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ABSTRACT 

This thesis reviews four of the existing matrix methods for finding 

the shortest path in a network, including the little known matrix method 

by Floyd. Floyd 1 s method is then extended to determine all best paths. 

After a brief review of the nth best path problem, Floyd 1 s method is 

again extended to determine the nth best path. Finally, the nth best 

path problem is investigated to determine its applicability to the travel­

ing salesman problem. 

2 

~ 

" 



Section 

1 

2 

3 

4 

,5 

6 

7 

8 

9 

10 

TABLE OF CONTENTS 

In trod uct ion . 

Notation . . . 

Titl e 

The Shortest Pat h by Matr i x Ma nipul ation 

The Ca scade Al gor ithm 

An Indu ct ive Ap proach 

Algorithm 97 ..... 

Comparison of Methods 

All Alternate Bes t Paths 

Nth Best Path ... 

The Travelin9 Salesman Probl em 

Bibliography 

Appendix 

. .......... 

I Flow Diagram for the Shortest Path Algorithm ... 

II Flow Di ag ram for the All Alternate Path Algorithm 

III FORTRAN IV Computer Program for the All Alternate 

Path Al gorithm .............. . 

IV Flow Diagram for the Nth Best Path Algorithm 

V FORTRAN IV Comp uter Pro9ram for the Nth Best Path 

Algorithm . . . . .. . . . ... . . . 

3 . 

Page 

7 

7 

9 

12 

• • 14 

16 

20 

. 21 

. 23 

30 

. 33 

35 

36 

38 

41 

• •• 43 



1-

Fi gure 

2 

3 

4 

5 

LI ST OF FIGURES 

Network for Matrix Manipu l at i on Examp l e 

Network for Cascade Al9orithm Examp l e 

Network for Induct i ve Examp l e 

Network for Al gor i thm 97 Examp l e 

Ne twork for Nth Best Path Examp l e 

5 

Paoe 

11 

11 

15 

15 

27 

.. 



.. 

., -

~ 

l. Int roduc tion 

Four matri x meth ods to det ermine t he shortest path in a network 

will be pres ented. Afte r an exp l anat i on of each method there will follow 

a simpl e examp le to illustrate t he procedure. 

First, the method of matri x man ipulation [3] will be set forth. 

Next, an improveme nt on this, the Ca~ cade al~6rithm [7], will be pre­

sented. The two algorithms th ~ t appea r to be the most effic~ent are 

next. Algorithm 97 was publi shed by Floyd [8] in 1962 and went unnoticed 

for some time. In 1965 Murchl and [15] published wh at he called 11 a new 

method, 11 b0t which in reality was th~ s am~ as Floyd 1 s. A different 

approach but equally as effici ent as Floyd 1
S was put forth in 1966 by 

Dantzig [6] and is an inductive procedu re. 

In many practical probl ems ·a sh6 rtest rout~ is not sufficient. All 

altern at e shortest routes or the n · best routes are needed. Thus a 

simple extension to Floyd 1
S algorithm to dete rmine all alternate routes 

will be presented. Following this will be a brief review of the nth best 

path problem and a second extension to Algorithm 97. This extension will 

determine then best paths from all node~ i to all nodes j . · 

A logical ext ensi6n of this ~e th6d of determining ~11 n best paths 

is to the traveling salesman problem. Although this problem is not solved 

here, a possible approach is set forth . 

2. Notation 

A g~aph or network, denot ed G = (X,U), is compos ed of two sets X 

and U, 

X = [i; i ~ l, · · · , n] 

U = [( i , j ) ; i t: X and j '- X] . 
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X is the set of nodes o~ vertices and the pair (i,j) E U is called an 

arc, where i is the initial node and j is the terminal node. Two nodes 

i and j are adjacent if they are distinct and the re exists an arc u=(i ,j) 

or v=(j,i). A path 1s a sequence (ul,u2, ... ) of arcs of a network (X,U) 

such that the terminal node of each arc coincides \'l ith the initial node 

of the succeedi~g arc. ·· A fin~t~ path in wh~ch the initial node coincides 

with the termin al node is called -a cfrcuit. The length of a path is the 

sum of the lengths of the arcs fo rming the path. 

