are general rather than specific to the
implementation. They describe the constraints inherent in the design of the object-oriented
model.

An object-oriented transaction against a class affects all instances of that class’s
subclasses. Thus, a RETRIEVE or DELETE against the Vehicle class in the object-oriented
database of Figure 8 will act not only upon all Vehicle objects, but upon all Truck.
Automobile, and Fornauto objects as well. On the other hand, a transaction does not affect
instances of a subclass object’s superciasses. A retrieval against the Truck class, for
example, will act only upon Truck objects.

An object-oriented transaction against a component class, either directly or
through the composite object of which it is a member, raises concerns with its referential
integrity. Deleting the Company class object named “National” from the Vehicle database
affects all of the composite objects which inherit the class Commercial. The same holds
true for UPDATEs of component objects. Inserting a component object, however, can
affect no existing objects, and the only integrity constraint associated with the INSERT
transaction is maintaining the uniqueness of each of the OBJECTIDs in the database.
RETRIEVE transactions do not alter the state of the database and are, therefore, of no
concemn with respect to database integrity.

In the multi-model and multi-lingual database system the user is responsible for
enforcing the overall integrity of the database through the assignment of unique
OBJECTID values. The user must also enforce the referential integrity in the component

and composite classes.

24

IV. EQUIVALENT RELATIONAL SEMANTICS

The object-oriented data model owes its richness primarily to three features:
inheritance, composite classes, and encapsulation. The relational model achieves an
equivalent semantics of inheritance and composite classes through the use of keys.
Similarly, by the use of security views and integrity constraints the relational model can

approximate encapsulated transactions.

A. GENERALIZATION, SPECIALIZATION, AND AGGREGATION

At the highest level it is the abstract concepts of generalization, specialization, and
aggregation which an equivalent relational schema must express. While these abstractions
are inherent in the object-oriented class structure, the equivalent relational schema must
adhere to some system of transformational rules for assigning keys and constructing

relations in order to express them.

1. The Object Identification Value as the Key

The obvious structural differences between the relational and object-oriented
models reflect deeper, underlying differences in approaches to data modeling. These
differences become apparent upon examination of the object identification value.

In the relational model each tuple of a relation must have a unique attribute value,
or group of attribute values, which is the primary key. To the user every instance of a
relation appears different from every other instance in some way. In the object-oriented
model this constraint does not apply. An object-oriented database may include any number
of identical objects as database items. The system identifies each object by assigning it a
unique object identification value, but to the user all of the objects would look exactly the
same. Furthermore, unlike a relational key, the object identification value is assigned to an
object only once, and if the object is deleted, the value is never again used. Thus, the object-

oriented identification value is integral to an object‘s existence in the database system

25

rather than only a descriptive attribute. The system implementation must have this value in
order to manipulate the different objects in the database, but it is of no use to the object-
oriented user, nor is it reflected in the data model. In the absence of any object-oriented key
values, however, the transformation to a relational schema is only possible by providing the
user with this object identification value as a key.

On the object-oriented side, such a use of the object identification value is a
definite, if subtle, corruption of the data model. Now, the user sees a code which appears
to be another field describing the object. It is not integral to the object and, depending on
the method of transformation, it may only refer indirectly to all of the different parts of a
fragmented object via foreign keys.

On the relational side, this means that any attributes of a relation will depend only
upon the object identification value as primary key, and the relations will, therefore, contain
no functional dependencies [KimB1990]. The object identification value can serve as a

foreign key also, in which case a relation would have an inclusion dependency.

2. The Class

As the relation is the structural basis of the relational model, so the class is the
structural basis of the object-oriented model. The problem of transforming a structure of
classes to a structure of relations, however, lies in transforming the relationships among the
classes, rather than only the class itself which is a trivial operation. An equivalent relational
schema requires a transformation of the relationships among object-oriented classes into
equivalent relational structures. Two features of the object-oriented data model relate one
class to another: composite classes and inheritance.

The composite class expresses the concept of aggregation, an abstraction which
comes naturally to the relational model. The composite class translates directly to a relation
by the use of foreign keys. As one relation might include another via its foreign key
attribute, so a composite class might include another via its object identification value.The

object identification value of a component class becomes a primary key attribute of a

26

corresponding relation. The relation corresponding to the composite class then includes this
primary key value as a foreign key attribute. Further, a component class attribute (i.e.,
component object) of a composite object must refer to an existing object of that component
class, just as in a relation a foreign key attribute must refer to an existing tuple of some other
relation. Formal relational terminology describes this relationship as an inclusion
dependency. For tuples r and s of relations R and S with attributes X and Y respectively.

TXMT) S TY(S)

Substituting object-oriented terms—i.e., for objects r and s of component class R with
attributes X, and composite class S with attributes Y, respectively—the above relation also
applies. Save for the reservations concerning the equivalencies of key values addressed at
the end of the previous section, the composite class loses nothing in translation.

Unlike the composite class, inheritance corresponds directly to no relational
structure. On the one hand there is the system of superclasses and subclasses which make
up an object, on the other there is the object itself. A separate relation could correspond to
each class in an object-oriented schema, or to each possible occurrence of an object in the
schema. Preserving the class distinction in the first fragments the object; preserving the
object’s coherence in the second loses the properties of generalization and specialization.
Other methods of transformation would convey the object-oriented model, but pose a

different set of problems for the resulting relational schema.

B. TRANSFORMING THE SCHEMA

A successful schema transformation must remain as faithful as possible to the nuances
of structure and relationships in the original object-oriented data model. In other words, the
relational schema produced by the schema transformer must reflect the various structures
of the original object-oriented model, i.e., superclasses and subclasses, even though the
relational model lacks comparable structures. At the same time the resulting relational
schema must follow, as much as possible, accepted relational standards of normalization

and design.

27

None of the three methods discu: ied below results in a perfect transformation. All
produce relational schemas which reflect the functional dependencies inherent in the
original object-oriented database. Of the three, the class-based approach best reflects the
original object-oriented database without corrupting the relational. Accordingly, the mult-
model and multi-lingual database system uses this approach for the relational-to-object-

oriented cross-model accessing capability.

1. The Class-based Approach
Figure 11 illustrates the relational schema resulting from the application of the
class-based approach to the Vehicle schema in figure 8. This is the simplest way to
transform the schema. Each class becomes a separate relation containing all of the attributes
of the class. If a class is not a subclass, its object identification value becomes the primary

key attribute of its corresponding relation. If a class is a subclass, the object identification

Company

OBIECTID| NAME | LOCATION

PK t
ﬁ_\ \\
Venicle FK Commercial FK
Fomeo OBIECTID| MODEL} MANUFACTURER OBJECTID| CUSTOMER | REVENLUE
PK/FK| opcmm | country PK oK

\ Truck

PK/FK QBJIECTID § PASSENGERS

TONNAGE

Automobile

Fornauta

PK/FK | oprecTID | CATEGORY

Figure 11. The Class-Based Transformation of the Vehicle Database

28

value becomes the primary key attribute of its corresponding relation as well as a foreign
key which points to relations corresponding to its superclasses. In cases of multiple
inheritance, all of the relations corresponding to superclasses of a subclass will have the
same primary key value.

This method preserves all of the superciass and subclass distinctions, but results
in a fragmented object. On the relational side, this transformation works well without
producing nulls in the relations. An inclusion dependency holds here for the subclasses of
a superclass. Formally, for tuples r and s of relations corresponding to subclass R and
superclass S with attributes X and Y respectively:

XN S T(YH(S)

2. The Object-based Approach

Figure 12 illustrates the object-based approach. In this method all of an object’s
subclasses and superclasses are combined into a single relation. The object identification
value becomes the relation’s primary key. Unlike the class-based method, this method
preserves very well the correspondence to an object upon which object oriented design is
based. It also works well from a relational standpoint, without producing null values. On
the object-oriented side, however, it loses the concept of the superciass-subclass
relationship entirely. This transformation is not as satisfactory as the class-based, since it

does not convey the generalization and specialization abstractions.

3. The Combined Approach

A third method combines the first two approaches. In this method all of tne
classes in an inheritance hierarchy would become a single relation containing all of the
attributes of the classes. Again, the object identification value becomes the relation’s
primary key. An attribute, “TYPE”, would indicate of which class the object was an
instance.

Although this method seems to maintain the superclass-subclass relationship, it

actually would only directly indicate the superclass, i.e., Vehicle, and subclass to which an

29

Commetcial FK

QBJECTID | CUSTOMER

PK

Vehicle FK

OBJECTID | MODEL | MANUFACTURER

PK
Company
PKY opreeTn] NaveE | LocaTion
Fomco
OBIECTID| NAME | LOCATION | COUNTRY
Truck FK

QBJECTID | MCDEL | MANUFACTURER | CUSTOMER | REVENUE} TONNAGE

N/ 4/

QOBJECTID § MODEL | MANUFACTURER | CUSTOMER | REVENUE{ PASSENGERS

— 7]

Fornauto K

OBJECTID | MODEL | MANUFACTURER { CUSTOMER | REVENUE|] PASSENGERS| CATEGORY

PK

Figure 12. The Object-Based Transformation of the Vehicle Database

object corresponds. Intermediate classes in the inheritance hierarchy do not convey. There
is also a pr blem with multiple inheritance. An instance of a superclass other than the one
naming the relation would appear to be a subclass.

