
Calhoun: The NPS Institutional Archive
DSpace Repository

Theses and Dissertations 1. Thesis and Dissertation Collection, all items

1993-03

The relational-to-object-oriented cross-model
accessing capability in a multi-model and
multi-lingual database system

Johnston, Richard Karl.
Monterey, California. Naval Postgraduate School

https://hdl.handle.net/10945/39867

This publication is a work of the U.S. Government as defined in Title 17, United
States Code, Section 101. Copyright protection is not available for this work in the
United States.

Downloaded from NPS Archive: Calhoun



NAVAL POSTGRADUATE SCHOOL
__ Monterey, California

DTICR

MAY 2 7 1993

A THESIS

THE RELATIONAL-TO-OBJECT-ORIENTED
CROSS-MODEL ACCESSING CAPABILITY IN A

MULTI-MODEL AND MULTI-LINGUAL
DATABASE SYSTEM

by

Richard Karl Johnston

March 1993

IThesis Advisor: David K. Hsiao

Approved for public release; distribution is unlimited.

93-11902
1ý 11H 11 13 1 111 ý1 I



UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
Ia. REPORT SECURITY CLASSIFICATION UNCLASSIFIED lb RESTRICTIVE MARKINGS

2a SECURITY CLASSIFICATIoN AUTHORITY 3 DISTRIBUTION/AVAILA''LITY OF REPORT

2b. DECLASSIFICATION/DOWNGRADING SCHEDULE Approved for public release;
distribution is unlimited

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

. NAME OF E:FORM6G ORGANIZATION 6b OFFICE SYMBOL 7a NAME OF MONITORING ORGANIZATIONCmputer 9cience uept. (ifapplicable) Naval Postgraduate SchoolNaval Postgraduate School CS
6c. ADDRESS (City, State. and ZIP Code) 7b. ADDRESS (City, State, andZIP Code)

Monterey, CA 93943-5000 Monterey, CA 93943-5000

Ba. NAME OF FUND;NGYSPOnSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (if applicable)

8c. ADDRESS (GCty, Stare, anti ZIP Code) 10. SOURCE OF FUNDING NUMBERS
PROGRAM PROJECT TASK WORK UiiT
ELEMENT NO. NO NO ACCESS'ON %C

11. TITLE (Include Security Classification)

THE RELATIONAL-TO-OBJECT-ORIENTED CROSS-MODEL ACCESSING CAPABILITY IN A MULTI-MODEL (Continued)

.]2.,PE RSON%,.A FVHq (S)
onnston, Kn~ar2 r.

. T FIT 13W TIME COVERED 14. DATE OF REPORT (Year, Month, Day) 115'PAGECOUNT
viasters ehesiss FROM T04- March 1993 89

16. SUPPLEMENTARY NOTATION The views expressed in this thesis are thosc of the author and do not reflet: :
official policy or position of the Department of Defense or the United States Government.

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
FIELD GROUP SUB-GROUP Cross-model accessing capability; Database design: Databaseimplementation; Database management systems; (Continued)

19. ABSTRACT (Continue on reverse if necessary and identify by block number)
Conventional database management systems (DBMS) are stand-alone, each supporting a single data model and

corresponding data language (ML). One organization might operate several stand-alone DBMS independently, each
of which requires the knowledge of a different ML to operate. The multi-model and multi-lingual database svstem
offers a different approach. Th~s system supports multiple MLs in a single database system. Thus, a relational data-
base user of the multi-model and multi-lingual database system can create and manipulate a database according to the
relational model and the SQL data language. On the same system, a hierarchical user can create and manipulate a
database according to the hierarchical model and DL/I data language, and so on.

Besides supporting many different models and languages on a single system, the multi-model and multi-lingual
database system also allows the user to access a database created according to one ML as if it were created according
to another. Thus, a relational user could manipulate a hierarchical database as if it is relational. i.e., the user would
use a relational schema and SQL commands to manipulate a hierarchical database. The (Continued)

20 DISTRIBUTION/AVAILABILITY OF ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATION

BUNCLASSIFIED/UNLIMITED [3SAME AS RPT. C]DTIC USERS j UNCLASSIFIED
a , RESPONSIBLE INDIVIDUAL 22b. TELEPHONE(Include Area Code) 22c. E SMBOL
Vavm fiiao (408) 646-?253 C I 2 52!.•

00 FORM 1473,84 MAR 83 APR edition may be used until exhausteo SECURITY CLASSIFICATION OF THIS PAGE
All other editions are obsolete UNCLASSIFIED



UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

11. AND MULTI-LINGUAL DATABASE SYSTEM.

18. Object-Oriented Databases; Relational databases; Schema transformations; Multi-model and
multi-lingual database system.

19. base-model and base-language (i.e., hierarchical and DL/l) are invisible to the user. This addi-
tional capability is termed the cross-model accessing capability

At this time the multi-model and multi-lingual database system supports the following MLs:
relational and SQL, hierarchical and DL/I, ne:work and CODAS YL-DML, and object-oriented and
the object-oriented data language. The system also supports a relational-to-hierarchical cross-
model accessing capability. The work of this thesis adds to the system a relational-to-object-orient-
ed cross-model accessing capability. A relational user can now access an object-oriented database
using SQL commands and viewing the object-oriented database via a relational schema. The thesis
analyzes the semantic equivalencies of the relational and object-oriented data models. The analysis
is necessar, in order !o ,stahlish the rules for transforming the object-oriented schema into an
equivalent relational schema. The work also describes the software design and integration with the
existing system and outlines futue development steps for new cross-model accessing capabilities.

SECURITY CLASSIFICATION OF THIS PAGE

UNCLASSIFIEDii



Approved for public release; distribution is unlimited

THE RELA TIONAL-TO-OBJECT-ORIENTED
CROSS-MODEL ACCESSING CAPABILITY

IN A MULTI-MODEL AND MULTI-LINGUAL
DATABASE SYSTEM

by
Richard Karl Johnston

Lieutenant Commander, United States Navy j Ao't.i,,7

A.B., University of Georgia, 1975 s : I

Submitted in partial tulfillment of the J. .. . .
requirements for the degree of By

MASTER OF SCIENCE IN COMPUTER SCIENCE ,.

from the

NAVAL POSTGRADUATE SCHOOL A--
March 1993

Author: 
Richard Karl Johtmon

Approved By:
David K. Hsiao, Thesis Advisor

M. R G 14,,oheq, An -h -iriDepartment efCo__uter Science

iii



ABSTRACT

Conventional database management systems (DBMS) are stand-alone, each

supporting a single data model and corresponding data language (ML). One crganization

might operate several stand-alone DBMS independently, each of which requires the

knowledge of a different ML to operate. The multi-model and multi-lingual database

system offers a different approach. This system supports multiple MLs in a single database

system. Thus, a relational database user of the multi-model and multi-lingual database

system can create and manipulate a database according to the relational model and the SQL

data language. On the same system, a hierarchical user can create and manipulate a

database according to the hierarchical model and DL/I data language, and so on.

Besides supporting many different models and languages on a single system, the

multi-model and multi-lingual database system also allows the user to access a database

created according to one ML as if it were created according to another. Thus, a relational

user could manipulate a hierarchical database as if it is relational, i.e., the user would use a

relational schema and SQL commands to manipulate a hierarchical database. The base-

model and base-language (i.e., hierarchical and DL/I) are invisible to the user. This

additional capability is termed the cross-model accessing capability

At this time the multi-model and multi-lingual database system supports the

following MLs: relational and SQL, hierarchical and DL/I, network and CODASYL-DML,

and object-oriented and the object-oriented data language. The system also supports a

relational-to-hierarchical cross-model accessing capability. The work of this thesis adds to

the system a-relational-to-object-oriented cross-model accessing capability. A relational

user can now access an object-oriented database using SQL commands and viewing the

object-oriented database via a relational schema. The thesis analyzes the serm;antic

equivalencies of the relatieinal and object-oricitod date models. The dlalysis '"; IeCCNsar)

in order to establish the rules for transforming the object-oriented schema into an

iv



equivalent relational schema. The work also describes the software design and integration

with the existing system and outlines future development steps for new cross-model

accessing capabilities.



TABLE OF CONTENTS

1. IN T R O D U C T IO N ...................................................................................................... I

A. SOLUTIONS TO THE PROLIFERATION OF DBMS.................................. I

B. SCOPE OF THE THESIS ........................................ 5

II. THE MULTI-MODEL AND MULTI-LINGUAL DATABASE SYSTEM ...... 6

A. THE MULTI-BACKEND DATABASE SUPER-COMPUTER ................ 6

B . TH E K ER N E L .............................................................................................. 8

1. The D ata M odel ................................................................................. 8

2. The D ata Language ........................................................................... 9

C. THE MULTI-MODEL AND MULTI-LINGUAL CAPABILITY ............... 12

D. THE CROSS-MODEL ACCESSING CAPABILITY ............................... 13

III. THE OBJECT-ORIENTED DATABASE ............................................................ 17

A . TH E SCH EM A ......................................................................................... 17

B. THE D ATA BA SE .................................................................................... 18

C. THE TRANSACTIONS ........................................................................... 22

1. Creating the D atabase ........................................................................... 22

2. Accessing the Database ..................................................................... 24

IV. EQUIVALENT RELATIONAL SEMANTICS .................................................. 25

A. GENERALIZATION, SPECIALIZATION, AND AGGREGATION .......... 25

1. The Object Identification Value as the Key ......................................25

2. T he C lass ......................................................................................... 26

vi



B. TRANSFORMING THE SCHEMA ................................ L7

1. The Class-based Approach .............................................................. 28

2. The Object-based Approach ................................. 29

3. The Combined Approach ................................................................ 29

C. THE TRANSACTIONS ........................................................................... 31

1. SELECT ............................................................................................ 32

2. UPDATE ......................................................................................... 33

3. INSERT ............................................................................................ 33

4. DELETE ............................................................................................ 33

V. THE CROSS-MODEL ACCESSING SOFTWARE ........................................... 34

A. THE DESIGN ............................................................................................ 34

B. THE DATA STRUCTURES .................................................................... 35

C. THE IM PLEM ENTATION ....................................................................... 40

1. The Schem a Transformer ................................................................ 40

2. The Transactions .............................................................................. 41

a. SELECT and UPDATE ........................................................ 41

b. INSERT ................................................................................. 41

c. DELETE ............................................................................... 43

VI. CONCLUSIONS ................................................................................................ 44

A. SHORTFALLS ......................................................................................... 44

B. FUTURE RESEARCH .............................................................................. 44

APPENDIX A - THE SCHEMA DATA STRUCTURES .......................................... 46

vii



APPENDIX B - THE USER DATA STRUCTURES ............................ 47

APPENDIX C - THE SCHEMA TRANSFORMER ........................................................ 4S

APPENDIX D - INSERT TRANSACTIONS .................................. 58

APPENDIX E- DELETE TRANSACTIONS ............................................................. 69

LIST OF REFERENCES .............................................................................................. 76

INITIAL DISTRIBUTION LIST .................................................................................. 78

viii



LIST OF FIGURES

Figure 1. The Multi-model, Multi-lingual, and Cross-Model Accessing Capability ............... 4

Figure 2. The M ulti-Backend Database Super-Computer .............................................................. I

Figure 3. The V ehicle D atabase Schem a ....................................... ......................................

Figure 4. T he V ehicle D atabase .................................................................................................... 1 o

Figure 5. The Software Design of a Language Interface ................................ 12

Figure 6. The Modular, Conceptual Software Design for the Multi-Model and
M ulti-Lingual Interfaces .......................................................................................... 14

Figure 7. The Cross-Model Accessing Capability ....................................... 16

Figure 8. The Object-Oriented Schema of the Vehicle Database ........................................... 19

Figure 9. A V ehicle O bject ...................................................................................................... 21

Figure 10. Creating the Object-Oriented Database ............................... 23

Figure 11. The Class-Based Transformation of the Vehicle Database ........................ 2x

Figure 12. The Object-Based Transformation of the Vehicle Database ................................... 30

Figure 13. The Combined Class- and Object-Based Transformation of the
V ehicle D atabase ........................................................................................................ 3 1

Figure 14. Object-Oriented Database Node Structures ............................................................. 3 6

Figure 15. The Object-Oriented Schema Data Structures ............................................................ 37

Figure 16. The U ser D ata Structures ............................................................................................ 3X

Figure 17. The sqlt info D ata Structure ................................................................................... 39

ix



LIST OF ACRONYMNS

ABDL - Attribute-Based Data Language

ABDM - Attribute-Based Data Model

KCS - Kernel Controller System

KDL - Kernel Data Language

KDM - Kernel Data Model

KDS - Kernel Database System

KFS - Kernel Fomatting System

KMS - Kernel Mapping System

MDBS - Multi-B ackend !,.itabase Super-Computer

ML - Model and Language

LI - Language Interface

LIL - Language Interface Layer

UDL - User Data Language

UDM - User Data Model



I. INTRODUCTION

ratabase management systems (DBMS) have proliferated in response to a demand for

data modelN and languages which are capable of expressing and accessing a wide varietv

of data relationships for specific applications. Unfortunately. these DBMS are stand-alone

systems. The user of one system is unable to access the data maintained by a different one.

These databases and DBMS are termed heterogeneous databases and systems.

Since DBMS have evolved over an extended period, by now many organizations have

two or more different systems, purchased at different times and run independently, among

which data sharing and resource consolidation are impossible. Moreover, the introduction

of new stand-alone DBMS into the workplace continues, complicating the work

environment of organizations even more. The multi-model and multi-lingual database

system at the Naval Postgraduate School is a research platform. that offers a ý olution to these

problems.