The matrix M associated with the network is a vertex-vertex matrix. 

_ M = [mi) , 

where the element mij is the length of the arc fro~ node i to adjacent 

node j, if no such arc exists then mij is eq~al to infinity. The dis- . 

tance mij can be less than, ~q~al to, o~ gre~te r than z~r6, but the 

length of any circuit must be non-neg ative. In general, mij does not 

necessarily equal mji and mij does not have to satisfy the triangular 

inequality 
mij ~ mi k + mkj . 

.. . . . • * 
The shortest distance matrix Mn has elements mij equal to the 

distance of the shortest path from i to j. Thus m;j is the distance 

of the path from i to j, whose s~~ o( ~res is at a minimum. 

Following Murchland [15], the symbol 11 :=" shall denote 11 is 

replaced by , " 

Followfrig Bellman and Kalaba [1], 

minn (x1 ,x2, · · ·• xp) = the nth smallest value of 

the quantities ii. 

Symb·o 1 s ·frequently used a·re defined be 1 ow. · 

NO = the number of nodes in the network. 

INF = infinity, and is t aken t o be greater t han t he max imum 

distance of any poss ible path . 
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All matrices in the sequel represent vertex-vertex distance· 

matr·i ces. 

3. The Shortest Path by M~t rix Manipulation 

Th e first method of detennining the shortest path in a network, 

that of matri x manipulation [3] . involves tw6 operations. Thes e opera-

tions play the roles of elementary addition and multiplication 

respectively . 

Define the s~m of two matrices 

C =A+ B. 

as 

cij = min(aij'bij), 

where aij ind bij are cor responding el ements. 

Furthermore , define the product of two matrices 

C = AB 

as 

c· · = min(a ·k + bk·) 1 J 1 J . . k 

(l) 

(2) 

M contains elements that are the arc distances between adjacent 

nodes. Follov1 ing equation (2), M2 contains elements that are equal to 

the shorte st distance, from i to j, in a path containing exactly two 

arcs . In general Mk· contains elements equal to the shortest distance, 

from i to j, in a path containing exactly k arcs . 

Thus, the shortest distance matrix, 

M* = M +. M2 + · · · + Mn-1, (3) 

contains elements equal to the minimum distance, from i to j, for all 

paths cont aining from one to n-1 arcs. 

As an example, consider the network i n fi gure 1 and its associated 

initial distance ma tri x M, given bel ow. 

9 
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7 5 3 
M = I l INF 4 

INF 1 INF 

Using equation (2) we obtain for el ements m2(1 ,1) and m2 (1 ,2 ) , 

m2 (l ,l ) = min (7 + 7,5 + l ,3 + INF ) = 6 

m2 ( 1 , 2) == min ( 7 + 5 , 5 + IN F, 3 + 1 ) = 4 . 

After computing the rest of the el ements in si mi l ar fashion, we obtain 

the fo l lowing matrix. 
6 

M2 
= Is 

2 

4 9 
5 4 

IN F 5 

From equation ( 3) and using addition as defined i n equation (1), we 

obt~ in t he fo ll owing shortest distance matrix . 

· * M = 16 4 3 
1 
2 

5 4 
1 5 

In genera l Mn- 1 i s a matrix using exact ly n- 1 arcs and vis i ting 

all n nodes. Mn wou l d be needed i f a shortest ci rcuit from a node back 

to i t se l f was des i red. In genera l 

M0 = M* + Mn 

where M0 shows the l ength of the shortest circu i t from a node back to 
-

itse l f. For the above example 

I 5 I 10 8 
M3 = I 6 i 5 9 

9 i 6 5 

and 

M0 = I ~ 4 3 
5 4 

2 1 5 

is t he shortesi circuit matrix. 