Figure 13 illustrates the combined method. The problem with multiple inheritance
is resolved here by making a separate relation for each additional superclass after the first.
Thus, Commercial is a relation by itself, but is also included in the Vehicle relation. An
alternative solution would include all superclasses in the single relation’s name, e.g.,

Vehicle-Commercial, and thus do away with the separate relation corresponding only to the

30

Commercial

OBJECTID| CUSTOMER | REVENUE

\ o
PK 1 OBJECTID| NaME | LocaTioN | TYPE ('(')l’.\'ﬂ:l

J

PK FK

Vehicle FK FK

OBJECTID | MODEL | MANUFACTURER| TYPE| CUSTOMER | R"EVENUE| PASSENGERS| CATEGORY | TONNAGE

PK

Figure 13. The Combined Class- and Object-Based Transformation of the
Vehicle Database

superclass. Neither of these alternatives, however, produces a clean transformat : and the
problem of directly expressing the intermediate classes remains.

Another sotution wauld add to the relations in Figure 13 boolean fields for each
class in an inheritance hierarchy. The rclation would reflect via the booleans all of the
participating classes in the inheritance hierarchy and solve both the multple inheritance
problem and the expression of intermediate classes. This method, however, would still have
the problem of assigning to the relation an appropriate name. Also, from a reladonal
standpoint, this method would result in an unsatisfactory number of null fields.

Although, graphically, Figure 13 appears the simplest of the three methods, the
problems from both the relational and object-oriented sides of the transformation make it

less desirable than the other two.

C. THE TRANSACTIONS

Since the object-oriented LI lacks encapsulation, the cioss-model accessing capability

does not include an equivalent capability using security views and integrity constraints. The

31

much simpler problem consisted of translating SQL commands into an equivalent series of
ABDL commands constrained to maintaining the integrity of the object-oriented database.
The foiiowing cuuminents address the affects of the four basic SQL commands upon an
object-oriented database which was transformed using the class-based approach. Another
method of transforming the schema would affect the database differently. Since all of the
transactions affect composite classes exactly as they would relations with foreign keys, the

discussion is limited to the affects on the inheritance hierarchy.

1. SELECT

The requirement to execute EQUI-JOINs in order to retrieve subclass objects
characterizes the SQL SELECT. A SELECT against a Fornauto relation, for example,
yields only the single attribute, CATEGORY, of which it is composed. Retrieving all of the
attributes of the Fornauto object would require an EQUI-JOIN on the OBJECTID primary
and foreign keys of all of the relations corresponding to the object’s superclasses.

A SELECT against a relation corresponding to a class that is not a subclass, on
the other hand, will act on all objects of that class as well as on all objects that are subclass
objects of that relation’s class. A SELECT against the Vehicle relation, for example, will
yield requested attributes of all Vehicle objects in the database. It will also yield these
attributes of all Fornauto, Automobile, and Truck objects in the database. Such a SELECT
projects only those attributes in the Vehicle relation, however, and none from the relations
corresponding to the subclasses.

The required EQUI-JOIN transactions are unnatural to the object-oriented
paradigm. Unlike the SQL SELECT, an object-oriented retrieval against Fornauto would
yield all of the attributes of the object, including those of classes Automobile, Vehicle, and
Commercial. The inability of the relational transformation to match this capability without
the use of the EQUI-JOIN is a shortcoming of the class-based approach to schema

transformation.

32

2. UPDATE

UPDATE of a tuple of any relation affects only the object corresponding to the
OBJECTID field of the relation. Since the relational model produced by the schema
transformer makes no attempt to avoid duplicated values, UPDATE anomalies are not an

issue.

3. INSERT
An SQL INSERT of a tuple corresponding to an object whose class is not a

subclass requires no translation. Only the requirement to assign a unique OBJECTID value
constrains such an INSERT.

INSERT of a tuple corresponding to a subclass object, however, acts upon all of
the relations which correspond to its superclasses as well. Moreover, the INSERT
transaction alters the object-oriented database. Since the inheritance hierarchy is not
apparent in the relational model, the system must prompt the user to enter values for the

attributes of all of the relations which make up the object or else reject the INSERT.

4. DELETE
Like the INSERT, DELETE also alters the database. An unqualified DELETE

against a relation corresponding to a non-subclass, must automatically delete all tuples of
the relation as well as all tuples of relations corresponding to subclasses. Similarly, a
DELETE of a subclass also must delete all tuples of the subclass relation and all tuples of
relations corresponding to subclasses of the subclass. Additionally, the subclass DELETE
must delete those tuples coi:esponding to the object’s superclasses which have the same
OBJECTID foreign key values as the subclass instances.

In Figure 11, therefore, a DELETE against the Vehicle relation will delete from
the database all Vehicle, Fornauto, Automobile, and Truck tuples. A DELETE against
Automobile, however, deletes only Automobile and Fornauto tuples and those tuples of
Vehicle and Commercial which are related to Automobile by foreign key OBJECTID

values.

33

V. THE CROSS-MODEL ACCESSING SOFTWARE

The software for the cross-model accessing capability is neither a new, separate LI nor
is it an interface between the relational and object-oriented LIs. Rather, the software

extends the capability of the relational LI and is integrated in the relational software.

A. THE DESIGN

The software design for the schema transformer follows closely that of the previous
work on the relational-to-hierarchical cross-model accessing in [Zawis1986]. For the
transactions, however, the design departs from the method of the previous work, which uses
the hierarchical LI procedures to process SQL. transactions.

Using the object-oriented i I would require two sets of data structures, one for the
relational and one for the object-oriented. The software’s independence from the object-
oriented LI eliminates the need for these additional data structures, with the except ion of
those holding the object-oriented schema. Additionally, this independence means that SQL
commands translate directly into the kernel language rather than into intermediary object-
oriented transactions, greatly simplifying the language translation. Incidentally, this also
allows the cross-model accessing software to avoid the temporary limitations of the object-
oriented LI’s transactions. Unlike the object-oriented LI, the cross-model accessing
capability includes the full range of standard SELECT, INSERT, UPDATE, and DELETE
transactions.

Rather than divide the cross-model accessing procedures among several modules of
the relational LI, the design favors completing necessary actions in a single module, which
then calls other relational modules using control statements. Thus, rather than scatter
numerous procedures throughout the KMS, KC, and LIL modules, the software design
favors performing all of the actions in the single module most involved in the execution of
a transaction. This practice minimizes the quantity of code required and makes the

procedures much easier to understand.

34

The reasoning of the previous paragraphs resulted in the following set of design

principles for the cross-model accessing software:

* Restrict code to the relational LI and its data structures, except for the object-oriented
schema.

« Change the relational LI and the object-oriented and relational data structures as little
as possible.

* Cluster new procedures in as few of the relational modules as possible, rather than
scatter pieces throughout the modules.

» Maintain as much as possible the modular framework of the multi-model and multi-
lingual database system.

The work of [Bourgeois1993] provides a systematic plan for the integration of new

capabilities in the multi-model and multi-lingual database system.

B. THE DATA STRUCTURES

The header file “llicommdata.h” contains most of the C programming language data
structures used in the multi-model and multi-lingual database system. The data structures
of each of the LIs, including the cross-model accessing procedures, are globals and differ
only in so far as necessary to implement their respective databases. The use of common data
structures and standardized naming conventions greatly reduces the quantity of new code
required to add new software procedures. Code patched from one LI to a new LI often
requires only minor coding changes and changing the names of the data structures in order
to make it work in the new LI.

The software for the cross-model accessing capability adds no new data structures to
those of the relational and object-oriented LIs. The union data structure in Figure 14
provides access to the schema of any of the MLs of the system via pointers contained in
individual header files of the respective LIs. On the object-oriented side, the only data

structures used for cross-model accessing are those which hold the schema. The dbid_node

35

union points to a linked list of obj_dbid_node structs, also depicted in Figure 14, which

hold information

union dbid_node
{
struct rel_dbid_node *dn_rel;
struct hie_dbid_node *dn_hie;
struct net_dbid_node *dn_net;
struct ent_dbid_node *dn_fun;
struct obj_dbid_node *dn_obyj;
}

struct obj_dbid_node
{
char odn_name[DBNLength + 1];
int odn_num_cls;
struct ocls_node *odn_first_cls;
struct ocls_node *gdn_curr_cls;
struct obj_dbid_node *odn_next_db;
|5

Figure 14. Object-Oriented Database Node Structures

about each object-oriented database in the system. Each of these structures in turn points to
a schema, which consists of linked lists of classes, each class in turn pointing to a linked
list of attributes. The class nodes also point to lists of superclasses and subclasses. The
superclass and subclass nodes include pointers back to the class node that represents the
superclass or subclass itself. Figure 15 depicts the object-oriented schema data structures.