A. SOLUTIONS TO THE PROLIFERATION OF DBMS

A comprehensive solution to the problem of heterogeneous databases and systems will

address the issues of both data sharing and resource consolidation. Obviously, if it were

possible to establish a single model and language (ML) as a universal database standard,

this problem would cease to exist. A single, universally-accepted ML, however, is nowhere

in sight. Despite the popularity of the relational model, for example, the older hierarchical

and network models continue to survive. Although their persistence owes much, no doubt.

to the cost associated with converting to a new system, it is also in great part due to the

preference of databasL, users for these other models as more accurate representations of

their applications. The interest in development of the object-oriented data , iel,

moreover, portends that new data models will continue to appear as the result of new

applications.



Effectively, this multitude of stand-alone systems in the workplace restricts data

accesses to those workers trained to use a particular ML on a particular set of database

system and computer hardware. Any database system that resolves thfe problems of

database interoperability, therefore, must accomplish the seemingly contradictory

objectives of (1) providing the user with access to databases created according to man',

different MLs and (2) at the same time, not requiring the user to learn those new NMLs. The

user of such a system would access a database using whatever ML he desires. Such a

system is "federated", i.e., each database retains its autonomy. The key to achieving

autonomy and resolving the mutually contradictory objectives is to separate the data itself

from the user's view of the data. For though a database is stored and accessed in an unique

way for a specific ML, the storage structure and access method are of no concern to the

user. In this sense the data moacl is a special pair of "glasses" through which the user views

the data stored on the disk. The glasses transform the data into whichever model the user

prefers.

Such transformations could occur in -everal different ways. A standard terminology

appears below [Hsiao 1992]

"* Single-Model-and-Language-to-Multiple- Models-and-Languages

"• Single-Model-and-Language-to-Single-Model-and-Language

"* Multiple- Models-and-Languages-to-Multiple-Models-and-Languages

"* Multiple-Models-and-Languages-to-Single-Model-and-Language

Briefly, the first of the above four technical approaches would restrict the user to a

single, universal ML which is unlikely either to satisfy everyone or to prove easy to master.

The second also presupposes a single acceptable ML, but with the additional, significant

burden of converting all of the existing heterogeneous databases to this ML. The third

possibility, the Multiple- Models-and-Languages-to-Multiple-Models-and-Languages,

appeals to the D,.partment of Defense and similar large, multi-department organizations,

which often require data sharing via networks over great distanct.;. This approach,

2



however, is intractable from a technical standpoint. Furthermore, it would solve the data

sharing problems of existing systems without replacing them. Even if this approach ý,ere

practical, it fails to address the problem of resource consolidation and, in general, would

further complicate an already complex database installation.

The last approach, the Multiple- Mode Is-and-Languages-to-Single-Model -and-

Language, is used in the Naval Postgraduate School Laboratory for Database Systems

Research [Hsiao 19891. This approach takes advantage of the separation of base data from

viewed data. All of the base data are stored according to a single, kernel model. Similarly.

there is a separation of transactions written from transactions executed. All written

transactions are translated into a single, kernel language for execution. An immediate

benefit gained from having a single data ML is a consolidation of resources. since now only

one database system is needed to support the base data and to execute the transactions.

This system will support any number of data models and languages via software interfaces

that transform schemas and translate languages into those of the kernel. This feature of the

system is referred to as the multi-model and multi-lingual capahility. Software interfaces

also allow a user, using a familiar ML, to access a database created according to an

unfamiliar ML by further transformations and translations between the models. This is

referred to as the cross-model accessing capability, To the user, the transformations and

translations are transparent.

By adding the interface software, the multi-model and multi-lingual database system

with cross-model accessing capabilities achieves two objectives:

"• It supports any number and type of MLs.

"• It allows a database user to access a heterogeneous database as if it is homogeneous to
the user. --

Figure 1 depicts graphically the multi-model, multi-lingual, and cross-model accessing

capabilities.

3



A kernel A hierarchical An object-oriented
database user database user database user

The kernel data model and The hierarchical datafl The object-oriented data
kernel data model and DL/I model and object-oriented

language interface interface data language interface

A kernel A hierarchical An object-oriented
database schema database schema database schema

A A A An
A network hierarchical relational object-oriented

kernel database database database database
database Iin in in

the kernel the kernel the kernel the kernel
form form form form

A relational database schema A relational database schema

Ffor the hierarchical database [for the object-oriented database

A network
database schema A relational

schema

The network data model The relational data model

and Codasyl-DML and SQL interface

interface -

I A relational
A network database user

database user

Figure 1. The Multi-model, Multi-lingual, and Cross-Model Accessing Capability

4



B. SCOPE OF THE THESIS

The design and implementation of software interfaces for databases and languages is

contained in works on relational and SQL [Rollins19841, network and CODAS YL-DNIL

[Emdil985], hierarchical and DL/I [Bensonl985]. functional and DAPLEX [Mak19921,

and object-oriented and the object-oriented language [Moorel9931. Each of these data

models is translated into the kernel data language (KDL). Past contributions also include

the design and implementation of a relational-to-hierarchical cross-model accessing

capability, %hich enables a relational database user to access a hierarchical database as if it

is relational, i.e., using SQL commands to access the data according to a relational schema

of a hierarchical database.

This thesis adds to the existing system a relational-to-object-oriented cross-model

accessing capability. A relational database user now can access an object-oriented database

using SQL commands and viewing the object-oriented database via a relational schema.

Though similar in concept to the relational-to-hierarchical, the relational-to-object-oriented

cross-model accessing capability requires a schema transformer and language translator

that differ significantly. The thesis compares semantic equivalencies between the object-

oriented and relational models and identifies methods and deficiencies in the

transformation. The thesis also elaborates the design and implementation of the cross-

model accessing capability in order to facilitate the integration into the system of future,

similar capabilities.



II. THE MULTI-MODEL AND MULTI-LINGUAL DATABASE SYSTEM

The multi-backend database super-computer (MDBS) at the Laboratory for Database

Systems Research supports research into the problems of heterogeneous databases. The

MDBS hardware and the software (i.e., the multi-model and multi-lingual database system

it supports) demonstrate the feasibility of a federated database design based on the

Multiple- Models - and - Languages - to - Single - Model - and - Language transformations

articulated in Chapter 1.

A. THE MULTI-BACKEND DATABASE SUPER-COMPUTER

Requirements for the MDBS design included optimal performance as well as resource

consolidation and a capability for data sharing. The following five features, identified as

requisite characteristics of federated databases in [Hsiao19921, have guided the system

design and development of the MDBS software and hardware:

"* Transparent access to heterogeneous databases

"* Local autonomy of each database

"• Multiple-model and multiple-lingual capabilities

"* Multiple-backends

"* Effective and efficient access and concurrency control

Figure 2, taken from [Hsiaol991], depicts the configuration of the MDBS. Each

backend contains portions of the base data as well as a complete copy of the meta dat-. as

indicated. The base data is divided evenly into clusters across the backends. A single

controller issues commands to the backends simultaneously over a network. On receiving

a command from the controller, each backend performs manipulations of data coming from

the secondary storage disk, using the "processing-on-the-fly" technique first proposed for

CASSM [Su79] and the "logic-per-head" design first proposed in DBC [Bannerjee 19791.

6



Mera data disk Base data disks

Meagdina diskBaedadsk

Meta data disk Base data disks

Paging disk • ••

Data clusters

Figure 2. The Multi-Backend Database Super-Computer

The use of multiple backends combined with the "logic-per-head" processing of the

disk data allows the MDBS to achieve a high degree of parallelism, concurrency, and

pipelining. An intelligent clustering algorithm divides the base data across the backends in

such a way as to best facilitate the execution of database transactions in parallel. An index,

which is searched and stored with a dedicated set of meta-data tracks on discs, indicates the



tracks on which requested data are stored. All of the backends process a data transaction

simultaneously.

The use of multiple backends offers the advantages of response-time reduction and

response-time invariance. The addition of parallel backends results in a corresponding

reduction in response time that is directly proportional to the number of backends added.

To halve a response time, one doubles the number of backends. Similarly, if the size of a

database is increased, the response-time is invariant if a proportional number of backends

is added to the MDBS.

B. THE KERNEL

All data in the MDBS is stored in the kernel database system (KDS) according to the

KDM and KDL. While any one of many MLs (the relational for example) would suffice for

the kernel, the attribute-based data model (ABDM) and attribute-based data language

(ABDL) best support the MDBS architecture, especially its reliance on parallelism and data

clustering [Hsiao1991].

1. The Data Model

In the ABDM each piece of data occurs as an attribute-value pair, notated by

enclosing angular brackets:

<ATTRIBUTE, Value>

The basic structure of the ABDM is the record. A group of attribute-value pairs forms a

record, and the record is notated by enclosing the list of attribute-values in parenthesis:

(<TEMP, Value>, <ATTRIBUTE, Value>, <ATTRIBUTE, Value>)

The first attribute-value pair is always the attribute "TEMP" and the name of the record

type (or file) is its value. Formally, in a record no two attribute-value pairs may have the

same attribute. Thus, the database consists of thousands or even millions of these records.

A sample "Vehicle" database the form of the ABDM appears in Figure 3. In the sample data

model, it is possible to identify various common values which could serve as keys. For



(<TEMP, Vehicle>, <ID, int>, <MODEL, string>, <MANUFACTURER, string>)

(<TEMP, Commercial>, <VEHID, int>, <COMPANY, string>, <REVENUE, int>)

(<TEMP, Automobile>, <AUTOID, int>, <PASSENGERS, int>)

(<TEMP, Fornauto>, <FORNAUTOID, int>, <CATEGORY, string>)

(<TEMP, Truck>, <TRUCKID, int>, <TONNAGE, int>)

(<TEMP, Company>, <CONAME, string>, <LOCATION, string>)

(<TEMP, Fomco>, <FORNCONAME, string>, <COUNTRY, string>)

Figure 3. The Vehicle Database Schema

example, one could relate Company, Fomco, and Vehicle (via the MANUFACTURER

attribute) using the common value of a company's name as a key.

2. The Data Language

Though simple, the ABDL is a rich, complete data language which also supports

a parallel search algorithm used in the MDBS. The ABDL includes the transactions

RETRIEVE, DELETE, UPDATE, INSERT, and RETRIEVE COMMON.

The syntax for the INSERT operation appears below:

[ INSERT (Record) ]

The MDBS uses a series of INSERT transactions to create a database. The series of

INSERTS in Figure 4 would create a "Vehicle" database according to the schema

developed in the previous section.

9



[ INSERT(<TEMP. Vehicle>, <11D, 01>. <MODEL, Mustang>, <MANUFACTURER, Ford) I

[ INSERT(.cTEMP, Vehicle>, <I13, 02>,<MODEL FIOO>. <MANUFACTURER, Ford>) 1

[ INSERT(<zTEMP, Veh~icte>. <ID. 03><MODEL, Accord>, <MANUFACTURER, Honda>)]

tILNSERT(<TEMP, Commercial>, <VEHID, 01>,< CUSTOMER, National>,< REVENUTE. 290>)]1

[ INSERT(<TEMP, Commercial>, <VEFHID, 02>.< CUSTOMER, National>,< REVENUE. 290>)]j

[ INSERT(.cTEMP, Commercial>, <VEHID:, 03>,< CUSTOMER, National>,< REVENUE. 290>) 1

[ INSERT(.cTEMP, Automnobile>. <AUTOID, 01>,<PASSENGERS, 6>)]

[ INSERT(<TEMP. Automobile>. <AUTOID, 03>,<PASSENGERS, 6>)]

[ INSERT(<TEMP, Fomnauto>, <FORNAUTOID, 03>.<CATEGORY, Compact>) I

[ INSERT(<TEMP, Truck>, <TRUCKID. 02>,<TONNAGE, 3>) 1

[ INSERT(<TEMP, Company>, <CONAMNE. National>, <LOCATIjiN, Newyork>) j

[ INSERT(<TEMP, Company>, <CONAME, Ford>, <LOCATION. Newark>) I

[ INSERT(<TEMP, Company>, <CONAME. Honda>, <LOCATION, Tokyo>) I

[Ii NSERT('TEMP, Fornco>, <FORNCONAME, Honda>, <COUNTRY. Japan>) I

Figure 4. The Vehicle Database

The ABDL syntax for the remainder of the transactions includes a query

composed of booleans and logical AND/OR connectors. The syntax for the DELETE

request is indicated below:

[ DELETE (Query)]I

The following series of transactions would delete from the Vehicle database the Vehicle

with ID number 0 1. This is a Mustang and it refers to the Automobile record with AUTOID

0 01 as well as to the Vehicle record with ID = 0 1. The user must delete both records in

10



order to maintain the integrity of the database:

[ DELETE((TEMP = Vehicle) and (ID = 01)) ]

f DELETE((TEMP = Automobile) and (AUTOID = 01))]

For the UPDATE transaction, one adds a modifier:

[ UPDATE ((Query) (Modifier)) I

The following transaction changes the location of the Ford company from Newark to

Detroit:

[ UPDATE((TEMP = Company) and (NAME = 'Ford') (LOCATION ='Detroit')) ]

For the RETRIEVE transaction, additional fields indicate desired attributes and

grouping characteristics. The retrieved attributes are designated the target list. A "group-

by clause" indicates the grouping of the records:

[ RETRIEVE ((Query) (Target list) BY group-by clause) ]

The transaction below would retrieve the ID numbers of all of the Fords ordered by ID

number:

[RETRIEVE(((TEMP = Vehicle) and (MANUFACTURER = Ford)) (ID) BY ID)]

The final transaction, RETRIEVE COMMON, is similar to the relational EQUI-

JOIN. The transaction request includes a field for attributes common to two records. The

generic syntax follows:

[RETRIEVE ((Query 1) (Target list 1))

COMMON (Attribute 1, Attribute2)

RETRIEVE ((Query2) (Target list2)) I

The transaction below would retrieve the models and ID numbers of all of the vehicles

manufactured in Newark, ordered by ID number:

[ RETRIEVE((TEMP = Vehicle) (MODEL, ID) BY ID)

COMMON (Manufacturer, Name)

RETRIEVE((TEMP = Company) and (LOCATION = Newark)) I

11



C. THE MULTI-MODEL AND MULTI-LINGUAL CAPABILITY

The multi-model and multi-lingual database system is based on the Multiple-Models-

and-Languages-to-Single-Model-and-Language transformations discussed earlier. The

single ML consists of the KDM and KDL, i.e., the ABDM and ABDL. The Language

Interface (LI) software, therefore, must transform each of the multiple MLs into the

attribute-based ML. This capability, which allows users to create, maintain, and manipulate

databases of many different MLs on a single system, is designated the multi-model and

multi-lingual capability.