10 
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4. The Cascade Algori thm 

Whereas t he prev i ous method needed n-1 matri x operat i ons , i. e . Aj 

for j = 2, · · · , n- 1 and one summat ion , th e Cascade al gori t hm [7] nee ds 

only two matri x squ arin gs. (Thi s method i s call ed t he Cascade Algori t hm 

by [7] and th e Revised Matri x Al gorithm by [1 2] . ) 

In thi s met hod newly ca l cu l ated el eme nts i mme di at ely repl ace 

exi s ting el emen t s . Al so, now t he order of ca l cu l ati on becomes i mpo rtant . 

In the f i rs t sq uaring, t he so- call ed f on'l ard Cas cade process , th e el emen ts 

are cal cul ate d in the o rde l~ mn , m12• · · · , m1n; m21, · · · m2n; · · ·, 

mnl, · · · rnnn · Th en in t he second squar i ng , t he so- call ed backward 

Casc ade process , the el eme nts are cal cul ated in the order rnnn• mn,n-1, 

mn 1 ; mn- 1 , n • · · · mn- 1 , l ; 

Let MP = [ m~ .], where 
1J 

· · · ; m1 n • · · · m11 · 

r 
1 

p ::: F 
* 

i niti all y 
at the end of the forward process 
at t he end of t he backward process 

Thus Ml = M, whi ch is th e ini t i al arc matri x pre viously defined 

* and M is s t il l the sho rt es t dist ance matri x. 

MF i s ob ta i ned from M 1 by th e fo 11 owing fo n'lard proce-ss . 

F · - . ( q + r ) m . . . -m1 n m. k mk . 
1 J k 1 J 

(4) 

where 

q = I ~ k ~- j 
k < j 

(5 ) 
and 

r = r 1 k > . - 1 
. F k < i . 

* M i s t hen ob t ai ned from MF by t he fo ll owi ng_backward process . 

* 'l r ( "' - + Ill ) 
" '; k .. kj 

(6 ) rn . =:tll "i n 
'i j . " I 

.< 
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where 

and 
q = [~ 

r = r~ 

k ..:. j 
k > j 

k ..:. i 
k > i . 

(7) 

To ill ustrat e the above procedu re , cons i der th e net wo rk in fi gu re 2 

an d i ts ass oc i ated initi al di st ance mat r ix given bel ow. 

0 4 l I NF 
M = 

INF 0 l 1 
I NF l 0 4 
INF INF INF 0 

Beqinni ng t he forward process us i ng equat i ons (4) and ( 5 ) , 

F l m11 + m12 = 0 + 4 = 4 

F . m12 :=mln 

l l m12 + m22 = 4 + 0 = 4 

I 
1 

l l = 2 < m.l2. 
m13 + m32 = l + l = 2 

m ~ 4 + m! 2 = INF + INF = I NF 

Since 2 i s l ess than m ~ 2 , rep l acement wou l d t ake pl ace . 

m~ 3 : =m i n (0 + 1, 2 + l,l + O,I NF + INF ) = 1 

. Since m ~ 3 = m~3 no rep l acement need be done , al t hou9h whe n us ing the 

computer , rep l acement wou l d automa t i call y t ake pl ace . 

m~4 : =m in (0 + INF , 2 + l ,1 + 4,I NF + 0) = 3 < m~ 4 
Therefore m ~ 4 : =m ~4 wou l d in fact t ake pl ace . Afte r comput ing t he remai n­

ing el eme nts and rep l aci ng wh en necess ary , we obt ain t he fo ll ow ing matr i x. 

0 2 1 3 

MF I NF 0 l l 
I NF l 0 2 
I NF INF IN F 0 

After performi ng t he backwa rd process us ing eq~at io ns (6) an d (7), we 

obtain th e shortest di stance matri x M* as shovm . 