The relational data structures differ in no significant way from those of the object-
oriented. Therelational schema, like the object-oriented, consists of linked lists of relations
and attributes, without the lists of superclasses and subclasses.

It is important to note that the schema data structure represents only the data model.

not the actual storage of the data. The schema provides all of the information necessary to

36

struct ocls_node /*class nodes*/

{

char ocn_name[RNLength + 11;
int och_num_attr;
int ocn_supcls;

int ocn_subcls;

int ocn_visited:
struct o_supcls_node *ocn_first_supcls;
struct o_supcls_node *ocn_curr_supcls;
struct o_subcls_node *ocn_first_subcls;
struct o_subcls_node *ocn_curr_subcls;
struct oattr_node *ocn_first_attr;
struct oattr_node *ocn_curT_attr;

struct ocls_node

X

struct oattr_node [*attribute nodes*/
class node */
{
char oan_name[ANLength + 1];
char oan_type[RNLength + 1};
int oan_length,
int oan_key_flag;
struct oattr_node *oan_next_attr;
B

struct o_supcls_node /*superclass nodes*/
{
char osn_name[RNLength + 1];
struct ocls_node *osn_supcls;
struct o_supcls_node *osn_next_supcls;
b

__struct o_subcls_node /*subclass nodes*/

{
char osn_name[RNLength + 1};
struct ocls_node *osn_subcls;
struct o_subcls_node *osn_next_subcls;

L

Figure 15. The Object-Oriented Schema Data Structures

37

build the ABDL commands, which the KCS then passes into the KDS via system functions.,

On receiving an ABDL command, the KDS performs all of the necessary operations to

create and manipulate the database. The LI and cross-model accessing software. therefore,

need only build the appropriate ABDL commands in order to create and manipulate a

database. This is a fundamental property and definite advantage of the Multiple-Models-

and-Languages-to-Single-Model-and-Language technical approach.

The software design of the multi-model and multi-lingual database system includes a

multi-user capability, although the system functions as a single-user system at this time.

Figure 16 depicts the struct, called user_info, that holds all of the information associated

with each user. This data structure contains the li_info union, also in Figure 16, which

struct user_info

{

char

union

struct
);

union li_info

{
struct

struct
struct
struct
struct

b

li_info
user_info

sql_info
dli_info
dml_info
dap_info
ool_info

ui_uid[UIDLength + 1];
ui_li_type;
ui_next_user;

li_sql;
1i_dlii;
li_dml;
li_dap;
li_ool;

Figure 16. The User Data Structures

contains the data structures for the specific LI in use. The sql_info struct, called li_sql in

Figure 16, provides access to information necessary to process SQL requests.

38

Figure 17 shows the sql_info struct. Typically, procedures access this struct in the first
few lines of code to access all of the required information. This data structure holds
information on the current database, files, and relational catalog, as well as all of the other
data structures used by the LIL, KMS, KCS, and KFS modules. Since the cross-model
accessing software does not use the object-oriented LI, it requires only the relational
user_info data structures. The object-oriented schema is acquired through the use of a

global pointer and is not attached to any user structure.

struct sql_info

{

struct curr_db_info si_curr_db:
struct file_info si_file;

struct tran_info si_sql_tran;
int si_operation;
struct ddl_info *si_ddl_files;
struct tran_info *si_abdl_tran;
int si_answer;
union kms_info si_kms_data;
union kfs_info si_kfs_data;
union kc_info si_kc_data;
int si_error;

int si_subreq_stat;

Y

Figure 17. The sql_info Data Structure

The cross-model accessing software uses only those parts of the user data structures
which are necessary to execute the transactions. Effective use of these data structures,
however, requires an understanding of the overall framework of their organization.

Appendices A and B contain schematics of the most important data structures.

39

C. THE IMPLEMENTATION

The cross-model accessing implementation depends heavily on the method that the
object-oriented LI uses to map the database into an equivalent, object-oriented ABDM (i.e.,
ABDM(object-oriented)) in the KDS. Because the object-oriented LI maps each superclass
and subclass of an object— rather than the entire object— to a separate attribute-based
record, the SQL transactions map to attribute-based transactions in a specific way
[Hughes1991].

Eight procedures comprise the whole of the cross-model accessing software.
Appendices C, D, and E contain all eight of the cross-model procedures as well as those

relational ones which are germane.

1. The Schema Transformer

The schema transformer consists of two procedures in the relational LIL:
traverse_ool_schema() and translate_obj to rel(). After a user identifies himself as a
relational user, he enters a database name at the terminal. The r_process _old() procedure
searches first among all of the relational databases in the system for the requested database.
If the search fails, the procedure calls check_alternate_models() which searches among the
hierarchical and, finally, the object-oriented databases. If the database is object-oriented,
the search procedure, traverse_ool_schema(), returns a pointer to the schema. Procedure
check_alternate_models() then passes the object-oriented schema to
translate_obj_to_rel(), which allocates a relational schema according to the transformation
rules articulated in Chapter [IV. After the transformation, procedure
check_alternate_models() assigns to the sql_info user structures those values necessary to
execute transactions against the object-oriented database.

Because the object-oriented LI maps the database to the kernel by class, the cross-
model accessing software uses only the object-oriented schema to translate SQL
transactions to the ABDL(object-oriented). The relational schema serves only to provide

the user with a relational interpretation of the object-oriented database. If the object-

40

oriented mapping were by objects, however, the software would have referred to the

relational schema as well.

2. The Transactions

As noted earlier, the cross-model accessing software translates SQL commands
to equivalent ABDL commands rather than to the object-oriented language. The relational
LIL and KCS modules contain all of the new procedures required to perform these

translations.

a. SELECT and UPDATE

For these transactions, the mapping by class makes translation unnecessary.
There is a one-to-one-to-one correspondence between relational relations, object-oriented
classes, and attribute-based records. An SQL SELECT or UPDATE command will affect
only that record corresponding to the relation indicated. Since each relation, in turn,

corresponds to a class, these comi.iands are transparent.

b. INSERT

For INSERT commands the software must maintain the object-oriented
database structure of superclasses and subclasses. This means that the system must not
allow the user to insert a tuple of a relation corresponding to a subciass without inserting
all of the tuples of relations corresponding to the appropriate superclasses as well. Since the
INSERT requires that the user enter data, the problem becomes one of user interface.

Procedure queries to KMS() initiates the cross-model accessing INSERT. A
conditional checks to see if the transaction is an object-oriented INSERT request and, if so,

calls procedure insert_to_object_oriented(). Procedure insert_to_object_ oriented() calls

41

the recursive procedure get obj inserts{j. If the INSERT relation corresponds to a

subclass, the following message appears on the screen:

In order to maintain the integrity of the object-oriented base model,
INSERTS of all relations which correspond to superclasses in the
object-oriented hierarchy of the original INSERT are necessary.
INSERT a tuple for each relation when prompted. If entering from a
file, selections must offer appropriate INSERTs.If any INSERT is in
error or any superclass INSERTS are lacking. all preceding INSERTs

will be cancelled. <CR> to continue.

...

Procedure get_obj_inserts() traverses the inheritance hierarchy, at each node prompting
the user to select an INSERT corresponding to the appropriate superclass before proceeding

to the next. The following message appears on the screen at each node of the hierarchy:

INSERT a tuple of relation (relation name) now, having the same
OBJECTID attribute as the INSERT just attempted. If such a (relation
name) tuple already exists (i.e. has the same OBJECTID) you must start

INSERT: over, using a uniquc OBJECTID. <CR> to quit or continue.

For each superclass, get_obj inserts() stores a separate ABDL INSERT in an array of
character pointers. If the user enters an incorrect superclass or an OBJECTID value that is
not unique, all of the INSERTs are cancelled. Otherwise, on completion of the traversal,
control returns to insert_to_object_oriented(), and the procedure passes the INSERTSs one

by one to the KCS for entry inio the kernel.

42

¢. DELETE

Like the INSERT, the SQL DELETE transaction must maintain the integrity
of the object-oriented database. All tuples of relations corresponding to superclasses and
subclasses of tuples that satisfy the conditions of a transaction must be deleted. The
OBJECTID values identify affected tuples.

The KCS module contains all of the software for execution of the cross-
model accessing DELETE, since it consists of building and sending to the kernel an
appropriate series of ABDL DELETE transactions and does not require user interaction. On
receiving an object-oriented DELETE, the procedure r_Kernel Controller() calls
object_oriented_delete(). This procedure must first identify the OBJECTID values of all of
the specified tuples by calling procedure ger objectids(). Procedure getr objectids()
transforms the DELETE into an ABDL RETRIEVE command, calls the relational
procedure get_response(), and stores the returned OBJECTID values in an array. Procedure
search_for_sub_and_superclasses() then traverses the object-oriented schema, building at
each node a series of ABDL DELETE requests—one for each OBJECTID value—and then

passing them one-by-one to the KCS for execution.