Figure 5, taken from [Hsiao1992], depicts the modular software design of the LI. The

four modules inside the dashed box (i.e., LIL, KMS, KFS, and KCS) perform the

m UDM: User Data Model
System Module UDL User Data Language

LJL • Language Interface Layer
KMS Kernel Mapping System
KCS Kernel Controller System

Data Model KDM• Kernel Data Model
KDL Kernel Data Language
KFS Kernel Formatting System

0 Data Language KDS Kernel Database System

Figure 5. The Software Design of a Language Interface

12



transformations and translations from the user data model and user data language (UDM/

UDL) to the KDM/KDL and back again. Extensive literature documents the functions of

these software modules, including that of [Demurjian 1987] and [Benson 1985). Briefly, the

function of each follows:

"• LIL - Performs the functions necessary for hand-shaking with the user interface and
routing results to the user.

"• KMS - Builds the schema according to the UDM and parses the language requests. The
KMS maps each transaction into the kernel ML (i.e. the attribute-based ML).

"• KCS - Passes ABDL commands to the KDS for execution and receives results in the
kernel form.

"• KFS - Performs the functions of the KMS in reverse. When executing an ABDL
transaction, the KDS returns the result via the KFS, which re-formats the result into the
equivalent UDM and UDL.

Figure 6 depicts the modular software design of the multi-model and multi-lingual

database system. The MDBS supports interfaces for relational, network, hierarchical, and

object-oriented databases. An interface design for the Functional database also is

complete, but lacks a working implementation at this time. For each of these different user

models and its respective language, the four modules described briefly above are necessary.

Since the basic functionality of the interface is the same regardless of the requirements of

a specific user model and language, much of the software of these four modules is similar.

D. THE CROSS-MODEL ACCESSING CAPABILITY

The multi-model and multi-lingual capability does not solve entirely the problems of

heterogeneous databases. For though the user does have the capability now to create and

manipulate a database using any of the four models and languages discussed in the

preceding section, the multi-model and multi-lingual capability alone does not enable

another user of a ML to access this database which was originally created on a different data

13



Functional/Daplex

UMI-.. KMS
* * .* *. • . . . .. .

;LIL : KCS"--" ------

Network/CODASYL-DML - ,

LIL C D

Obj-ct-Oriented/Object-Oriented Language

Figure 6. The Modular, Conceptual Software Design for the Multi-Model and
Multi-Lingual Interfaces

model and tor transactions in a different data language. For this, one requires additional

capability, designated the cross-model accessing capability nHsiao1992l.

The subject of this thesis is such a cross-model accessing capability that will enable a

user to access an object-oriented database as if it is relational. For example, an object-

oriented database user working on the multi-model and multi-lingual database system can

14



create an object-oriented database that he can access using an object-oriented language.

Now, the cross-model accessing capability will enable a second, relational database user

to log onto the same system and access the object-oriented database as if it is relational. The

system will display to this new user a relational schema and will respond to SQL

commands. Although, theoretically, such cross-model accessing is possible among all of

the foui databases in any combination, prior to this thesis the cross-model capability existed

only for accessing a hierarchical database using the relational model and SQL language

[Zawis 1987].

Like the individual LUs, the cross-model accessing capability becomes a reality by

developing additional software. Moreover, the additional software is much less

complicated than the conceptual and modular LIs depicted in Figure 6. Figure 7 illustrates

the cross-model design. A user of database i wishes to access database j using i's model

and language. To accomplish this, it is not necessary to implement another LI. As depicted

in Figure 7, LIi obtains database j's schema, which is transformed into that of i. Using this

transformed schema, now the user of database i can manipulate database j using i's

language. The new software required for the cross-model accessing capability includes the

schema transformer and a number several other procedures, which are added to i's LI. The

cross-model access is entirely transparent to the user of database i.

15



UDUi UDMi DLj UDMj 1;I)Ln L'DMn

L~j LIn

S~Schema j

Schema ij

i-to-j SCHEMA

TRANSFORMER

KIDS

KDL KDM

(0) A user of database i has been using the database j with the the schema j.
(1) A user of i requests the use of a database, j.

(2) The schema of database j, i.e., schema j, is fed into the i-to-j schema
transformer.

(3) The output from the transformer is an equivalent schema, schema ij. for the
same database, j.

(4) The user of i can now access database j with the new schema, ij

Figure 7. The Cross-Model Accessing Capability

16



IH. THE OBJECT-ORIENTED DATABASE

The object-oriented data model is the most expressive yet developed. Unlike the

relational and other established DBMS, however, the object-oriented lacks a standard

specification of its model and language, or any standardized set of capabilities beyond the

general features which distinguish the object-oriented paradigm.Thus, like all object-

oriented databases, the object-oriented LI in the multi-model and multi-lingual database

system is unique [Moorel993J.

A. THE SCHEMA

The object-oriented schema is based on the abstract concepts of specialization and

generalization expressed through the fundamental object-oriented data structure, the class.

In an object-oriented database a class consists of a named set of attributes and transactions.

A class is a specialization of another class if it contains all of the attributes and transactions

of the other class plus some additional attributes and/or transactions the other class does not

contain. A specialization of a class is called a subclass of that class. A generalization of a

class, on the other hand, contains some, but not all, of the attributes and transactions of

another class. A generalization of a class is called a superclass of that class. The term

inheritance also describes this relationship. A subclass, as a specialization of a superclass,

acquires (i.e., inherits) all of the attributes and transactions of its superclass. Conversely,

the superclass, as a generalization of its subclasses, does not acquire any of the attributes

and/or transactions of its subclasses. A subclass may inherit attributes and transactions

from more than one superclass, a relationship termed multiple inheritance. [Elmasri 19861.

The schema defined thus far forms a directed lattice of an unlimited number of levels.

The additional abstract concept of aggregation completes the object-oriented schema

structure. Aggregation describes a class which includes as attributes one or more other

classes termed component classes [Elmasri19861. A class that includes one or more

17



component class attributes is called a composite class. A component class may itself

include component class attributes which are in turn composite classes in themselves. A

component class may have its own inheritance lattice as well. The schema's lattice can

extend on indefinitely in this way.

Figure 8 depicts an object-oriented version of the attribute-based Vehicle database

referred to earlier in Figure 3. Key values of subclasses have been dropped. The solid lines

indicate the inheritance relationship, and the dashed lines indicate components. The

phrases "is-a-kind-of' and "is-a-part-of" further describe the inheritance and the

component relationships respectively. Since the schema is a directed lattice, these

descriptors work one way only. Thus, an Automobile "is-a-kind-of" Vehicle, but the

converse is not true, i.e., the Vehicle is not "a-kind-of" Automobile. Similarly, the

Company class "is-a-part-of" the Vehicle class, but the opposite is not true.

Since any marketable DBMS allows the user to modify the schema after instantiating

the database, operational systems such as ORION, IRIS, and GEMSTONE include this

capability [ACM 1989]. Schema modification, however, is not necessary to demonstrate the

Multiple-Models-and-Languages-to-Single-Model-and-Language concept in the multi-

model and multi-lingual database system. The system, therefore, lacks this capability,

though it could be added in the future if desired.

B. THE DATABASE

An instance of a class is an object. As the class defines the structure of the object-

oriented schema, the object defines the instantiation of the classes. The Vehicle database

could include any number of objects of the classes Vehicle, Commercial, Automobile,

Fornauto, Truck, Company, and Fornco, each of which would correspond to an actual thing

or concept in-the real world. It is important to note that an object of the class Fornauto, in

addition to its own attributes, includes all of the attributes and transactions from its

18



Root

Database Transactions:

INSERT
UPDATE
DELETE
RETRIEVE

/ is-a-kind-of
is-a-kind-of

Commercial i--ido
CUSTOMER .

Vehicle REVENUE

ý.IODEL is-a-part-of.\

f Compn~y
MANUFACTURER '*. is-a-part-of ".-

is-a-kind-of LOCATION

is-a-kind-of is-a-iiad-of

Truck is-a-kind-of

is-a-kind-of TON E
Fornco

Automobile
[PAssENGERSI

is-a-kind-ofI
-ormautoI cATEGoRY

Inheritance
Component

Figure 8. The Object-Oriented Schema of the Vehicle Database

19



superclasses Automobile, Vehicle, Commercial, and Root via class inheritance. An object

which is an instance of the class Vehicle, however, will include, in addition to its own, only

those attributes and transactions in the Root class. To illustrate, Figure 9 depicts a Vehicle

object with a foreign manufacturer.

Instances of component and composite classes, are referred to as component objects

and composite objects respectively. A component object is an independent thing in itself,

separate from the composite object of which it is a part. Thus, a single object may occur as

an attribute value in many composite objects. In an object-oriented database instantiated

with the data in Figure 4, the CUSTOMER attribute would have the value "National" for

all instances of the composite class Commercial. The object named "National," however,

exists only once in the database. The component attribute includes the entire inheritance

hierarchy as well. Thus, the CUSTOMER attribute could have been an instance of the

subclass Fornco.

In most object-oriented databases the system uniquely defines each object by

assigning to it an object identification value [KimA1990]. In the multi-model and multi-

lingual database system, however, the user assigns this unique identification value in the

same way that he would an attribute. The value is a one-up sequence number of type integer

and is called "OBJECTID." This value is assigned in the left, highest superclass in the

inheritance hierarchy, excluding the Root class. Any object which is an instance of a

subclass will inherit its OBJECTID from this superclass. In the case of multiple inheritance,

a single value is assigned to the OBJECTID in all of the superclasses.

It is important not to confuse the object identification value with the relational primary

key. Although in this implementation it resembles an attribute, the OBJECTID field should

be invisible to the object-oriented database user.

20



Root

Database Transactions:

INSERT
UPDATE
DELETE
RETRIEVE

dis-a-kind-ofis-a-kcind-of I is-a-kind-of
Commercial-
CUSTOMER .

IDII is a-part-of
MODEL "..Company

MANUFACTURER i a -pan of / - NAMEp

is af is-a-kind-of

Truck is-a-kind-of

is-a'kind-of 
I-TONNAGEaki

Foruco
LG UýN T RY

Automobile
PASSENGERS

is-a-kind-of
I

Fornauto

CATEGORY
Inheritance
Component

Figure 9. A Vehicle Object

21



C. THE TRANSACTIONS

The capability which allows the user to specify those operations which manipulate the

attributes in a class is called encapsulation. Encapsulation is an important feature of object-

oriented databases since it allows the user to control data accesses. Plans for future research

include implementing this capability in the multi-model and multi -lingual database system.

In the meantime, the object-oriented LI is restricted to the four standard database operations

of RETRIEVE, UPDATE, INSERT, and DELETE.

The Root class, a standard feature of most object-oriented DBMSs, contains all of

those system features that it is desirable or necessary for all of the classes in the database

to inherit. In the multi-model and multi-lingual database system, all of the classes in the

data model inherit the transactions in the Root class and have no transactions of their own.

Further, of the four transactions listed in Figure 8, only RETRIEVE has been implemented.

The RETRIEVE transaction is limited to two levels of the inheritance hierarchy. The

remaining three transactions and the capability to query across more than two levels of

inheritance will be added in future work on the object-oriented LI. This thesis aims only to

demonstrate relational-to-object-oriented cross-model accessing via schema

transformations. Completing the object-oriented transactions, therefore, is not an objective

of this work.

1. Creating the Database

To create an object-oriented database all of the attributes of each object are listed

in the order of a descending traversal of the inheritance hierarchy. The traversal begins with

the left, highest superclass and ends with the last attribute of the object's class. The object-

oriented KMS maps the schema to an equivalent ABDM in which each class corresponds

to a single attribute-based record. The KMS adds the OBJECTID field to each of the

attribute-based records in order to link all of the classes of an object. The KMS then

translates the list of attributes into a series of ABDL INSERTs, and the KCS enters them

22



into the system. Figure 10 depicts the INSERTs which would create an object-oriented

version of the Vehicle database.

[ INSERT(<TEMP, Vehicle>, OBJECTID, I>, <Id. 01>, <MODEL, Mustang>. <MANUFACTURER, 5)1J

[i INSERT(<TEMP. Vehicle>. <OBJECTID,2>, <Id, 02>,<MODEL. F 1 00>, <MANUFACTURER. 5>) 1

[ INSERT(<TEMF, Vehicle>. <OBJECTID. 3>. <Id, 03>,<MODEL. Accord>. <MANUFACTURER. 6>) 1

[! INSERT(<TEMP, Commercial>, <OBJECTID, 1>.< CUSTOMER. 4>.< REVENUE, 29(Y>)]1

[ INSERT(<TEMP, Commercial>, <OBJECTID. 2>,< CUSTOMER, 4>,< REVENUE. 290>) 1

([INSERT(<TEMP, Commercial>. <OBJECTID, 3>,< CUSTOMER. 4>,< REVENUE. 290>) 1

[I INSERT(<TEMP, Automobile>, <OBJECTID, 1>,<PASSENGERS, 6>)]J

[ INSERT(<TEMP. Automobile>, <OBJECTID. 3>.<PASSENGERS, 6>) 1

[ INSERT(<TBMP, Fomnauto>, <OBJECTID, 3>,<CATEGORY, Comnpact>) I

[ INSERT(<TEMP. Truck>, <OBJECTID, 2>.<TONNAGE, 3>) ]

LI INSERT(<TEMP, Comnpany>. <OBJECTID. 4>. <NAME. National>, <LOCATION. Newyork>) I

[ INSERT(<TEMP, Company>. <OBJECTID. 5>, <NAMIE, Ford>. <LOCATION, Newark>)]

[ INSERT(<TEMP, Company>. <OBJECTID, 6>, <NAME, Honda>, <LOCATION, Tokyo>)

[ INSERT(<TEMP, Fomco>, <OBJECTID, 6>. <COUNTRY. Japan>) I

Figure 10. Creating the Object-Oriented Database

In the case of composite objects, the user assigns an OBJECTID value to the

component class attribute rather than a key as in the attribute-based database. This

artificiality would normally be hidden from the user, who would make a selection from a

list of existing database objects.