0 2 l 3 

M* = 
I NF 0 l 1 
INF ·1 0 2 
H!F H!F INF 0 

13 
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Thus we see that this is exact ly the same as matr ix squ aring wi t h 

the exception of repl ac i ng the elements once shorter paths are fo und . 

This re p l ~~ i ~g cuts down the number of opera tions performe d tremendous ly , 

relative to the matri x manip ul ation method . 

Narah ari Pand i t [16] first clai med that two fo rward process es were 

enough. However , [7] d·i sp 1 ayed a counterexamp 1 e and proved one forwa rd 

and one backward process was sufficient. Hu [12] later proved that three 

forward processes are suffici ent. 

5. An Induc t ive App roa ch 

Dantzig [6] ~a k~ s somewhat of a diffe~ent approach to solve the 

shortest path problem. His inductive approach is ~e scribed below. 

Assume for nodes 1, 2, · · ·, k'-1 that optimal distance s m~j are 

* given. Optimal distances mij are desired fo r nodes l, 2, · · ·, k. 

For h = 1 ~ · · · , k - 1 and j = l, · · · , k - 1. 

* . 0 mkh .= m1n (mkj + mjh) 
J 

( 8) 

* . 0 
mhk = mjn (mjk + mhj) (9) 

* mkk * * = min (0, mkj + mjk) 
J 

( 10) 

For i = 1, · . . , k :.: 1 and j = 1 , · · k - 1 

* . ( 0 * * mij :=mm \ (mij ,nri k + mkj) ( 11) 

Con~ider the network in figure 3 and its associated initial distance 

matrix given below. 

M = 
0 1 5 

INF 0 3 
INF 5 0 
INF INF 1 

INF 
l 

INF 
0 

. . 0 
Assume we have found optimal distances m .. for nodes 1, 2, 3 thus 

lJ 

giving M0
. 

0 1 4 
M0 = I INF 0 3 

INF 5 0 
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* To obtain m;j for nodes 1, 2, k, we beg in by using 

equation ( 8) . r -0 
m41 + ·mlh 

* 0 
m4h = min m42 + m2h 

0 
m43 + m3h 

For h = 1 ,2, 3 

* m41 =min (INF + O,INF + INF,l + INF) = INF 

* m42 =min (INF + l,I NF + 0,1 ·+ 5) = 6 

* m
43 

=min (INF + 4) ,INF + 3,1 + 0) = 1 

Concluding the calculations and rep lacements using equations (9), (10) 

* and (ll) we obtain M 

0 l 3 2 

* M = INF 0 2 1 
INF 5 0 6 
INF 6 l 0 

6; A 1 gorithm 97 

Unnoticed for some time was the following algorithm by Floyd [8]. 

The two * 1 d statements were not in the original program but have been 

added to reduce operations. The program is written in FORTRAN IV. 

DO 1 I = 1 , NO 
DO 1 J = 1 , NO 
IF(M(J,I).EQ.INF) GO TO 1 

*IF(I.EQ.J) GO TO l 
DO 1 K = 1 , NO 
IF(M(I,K).EQ.INF) GO TO 1 

*IF(I.EQ.K) GO TO 1 
MS = M(J,I) + M(I ,K) 
IF(MS.GE.M(J, K)) GO TO 1 
M(J,K) = MS 
CONTINUE 

Flow diagram for the above program is contained in appendix I. 

This is similar to the previous matrix squ aring methods. It is not 

actually a matrix squaring but res emb les it. It performs the same opera-

tion as th e Cascade algorithm, 

mjk:=m~n(mjk'mji + m;k ) 

16 

------- --- --------~~--.,...-~~.......--~----· 

~j 



but calcul ates mjk in a differe nt order. Thus , by th i s order needs only 
'}( 

a s i ngle "squarin g." Up on 11 Sq uar i ng 11 mjk i s now mjk" 

After a brief informal di scuss ion of the al gori thm an example wi ll 

be·worked to illust rate th e procedure . 