43

VI. CONCLUSIONS

The relational data model fails to convey the richness of expression inherent in the
object-oriented. The relational model is capable. however, of approximating the object-
oriented data model sufficiently to enable a relational user to manipulate the database via a
transformed schema. Although the resulting relational data model is not as rich, the benefits
gained by increasing access without training are often greater than those achieved by

learning to use the more expressive data ML.

A. SHORTFALLS

The object-oriented concepts of objects and inheritance do not transfer to the
relational. This deficiency is impossible to remedy without fundamentally changing the
relational data model. The transformation by class fragments the object; the transformation
by object loses the subclass and superclass inheritance relationships; combined methods of
transformation duplicate classes and relations and are ambiguous. These shortfalls are the
consequence of fundamental differences in the two data models.

With respect t~ the cross-model accessing capability in the multi-model and mult-
lingual database system, the capability is fully developed within the limitations of the
system hardware and software. All four of the standard transactions work. The system
handles all of the features of the object-oriented database, including composite classes and

single and multiple inheritance.

B. FUTURE RESEARCH

The object-oriented LI as well as the cross-model accessing capability were
implemented in the C programming language, since the MDBS hardware lacked the system
software to handle the object-oriented C++ language. If the object-oriented LI is converted
to C++ in the future, the cross-model accessing capability must accommodate the changes.

Specifically, implementing encapsulation is greatly simplified working in an object-

oriented language. When encapsulation is added to the object-oriented LI, whether or not

as a result of a conversion to C++, a corresponding transformation to the relational model
via security views and integrity constraints must accompany it. This complex problem
would provide the subject matter of another thesis.

The object-oriented method of mapping to the KDS by class closely resembles the
mapping of a relational database and facilitates the implementation of the cross-model
accessing capability. Due to the inability to retrieve across more than two attribute-based
records, however, an object-oriented retrieval of attributes from objects with more than two
levels of inheritance is greatly complicated and would require buffering intermediate
results and performing a series of queries in order to execute. A mapping by object, rather
than by class, may resolve this problem in a simpler way. Adopting a different method of
mapping the object-oriented database to the kernel will require re-working the cross-madel

accessing queries accordingly.

45

APPENDIX A - THE SCHEMA DATA STRUCTURES

Relational Schema

dbid_node

R xe_,dbxd_node:_
3&&1:&5‘:&',‘:{6655
Unneaponpeeses

ent_dbid_node:

M *
>
.
LS

..............

rdn_first_rel
rel_dbid_node / rdn_curr_rel

LAPPRTRN "u..

b;. d5id “AOdE ...

rel_dbid_node

kdn_next_db

rdn_first_rel

rdn_curr_rel

Object-Oriented Schema

dbid_node
obj_dbid_node
:ﬁlﬁ_&la__nm:

VT T e
Mevsavprmpesane
.

Siet dbid Rode)

eni dbid"node}
e dbid Rode’)

Yesanmasnomnann

obj_dbid_node

odn_first_cls

lodn_curr_cls

pdn_next_db

_first_cls
odn_curr_cls

/ ™_curr_attr

rel_node rattr_node
m_first_atwr }omer——p-Iran_next_aitr
m_next_rel ran_next_atr
m_first_attr
m_curr_attr
o_supcls_node
osn_supcls
ocls_node
osn_next_supcis
ocn_first_supcls
ocn_curr_supcls » sn_supcls

ocn_first_subcls

ocn_curr_subcla

ocn_first_attr

ocn_curr_attr

ocn_next_cls

osn_next_supcls

o_subcls_nod

osn_subcls

osn_nexi_subcls

/

pen_curr_supcls

46

osn_subcls

osn_next_sykCls

oallr. e

oan_next_atir

oan_next_attr

K N

APPENDIX B - TH™ USER DATA STRUCTURES

""""""" curr_db_info
file_winfo

user_info li_info sql_info
ui_li_tvpe 1i_sql si_curr_db
ui_next_user li_dli st_file
li_dml si_sql_tran
— li_dap si_ddi_files
ui_li_type
" li_ool si_abdl_tran
ui_next_user
si_kms_data
s1_kfs_data
si_kc_data

47

APPENDIX C - THE SCHEMA TRANSFORMER

R_PROCESS_OLD()

/* This proc accomplishes the following: */

/* (1) determines if the database name already exists, */
/* as a Relational model. If not, other models are */
/* checked, and if found, the schema is converted */
/* to arelational schema. */

/* (2} determines the user input mode (file/terminal), */
I* (3) reads the user input and forwards it to the parser */

{
char cat_name[DBNLength];

int found, more_input; /* boolean flags */
int num;
int i
struct rel_dbid_node *rdb_list_ptr, /* ptrs to the current */
temp_rdb_list_ptr; / database caralog */
struct rel_db_list_node *rdln_ptr; * pointer to current database list node */
struct ddl_info *ddl_info_alloc(); /* template and descriptor */
/* file structure */ /

struct ocls_node *cls_ptr;

/* create the template and descriptor structure if it doesn’t already exist*/
if (sql_info_ptr -> si_ddl_files == NULL)
sql_info_ptr -> si_ddl _files = ddl_info_alloc();

1* prompt user for name of existing database */
printf ("[7;7m\nEnter name of database ---->[0;0m ");
readstr (stdin, sql_info_ptr->si_curr_db.cdi_dbname);
to_caps (sql_info_ptr->si_curr_db.cdi_dbname);
found = FALSE;
rdb_list_ptr = dbs_rel_head_ptr.dn_rel;
temp_rdb_list_ptr = rdb_list_ptr;
while (found == FALSE)
{
I* determine if database name does exist */
/* by traversing list of relational schemas */
if ((dbs_rel_head_ptr.dn_rel) && (strcmp(sql_info_ptr->
si_curr_db.cdi_dbname,rdb_list_ptr->rdn_name)== 0))
{
found = TRUE;
sql_info_ptr->si_curr_db.cdi_db.dn_rel = rdb_list_ptr;

48

sql_info_ptr->si_curr_db.cdi_dbtype = REL;

strepy(sql_info_ptr->si_ddl_files->ddli_temp.fi_fname,R-
TEMPFname); strepy(sql_info_ptr->si_ddl_files->ddli_desc.fi_fname,R-
DESCFname); } /* end if */

else /* found == false */
{
if (rdb_list_ptr)
{

temp_rdb_list_ptr = rdb_list_ptr; /* save temp ptr to curr db */
rdb_list_ptr = rdb_list_ptr->rdn_next_db; /* get next rel db */
}

1* db name is not a rel db so end of list{'NULL’) is reached */
if (rdb_list_ptr == NULL)
{

/*check if db name is defined in the db list */

rdln_ptr = db_list_head_ptr;

while ((rdIn_ptr != NULL)&&(strcmp(rdin_ptr->rdin_name,

sql_info_ptr->si_curr_db.cdi_dbname)))
{

rdIn_ptr = rdIn_ptr->rdIn_next_db;
}

if (rdin_ptr)

{

r_load_catalog(rdln_ptr->rdin_name);

found = TRUE;

sql_info_ptr->si_curr_db.cdi_db.dn_rel =

dbs_rel_head_ptr.dn_rel;

sql_info_ptr->si_curr_db.cdi_dbtype = REL;

strepy(sql_info_ptr->si_ddl_files->ddli_temp.fi_fname,
RTEMPFname);

strepy(sql_info_ptr->si_ddl_files->ddli_desc.fi_fname,
RDESCFname);

'

else

{

/* check if db name is defined in another model */
rdb_list_ptr = temp_rdb_list_ptr; /* reset to last db */
check_alternate_models (&found, rdb_list_ptr);

/* if not, an error has been made, so re-enter name */
if (found == FALSE)

49

{
printf ("\nError - db name does not exist\n");
printf ("[7;7mPlease reenter valid db name ---->[0;0m ");
readstr (stdin, sql_info_ptr->si_curr_db.cdi_dbname);
to_caps (sql_info_ptr->si_curr_db.cdi_dbname);
rdb_list_ptr = dbs_rel_head_ptr.dn_rel;
} 7* end if found == false */
}
} * end if rdb_list ptr == null */

} /* end else */
} /* end while */

} /* end r_process_old */

50

CHECK_ALTERNATE_MODELS(found, rdb_list_ptr)

/* this routine calls other subroutines that check the Object-oriented,
Network, Hierarchical, and Functional schemas for the desired
database name. If found, the schema is translated to a corresponding
Relational schema and prepared for processing. */

int *found;
struct rel_dbid_node *rdb_list_ptr; /* ptr to the current rel database */