23



2. Accessing the Database

Because only the RETRIEVE query is functioning at this time, the comments on

object-oriented transactions which follow are general rather than specific to the

implementation. They describe the constraints inherent in the design of the object-oriented

model.

An object-oriented transaction against a class affects all instances of that class's

subclasses. Thus, a RETRIEVE or DELETE against the Vehicle class in the object-oriented

database of Figure 8 will act not only upon all Vehicle objects, but upon all Truck,

Automobile, and Fomauto objects as well. On the other hand, a transaction does not affect

instances of a subclass object's superclasses. A retrieval against the Truck class, for

example, will act only upon Truck objects.

An object-oriented transaction against a component class, either directly or

through the composite object of which it is a member, raises concerns with its referential

integrity. Deleting the Company class object named "National" from the Vehicle database

affects all of the composite objects which inherit the class Commercial. The same holds

true for UPDATEs of component objects. Inserting a component object, however, can

affect no existing objects, and the only integrity constraint associated with the INSERT

transaction is maintaining the uniqueness of each of the OBJECTIDs in the database.

RETRIEVE transactions do not alter the state of the database and are, therefore, of no

concern with respect to database integrity.

In the multi-model and multi-lingual database system the user is responsible for

enforcing the overall integrity of the database through the assignment of unique

OBJECTID values. The user must also enforce the referential integrity in the component

and composite classes.

24



IV. EQUIVALENT RELATIONAL SEMANTICS

The object-oriented data model owes its richness primarily to three features:

inheritance, composite classes, and encapsulation. The relational model achieves an

equivalent semantics of inheritance and composite classes through the use of keys.

Similarly, by the use of security views and integrity constraints the relational model can

approximate encapsulated transactions.

A. GENERALIZATION, SPECIALIZATION, AND AGGREGATION

At the highest level it is the abstract concepts of generalization, specialization, and

aggregation which an equivalent relational schema must express. While these abstractions

are inherent in the object-oriented class structure, the equivalent relational schema must

adhere to some system of transformational rules for assigning keys and constructing

relations in order to express them.

1. The Object Identification Value as the Key

The obvious structural differences between the relational and object-oriented

models reflect deeper, underlying differences in approaches to data modeling. These

differences become apparent upon examination of the object identification value.

In the relational model each tuple of a relation must have a unique attribute value,

or group of attribute values, which is the primary key. To the user every instance of a

relation appears different from every other instance in some way. In the object-oriented

model this constraint does not apply. An object-oriented database may include any number

of identical objects as database items. The system identifies each object by assigning it a

unique object identification value, but to the user all of the objects would look exactly the

same. Furthermore, unlike a relational key, the object identification value is assigned to an

object only once, and if the object is deleted, the value is never again used, Thus, the object-

oriented identification value is integral to an object's existence in the database system

25



rather than only a descriptive attribute. The system implementation must have this value in

order to manipulate the different objects in the database, but it is of no use to the object-

oriented user, nor is it reflected in the data model. In the absence of any object-oriented key

values, however, the transformation to a relational schema is only possible by providing the

user with this object identification value as a key.

On the object-oriented side, such a use of the object identification value is a

definite, if subtle, corruption of the data model. Now, the user sees a code which appears

to be another field describing the object. It is not integral to the object and, depending on

the method of transformation, it may only refer indirectly to all of the different parts of a

fragmented object via foreign keys.

On the relational side, this means that any attributes of a relation will depend only

upon the object identification value as primary key, and the relations will, therefore, contain

no functional dependencies [KimrB1990]. The object identification value can serve as a

foreign key also, in which case a relation would have an inclusion dependency.

2. The Class

As the relation is the structural basis of the relational model, so the class is the

structural basis of the object-oriented model. The problem of transforming a structure of

classes to a structure of relations, however, lies in transforming the relationships among the

classes, rather than only the class itself which is a trivial operation. An equivalent relational

schema requires a transformation of the relationships among object-oriented classes into

equivalent relational structures. Two features of the object-oriented data model relate one

class to another: composite classes and inheritance.

The composite class expresses the concept of aggregation, an abstraction which

comes naturally to the relational model. The composite class translates directly to a relation

by the use of foreign keys. As one relation might include another via its foreign key

attribute, so a composite class might include another via its object identification value.The

object identification value of a component class becomes a primary key attribute of a

26



corresponding relation. The relation corresponding to the composite class then includes this

primary key value as a foreign key attribute. Further, a component class attribute (i.e.,

component object) of a composite object must refer to an existing object of that component

class, just as in a relation a foreign key attribute must refer to an existing tuple of some other

relation. Formal relational terminology describes this relationship as an inclusion

dependency. For tuples r and s of relations R and S with attributes X and Y respectively.

Et(x) (r) c nt(Y) (s)

Substituting object-oriented terms--i.e., for objects r and s of component class R with

attributes X, and composite class S with attributes Y, respectively-the above relation also

applies. Save for the reservations concerning the equivalencies of key values addressed at

the end of the previous section, the composite class loses nothing in translation.

Unlike the composite class, inheritance corresponds directly to no relational

structure. On the one hand there is the system of superclasses and subclasses which make

up an object, on the other there is the object itself. A separate relation could correspond to

each class in an object-oriented schema, or to each possible occurrence of an object in the

schema. Preserving the class distinction in the first fragments the object; preserving the

object's coherence in the second loses the properties of generalization and specialization.

Other methods of transformation would convey the object-oriented model, but pose a

different set of problems for the resulting relational schema.

B. TRANSFORMING THE SCHEMA

A successful schema transformation must remain as faithful as possible to the nuances

of structure and relationships in the original object-oriented data model. In other words, the

relational schema produced by the schema transformer must reflect the various structures

of the original object-oriented model, i.e., superclasses and subclasses, even though the

relational model lacks comparable structures. At the same time the resulting relational

schema must follow, as much as possible, accepted relational standards of normalization

and design.

27



None of the three methods discu: ;ed below results in a perfect transformation. All

produce relational schemas which reflect the functional dependencies inherent in the

original object-oriented database. Of the three, the class-based approach best reflects the

original object-oriented database without corrupting the relational. Accordingly, the multi-

model and multi-lingual database system uses this approach for the relational-to-object-

oriented cross-model accessing capability.

1. The Class-based Approach

Figure 11 illustrates the relational schema resulting from the application of the

class-based approach to the Vehicle schema in figure 8. This is the simplest way to

transform the schema. Each class becomes a separate relation containing all of the attributes

of the class. If a class is not a subclass, its object identification value becomes the primary

key attribute of its corresponding relation. If a class is a subclass, the object identification

Company

QBJCMI NAME ILOCATION

Nemcle FK Commercial FK

I QUECI 3 [ ACTRE OBJECTI CUSTOMER R _EVE

PKIFK[OBftC- COL7] PI R1 F PK R R

"K Truck
PK/FK MC[FO'4AGE

Automobile

K == PASSENERSI

Fomrauto

PK/EK 1JA3OORY]

Figure 11. The Class-Based Transformation of the Vehicle Database

28



value becomes the primary key attribute of its corresponding relation as well as a foreign

key which points to relations corresponding to its superclasses. In cases of multiple

inheritance, all of the relations corresponding to superclasses of a subclass will have the

same primary key value.

This method preserves all of the superclass and subclass distinctions, but results

in a fragmented object. On the relational side, this transformation works well without

producing nulls in the relations. An inclusion dependency holds here for the subclasses of

a superclass. Formally, for tuples r and s of relations corresponding to subclass R and

superclass S with attributes X and Y respectively:

ir x )(r) c_ n rY)(s)

2. The Object-based Approach

Figure 12 illustrates the object-based approach. In this method all of an object's

subclasses and superclasses are combined into a single relation. The object identification

value becomes the relation's primary key. Unlike the class-based method, this method

preserves very well the correspondence to an object upon which object oriented design is

based. It also works well from a relational standpoint, without producing null values. On

the object-oriented side, however, it loses the concept of the superciass-subclass

relationship entirely. This transformation is not as satisfactory as the class-based, since it

does not convey the generalization and specialization abstractions.

3. The Combined Approach

A third method combines the first two approaches. In this method all of tne

classes in an inheritance hierarchy would become a single relation containing all of the

attributes of thc classes. Again, the object identification value becomes the relation's

primary key. An attribute, "TYPE", would indicate of which class the object was an

instance.

Although this method seems to maintain the superclass-subclass relationship. it

actually would only directly indicate the superclass, i.e., Vehicle, and subclass to which an

29



Commercial FK

TOMER IRVEINU

PK

Vehicle FK

OBJIE~J MODEL IMANVFA CIV

PK

SFormco

PIK I 01JEl]) N AM. LocATI(JN ()N

Truck FK /

QRM= I MC DEL MANUFACTURER CUSTOMER R EVENUE TONNAGE

AutomooNle /K FK

QBECID MODEL MAN"UFACTURER CUSTOMER REVENUE PASSENGERS

PK

Fomauto FK F

DD1m=I MODEL IMANIUFACrU'RER ICUSTOMER IREVENUE1 PASSENGERSI CATEGORY

PK

Figure 12. The Object-Based Transformation of the Vehicle Database

object corresponds. Intermediate classes in the inheritance hierarchy do not convey. There

is also a pr blem with multiple inheritance. An instance of a superclass other than the one

naming the relation would appear to be a subclass.

Figure 13 illustrates the combined method. The problem with multiple inheritance

is resolved here by making a separate relation for each additional superclass after the first.

Thus, Commercial is a relation by itself, but is also included in the Vehicle relation. An

alternative solution would include all superclasses in the single relation's name. e.g..

Vehicle-Commercial, and thus do away with the separate relation corresponding only to the

30



Commercial

OBJEC7ITD CUSTOMER REVFN'L'E

PK FK Company

-b PROBJECTID SAME LOCATION TYllE CO('INTR

Vehicle FK FK

OBJECTED MODE7LN MAUFACTURER1 TYPE ICUSTOMER IUWNVENU PASSENGERS ICATEGORY ITONN7AGE

PK

Figure 13. The Combined Class- and Object-Based Transformation of the
Vehicle Database

superclass. Neither of these alternatives, however, produces a clean transformat , and the

problem of directly expressing the intermediate classes remains.

Another solution would add to the relations in Figure 13 boolean fields for each

class in an inheritance hierarchy. The relation would reflect via the booleans all of the

participating classes in the inheritance hierarchy and solve both the multiple inheritance

problem and the expression of intermediate classes. This method, however, would still have

the problem of assigning to the relation an appropriate name. Also, from a relational

standpoint, this method would result in an unsatisfactory number of null fields.

Although, graphically, Figure 13 appears the simplest of the three methods, the

problems from both the relational and object-oriented sides of the transformation make it

less desirable than the other two.

C. THE TRANSACTIONS

Since the object-oriented LI lacks encapsulation, the cioss-model accessing capability

does not include an equivalent capability using security views and integrity con-traints. The

31



much simpler problem consisted of translating SQL commands into an equivalent series of

ABDL commands constrained to maintaining the integrity of the object-oriented database.

The fo'lowing cutinents address the affects of the four basic SQL commands upon an

object-oriented database which was transformed using the class-based approach. Another

method of transforming the schema would affect the database differently. Since all of the

transactions affect composite classes exactly as they would relations with foreign keys, the

discussion is limited to the affects on the inheritance hierarchy.

1. SELECT

The requirement to execute EQUI-JOINs in order to retrieve subclass objects

characterizes the SQL SELECT. A SELECT against a Fornauto relation, for example,

yields only the single attribute, CATEGORY, of which it is composed. Retrieving all of the

attributes of the Fornauto object would require an EQUI-JOIN on the OBJECTID primary

and foreign keys of all of the relations corresponding to the object's superclasses.

A SELECT against a relation corresponding to a class that is not a subclass, on

the other hand, will act on all objects of that class as well as on all objects that are subclass

objects of that relation's class. A SELECT against the Vehicle relation, for example, will

yield requested attributes of all Vehicle objects in the database. It will also yield these

attributes of all Fornauto, Automobile, and Truck objects in the database. Such a SELECT

projects only those attributes in the Vehicle relation, however, and none from the relations

corresponding to the subclasses.

The required EQUI-JOIN transactions are unnatural to the object-oriented

paradigm. Unlike the SQL SELECT, an object-oriented retrieval against Fornauto would

yield all of the attributes of the object, including those of classes Automobile, Vehicle, and

Commercial. The inability of the relational transformation to match this capability without

the use of the EQUI-JOIN is a shortcoming of the class-based approach to schema

transformation.

32



2. UPDATE

UPDATE of a tuple of any relation affects only the object corresponding to the

OBJECTID field of the relation. Since the relational model produced by the schema

transformer makes no attempt to avoid duplicated values, UPDATE anomalies are not an

issue.

3. INSERT

An SQL INSERT of a tuple corresponding to an object whose class is not a

subclass requires no translation. Only the requirement to assign a unique OBJECTID value

constrains such an INSERT.

INSERT of a tuple corresponding to a subclass object, however, acts upon all of

the relations which correspond to its superclasses as well. Moreover, the INSERT

transaction alters the object-oriented database. Since the inheritance hierarchy is not

apparent in the relational model, the system must prompt the user to enter values for the

attributes of all of the relations which make up the object or else reject the INSERT.