The matrix M i s searched, in an order to be described short ly, for 

non -infinity, non-main -di agon al e-l eme nts. Two of these el eme nts are 

added and compared wi th a third el ement. Rep l acement i s the n made if the 

sum i s l ess th an the third el emen t . 

The se arch i s as follows . The co l umns of M are se arched in order, 

i = l , · · ·, NO . Each column i is sear·ched in order, j = 1, · , · · • NO. 

When a non- infinity el ement (j, i) is encountered in co l umn i, row i is 

searched in order, k = l, · · ·, NO. For all non-infinity elements in 

row i , set 
~ : ms = mji + mik· 

.. 

~~· . 

If ms < mj k' th en mj k:=ms . Thus we have forme d a shorter path from j to 

. k by comb ining two paths j to i and i to k. 

As an examp l e cons ider figure 4 and the following associated ini tia l 

distance matri x. 

M = I 0 1 2 3 INF INF INF INF 
INF 0 1 2 1 INF INF INF 
INF INF 0 1 INF 2 INF INF 
INF INF INF 0 INF l 3 4 
INF INF IN F 1 0 INF 4 INF 
INF INF INF INF INF 0 2 3 
INF INF INF INF 2 INF 0 1 
INF INF INF INF IN F INF INF 0 

Applying the algorithm toM we see t hat except fori = 1 = j, 

column 1 has no non- infini ty el ements . Increme nting· ·; to 2, the first 

non-in finity column el eme nt encountered i s mji = m12· Nm'' rmv 2 is 

searched and the first non - infi ni ty el eme nt i s mi k = m23 · Thus for the 

fir st comoar i son , l. ms = ml 2 + m23 

1 + 1 = 2 
Since 2 = ms = m13 = 2, 

17 



no rep l acement is needed . Th e two rema ininp non - infin ity el eme nts in 

r ow 2 are the next eleme nts utili zed . 

2. 

3. 

ms = ml 2 + m24 

= 1 + 2 = 3 

3 = ms = m = 3 14 

m14: t- ms 

ms = ml 2 + m25 

= 1 + 1 = 2 

2 = ms < ml5 = INF 

ml5:=2 

For i = 3 the followin9 two re pl aceme nts wou ld take place in order 

aiven . 

4. m16 :=4 

5. m26 :=3 

After the remaini no columns, i = 4, · · ·, 8, h~ve been searched 

and required replacements made, the shortest distance matrix is obtained 

and is aiven below. 

M* = I 0 1 2 3 2 4 6 7 
INF 0 1 2 1 3 5 6 
I NF INF 0 1 6 2 4 5 I 

INF IN F INF 0 5 1 3 4 
INF INF INF 1 0 2 4 5 
INF I NF I NF 5 4 0 2 3 
INF INF I NF 3 2 4 0 1 
INF INF INF INF IN F INF INF 0 

Floyd [8] gave no proof of his algorithm but reli ed for proof on a 

theorem on boolean matrices by Warsha ll [19]. H~ [11] gives a somewhat 

si mp ler proof of Floyd's alqorithm . Murch l and [1 5] developed a simil ar 

al9orithm, un aware of Floyd's accomplishment, and pres ents a somewhat 

length ly proof in his paper . 

18 
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If we are interested in not only the distance of the shor test path 

but the route as we ll, some thina mo re than just M* is needed. One way 

to obtain the path i s to defin e a new ma trix, call ed the routing matrix, 

MR =[mrjk] , 

where mrj k con tains the number of the first node, after j, on th e path 

from j to k. Initi ally, 

mr j k = k, for j, k l , · · · ~ n. 

Durinq the ca1cu l at ioni whenever 

m . k: =m . . + m . k , J / J 1 1 

the following replacement is al so made, 

mrjk:=mrji . 

In the previous exampJe the first replacement is done in compar ison3. 

Thus 
m15 :=2 , 

wou l d be followed by 

mr15 :=mr12 = 2 . 