{

struct hie_dbid_node *hdb_list_ptr; /* ptr to the current hie database */
struct hie_dbid_node *traverse_dli_schema();

struct obj_dbid_node *odb_list_ptr; /* ptr to the current obj database */
struct obj_dbid_node *traverse_ool_schema();

I*first check the hierarchical databases*/
hdb_tist_ptr = NULL;
hdb_list_ptr = raverse_dli_schema();
if (hdb_list_ptr != NULL)
{

}
/*if db not found in hierarchical, check object-oriented*/
if (found == FALSE)
odb_list_ptr = NULL.
odb_list_ptr = traverse_ool_schema();
if (odb_list_ptr != NULL)
{
*found = TRUE;
sql_info_ptr->si_curr_db.cdi_dbtype = OBJ;
translate_obj_to_rel(rdb_list_ptr, odb_list_ptr);
strcpy(ZTEMPFname, add_path(sql_info_ptr->si_curr_db.cdi_dbname)):
strcat(ZTEMPFname, ".t");
strcpy(sql_info_ptr->si_ddl_files->ddli_temp.fi_fname, ZTEMPFname);
strcpy(ZDESCFname, add_path(sql_info_ptr->si_curr_db.cdi_dbname));
strcat(ZDESCFname, ".d");
strepy(sql_info_ptr->si_ddl_files->ddli_desc.fi_fname, ZDESCFname);

51

T

/* initialized the data base. */
sql_info_ptr->si_operation = CreateDB;

r_Kernel_Controller();

strcpy(cuser_obj_ptr->ui_li_type.li_ool.oi_curr_db.cdi_dbname,
sql_info_ptr->si_curr_db.cdi_dbname);
cuser_obj_ptr->ui_li_type.li_ool.oi_operation = ExecRetReq;
}
if (found == FALSE)
{
1* stub for future implementation of network model */
}
if (found == FALSE)
{

/* stub for future implementation of functional model */

}

} /* end check_alternate_models */

52

static struct obj_dbid_node *TRAVERSE_OOL_SCHEMA()

1* This proc accomplishes the following. *)
1* (1) determines if the database name already exists, as */
/* an object-oriented schema. */

{
int obj_found,
end_of _list; /* boolean flags */
struct obj_dbid_node *temp_odb_list_ptr; /* ptr ro the current
object-oriented database */
FILE *obj_dblist_fd;
char obj_name[DBNLength + 1];

temp_odb_list_ptr = dbs_obj_head_ptr.dn_obj;
cbj_found = FALSE;
end_of _list = FALSE;
if (temp_odb_list_ptr == NULL)
end_of _list = TRUE;
while (obj_found == FALSE && end_of_list == FALSE)
{
/* determine if database name does exist */
* by traversing list of object-oriented schemas */
if (!stremp(sql_info_ptr->si_curr_db.cdi_dbname,
temp_odb_list_ptr->odn_name))
obj_found = TRUE;
else
{
temp_odb_list_ptr = temp_odb_list_pr->odn_next_db;
if (temp_odb_list_ptr == NULL)
{
end_of_list = TRUE;
} 1* end if */
} 1* end else */
} 7* end while */

53

if (lobj_found)
{
strcpy(ODBCat,".");
strcat(ODBCat, sql_info_ptr->si_curr_db.cdi_dbname);
strcat(ODBCat, ".cat");

if (obj_dblist_fd = fopen(ODBCat, "r"))
{
obj_found = TRUE;
fclose(obj_dblist_fd);
o_load_catalog(sql_info_ptr->si_curr_db.cdi_dbname);
temp_odb_list_ptr = dbs_obj_head_ptr.dn_obyj;
}

}

return (temp_odb_list_ptr);
} /* end traverse_ool_schema */

54

TRANSLATE_OBJ_TO_REL(rdb_list_ptr, odb_list_ptr)

/* this routine converts the object-oriented schema to a relational schema*/!
struct rel_dbid_node *1db list_ptr; /* ptr to the current rel database */
struct obj_dbid_node *odb_list_ptr; /* ptr ro the current obj database */

{

struct rel_dbid_node *new_rdb_ptr; /* ptrs to database nodes */
struct rel_node *new_rel_ptr, *rel_ptr; /* ptrs to relation nodes */
struct rattr_node *new_rattr_ptr, *rat_ptr; /* ptrs to attribute nodes */
struct rel_dbid_node *mk_rel_dbid_node();

struct rel_node *mk_rel_node():

struct rattr_node *mk_rattr_node();

struct obj_dbid_node *odb_ptr;

struct ocls_node *cls_ptr, *supcls_ptr;

struct o_supcls_node *first_supcls_ptr;

struct oattr_node *oattr_ptr;

I* head of current ool db schema */
I* the new rel database node is allocated and filled here with
information from the ool database node*/
odb_ptr = odb_list_ptr;
new_rdb_ptr = mk_rel_dbid_node();
strcpy(new_rdb_ptr->rdn_name,odb_ptr->odn_name);
new_rdb_ptr->rdn_num_rel = odb_ptr->odn_num_cls;
new_rdb_ptr->rdn_num_view = 0;
new_rdb_ptr->rdn_first_rel = NULL;
new_rdb_ptr->rdn_curr_rel = NULL,;
new_rdb_ptr->rdn_next_db = NULL;
new_rdb_ptr->rdn_dbtype = OBIJ; /* identify db as object-oriented */
if (dbs_rel_head_ptr.dn_rel)
rdb_list_ptr->rdn_next_db = new_rdb_ptr; /* connect to rel db list */
else
dbs_rel_head_ptr.dn_rel = new_rdb_ptr;
sql_info_ptr->si_curr_db.cdi_db.dn_rel = new_rdb_ptr;

cls_ptr = odb_ptr->odn_first_cls;

while (cls_ptr)
{
/* the relation nodes are allocated and filled here */
new_rel_ptr = mk_rel_node();
strcpy(new_rel_ptr->rn_name,cls_ptr->ocn_name),
new_rel_ptr->m_num_attr = cls_ptr->ocn_num_attr,;

55

new_rel_ptr->tn_first_attr = NULL,;
new_rel_ptr->rn_curr_attr = NULL;
new_rel_ptr->rn_next_rel = NULL;
new_rel_ptr->rn_type =T,
if (cls_ptr == odb_ptr->odn_first_cls)
{
[* special case of prst relation */
new_rdb_ptr->rdn_first_iel = new_rel_ptr;
rel_ptr = new_rel_ptr;
}
else
{
rel_ptr->m_next_rel = new_rel_ptr;
rel_ptr = new_rel_ptr;

}

oattr_ptr = cls_ptr->ocn_first_attr;

while (oattr_ptr)
{
/* the attribute nodes are allocated and filled here */
new_rattr_ptr = mk_rattr_node();
strcpy(new_rattr_ptr->ran_name,oattr_ptr->oan_name);

I*if it is a component class attribute, type is integer;
else it is the same as for object-oriented*!
if (!strcmp(oattr_ptr->oan_type, "CHAR"))
{
new_rattr_ptr->ran_type ='s"
new_rattr_ptr->ran_length = RNLength:
}
else if (!strcmp(oattr_ptr->oan_type, "FLOAT"))
{
new_rattr_ptr->ran_type =T
new_rattr_ptr->ran_length = 3;
}
else
L
new_rattr_ptr->ran_type =i’
new_rattr_ptr->ran_length = 4;
}
new_rattr_ptr->ran_key_flag = FALSE;
new_rattr_ptr->ran_next_attr = NULL;
if (oattr_ptr == cls_ptr->ocn_first_attr)

56

{

/* special case of first attribute */
rel_ptr->m_first_attr = new_rattr_ptr;
rat_ptr = new_rattr_ptr;

}

else

{
rat_ptr->ran_next_attr = new_rattr_ptr;
rat_ptr = new_rattr_pir;

}

oattr_ptr = oattr_ptr->oan_next_attr;
} /* end attr loop */
rel_ptr->m_curr_attr = rat_ptr;
if (cls_ptr->ocn_supcls)
{
rel_ptr->m_num_attr = rel_ptr->m_num_attr + 1;
supcls_ptr = cls_ptr->ocn_first_supcls->osn_supcls;
I*loop until reaching the left root of class; assign
object id of this root supclass to relation*/
while (supcls_ptr)
{
/*if this class doesn't have a superclass, it is the root*/
if (!supcls_ptr->ocn_supcis)
{
new_rattr_ptr = mk_rattr_node();
strcpy(new_rattr_ptr->ran_name, "OBJECTID");
new_rattr_ptr->ran_type ='i"
new_ratr_ptr->ran_length = 3;
new_rattr_ptr->ran_key_flag = FALSE;
)
supcls_ptr = supcls_ptr->ocn_first_supcls->osn_supcls;
}/* end while supcls_ptr */
new_rattr_ptr->ran_next_attr = rel_ptr->rn_first_attr;

rel_ptr->mn_first_attr = new_rattr_ptr;
}r* 2nd if supcls */
cls_ptr = cls_ptr->ocn_next_cls;

new_rdb_ptr->rdn_curr_rel = rel_ptr:
} 1* end while cls_ptr */
} 1* end translate_obj _to_rel() */