4. DELETE

Like the INSERT, DELETE also alters the database. An unqualified DELETE

against a relation corresponding to a non-subclass, must automatically delete all tuples of

the relation as well as all tuples of relations corresponding to subclasses. Similarly, a

DELETE of a subclass also must delete all tuples of the subclass relation and all tuples of

relations corresponding to subclasses of the subclass. Additionally, the subclass DELETE

must delete those tuples coIxesponding to the object's superclasses which have the same

OBJECTID foreign key values as the subclass instances.

In Figure 11, therefore, a DELETE against the Vehicle relation will delete from

the database all Vehicle, Fornauto, Automobile, and Truck tuples. A DELETE against

Automobile, however, deletes only Automobile and Fornauto tuples and those tuples of

Vehicle and Commercial which are related to Automobile by foreign key OBJECTID

values.

33



V. THE CROSS-MODEL ACCESSING SOFTWARE

The software for the cross-model accessing capability is neither a new, separate LI nor

is it an interface between the relatioaal and object-oriented Lls. Rather, the software

extends the capability of the relational LI and is integrated in the relational software.

A. THE DESIGN

The software design for the schema transformer follows closely that of the previous

work on the relational-to-hierarchical cross-model accessing in [Zawisl986J. For the

transactions, however, the design departs from the method of the previous work, which vises

the hierarchical LI procedures to process SQL transactions.

Using the object-oriented I I would require two sets of data structures, one for the

relational and one for the object-oriented. The software's independence from the object-

oriented LI eliminates the need for these additional data structures, with the except ion of

those holding the object-oriented schema. Additionally, this independence means that SQL

commands translate directly into the kernel language rather than into intermediary object-

oriented transactions, greatly simplifying the language translation. Incidentally, this also

allows the cross-model accessing software to avoid the temporary limitations of the object-

oriented LI's transactions. Unlike the object-oriented LI, the cross-model accessing

capability includes the full range of standard SELECT, INSERT, UPDATE, and DELETE

transactions.

Rather than divide the cross-model accessing procedures among several modules of

the relational LI, the design favors completing necessary actions in a single module, which

then calls other relational modules using control statements. Thus, rather than scatter

numerous prgcedures throughout the KMS, KC, and LIL modules, the software design

favors performing all of the actions in the single module most involved in the execution of

a transaction. This practice minimizes the quantity of code required and makes the

procedures much easier to understand.

34



The reasoning of the previous paragraphs resulted in the following set of design

principles for the cross-model accessing software:

- Restrict code to the relational LI and its data structures, except for the object-oriented
schema.

- Change the relational LI and the object-oriented and relational data structures as little
as possible.

* Cluster new procedures in as few of the relational modules as possible, rather than
scatter pieces throughout the modules.

- Maintain as much as possible the modular framework of the multi-model and multi-
lingual database system.

The work of [Bourgeois19931 provides a systematic plan for the integration of new

capabilities in the multi-model and multi-lingual database system.

B. THE DATA STRUCTURES

The header file "llicommdata.h" contains most of the C programming language data

structures used in the multi-model and multi-lingual database system. The data structures

of each of the LIs, including the cross-model accessing procedures, are globals and differ

only in so far as necessary to implement their respective databases. The use of common data

structures and standardized naming conventions greatly reduces the quantity of new code

required to add new software procedures. Code patched from one LI to a new LI often

requires only minor coding changes and changing the names of the data structures in order

to make it work in the new LI.

The software for the cross-model accessing capability adds no new data structures to

those of the relational and object-oriented LIs. The union data structure in Figure 14

provides access to the schema of any of the MLs of the system via pointers contained in

individual header files of the respective LUs. On the object-oriented side, the only data

structures used for cross-model accessing are those which hold the schema. The dbidnode

35



union points to a linked list of obj dbid node structs, also depicted in Figure 14, which

hold information

union dbidnode
I
struct reldbidnode *dn-rel;
struct hie_dbid node *dn_hie;
struct netdbidnode *dnnet;
struct entdbidnode *dn fun;
struct obj-dbid node *dn-obj;
I

struct obj_dbidnode
I
char odnname[DBNLength + 11;
int odnnum-cls;

struct ocls_node *odnfirstscls;
struct ocls node *odncurr-cls;
struct objjdbidnode *odn_next.db;
1;

Figure 14. Object-Oriented Database Node Structures

about each object-oriented database in the system. Each of these structures in turn points to

a schema, which consists of linked lists of classes, each class in turn pointing to a linked

list of attributes. The class nodes also point to lists of superclasses and subclasses. The

superclass and subclass nodes include pointers back to the class node that represents the

superclass or subclass itself. Figure 15 depicts the object-oriented schema data structures.

The relational data structures differ in no significant way from those of the object-

oriented. The-ielational schema, like the object-oriented, consists of linked lists of relations

and attributes, without the lists of superclasses and subclasses.

It is important to note that the schema data structure represents only the data model,

not the actual storage of the data. The schema provides all of the information necessary to

36



struct ocis-node /*class nodes*/

char ocn~name[RNLength + I],
int ocn-num-attr;
int ocn-supcls;
int ocn-subcls;
int ocn-visited:
struct o-supcls-node *ocn -first-supcls;
struct o-supcls-node * ocn-currý-supcls;
struct o-subcls-node *ocn -first-subcls;
struct o-subcls-node *ocn -curr-subcls,
struct oattr -node *ocn-first-attr;
struct oattr-node *ocncurr~attr;
struct ocis-node

stiruct oattrý_node /*attrbute nodes*/
class node *

I
char oan -name[ANLength + 11;
char oan-type[RNLength + I];
int oanjlength;
int oan-key-flag;
struct oattr-node *oan_next-attr;

struct o-supcls-node /*superclass nodes*/

char osn~name[RNLength + 11;
struct ocis-node *osn-supcls;
struct o-supcls-node *osn-next-supcls;
1;

struct o-subcls-node /*subclass nodes*/
f
char osn-namne[RNLength + 1];
struct ocis-node *osnsubcls;
struct o-subcls-node *osnnext~subcls;

Figure 15. The Object-Oriented Schema Data Structures

37



build the ABDL commands, which the KCS then passes into the KDS via system functions.

On receiving an ABDL command, the KDS performs all of the necessary operations to

create and manipulate the database. The LI and cross-model accessing software, therefore,

need only build the appropriate ABDL commands in order to create and manipulate a

database. This is a fundamental property and definite advantage of the Multiple-Models-

and-Languages-to-Single-Model-and-Language technical approach.

The software design of the multi-model and multi-lingual database system includes a

multi-user capability, although the system functions as a single-user system at this time.

Figure 16 depicts the struct, called userinfo, that holds all of the information associated

with each user. This data structure contains the liinfo union, also in Figure 16, which

struct userinfo

{
char ui-uid[UIDLength + 1];
union liinfo ui li-type;
struct user-info uinext-user;

union liinfo
{
struct sql-info li-sql;
struct dliinfo li-dli;
struct dmlinfo li-dml;
struct dap-info li.dap;
struct oolinfo li-ool;

Figure 16. The User Data Structures

contains the data structures for the specific LI in use. The sqlinfo struct, called li-sql in

Figure 16, provides access to information necessary to process SQL requests.

38



Figure 17 shows the sql-info struct. Typically, procedures access this struct in the first

few lines of code to access all of the required information. This data structure holds

information on the current database, files, and relational catalog, as well as all of the other

data structures used by the LIL, KMS, KCS, and KFS modules. Since the cross-model

accessing software does not use the object-oriented LI, it requires only the relational

userinfo data structures. The object-oriented schema is acquired through the use of a

global pointer and is not attached to any user structure.

struct sqlinfo

{
struct currdbinfo si currdb;
struct fileinfo si file;
struct tran info sisqlitran;
int si-operation;
struct ddlinfo *siddlfiles;
struct traninfo *siabdltran;
int si answer;
union kmsinfo sikmsdata;
union kfs-info sikfs-data;
union kcinfo sikcdata;
int si error;
int si subreq stat;

Figure 17. The sql-info Data Structure

The cross-model accessing software uses only those parts of the user data structures

which are necessary to execute the transactions. Effective use of these data structures,

however, requires an understanding of the overall framework of their organization.

Appendices A and B contain schematics of the most important data structures.

39



C. THE IMPLEMENTATION

The cross-model accessing implementation depends heavily on the method that the

object-oriented LI uses to map the database into an equivalent, object-oriented ABDM (i.e.,

ABDM(object-oriented)) in the KDS. Because the object-oriented LI maps each superclass

and subclass of an object- rather than the entire object- to a separate attribute-based

record, the SQL transactions map to attribute-based transactions in a specific way

[Hughes1991].

Eight procedures comprise the whole of the cross-model accessing software.

Appendices C, D, and E contain all eight of the cross-model procedures as well as those

relational ones which are germane.

1. The Schema Transformer

The schema transformer consists of two procedures in the relational LL:

traverseoolschemaO and translateobjtorelO. After a user identifies himself as a

relational user, he enters a database name at the terminal. The r_process oldO procedure

searches first among all of the relational databases in the system for the requested database.

If the search fails, the procedure calls checkalternatemodelsO which searches among the

hierarchical and, finally, the object-oriented databases. If the database is object-oriented,

the search procedure, traverseoolschemaO, returns a pointer to the schema. Procedure

checkalternatemodelsO then passes the object-oriented schema to

translateobj]to relO, which allocates a relational schema according to the transformation

rules articulated in Chapter IV. After the transformation, procedure

checkalternatemodelsO assigns to the sqljinfo user structures those values necessary to

execute transactions against the object-oriented database.

Beci-use the object-oriented LI maps the database to the kernel by class, the cross-

model accessing software uses only the object-oriented schema to translate SQL

transactions to the ABDL(object-oriented). The relational schema serves only to provide

the user with a relational interpretation of the object-oriented database. If the object-

40



oriented mapping were by objects, however, the software would have referred to the

relational schema as well.

2. The Transactions

As noted earlier, the cross-model accessing software translates SQL commands

to equivalent ABDL commands rather than to the object-oriented language. The relational

LIL and KCS modules contain all of the new procedures required to perform these

translations.

a. SELECT and UPDATE

For these transactions, the mapping by class makes translation unnecessary.

There is a one-to-one-to-one correspondence between relational relations, object-oriented

classes, and attribute-based records. An SQL SELECT or UPDATE command will affect

only that record corresponding to the relation indicated. Since each relation, in turn,

corresponds to a class, these comm~ands are transparent.

b. INSERT

For INSERT commands the software must maintain the object-oriented

database structure of superclasses and subclasses. This means that the system must not

allow the user to insert a tuple of a relation corresponding to a subclass without inserting

all of the tuples of relations corresponding to the appropriate superclasses as well. Since the

INSERT requires that the user enter data, the problem becomes one of user interface.

Procedure queries toKMSO initiates the cross-model accessing INSERT. A

conditional checks to see if the transaction is an object-oriented INSERT request and, if so,
calls procedure insert to objectoriented(. Procedure inserttoobject oriented() calls

41



the recursive procedure get objiinsertsO. If the INSERT relation corresponds to a

subclass, the following message appears on the screen:

In order to maintain the integrity of the object-oriented base model,

INSERTs of all relations which correspond to superclasses in the

object-oriented hierarchy of the original INSERT are necessary.

INSERT a tuple for each relation when prompted. If entering from a

file, selections must offer appropriate INSERTs.If any INSERT is in

error or any superclass INSERTs are lacking. all preceding INSERTs

will be cancelled. <CR> to continue.

Procedure get.obj-inserts0 traverses the inheritance hierarchy, at each node prompting

the user to select an INSERT corresponding to the appropriate superclass before proceeding

to the next. The following message appears on the screen at each node of the hierarchy:

INSERT a tuple of relation (relation name) now, having the same

OBJECTID attribute as the INSERT just attempted. If such a (relation

name) tuple already exists (i.e. has the same OBJECTID) you must start

INSERTs over, using a unique OBJECTID. <CR> to quit or continue.

For each superclass, get obj inserts() stores a separate ABDL INSERT in an array of

character pointers. If the user enters an incorrect superclass or an OBJECTID value that is

not unique, all of the INSERTs are cancelled. Otherwise, on completion of the traversal,

control returns to insert to object-oriented(), and the procedure passes the INSERTs one

by one to the KCS for entry into the kernel.

42



c. DELETE

Like the INSERT, the SQL DELETE transaction must maintain the integrity

of the object-oriented database. All tuples of relations corresponding to superclasses and

subclasses of tuples that satisfy the conditions of a transaction must be deleted. The

OBJECTID values identify affected tuples.

The KCS module contains all of the software for execution of the cross-

model accessing DELETE, since it consists of building and sending to the kernel an

appropriate series of ABDL DELETE transactions and does not require user interaction. On

receiving an object-oriented DELETE, the procedure rKernelControllerO calls

object-orienteddeleteO. This procedure must first identify the OBJECTID values of all of

the specified tuples by calling procedure getobjectidsO. Procedure get objecridsO

transforms the DELETE into an ABDL RETRIEVE command, calls the relational

procedure get response(, and stores the returned OBJECTID values in an array. Procedure

search_forsub_and superclassesO then traverses the object-oriented schema, building at

each node a series of ABDL DELETE requests--one for each OBJECTID value-and then

passing them one-by-one to the KCS for execution.

43



Vl. CONCLUSIONS

The relational data model fails to convey the richness of expression inherent in the

object-oriented. The relational model is capable, however, of approximating the object-

oriented data model sufficiently to enable a relational user to manipulate the database via a

transformed schema. Although the resulting relational data model is not as rich, the benefits

gained by increasing access without training are often greater than those achieved by

learning to use the more expressive data ML.