· At the conclusion of the above examp l e the routing matrix would be 

as shown as follows . 

MR = 11 2 3 4 2 3 4 4 
1* 2 3 4 5 3 4 4 
1* 2* 3 4 4 6 4 4 
1* 2* 3* 4 7 6 7 8 
1* 2* 3* 4 5 4 7 4 
1* 2* 3* 7 7 6 7 8 
1* 2* 3* 5 5 5 7 8 
1* 2* 3* 4* 5* 6* 7* 8 

The elements with the stars are el emen t s as t hey were initi ali zed. 

No replacement too k place s ince no finite path exists, as can be seen 

in M* . In the computer program these starred elements wou l d be set to 

infi nity to facilitate read in ~ MR. 

19 
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To illustra t e the procedu re of ex t ract i ng a path from MR , the path 

from no de 1 to node 8 would be 

or 

mrl 8 

mr48 

= 4 

= 8 

to 4 to 8. 

It may be observed from the examp le th~ t more than one shortest 

path exists from 1- to 8. Algorithm 97 will only giv e the first best path. 

The modification required to extract all al te rnat e paths shall be treated 

in the following section. 

The above procedure of usina the routing matrix to determine the 

paths is applicable, not only to Algorithm 97 but to all four matrix 

methods. 

7. Comparison of Methods 

Already some idea exists of the rel ative efficiency of the four 

methods discussed. - · Simply in terms of number of matrix squarinas, the 

matrix manipulation method requires n-1, the Cascade algorithm two, and 

Algorithm 97 one. To more critically compare all four methods let's con-

sider the basic operations involved. A matrix multiplication betwee n two 

matrices of order n requires th ree basic ope rations. These operations 

are indexing, addition, and comparison. Below is a listing of the four 

methods and next to eac h, the numbe r of each of the basic operations 

required. 

Matrix Manipulation- n3 log (n-1) 

Cascade Algorithm - 2n 3 

Induction Method - n(n-1) (n-2) 

Alqorithm 97 - n(n - 1) (n- 2) 

20 
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8. All Al ternate Best Paths 

In practical prob l ems it may arise that all alternate best paths are 

wanted. A decision make r may want to eva luate all best paths and select 

fron1 th em by means of some other criterion. To extract all best paths 

Al go rithm 97 must be modified slightly. 

For the shortest path probl em we needed two NO x NO matrices, M and 

MR . For this probl em M will r ema in the same. Recall that mrjk contains 

tl1e numbe r of the first node, after j, on the path from j to k. Now 

since we want to keep all best paths we must go to a three-dimensional 

n~ trix. The third dimension on MR is not qoverned by the number of best 

paths from j to k but by the number of first nodes on the path from j to 

k. A number of pat hs may share the same first node and late r branch off. 

Consider the paths u = (l-2-4- 7-8) and v = (1-2-4-6-8). Node 2 need only 

be stored once, since paths u and v coincide from node 1 to node 4. Indi-

cation of a branch wou l d occur at node 4. Here two first nodes would 

appear, node 6 and node 7. 

A priori it is -not known how many best paths there may be from j to 

k. Thus it also is not known how many first nodes are needed. This is 

of no real concern if calcul at io ns are going to be done with pencil and 

paper. For the computer, however, a specific number is needed. Inspec-

tion of the given network can oive an indication of the maximum number of 

first nodes expected. Let NA denote this maximum number. Surely 

NA < NO. 

Thus MR would be dimensioned NO x NO x NA and mrjki would contain the 

number of the ith first node, after j, on a_ best path from j to k. In 

the computer program, to faci .litate printing out the paths and readino 

the matrices, 

comp l etion of 

mrjkh i s set to infinity for h = 2, · · ·, ~!A. Also, upo n 

the algorithm, for all elements mjk equal to infini~y, the 

21 
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corresponding el eme nts mrjkl are set to in finity . Thus the routina matrix 

will also indicate all non-existinq paths. 