57

APPENDIX D - INSERT TRANSACTIONS

QUERIES_TO KMS()

1* This ro: ves the queries to be listed on the screen. */
/* The selection menu is then displayed allowing any of the */
* queries to be executeed*/

{

int proceed; /* boolean flag */
int num;

num = 0;

list_queries();

proceed = TRUE;

while (proceed == TRUE)

{

printf ("\nPick the number or letter of the action desired\n”);
printf ("\t(num) - execute one of the preceding queries\n");
printf ("\t(d) - redisplay the file of queries\n");
printf ("\t(x) - return to the previous menu\n");
sql_info_ptr->si_answer = get_ans{&num);

swit © 7 _ptr->si_answer)
{
case 'n' : /* execute one of the queries */
if (num > 0 && num <= r_tran_info_ptr->ti_no_req)

find _query (num);
- is is the default value for si_operation */

" if not a retrie. e request, this value is reset */
1*in sql_kernel_mapping system */
sql_info_ptr->si_operation = ExecRetReq;

ernel_mapping_system();
._info_ptr->si_operation != ExecNoReq)

it (sql_info_ptr->si_error == NOE)
if ((sql_ptr->si_curr_db.cdi_dbtype == OBJ) &&
(sql_info_ptr->si_operation == ExeclnsReq))
insert_to_object_oriented();

58

else
r_Kernel_Controller();

else
sql_info_ptr->si_error = NOErr;
} 1* end if */
else
{
printf ("\nError - the query for the number you ")
printf ("selected does not exist\n");
printf ("Please pick again\n");
}/* end else */

break;
case 'd": /* redisplay queries */
list_queries();
break;
case 'x': /* exit to mode menu */
proceed = FALSE;
r_tran_info_ptr->ti_no_req = (;
break;
default : /* user did not select a valid choice from the menu */
printf ("\nError - invalid option selected\n");
printf ("Please pick again\n");
break;
} 1* end switch */
} 7* end while */
} 1* end queries to KMS */

59

INSERT_TO_OBJECT_ORIENTED()

/*called by queries_to KMS for object-oriented cross-model inserts.
This procedure sends in an array of char pointers to get_obj _inserts,
which traverses the schema and prompts the user to enter appropriate
superclasses in order to maintain the object-oriented base model.
Once all of the INSERTS are built, they are sent to the KC one at a
time in a loop . */

{
static char *insert_ptrs[NUMCLasses]; /*pointers to ABDL INSERTs*/

int I,
begin_inserts; *used to flag the original inserr*/

begin_inserts = TRUE;

for (i = 0; 1 < NUMCLasses; i++)
insert_ptrs{i] = NULL;

get_obj_inserts(begin_inserts, insert_ptrs);

I*If user has entered all of the superclasses correctly, the INSERTs
are sent to the KC below, one-by-one.*/
if (sql_info_ptr->si_error == NOEir)
{
for (i = 0; insert_ptrsfi]; i++)
{
sql_ptr->si_abdl_tran->ti_curr_req.ri_ab_req->ari_req = insert_ptrs{i];
r_Kernel_Controller();
}
}

else
sql_info_ptr->si_error = NOETrr;
}/*end insert_to_object_oriented*/

60

GET_OBJ_INSERTS(start, insert_ptrs)

I*this procedure checks to see if the class to which the INSERT relation
corresponds is a subclass and, if so, prompts the user to enter the relations
corresponding to its superclasses. The relations(classes) must

be entered one at a time from the bottom subclass up the hierarchy and
left to right at the screen prompts. They can be entered from the file or
from the terminal. As each is entered, the procedure recurses until a
mistake is made or all of the superclass relations have been correctly
entered. Calls obj inserts_to_KMS for uszr inerface.*/

int start;
char *insert_ptrs{NUMCLasses]; /*ABDL INSERTs*/

!

int 1,
char_position,
req_length,
original_insert,
object_exists,
check_insert_objids();

struct ocls_node *cls_ptr,
*kms_cls_ptr,
*find_class_in_obj_trans();

struct o_supcls_node *supcls_ptr;

char *var_str_alloc();

if (sql_info_ptr->si_operation != ExecInsReq)
sql_info_ptr->si_error = ExecNoReq;

else
{
/*find the next empty cell and allocate memory to accept the current
ABDL INSERT*/
for (i = 0; insert_ptrs[i]; i++)

req_length =
strlen(sql_ptr->si_abdl_tran->ti_curr_req.ri_ab_req->ari_req);

insert_ptrs|i] = var_str_alloc(req_length);

strepy(insert_ptrs[i],
sql_ptr->si_abdl_tran->ti_curr_req.ri_ab_req->ari_req);

61

char_position = 17; /*position of the first letter of the
relation name in the ABDL INSERT string*/
original_insert = start;/*boolean*/

/*retrieve class name of insert*/
cls_ptr = find_class_in_obj_trans(char_position);

if (Icls_ptr)
sql_info_ptr->si_error = ExecNoReq;

/*the statements below increment the char_postion variable to the
position of the value of the objectid. If a value is returned by
the function check_insert_objids, an object exists already and the
INSERT is cancelled */
char_position += strlen(cls_ptr->ocn_name);
char_position += 14;
if (object_exists = check_insert_objids(cls_ptr, char_position))
{
printf(""\nERROR - An instance of this class already exists.");
sql_info_pti->si_error = ExecNoReq;

}

/*If the class has superclasses, this procedure calls itself until
all have been visited */
if ((sql_info_ptr->si_error == NOErr) && cls_ptr->ocn_supcls)
{
if (original_insert)
{
start = FALSE;
cls_ptr-.~ocn_visited = TRUE;
system("clear");
printf("\n\n\n\n\nIn order to maintain the integrity of the object-oriented base"):
printf("\nmodel, INSERT: of all relations which correspond to superclasses”):
printf("\nin the object-oriented hierarchy of the original INSERT are");
printf("\nnecessary. INSERT each superclass relation when prompted. If");
printf('"\nentering from a file, selections must offer appropriate INSERTS.");
printf("\nIf any INSERT is in error or any superclass INSERTSs are lacking,");
printf("\nall preceding INSERTs will be cancelled. <CR> to continue.");
getchar();
system("clear");

62

supcls_ptr = cls_ptr->ocn_first_supcls;
while(supcls_ptr && (sql_info_ptr->si_error == NOEIT))
{
if ('supcls_ptr->osn_supcls->ocn_visited)
{
printf{("\o\n\n\n\nINSERT a tuple of relation %s now, having the same OBJECTID
\n", supcls_ptr->osn_name);
printf("attribute as the INSERT just attempted. If such a %s tuple \n",
supcls_ptr->osn_name);,
printf("already exists (i.e. has the same OBJECTID) you must start \n");
printf("INSERTS over, using a unique OBJECTID. <CR> to quit or continue.\n"):
getchar();
system("clear");
supcls_ptr->osn_supcls->ocn_visited = TRUE;
obj_insert_to_KMS();
if (sql_info_ptr->si_error == NOErr)
{
char_position = 17;
kms_cls_ptr = find_class_in_obj_trans(char_position);
if (strcmp(kms_cls_ptr, supcls_ptr->osn_name))
get_obj_inserts(start, insert_ptrs);
else
{
printf("nERROR - %s is not a valid superclass.”,
kms_cls_ptr->ocn_name);
sql_info_ptr->si_error = ExecNoReg;
}
}*end if NOErr*/
}*end if not visited*/
supcls_ptr = supcls_ptr->osn_next_supcls;

} /*end while supcls*/
} *end if cls_ptr->ocn_supcls*/
V*end if ExInsReq*/
if (sql_info_ptr->si_error != NOErr)
printf("\n%s INSERT cancelled\n",cls_ptr->ocn_name);

I*sets all of the visited flags in the schema data structure back
to FALSE.*/
if (original_insert)
reset_obj_visited(cls_ptr);
}/*end get_object_inserts*/

63

int CHECK_INSERT OBJIDS(cls_ptr, posit)

/*this procedure gets a pointer to a class in the object-oriented schema
and the position of the value of the objectid in the INSERT request string.
It builds an ABDL retrieval request and sends it in. If a response is
returned, an object already exists and the INSERT is cancelled.*/

int posit; /*objectid position*/
struct ocls_node *cls_ptr; /*insert relation/class*/

{

int obj_id_posit;
*empty;
char *temp_string_ptr,

retrieve_ptr{InputCols];

empty = FALSE;
temp_string_ptr = sql_ptr->si_abdl_tran->ti_curr_req.ri_ab_req->ari_req:

/*build the ABDL retrieve request*/
strcpy(retrieve_ptr, "[RETRIEVE ((TEMP =");
strcat(retrieve_ptr, cls_ptr->ocn_name);
strcat(retrieve_ptr, ") and (OBJECTID = ");
obj_id_posit = strlen(retrieve_ptr);
do
retrieve_ptr{obj_id_posit++] = temp_string_ptr{posit];
while (temp_string_ptr[++posit] !=">");
retrieve_ptr{obj_id_posit] =N\0";
strcat(retrieve_ptr, "))(OBJECTID) |");
sql_ptr->si_abdl_tran->ti_curr_req.ri_ab_req->ari_req = retrieve_ptr;
fix_up_objectid_ ABDL _req();
g
/*send it in*/
TI_S$TrafUnit(sql_ptr->si_curr_db.cdi_dbname,
sql_ptr->si_abdl_tran->ti_curr_req.ri_ab_req->ari_req);
get_response(&empty);
re-attach the original INSERT request/
sql_ptr->si_abdl_tran->ti_curr_req.ri_ab_req->ari_req = temp_string_ptr;

1*'?" means that there were no instances of this object in the database*/
if (sql_ptr->si_kfs_data.kfsi_rel.kri_response[1] i="7")
return 1;
else
return 0;
}/*end check _insert_objectids*/

OBJ_INSERT_TO_KMS()

called by the recursive procedure, insert_to_object_oriented. User/
/*is provided the same list of queries entered into queries_to KMS*/
1* This routine causes the queries to be listed on the screen. *|

/* The selection menu is then displayed allowing any of the */

/* queries to be executeed*/

{
int proceed; /* boolean flag */
int num;

num = 0;
list_queries():
proceed = TRUE;
while (proceed == TRUE)
{
printf ("\nPick the letter or number of the action desired\n");
printf ("\t(num) - execute one of the preceding INSERT queries\n");
printf ("\t(d) - redisplay the file of queries\n");
printf ("\t(x) - cancel INSERT\n");
sql_info_ptr->si_answer = get_ans(&num);

switch (sql_info_ptr->si_answer)

{

case 'n' : /* execute one of the queries */

if (num > 0 && num <= r_tran_info_ptr->ti_no_req)
{
find_query (num);
1* This is the default value for si_operation */
/* If not a retrieve request, this value is reset */
/* in sql_kernel_mapping_system */
sql_info_ptr->si_operation = ExecRetReq;
sql_kernel_mapping_system();
proceed = FALSE;
} 1* end if */

else
{
“ printf ("\nError - the query for the number you ");
printf ("selected does not exist\n");
printf ("Please pick again\n");
} 1* end else */
break;

65

case 'd': /* redisplay queries */
list_queries();
break;

case 'x' : /* exit INSERTS */
proceed = FALSE;
sql_info_ptr->si_error = ExecNoReq;
break;

default : /* user did not select a valid choice from the menu */
printf ("\nError - invalid option selected\n");
printf ("Please pick again\n");
break;
} /* end switch */

} 1* end while */

} /* end object_insert_to KMS */

66

RESET_OBJ_VISITED(cls_ptr)
/*This is a utility procedure that resets all of the visited flags
in the object-oriented ocls_node data structure to FALSE */

struct ocls_node *cls_ptr;

{

struct o_supcls_node *supcls_ptr;

cls_ptr->ocn_visited = FALSE;
if (cls_ptr->ocn_supcls)

{

supcls_ptr = cls_ptr->ocn_first_supcls;

while (supcls_ptr)
{
reset_obj_visited(supcls_ptr->osn_supcls);
supcls_ptr = supcls_ptr->osn_next_supcls;
}

}

}/*end reset_obj visited*/

67

struct ocls_node *FIND_CLASS_IN_OBJ_TRAN S(start_posit)

/* This procedure takes an int, which indicates the position of the first
letter in the relation name of a query, extracts the relation name, and
returns a pointer to the class node to which it corresponds in the
object-oriented schema.*/

int start_posit;
{
int 1,
not_found;
char cls_name[RNLength + 1],

*temp_string_ptr;
struct ocls_node *cls_ptr;

for (i = 0; i < (RNLength + 1); i++)
cls_name[i] = \0";

/*copy the relation name into the temp_string ptr for comparison*/
temp_string_ptr = sql_ptr->si_abdl_tran->ti_curr_req.ri_ab_req->ari_req;
cls_ptr = dbs_obj_head_ptr.dn_obj->odn_first_cls;
while ((temp_string_ptr[i] !=")") && (temp_string_ptr[i] !=">")

{

cls_namelfi - start_posit] = temp_string_ptr[i];

1++;

}

/*search for the class in the object-oriented schema*/
while (cls_ptr && not_found)
{
if (!strcmp(cls_name, cls_ptr->ocn_name))
not_found = FALSE;
else
cls_ptr = cls_ptr->ocn_next_cls;
}
if (Icls_ptr)
printf("ERROR - Relation %s is not in the schema", cls_name);

return cls_ptr;
}/*end find_class_in_obj_trans*/

68

APPENDIX E- DELETE TRANSACTIONS

#include <stdio.h>
#include <licommdata.h>
#include <ool_sql.h>
#include <sql.h>
#include <sql_kcdcl.h>
#include <flags.def>
#include <ctype.h>
#include <sql_kc.h>
#include <dli.h>

R_KERNEL_CONTROLLER()

* This procedure accomplishes the following: */

/* (1) Checks si_operation to determine whether we are creating a */
/* database or querying the database or if there are errors. */

/* (2) Depending on the si_operation the corresponding */

/* procedure is called. *f

{
int groupby = FALSE;

sql_ptr = &(cuser_rel_ptr->ui_li_type.li_sql);/* Initialize pointer */
kc_ptr = &(sql_ptr->si_kc_data.kci_r_kc); /* Initialize pointer */
sql_ptr->si_subreq_stat = LASTSUBREQ;

/* look at si_operation to determine what action to take */

switch (sql_ptr->si_operation)
{
case CreateDB: /*case where we are creating a database*/
r_load_tables();
break;

case ExecRetReq: /*case where we are executing a regular or */
[*nested select */
select_requests_handler(groupby);
break;

case ExecRetCReq: /* any other type of select */
sql_ptr->si_abdl_tran->ti_no_req--; /* decrement */

69

rest_requests_handler(groupby);
break;

case ExecDelReq: /* a delete request */
sql_ptr->si_abdl_tran->ti_no_req--; /* decrement */
if (sql_ptr->si_curr_db.cdi_dbtype == OBJ)
object_oriented_delete(groupby);
else
rest_requests_handler(groupby),
break;

case ExecInsReq: /* an insert request */
sql_ptr->si_abdl_tran->ti_no_req--; /* decrement */
insert_request_handler(groupby);
break;

case ExecUpdReq: /* an update request */
sql_ptr->si_abdl_tran->ti_no_req--;
rest_requests_handler(groupby);
break;

case ExecGrpReq: /* an update request */
groupby = TRUE;
group_requests_handler(groupby);
break;

default:
break;
} 7* end switch */
} /* end procedure r_Kernel Controller */

70

OBJECT_ORIENTED_DELETE(groupby)

/*Called by r_kernel_controller. This procedure culls two others: one to
retrieve all nf the ()bjeCtldS in the delete request, the other to traverse the
object-oriented lattice and execute deletes for each instance in all of the
super and subclasses */

int groupby:;

{

int delete_and = 20;
int delete_all = 19;
int type_of_delete;

struct ocls_node *cls_ptr,
*find_class_in_obj_trans();
char *temp_string_ptr,
*nbjectids,
*get_objectids(); /*ids of instances to be deleted*/

tenip_string_ptr = sql_ptr->si_abdl_tran->ti_curr_req.ri_ab_req->ari_req;

/*The type of delete request is d “termined by the positions of the
parcnthesis in the string. This is needed to retrieve the class name.*/
if (temp_string_ptr[12] == ()
type_of_delete = delete_and;
else
type_of_delete = delete_all;

cls_ptr = find_class_in_obj_trans(type_of_delete);

if (cls_ptr)

{

cls_pu->ocn_visited = TRUE;

objectids = get_objectids();

search_for_sub_and_superclasses_ana_execute deletes

(cls_ptr, objectids, group™y):

}

reset Ob_] visited(cls_ptr); /*reset to FALSE the visited flag in the
object-oriented schema data structure. */

}/*end object_oriented_delete*/

71

char *GET_OBJECTIDS()

{*This procedure is called by object_oriented _deletes. 1t retrieves all of
the objectids of instances which are to be deleted. These are then used to
delete the proper instances of super and subclasses in another procedure™:

{

it i
T,
*empty,

last_paren;

char retrieve_ptr{InputCols],
*temp_string_ptr,
*response_ptr,
*object_ids,
*var_str_alloc();

empty = FALSE;
last_paren = FALSE:

/*copy the string into the array and build and execute a retrieve
request to obtain all of the objectids in the delete request */
temp_string_ptr = sql_ptr->si_abdl_tran->ti_curr_req.ri_ab_req->ari_req:
strepy(retrieve_ptr, "[RETRIEVE (")
r=13;
1= 12;
while (!last_paren)
{
retrieve_ptr[r} = temp_string_ptrfi];
if (temp_string_ptr[i] ==)"
{
if (temp_string_puli + 1] =="))
{
retrieve_ptr{r + 1] =")’;
retrieve_ptrr + 2] = \D";
last_paren = TRUE;
|
else if ((temp_string_ptrfi + 1] =="") &&
(temp_string_ptr{i + 2| =="]"))

{

retrieve_ptrr + 1] = \0".
last_paren = TRUE;
}

}
1++;
T++;
}
strcat(retrieve_ptr, "(OBJECTID) |");

sql_ptr->si_abdl_tran->ti_curr_reqa.ri_ab_req->ari_req = retrieve_ptr;
fix_up_objectid_ABDL_req();

TI_S$TrafUnit(sql_ptr->si_curr_db.cdi_dbname,
sql_ptr->si_abdl_tran->ti_curr_req.ri_ab_reg->ari_req);
get_response{&empty);

*the objectids of all of the instances to be deleted were retrieved above
and attached as a char* in the global user structure. This string is
copied to the char array, objectids */

response_ptr = sql_ptr->si_kfs_data.kfsi_rel.kri_response;
object_ids = var_str_alloc(sql_ptr->si_kfs_data. kfsi_rel.kri_res_len);
i1=0;
do
object_ids(i] = response_ptr{i];
while (response_ptr{i++] !='?");

return object_ids;

}/*end get_objectids*/

73

SEARCH_FOR_SUB_AND_SUPERCLASSES_AND_EXECUTE_DELETES
(class_ptr. obj_ids, groupby)

*called by object_oriented_delete. Recursively traverses the object-oriented

schema and calls execute_deletes() for each of the super and subclasses */

struct ocls_node *class_ptr;

int groupby;
char *obj_ids;
{

int no_cycle:

struct o_supcls_node *supcls_ptr;
struct o_subcls_node *subcls_ptr;

/*get all of the superclasses*/
supcls_ptr = class_ptr->ocn_first_supcls;
while(supcls_ptr)
{
if ('supcls_ptr->osn_supcls->ocn_visited)
{
supcls_ptr->osn_supcls->ocn_visited = TRUE;
search_for_sub_and_superclasses_and_execute_deletes
(supcls_pm->osn_supcls, obj_ids, groupby):
}
supcls_ptr = supcls_ptr->osn_next_supcls;

}

get all of the subclasses/
subcls_ptr = class_ptr->ocn_first_subcls;
while(subcls_ptr)
{
if ('subcls_ptr->osn_subcls->ocn_visited)
{
subcls_ptr->osn_subcls->acn_visited = TRUE;
search_for_sub_and_superclasses_and_execute_deletes
(subcls_ptr->osn_subcls, obj_ids, groupby):
}
subcls_ptr = subcls_ptr->osn_next_subcls:
}

class_ptr->ocn_visited = FALSE;

execute_object_oriented_deletes(obj_ids, class_ptr->ocn_name, groupby):
}/*end search_for sub_and_superclasses_and_execute deletes*/

74

EXECUTE_OBJECT_ORIENTED_DELETES(cb_ids, class_name, groupby)

/*Called by search_for_sub_and superclasses_and_execute_deletes(). Sends in
the ABDL requests for execution. Makes a separate request for each object to be
deleted. The objectids are stored as "attribute’/0'value'/0’attribute...”"*/

char *ob_ids,
class_name[RNLength + 1];
int groupby;

{

int 1,
obj_id_place,
t
char temp_string_ptr{InputCols};

i=0;
while (ob_ids[i] !="7")
{
if (ob_ids[i] == \0")
{
for (t = 0; t < InputCols; t++)
temp_string_ptr[t] = \O';/*initialize the array to nulls*/

strcpy(temp_string_ptr, "[DELETE ((TEMP =");
strcat(temp_string_ptr, class_name);
strcat(temp_string_ptr, ") and (OBJECTID =");
obj_id_place = strlen(temp_string_ptr);

I*copy in the object OBJECTID value*/
do

temp_string_ptr{obj_id_place++] = ob_ids{++i];
while(ob_ids[i] = \0");

strcat(temp_string_ptr, ")} 1");
sql_ptr->si__abdl_tran->ti_curr_req.ri_ab_req->ari_req = temp_string_ptr:

/*send the DELETES to the system for execution®/
rest_requests_handler(groupby);
}

i++;

}

}/*end execute_object oriented deletes*!

75

{ACM1989]

LIST OF REFERENCES

Object-Oriented Concepts, Databases, and Applications, pp. 219-337, ACM Press, 1989.

[Banerjec1979] Banerjee, J. and Hsiao, D.K,, “A Datwabase Computer for Very Large Databases,” JEEE

[Benson1985]

Transactions on Computers, v. c-28, no. 6, pp. 414-429, June 1979.

Benson, T. P. and Wentz, G. L., The Design and Implementation of a Hierarchical
Interface for the Multi-Lingual Database System, Master’s Thesis, Naval Postgraduate
School, Monterey, California, June 1985.

[Bourgeois1993] Bourgeois, P., The Implementation of the Multi-Model and Multi-Lingual User Interface,

Master’s Thesis, Naval Postgraduate School, Monterey, California March 1993.

[Demurjian1987] DeDmurjian, S. A., The Multi-Lingual Database Sysiem - a Paradigm and Test-Bed for

[Elmasri1989]

{Emdi1985]

{Hsia01989]

[Hsian1991])

(Hsiao1992]

[Hughes1991]

{KimA 1990}

[KimB1990]

[Mak1992]

{Moore 1993}

the Investigation of Data-Model Transformations, Data-Language Translations and Data-
Model Semantics, U-M-I Dissertation Information Service, 1987.

Elmasri, R. and Navathe S.B., Fundamentals of Database Systems, pp. 409-452, The
Benjamin/Cummings Publishing Company, Inc.,1989.

Emdi, B., The Implemertation of a CODASYL-DML Interface for a Mulu-Lingual
Database System, Master’s Thesis, Naval Posigraduate School, Monterey, California,
December 1985.

Hsiao, D. K. and Kamel, M. N., “Heterogeneous Databases: Proliferations, Issues, and
Solutions,” /EEE Transactions on Knowledge and Data Engineering, v. 1, no. 1, pp. 45-
62, March 1989.

Hsiao, D. K., “A Parallel, Scalable, Microprocessor-based Database Computer for
Performance Gains and Capacity Growth,” IEEE MICRO, pp. 44-60, December 1991.

Hsiao, D. K., “Federated Databases and Systems: Part 1 - A Tutorial on Their Data
Sharing,” VLDB Journal, v. 1, pp. 127-179, 1992,

Hughes, I. G., Object-Oriented Databases, pp. 212-224, Prentice Hall International (UK)
Ltd., 1991.

Kim, W., “Defining Object Databases Anew,” Datamation, pp. 33-36, 1 February 1990.

Kim, W., “Object-Oriented Databases: Definition and Research Directions,” IEEE
Transactions on Knowledge and Data Engineering, v. 2, no. 3, pp. 327-341, Septcmber
1990.

- Mak, S. B., The Design and Implemeniation of a Functional Interface for the Attribute-

Based Multi-Lingual Da:abase System, Masier’s Thesis, Naval Postgraduate School,
March 1992,

Moore, J. W. and Karlidere, T., The Design and Implementaiion of an Object-Oriented

Interface for the Multi-Model and Multi-Lingual Database System, Master’s Thesis, Naval
Postgraduate School, Monterey, California, March 1993.

76

[Rollins1984

[Sul979]

[Zawis1987)

Rolliins, R. E., Design and Analysis of a Complete Relational Interface for a Muli-
Backend Database System, Master’s Thesis, Naval Postgraduate School, Monterey,
California, June 1984.

Su, S. Y. W, and others, “Architectural Features and Implementation Techniques of the
Multicell CASSM,” IEEE Transactions on Computers, v. ¢-28, no. 6, pp. 430-445, June
1979.

Zawis, J. A., Accessing Hierarchical Databases Via SQL Transactions in a Multi-Model

Database System, Master’s Thesis, Naval Postgraduate School, Monterey, California,
December 1987.

77

INITIAL DISTRIBUTION LIST

Defense Technical Information Center
Cameron Station
Alexzndria, VA 22304-6145

Dudley Knox Library

Code 52

Naval Postgraduate School
Monterey, CA 93943-5002

Chairman, Code CS

Computer Science Department
Naval Postgraduate School
Monterey, CA 93943-5000

Ms. Doris Mlezco

Code 9033

Naval Pacific Missile Test Center
Point Mugu, CA 93042

LCDR Richard K. Johnston
Naval Security Group Activity
Naval Base

Charleston, SC 29408-0008

Dr. David K. Hsiao

Code CS/Hs

Professor, Computer Science Department
Naval Postgraduate School

Monterey, CA 93943-5000

78