A. SHORTFALLS

The object-oriented concepts of objects and inheritance do not transfer to the

relational. This deficiency is impossible to remedy without fundamentally changing the

relational data model. The transformation by class fragments the object; the transformation

by object lcses the subclass and superclass inheritance relationships; combined methods of

transformation duplicate classes and relations and are ambiguous. These shortfalls are the

consequence of fundamental differences in the two data models.

With respect t- the cross-model accessing capability in the multi-model and multi-

lingual database system, the capability is fully developed within the limitations of the

system hardware and software. All four of the standard transactions work. The system

handles all of the features of the object-oriented database, including composite classes and

single and multiple inheritance.

B. FUTURE RESEARCH

The object-oriented LI as well as the cross-model accessing capability were

implemented in the C programming language, since the MDBS hardware lacked the system

software to handle the object-oriented C++ language. If the object-oriented LI is converted

to C++ in the future, the cross-model accessing capability must accommodate the changes.

Specifically, implementing encapsulation is greatly simplified working in an object-

oriented language. When encapsulation is added to the object-oriented LI, whether or not

44



as a result of a conversion to C++, a corresponding transformation to the relational model

via security views and integrity constraints must accompany it. This complex problem

would provide the subject matter of another thesis.

The object-oriented method of mapping to the KDS by class closely resembles the

mapping of a relational database and facilitates the implementation of the cross-model

accessing capability. Due to the inability to retrieve across more than two attribute-based

records, however, an object-oriented retrieval of attributes from objects with more than two

levels of inheritance is greatly complicated and would require buffering intermediate

results and performing a series of queries in order to execute. A mapping by object, rather

than by class, may resolve this problem in a simpler way. Adopting a different method of

mapping the object-oriented database to the kernel will require re-working the cross-model

accessing queries accordingly.

45



APPENDEK A - THE SCHEMA DATA STRUCTURES

Relational Schema
rel-node rattrnode

_ _ Ibid'node M-inrcwrati rnleLa

a:n edn~cre

dbid-nose Jclsjwde

d-n~e mnex~eloan-next_attr

IreldbidnodeW3 -r Fr46



APPENDIX B - TH" USER DATA STRUCTURES

userinfo li_info sqLinfo

uin-i-type li sq] SiC _db........curr db info
ui next user i _dli si file if-.....o

i-ne.............. ................. fieno

li dml sisql-tran ... tran-info
............................

li dap siddldfiles ........... I1., ddlinfo
u~i-li-typw

i hool siabdl_tran . lii. tranjnfo
uinextuser

sikmsdata .. .kmsinfo
........... ..............

si kfs data . kfs info

sikccdata .......... kc-finfo

47



APPENDIX C - THE SCHEMA TRANSFORMER

R_PROCESSOLDO
/* This proc accomplishes the following: */

/* (1) determines if the database name already exists, */
1* as a Relational model. If not, other models are */
/* checked, and iffound, the schema is converted *1
/* to a relational schema. *1
/* (2) determines the user input mode (file/terminal), */
/* (3) reads the user input and forwards it to the parser *1

char catname[DBNLengthI;
int found, more-input; /* boolean flags */
int num;
int i;
struct rel dbidnode *rdb list ptr, /* ptrs to the current *1

*temprdb-list-ptr; /* database catalog *1
struct rel-db list node *rdln-ptr; /* pointer to current database list node */
struct ddlinfo *ddlinfo_alloco; /* template and descriptor *1

!*file structure */
struct ocls_node *clspptr;

/* create the template and descriptor structure if it doesn't already exist*f
if (sql-info-ptr -> si_ddlfiles == NULL)

sql-info-ptr -> si_ddl-files = ddl infoalloco;

/* prompt user for name of existing database */
printf ("[7;7m\nEnter name of database ---- >[O;Om ");
readstr (stdin, sql_infoptr->sicurrdb.cdidbname);
to-caps (sql-info-ptr->si-currdb.cdidbname);
found = FALSE;
rdblist-ptr = dbsrel_head-ptr.dnrel;
temp-rdb-list-ptr = rdb list-ptr;
while (found == FALSE)
{
/* determine if database name does exist */
/* by traversing list of relational schemas *1
if ((dbsrelhead ptr.dn rel) && (strcmp(sql-info-ptr->

si curt db.cdidbname,rdb list ptr->rdn name)== 0))
I
found = TRUE;
sqltinfo-ptr->sicurrdb.cdidb.dnrel = rdb-listptr;

48



sql-info-ptr->si curr-db.cdi-dbtype = REL;
strcpy(sqL-info-ptr->si-ddl-fi les->ddli-temp. fi-name, R-

TEMPFname);, strcpy(sql-info-ptr->si-ddl-files->ddli-desc.fi-fname,R-
DESCFname); /*I end if *

else I*found ==false *

if (rdbjlist~ptr)
I
temp rdb listpt = distptr: /* save temp ptr to curr db *
rdbjlist-ptr = rdb-list-ptr->rdn-next-db; /* get next rel db ~
I

/* db name is not a rel db so end of list('NULL') is reached ~
if (rdbjlist~ptr == NULL)

/* check if db name is defined in the db list *
rdln-ptr = db -list -head..ptr;
while ((rdlnuptr ! = NULL)&&(strcmp(rdln-ptr->rdln-name,

sql info-ptr->si curr-db.cdi-dbname)))
I

rdln-ptr = rdln-ptr->rdln-next-db;

if (rdln~ptr)

r-load_catalog(rdln-ptr->rdln-name);
found = TRUE;
sqL-info-ptr->siscurr-db.cdi-db.dn-rel

dbs rel-head prd~el

sqL-info-Ptr->si-curr -db.cdi-dbtype = REL.
strcpy(sql-info-ptr->si ddl-files->ddli-temp. fi-fname,

RTEMPFname);
strcpy(sqL-info-ptr->si-ddl_files->ddli-desc.fi_fname,

RDESCFname);
I

else

/* check if db name is defined in another model *
rdb-list-ptr = temp-rdbjlistptr; l* reset to last db ~,
check-alternate-models (&found, rdb-list-ptr);
/* if not, an error has been made, so re-enter name *
if (found == FALSE)

49



printf ("\nError - db name does not exist\n');
printf ("[7;7m.Please reenter valid db name ---- >[O;Om
readstr (stdin, sql-info~ptr->si_curtrdb.cdi_dbname);

to-caps (sql-info-ptr->si-curtý-db.cdi_dbname);
rdb list~ptr = dbs,_rel-head-ptr.dnjel

1* end iffound = =false *

/* end if rdb list ptr ==null *

/* end else *
1/* end while *

} * end r~process-old *

50



CHECKALTERNATEMODELS(found, rdbjlist-ptr)
f* this routine calls other subroutines that check the Object-oriented,

Network, Hierarchical, and Functional schemas for the desired
database name. Iffound, the schema is translated to a corresponding
Relational schema and prepared for processing. *

int *found;
struct rel-dbid-node *rdb list ptr; /* ptr to the current rel database *

I
struct hie-dbid-node *hdb list ptr; 1* ptr to the current hie database *
struct hie~dbid-node *traverse-dliischemao;

struct objdbid-node *odb -list-pti; 1* ptr to the current ob] database ~
struct objjbid_node *traverse-ool-schemao;

/*first check the hierarchical databases*/
hdb-list-ptr = NULL;
hdb-list-ptr = traverse-dli-schemao;
if (hdbjlist-ptr !=NULL)

INf db not found in hierarchical, check object-oriented*/
if (found == FALSE)
odb-flist pTr-NULL.
odb-list-ptr = traverse_ool-schemao;
if (odbjlisLptr !=NULL)

*found = TRUE;
sqi-info-ptr->si currdb.cdi-dbtype = OBJ;
translate-obj-jo rel(rdbjlistp, fdbisptr)
strcpy(ZTEMPFname, add-path(sql-info-ptr->si-curr-db.cdi-dbname)):,
strcat(ZTEMPFname, ".t");
strcpy(sql-info-ptr->si-ddl files->ddli-temp.fi_fname, ZTEMPFname);
strcpy(ZDESCFname, add-path(sql-info-ptr->si curr-db.cdi-dbname));
strcat(ZDESCFname, "Ad");
strcpy(sql-info-ptr->si-ddl-files->ddli-desc.fi-fname, ZDESCFnarre);



/* initialized the data base. *
sqI-info-ptr->si-opera don = CreateDB,

rKernelControllerO;

strcpy(cuser -obj-ptr->ui-li-ype. ii-ool~oi-su~rrdb.cdi-dbname,
sql-info-ptr->si-curr-db.ccli-dbname);

cusersobj-ptr->uijlitype.li-ool.oi-operation = ExecRetReq;

if (found == FALSE)

1* stub for future implementation of network model *

if (found == FALSE)

1* stubfor future implementation offunctional model *

} * end check-alternate-models ~

52



static struct obj-dbid-node *TRA.VERS EOOL_SCHEM AO
/* This Proc accomplishes the following: *1
/ * (1) determines if the database name already exists, as *

1*an object-oriented schema.

int objjfound,
end-of-list; /* boo lean flags *

struct obj~dbid-node *temp__odbjlist~ptr; 1* ptr to the current
object-oriented database *

FILE *obJdblist~fd;
char obj~name[DBNLength + 11,

temp-odb-list-ptr = dbs~obj~head~ptr.dn~obj;
obj-jound = FALSE;
end-of~list = FALSE;
if (temp~odbjlist~ptr == NULL)

end-of-list = TRUE;
while (objjound == FALSE && end-of-list == FALSE)

I
f* determine if database name does exist *1
/f* by traversing list of object-oriented schemas *
if (!strcmp(sqLinfo-ptr->si-curr-db.cdi_dbname,

temp~odb list_ptr->odn~name))
objjfound = TRUE;

else
I
temp-odbjlist~ptr = temp-odbjlist ptr->odn_next_db;
if (temp-odb-iis&..ptr == NULL)

I
end-of-list =TRUE;

) * end if
/* end else *

1/* end while *

53



if (!objjfound)

{tcyOB~t...
strcat(ODBCat, sql-info-ptr->si-curr db.cdi-dbname.);
strcat(ODBCat, ".cat");

if (obj-dblist-fd = fopen(ODBCat, 'Y'))
I
objjfound =TRUE;
fclose(obj-dblistjfd);
o-load-catalog(sql-info-ptr->si-cunr-db.cdi-dbname);
temp-odbjlist-ptr = dbs-obj-head..ptr.dn-obj;

return (temp-odbj- istp- tr);
} * end traverse-col-schema *

54



TRANS LATE_OBJ_TO_REL(rdbjlistptr, odbjlist-ptr)
1* this routine converts the object-oriented schema to a relational schema *1

struct rel-dbid-node *1dbh- jlist-ptr; 1* ptr to the current rel database *1
struct obj-dbidnode *odb list ptr; 1* ptr to the current obj database *

struct rel-dbid-node *new rdb-ptr 1* ptrs to database nodes *
struct rel-node *new-rel-Ptr, *rel pt.; 1* ptrs to relation nodes *
struct tauttr-node *new rattr-pt., *rat-ptr; /* ptrs to attribute nodes *
struct tel-dbid-node *mkj_rel_dbid~nodeO;
struct tel-node *mk -rel-nodeO;
struct rattr-node *jj_rtart_nodeO;
struct objjbid node *0db Pt;
struct ocis-node *cls-ptr, *supcls-ptr;
struct o-supcls-node *frst-supcls-ptr;
struct oattr-node *oattr-ptrr

/* head of current vol db schema *

/* the new ret database node is allocated and filled here with
information from the ool database node *1

odb-ptr = odb -list-ptr;
new_rdbpt =mnk_tel~dbic~nodeO;
strcpy(newjrdb-pt->rdn-name,odb-ptr->odn-name):
new rd~ptr->rdn num_tel = odb~ptr->odn~numsls;-
new_rdb~ptr->rdn -num -view = 0;
newjrdb~pt->rdn_first_tel NULL,
new~jdb~ptr->rdn_curr_tel NULL;
new_rdbptr->rdn_next~db =NULL;

new_tdb~pt->rdn~dbtype =OBJ;, 1* identify db as object-oriented *
if (dbs-tel-head-ptr.dnjrel)

rdb_listrptr->rdn_next_db =new-rdb-ptr; /* connect to ret db list I
else
dbs-tel-head-ptr.dn-rel =new-rd-ptr;

sql-info-ptr->si-curt-db.cdi-db.dn-tel = new-rdb-ptr;

cls.ptr = odb..ptr->odn_firstrsls;
while (cls~ptr)

/* the relation nodes are allocated and filled here *
new-rel-ptr = mk-tel-nodeQ;
strcpy(newrel-ptr->rnname,cls-ptr->ocn-name);
new rel~pt->rn_num_atrt = cls~ptr->ocn_num_atrt;

55



newrel-ptr->rn-first-attr = NULL;
newrel~ptr->rn_curr_attw = NULL;
newrel-ptr->rn-next-rel = NULL;
newjrelptr->rnjtyPe =7*
if (cls-ptr == odb~ptr->odn_first~cls)

/* special case offirst relation *
new rdbptr->rdn firstie1 = new~relpr

rel-ptr = new-reL-ptr;

else
I
rel-ptr->rn next-rel = new-rel-ptr;
rel-ptr =newjreLptr;

I

oattr-ptr =cls-ptr->ocn first_attr;
while (oattrptr)

I
/* the attribute nodes are allocated and filled here *
new-rattr-ptr = mk-rattr-nodeO;
strcpy(new rattrptr->ran name,oattrpt->oan nm)

/*jf it is a component class attribute, type is i'?teger;
else it is the same as for object-.oriented*/

if (!strcmp(oattrptr->oanjtype, TCHAR"))
I
new-rat rptr->ran-type =s'

new-rattr-ptr->ran-length RNLength;
I

else if (!strcmp(oattrptr->oanjtype, "FLOAT"))
I
new-rattirptr->ranjtype T;
new-rattr-ptr->ranjlength =3;