For the computer program in appendix III, a value was read in for NA. 

If during execution of the program the number of first nodes becomes 

equa l to NA, an error message will be printed and execution will ceas e. 

This will prevent the computer from attempttng to address either outside 

the matrix or wrong elements in th e matrix . Since computer time may be 

costly the program could be altered so as to ignore al l additional first 

nodes once the total number exceeded NA. An error message would still be 

desired to indicate that al ternate paths may have been thrown away . 

Now the modification of Alaorithm 97 will be explained to enable us 

to extract all best paths. Departure from the main al gorithm occurs at 

the point where path (j,k) is compared with the sum of the two paths . 

(j,i) and (i ,k ). If the sum is greater, that path, as before, is ignored. 

Now let us consider separately the cases where the sum i s less than and 

where it is equa l to mj k' 

For the case 11 less than , 11 a path has been found that is shorte r than 

the existing path~ This is the same as for the shortest path. Now, 

however, 

mr · k : = mr . . p = 1 · · · NA J p JlP ' • 

In the previous section for the shortest path, p was equal to one. ~ow 

there may already · exist more than one first node at mrjip ' Therefore they 

all must be transferred to mrjkp' · (It is true that there may not be NA 

firs t nodes at mrjip' The transfer could be hand led a numbe r of ways on 

the computer. One way wou l d be to determi ne which of the NA elements are 

fir st nodes and transfer only th em . The other way i s as above, t ransfer 

all NA el emen t s. Whichever i s more efficient would depend on th e par-

ticul ar matrix. ) 
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For the case 11 equal t o, 11 a path has been found that is the same 

distance as the existing path. This we want to keep. Now a compari son 

mu st be made bet ween the f irs t nodes of mr .k and mr . . . Only first J p Jlq 

nodes of mr . . th at are di stinct from the fi r st nod es of mr.k wi ll be Jlq . J p 

transferred to mrjkp' Redundancy of first no des woul d on ly t ake up 

sto rage space and no paths wi ll be thrown away by the discarding. 

As an example consider the networ k in figure 4. M and M* remain 

un changed. Th e routing matri x would now be as given below. 

MR = 1 
INF 
INF 
INF 
H!F 
I NF 
INF 
HIF 

2 
2 

INF 
INF 
INF 
INF 
INF 
iiN F 

3 12 
3 
3 

I NF 
H!F 
INF 
II NF 
liNF .. 

4 2 3 2 
4 3 5 5 
4 4 16 
4 7 6 
4 5 
7 7 
5 5 

INF INF 

3 2 4 4 · 213 
3 4 5 4 3 5 
6 4 4 6 
6 7 6 
4 7 4 

6 I 7 5 7 
I NF I NF 

4 213 
4 3 5 
4 6 
8 61 7 
4 7 
8 7 
8 
8 

The columns of MR are divided by do ub le li nes . Between the double 

lines are the el ements of the th i rd di me nsion, the fir st, second and th ird 

first nodes of the al ternate paths from j to k. It can be shown that 

the re are 25 al ternate -paths from node 1 to node 8. 

Appendix II shows th e flow diagram . for the algorithm. The ful l 

computer program i s shown in appendi x III . 

9. Nth Best Path 

A generalization of the shortest path problem is the nth best path 

probl em. It may ar i se th at the shortest path(s ) may not be the 11 best 11 

path when evaluated by some other criterion. · A decision maker may be 

willing to devi ate from the shortest path (s) by a certain amount to avoid 

un desirab l e aspect s of ' the ~ho rt e st path (s ). Thu s the nth best path 

becomes i mportant . 

First a br i ef re view of th e known methods i s in order. Th e si mp l est 

method i s given by Poll ack [17]. Th e net wo rk must first be solved fo r 
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the shortest path, say u. Ac tua lly all shor test pat hs, up' must be 

foun d. On ce given up~ from a given no de j to a given node k, composed 

of rp arcs, the l ength of each arc in up is set , in turn, to inf ini ty. 