1
else

new-rattr-ptr->ranjtype =';
new-rattr-ptr->ranjlength = 4;

new-rattr-ptr->ran-key-flag = FALSE;
new-rattr-ptr->ran-next-attr = NULL;
if (oattr-ptr == cls~ptr->ocn first..attr)

56



1* special case offirst attribute *
rel-ptr->m-first-attr = new-rantt_ptr;
rat-ptr =new-rattlu-ptr;

else

rat-ptr->ran-next-antt = new-rattr-ptr;
rat-ptr = new~rattr~ptr;

oattr-ptr =oattr-ptr->oan_next_attr;
I /"* end attr loop */

rel-ptr->m-curr-attr = rat-ptr;
if (c.1sptr->ocn~supcls)
I
tel_ptr->m~num attr = reL~ptr->rn num-attr + 1;
supcls~ptr =cls-ptr->ocn-first-supcls->osn-supcls;

/*kyop until reaching the left root of class; assign
object id of this root supclass to relation *1
while (supcls~ptr)

I
/*if this class doesn't have a superclass, it is the root*I
if (!supcls-ptr->ocn-supcls)

I
new-rattr-ptr = ink-rittr-nodeO;
strcpy(new-rattr_ptr->ran-name, "OBJECTID");
new-rattr~ptr->ranjtype=
new-rattr~ptr-'ranjlength =3;

new-ratt ptr->an-key-fag = FALSE;

supcls-ptr = supcls-ptr>ocn-first-supcls->osn-supcls;
}f* end while supclsfitr *1

flew~rattrýptr->ran next-attr = rel-ptr->rn-firstý-atir;
rel-ptr->m-first-antt= new-rattr~ptr;
I/* 'nd if supcls *1

cls-plr = cls-ptr->ocn-next-cls;
newjdb-ptr->rdn curt-tel = rel-ptr,
I /* end while clsjptr *1
1* end translate-obj~to-rel()*

57



APPENDIX D - INSERT TRANSACTIONS

QUERIESTO KNIS(
1* This ro.;. , es the queries to be listed on the scre'en. ~
1* The selection menu is then displayed allowing any of the *

1* queries to be executeed*/

int proceed; /* boo/can flag *
int num:,

num = 0;
list-queriesO;
proceed = TRUE;
while (proceed == TRUE)

printf ("\nPick the number or letter of the action desired'\n);
printf (tV(num) - execute one of the preceding queries\n");
printf ('%(d) - redisplay the file of queries\n");
printf ('\t(x) - return to the previous menu\n');
sqljinfo~ptr->si_,answer =get~ans(&num_);

sw; - ptr->si~answer)

case 'n': :* execute one of the queries *
if (num > 0 && num <= r_tranjinfo~ptr->ti no_req)

find _query (num);
I s is the default value for si operation ~

ip not a retrie;ý e request, this value is reset *
1* in sql -kernel -mapping_system *1
sql-info-ptr->si-operation =ExecRetReq;

-rnel-mapping-systemo;
.- info-ptr->si-operation ! = ExecNoReq)

it (sql-info-ptr->si-error == NOErr)
if ((sql ptr->si-curr-db.cdi-dbtype == OBJ) &&

(sql-info-ptr->si-operation ==ExeclnsReqfl
insert-to-object-orientedo;

58



else
rKernelController();

else
sql-info-ptr->sierror = NOErr;

}/* end if*/
else

I
printf ("nError - the query for the number you ");
printf ("selected does not exist\n");
printf ("Please pick again\n");
I/* end else */

break;
case d' :/* redisplay queries *1

list-queriesO;
break;

case 'x' :/* exit to mode menu */
proceed = FALSE;

r_traninfo-ptr->tino-req = 0;
break;

default : /* user did not select a valid choice from the menu */
printf ('"nError - invalid option selectedn");
printf ("Please pick again\n");
break;
/* end switch */

/* end while */
/* end queries toKMS */

59



INSERTTOOBJECTORIENTED()
I *called by queries -to_-KMS for object-oriented cross-model inserts.

This procedure sends in an array of char pointers to get obj inserts.
which traverses the schema and prompts the user to enter appropri.ate
superLclasses in order to maintain the object-oriented base model.
Once all of the INSERTs are built, they are sent to the KC one at a
time in a loop.*I

I
static char *insert ptrs[NIJMCLasses]; /*pointers to ABL)L INSERTv*/
int 1,

begin_inserts; /*used to flag the original insert*/

begin-inserts = TRUE;
for (i = 0; i < NUMCLasses, i±+)

insert ptrslli] = NULL;
get-obj-inserts(begin-inserts, insert-ptrs I;

/*1f uer has entered all of the superciasses correctly, the INSERTS
are sent to the KC below, one-by-one.*/
if (sql~info~ptr->si-error == NOErr)
I
for (i = 0; insert-ptrs[i]; i++)

sql-ptr->si-abdl tran->ti-curTiireq.ri-ab-req->ari-req =insert-ptrsfiI;

rKernelControllero;

else
sql-info-ptr->si-error = NOErr;

}I*end insert to object-oriented*f

60)



GETOBJ_INS ERTS(start, insert-ptrs)

/*this procedure checks to see if the class to which the INSERT relation

corresponds is a subclass and, if so, prompts the user to enter the relations
corresponding to its superclasses. The relations(classes) must
be entered one at a time from the bottom subclass up the hierarchy and
left to right at the screen prompts. They can be entered from the file or
from the terminal. As each is entered, the procedure recurses until a
mistake is made or all of the superclass relations have been correctly
entered. Calls obj_inserts to KMS for user inerface.*/

int start;
char *insert-ptrs[NUMCLasses]; I* ABDL INSERTs*1

I
int i,

char-position,
reqjlength,
originalinsert,
object-exists,
checkinsert objidsO;

struct ocls_node *cls_ptr,
*krnscs .tr
*find_classin-obj-transo;

struct o-supcls.node *supcls ptr;
char *var_str-alloc0;

if (sqlinfo-ptr->si-operation != ExeclnsReq)
sql-info-ptr->sierror = ExecNoReq;

else
I
I*find the next empty cell and allocate memory to accept the current

ABDL INSERT*/
for (i = 0; insert-ptrs[i]; i++)

req-length =

strlen(sql-ptr->si-abdl-tran->ti curr-req.ri ab req->ari-req);
insert-ptrslil = var-stralloc(req_length);
strcpy(insert-ptrs[i],

sql-ptr->siabdltran->ticurrreq.ri-ab-req->ari-req);

61



charposition = 17; /*position of the first letter of the
relation name in the ABDL INSERT string*/

originalinsert = start;/*boolean*/

/*retrieve class name of insert*I
cls-ptr = findclassin_obj-trans(char-position);

if (!cls-ptr)
sql_infoptr->si_error = ExecNoReq;

/*the statements below increment the char_postion variable to the

position of the value of the objectid. If a value is returned by
the function checkinsert-objids, an object exists already and the
INSERT is cancelled.*/
charposition += strlen(cls-ptr->ocn-name);
charposition += 14;
if (objectexists = checkinsert-objids(cls-ptr, char-position))
I
printf("nERROR - An instance of this class already exists.");
sql_infoptr->si_error = ExecNoReq;

/*If the class has superclasses, this procedure calls itself until

all have been visited.*I
if ((sql infoptr->si_error == NOErr) && cls-ptr->ocn-supcls)

I
if (original-insert)
{
start = FALSE;
cls_ptr-.-ocn_visited = TRUE;
system("clear");

printf('\n\nrnM\nln order to maintain the integrity of the object-oriented base"):
printf("'\model, INSERTs of all relations which correspond to superctasses");
printf('\nin the object-oriented hierarchy of the original INSERT are");
printf(\"nnecessary. INSERT each superclass relation when prompted. If");
prinff(',nentering from a file, selections must offer appropriate INSERTs.");
printf('Nhff any INSERT is in error or any superclass INSERTs are lacking,"):
printf("\nall preceding INSERTs will be cancelled. <CR> to continue.");

getcharo;
system( "clear");

62



supclsptr = cls-ptr->ocn-first-supcls;
while(supcis-ptr && (sqL-info-ptr->si-error == NQErr))

if (! supcl s ptr->osn-supclIs->ocn-vi sited)

printf("N\nM\n\n\nLN`SERT a tupie of relation %s now, having the same OBJECTID
\n", supcls-ptr->osn-name):

printf("attribute as the INSERT just attempted. If such a %s tuple \n",
supcls-ptr->osn-name);

printf('already exists (i.e. has the same OBJECTID) you must start \n ");
printf(' INSERTs over, using a unique OBJECTID. <CR> to quit or continue.\n");

getcharo;
system( "clear");
supcls-ptr->osn-supcls->ocn-visited = TRUE;
objjinsert o-KMS 0;
if (sql~info-ptr->si-error == NOErr)
I
char...position =17;
kms-cis-ptr = findsclass-in-objjxans(char~position);
if (!strcmp(kmsc ls~ptr, supclsptr->osn-name))

get-.obj-inserts(start, insert ptrs);
else
I
printf('"\nERROR - %s is not a valid superclass.",
kmns-cLsptr->ocn-name);
sql-info-ptr->si-error = ExecNoReq;
I

}I*end if NOErr*/
1/*end if not visited*I
supclsptr = supcls-ptr->osn next..supc is,

I Mend while supcls*/
I /*efld if cls~ptr->ocn -supcls*f

1I*end if ExlnsReq*/
if (sql-info-ptr->si -error != NOErr)

printf('Nn%s INSERT cancelled\n",cls-ptr->ocn name);

/*sets dll of the visited flags in the schema data structure back
to FALSEN*
if (original-insert)
reset-obj-visited(cls-ptr);

I I*end get-object-inserts*I

63



int CHECKINSERTOBJIDS(clsyptr, posit)
/*thjs procedure gets a pointer to a class in the object-oriented schema
and the position of the value of the objectid in the INSERT request string.
It builds an ABDL retrieval request and sends it in. If a response is
returned, an object already exists and the INSERT is cancelled. *1

int posit; I*objectid position *1
struct ocis-node *cls-ptr; I*insert relationlclass*i

int obj-id-posit;
*empty;

char *temp-stjing-ptr,
retrieve-ptr[ InputCols];

empty = FALSE;
temp-string-ptr = sqý-ptr->si abdi-tran->ti-currjreq .riab-req->ari-req:

I*build the ABDL retrieve request*/
strcpy(retrieve~ptr, "[ RETRIEVE ((TEMP=
strcat(retrieve~ptr, clsptr->ocn name);
strcat(retrieve~ptr, ") and (OBJECTID
objid-posit = strlen(retrieve-ptr);
do
retrieve~ptrlobjlidposit++1 = temp-string-ptr[posit];

while (temp-sting-ptr[++posit] !='>');
retrieve-pnfobj-idposit] ='xO'L;
strcat(retrieve-ptr, "))(OBJECTLD) I)
sqL-ptr->si-abdi-tran->ti-curTrjeq.ri-ab-req->ari req = retrieve-ptr;
fix~up~objectidABDL_req();

I*send it in*/
TIS$Tr-afu~nit(sql-ptr->si-curt -db.cdi-dbname,

sqptr->si abdi_t~ran- ti_,currrqmarq-a~e)
getjresponse(&empty);
I*re-.attach the original INSERT request*/
sql-ptr->si-abdi-tran->ti-curt-req.ri-abjreq->ari-req = temp-string-ptr;

1*'?' meahs that there were no instances of this object in the database*I
if (sql~ptr->si..kfs data.kfsi-rel.kri-response[ Ij

return 1;
else
return 0;

11* end check insert oblectids*I

64



OBJINSERT_TOKMS0
1*called by the recursive procedure, insert toobjectoriented. User*/
/*is provided the same list of queries entered into queries to KMS*I

/* This routine causes the queries to be listed on the screen. */
/* The selection menu is then displayed allowing any of the *1
/* queries to be executeed*/

int proceed; /* boolean flag */
int num;

num = 0;
list-querieso(;
proceed = TRUE;
while (proceed == TRUE)
{
printf ("•nPick the letter or number of the action desiredf");
printf ('%t(num) - execute one of the preceding INSERT queries\n");
printf ('%t(d) - redisplay the file of queries\n");
printf ('"\t(x) - cancel INSERT.\n");
sql-info-ptr->sianswer = get-ans(&num);

switch (sql-info-ptr->si_answer)
I
case 'n' :W* execute one of the queries */
if (num> 0 && num <= r tranjinfo-ptr->ti no-req)

I
find-query (num);
/* This is the default value for si operation */
/* If not a retrieve request, this value is reset *1
/* in sql kernel mapping system */
sql-info ptr->si-operation = ExecRetReq;
sql-kemel mapping-systemo;
proceed = FALSE;
)/* end if

else
I

J-printf ("\nError - the query for the number you ");
printf ("selected does not exist\n");
printf ("Please pick again\n");
)/* end else */

break;

65



case 'dW :/* redisplay queries */
list-querieso;
break;

case 'x' :/* exit INSERTS */
proceed = FALSE;
sql-info-ptr->si_error = ExecNoReq;
break;

default :/* user did not select a valid choice from the menu *1
printf ("mnError - invalid option selectedf");
printf ("Please pick again\n");
break;
I /* end switch */

}/* end while */
}/* end object insert toKMS *1

66



RES ETOBJVIS ITh D(clIsptr)
1* This is a utility procedure that resets all of the visited flags
in the object-oriented ocis-node data structure to FALSE,*I

struct ocls-node *cls ptr;

struct o-supcls-node *supcls ptr;

cls~ptr->ocn_visited =FALSE;
if (cls..ptr->ocn~supcls)
I
supcls-ptr = cls~ptr->ocnjfirst~supcls;
while (supcls-ptr)

reset-objvyisited(supcls-ptr->osn~supcls);
supcls~ptr =supcls~ptr->osn next~supcls;

}/*end reset-obj-visited*/

67



struct ocls_node *FINDCLASS IN OBJTRANS(start-posit)
/* This procedure takes an int, which indicates the position of the first
letter in the relation name of a query, extracts the relation name, and
returns a pointer to the class node to which it corresponds in the
object-oriented schema. *1

int start-posit;

int i,
notfound;

char cls_name[RNLength + 11,
*temp-string-ptr;

struct ocls_node *cls-ptr;

for (i = 0; i < (RNLength + 1); i++)
cls_name[ij = \0';

/*copy the relation name into the tempstringptr for comparison*/
temp-string-ptr = sql-ptr->si abdltran->ti_currmreq.ri-abjreq->ari-req;
cls-ptr = dbs-obj-head-ptr.dn-obj->odn-first-cls;
while ((temp string ptr[i] != ')') && (tempstringptr[i] !='>'))

{
cls_name[i - start-posit] = temp-string-ptr[i];
i++;

I*search for the class in the object-oriented schema*/
while (clsptr && notfound)
I
if (!strcmp(cls-name, cls-ptr->ocn-name))
notfound = FALSE;

else
clsptr = clsptr->ocn-nextcls;

if (!cls-ptr)
printf("ERROR - Relation %s is not in the schema", cls_name);

return cls-ptr;
} /*endfind class inobjtran*/

68



APPENDIX E- DELETE TRANSACTIONS

#include <stdio.h>
#include <licomrndata.h>
#include <ool-sql.h>
#include <sql.h>
#include <sql-kcdcl.h>
#include <flags def>
#include <ctype.h>
#include <sql-kc.h>
#include <dli.h>

R_KERNELCONTROLLERo

/* This procedure accomplishes the following: *1
/* (1) Checks sioperation to determine whether we are creating a *1
J* database or querying the database or if there are errors. *,
/* (2) Depending on the si operation the corresponding
/* procedure is called. *1

{
int groupby = FALSE;

sql-ptr = &(cuserjrel-ptr->ui-li-type.li-sql);/* Initialize pointer *1
kc-ptr = &(sql-ptr->si-kc data.kci-r-kc); /* Initialize pointer *1
sql-ptr->si-subreq-stat = LASTSUBREQ;

/* look at si_operation to determine what action to take */

switch (sql-ptr->si-operation)
{

case CreateDB: /*case where we are creating a database*/
r_loadtableso;
break;

caset ExecRetReq: 1*case where we are executing a regular or
/*nested select */

select_requestshandler(groupby);
break;

case ExecRetCReq: /* any other type of select */
sql-ptr->si-abdltran->tinoreq--; /* decrement */

69



rest reque sts-handler(groupby);
break;

case ExecDelReq: 1* a delete request *
sql-ptr->si abdi-tran->ti-no-req--; 1* decrement *
if (sql-ptr->si-curr-db.cdi-dbtype ==OBJ)

object~or-ienteci delete(groupby);
else

rest-requests-handler(groupby);
break;

case ExeclnsReq: 1* an insert request ~
sql-pt->si abdi-tran->ti -no -req--; 1* decrement *
insert-request-handler(groupby);
break;,

case ExecUpdReq: 1* an update request *
sql-ptr->si abdi-tran->ti -no - eq--;
rest-requests-handler(groupby);
break;

case ExecGrpReq: I* an update request *
groupby = TRUE;
group-requests-handler(groui~by);
break;

default:
break;

1/* end switch *
/*end procedure rKernelController *

70



OBJECTORIENTEDDELETE(groupby)
/*C'alled by r-kernel-controller. This procedure calls two others: one to
retrieve all of the objectids in the delete request, the other to traverse the
oblect-oriented lattice and execute deletes for each instance in all of the
super and subclasses *

int groupby;

int delete-and = 20;
int delete-all = 19;
int type-of-delete;
struct ocis-node *cls-ptl

"~find-class-in-obj-transo;
char *temp-string-pt.,

*n)bjectids,
*get-objectidso; /*idS of instances to be deleted*1

tenipstring-ptr sql-ptr->si abdl-tran->ti-curr-req.ri-ab-req->ari-req:

1* The type of delete request is d 'termimed by the positions of the
parenthesis in the string. This is needed to retrieve the class name. */

if (temp-string~ptr[12] =:-. (.)
type-of-delete = delete-and;

else
type-of-delete = delete-all;

cis-ptr = find-class-in-objjtrans(type-of-delete);

if (cls~ptr)

cis-ptr->ocn-visited = TRUE;
objectids = get-objectidso;
search-for-suý.and-superclasses-and -execute -deletes

(cls-ptr, objectids, groupý-y).

reset-obj-visited(cls~ptr); 1* reset to FALSE the visited flag in the
-- object-orientlrd schema data structure.*~/

I/*end object oriented-delete*/

7'



char *GETOBJECTIDS0

!*This procedure is called by objectorienteddeletes. It retrieves all o('
the objectids o( instances which are to be deleted. These are then used to
delete the proper instances of super and subclasses in another procedure*!

int
T ,

*empty,

last-paten;
char retrieve-ptr[InputCols],

*temp-stringflptr,
*response-ptr,

*object-ids,
*var str-alloc,);

empty = FALSE;
last-paren = FALSE:

/*copy the string into the array and build and execute a retrieve
request to obtain all of the objectids in the delete request.*i

terr,mpstring-ptr = sql-ptr->si abdlitran->ticurrjreq.ri.ab-req->ari-req:
strcpy(retrieve-ptr, "[ RETRIEVE (");
r= 13:
=12;

while (!Mastparen)

retrieveptr[r] = temp-string-ptr[i];
if (temp-string-ptr[i] ==

I
if (temp-string-ptrti + I I=

retrieve ptr[r + 1] =
retrieve-ptrfr + 2] = NY:
last-paren -- TRUE;

else if t(temp-stringptrli + I] = ) &&
(temp-string-ptr[i + 21 == 'I'))

retrieve ptrlr + II = NY)'
last-paren TRUE:

72



strcat(retrieve-ptr, '(OBJECTID) I");

sql-ptr->si abdi tran->ti curt recrL ab req->ari req = retrieve-ptr,
fix-up-objectid ABDL-reqo,

TI_S$TrafL~nit(sqL-ptr->si-curr-db.cdi-dbname,
sql-ptr->si-abdi-tran- >ti-curr-reqfitab-req->ari-req);

get-response(&empty);

1* the objectids of all of the instances to be deleted were retrieved above
and attached as a char* in the global user structure. This string is
copied to the char array, objectids.*1

response-ptr = sql-ptr->si-kfs-data.kfsi-rel~kriresponse;
object-ids = varý-str-alloc(sql-ptr->si-kfs-data.kfsi-rel~kri-res-len);
S= 0;

do
objectjids[i] = response-pt[i];

while (response-ptr[i++I ) ;

return object-ids;

}I*e,!d get oblectids*I

73



SEARCHFORSUBANDSUPERCLASSESANDEXECUTEDELETES
(class-ptr. obi-ids. groupby)

/*called by object-oriented-delete. Recursively traverses the object-oriented
schema and calls execute-deletes()for each of the super and subclasses."'i

struct ocis-node *class-pt:-
iot groupby;
char *obj-ids;

I
int no-cycle:
struct o-supcls-node *supcls-ptl.:
struct o-subcls-node *subcls-ptl.;

1* get all of the superclasses*I
supcls-ptr = class-ptr->ocn-first-supcls;
while (supcl s~ptr)
I
if (! supcls-ptr->osn-supclIs- >ocn-v isited)

supcl s-ptr- >osn-supclIs->ocn-vi sited = TRUE;
search-for-sub-and-superciasses-and-execute-deletes

(supcls~ptr->osn-supcls. obj-ids. groupby)-:

supcls-ptr = supcls-ptr->osn next supcls;

1* get all of the subclasses *1
subcls-ptr = class-ptr->ocn-first-subcls;
while(subcls_ptr)
I
if (!subcls~pu-->osn subcL-s->ocn-visited)

subcls-ptr->osn subcls->ocn-visited = TRUE,
se arc h-for-sub-and-superclIasses and-exec ute -eletes

(subcls_ptr->osn_subcls, obj-ids, groupby):

subcisptr = subcls~ptr->osn_next_subcls:

clIass-ptr->ocn-v isited = FALSE,

exec ute-object-oriented-deletes obj-ids, class~ptT->ocn_name, groupby):,
1* end search Jor-sub-and supercla.ssesý-and týexecute dIelete~s*I

74



EXEC UTEOBJECTOR IENTEDDELETES(ob-ids, class-name. groupby,
1* Called by search Jor sub -and suiperc-iasses-and-execute-deletes 0. Sends it?

the ABDL requests for execution. Makes a separate request for each object to be
deleted. The objectids are stored as "attribuite'/O'value'10'attribute,..."*

char *ob-ids,
class-name[RNLength + 11I;

int groupby;

int i,
objid-place,

char temp-string..ptr[InputCols];

i =0;
while (ob ids[i] != "'T)

if (ob-ids[i] == Wt)

for (t =0; t < InputCols: t++)
temp-sting-pt[t] = \W;I*initialize the array to nulls *1

strcpy(temp-sning~ptr, "[ DELETE ( (TEMP
strcat(temp~string-ptr, class-name);
strcat(temp-string-ptr, ") and (OBJECTID=
objid-place = strlen(temp~string~ptr);

I*copy in the object OBJECTID value *1
do

temp-sting-ptrfobjid-place++] = ob-ids[++i];
while(ob-idsllij != WU);

strcat(temp~string~ptr, ")])
sqL-ptr->si- -abdl-tran->ti-curr-req.ri ab-req->ari-req =temp-string-ptr:

I*send'the DELETEs to the system for execution*/
rest -equests -hand ler(groupby);

I/*end execute_object-oriented-deletes*I

75



LIST OF REFERENCES

[ACM19891 Object-Oriented Concepts, Databases, and Applications. pp. 219-337, ACM Press, 1989.

[Banerjeel9791 Banerjee, J. and Hsiao, D.K., "A Database Computer for Very Large Databases," IEEE
Transactions on Computers, v. c-28, no. 6, pp. 414-429, June 1979.

[Bensonl985] Benson, T. P. and Wentz, G. L., The Design and Implementation of a iierarchical
Interface for the Multi-Lingual Database System, Master's Thesis, Naval Postgraduate
School, Monterey, California, June 1985.

[Bourgeoisl993] Bourgeois, P., The Implementation of the Multi-Model and Multi-Lingual User Interface.
Master's Thesis, Naval Postgraduate School, Monterey, California March 1993.

[Demurjian1987] DeDmurjian, S. A., The Multi-Lingual Database System - a Paradigm and Test-Bed for
the Investigation of Data-Model Transformations, Data-Language Translations and Data-
Model Semantics, U-M-1 Dissertation Information Service, 1987.

[Elmasril989] Elmasri, R. and Navathe S.B., Fundamentals of Database Systems, pp. 409-452, The
Benjamin/Cummings Publishing Company, Inc.,1989.

[Emdil985] Emdi, B., The Implemertation of a CODASYL-DML Interface for a Multi-Lingual
Database System, Master's Thesis, Naval Postgraduate School, Monterey, California,
December 1985.

[Hsiaol989] Hsiao, D. K. and Kamel, M. N., "Heterogeneous Databases: Proliferations, Issues, and
Solutions," IEEE Transactions on Knowledge and Data Engineering, v. 1, no. 1, pp. 45-
62, March 1989.

[Hsiaol991 Hsiao, D. K., "A Parallel, Scalable, Microprocessor-based Database Computer for
Performance Gains and Capacity Growth," IEEE MICRO, pp. 44-60, December 1991.

[Hsiao 19921 Hsiao, D. K., "Federated Databases and Systems: Part I - A Tutorial on Their Data
Sharing," VLDB Journal, v. 1, pp. 127-179, 1992.

[Hughesl991] Hughes, J. G., Object-Oriented Databases, pp. 212-224, Prentice Hall International (UK)
Ltd., 1991.

[KimA19901 Kim, W., "Defining Object Databases Anew," Datamation, pp. 33-36, 1 February 1990.

[KimB19901 Kim, W., "Object-Oriented Databases: Definition and Research Directions," IEEE
Transactions on Knowledge and Data Engineering, v. 2, no. 3, pp. 327-341, September
1990.

fMak1992] -- Mak, S. B., The Design and Implementation of a Functional Interface for the Attribute-
Based Multi-Lingual Da;abase System, Master's Thesis, Naval Postgraduate School,
March 1992.

[Moore19931 Moore, J. W. and Karlidere, T., The Design and Implementation of an Object-Oriented
Interface for the Multi-Model and Multi-Lingual Database System, Master's Thesis, Naval
Postgraduate School, Monterey, California, March 1993.

76



[Rollinsl984 Rollins, R. E., Design and Analysis of a Complete Relational Interface for a Multi-
Backend Database System, Master's Thesis, Naval Postgraduate School, Monterey,
California, June 1984.

[Sul979] Su, S. Y. W, and others, "Architectural Features and Implementation Techniques of the
Multicell CASSM," IEEE Transactions on Computers, v. c-28, no. 6, pp. 430-445, June
1979.

[Zawisl987] Zawis, J. A., Accessing Hierarchical Databases Via SQL Transactions in a Multi-Model
Database System, Master's Thesis, Naval Postgraduate School, Monterey, California,
December 1987.

77



INITIAL DISTRIBUTION LIST

Defense Technical Information Center 2
Cameron Station
Alexatndria, VA 22304-6145

Dudley Knox Library 2
Code 52
Naval Postgraduate School
Monterey, CA 93943-5002

Chairman, Code CS 2
Computer Science Department
Naval Postgraduate School
Monterey, CA 93943-5000

Ms. Doris Mlezco I
Code 9033
Naval Pacific Missile Test Center
Point Mugu, CA 93042

LCDR Richard K. Johnston 1
Naval Security Group Activity
Naval Base
Charleston, SC 29408-0008

Dr. David K. Hsiao I
Code CSIHs
Professor, Computer Science Department
Naval Postgraduate School
Monterey, CA 93943-5000

78