Th e shortest path problem is solved (at most ) rp times fo r each up, once 

for each arc set to infinity. (An arc appear i ng in more than one up 

need be set to i nfinity on ly once. ) Thus the max imum number of shortest 

path problems to be solved is equa l to the sum of the rp's. The short -

est of these new best paths i s the second best path, say v. There may 

be more th an one second best path. 

best path and wi ll have s arcs. 
q 

Thus vq wi ll denote the qth second 

· For the third best path, the l enqth of eac h arc of u and v is set, . p q 

in turn, to infinity. Extending this to the nth best path, the length 

of each arc of all firs t best, second bes t, · · ·, n- 1 best paths must 

in turn be set to infinity. As before, for each arc set to infinity a 

shortest path problem must be so lved. By now it must be apparent that 

the number of shor test path probl ems to be solved may quickly become 

astronomica lly l arge. · Thus th i s method appears to be good only when r 

and s are smal l and when p and q are very small, hopefully one . 

The method of Bock , Kante r , and Haynes [5] differs from Pollack's 

in that the shortes t path need no t be known a priori . Using stems and 

trees , this method simply is a systematic listing of all paths from a 

given j to a given k. Aga in, however , this method is li mited to small 

networks. 

As in the two previous, the method of Hoffma n and Pavley [10] 

determines the nth best path from a given j to a given k. However , now 

no t only the knowl edge of the shortest path from j to k is req uired , but 

th e knowledge of all shortest pat hs f rom j to all other nodes i n the 

network . Then by dev iations f rom all of the shortest paths the nth best 
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-· 
path is determined. Thu s we have a prob l em simil ar to the one in 

Poll ack's method. Poll ack ' s method, however, being a shortest path 

probl em generates paths with no l oops . Such is no t the case wi t h this 

method . Paths with loops may well emerge as nth best paths. How much 

of a probl em thi s is depends on the part icular re sul ts desired. 

The limitation to small net wor ks i s escaped by Bellman and Kal aba 's 

[l ] method . Here the nth bes t path is determined from all nodes j of 

the network to a given nod e k. This can be considered an advantage or 

disadvan tage depending on what pa t hs are wanted . This method uses the 

functional equation technique of dynamic programming. Restr i ctions are 

imposed in the method to i nsure loo pl ess paths . 

Fl oyd ' s algorithm provides a basis for the deve l opment of the 

following matrix method to determine the nth best path . The method of 

searching the matrix rema ins the same but now additional ca l culations are 

performed. Upon completion of this method the f i rst, second, · · ·, nth 

best paths are given from al l nodes j, to all nodes k. The on ly restric -

t ions pl aced on the size of the network, or how l arge n-can be, is the 

amount of computer storage avai l ab l e. Th e descr i ption of the method wil l 

be gi ven below with the flow diagram qiven in appendix IV and the ful l 

computer program i n appendix V. 

For the method to dete rmine all al ternate best paths the matr i x M 

was unchanged, but MR was i ncreas ed to a three - dimensiona l matr i x. To 

accommodate the nth best path both matrices mu s t be three-dimens i onal. 
-M and MR wi l l be dimens ioned NO x NO x NK. NK is equal to the pre-

determin ed va l ue of n. Now, m.k wi ll contain the distance of the pth 
J p 

best path from j to k and mr .k wi l l contain the first node of the pth 
J p 

best path from j t o k. 
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To determine the nth best path from j to k, the follow i n~ operation 

i s performed. 

* m.k := min[m.k , min (m .. + m.k )] 
J n J n n JlP 1 q 

p = l, . . .• NK 

q = l , • • • • ~~ K 

Essentia ll y this operation forms all combi nat ions of pat hs from j to k 

throuqh i. Since not all of the NK p's or q's may be non-infinity, there 

wi ll be a maximum of (NK )2 of these paths. Th e path through i with the 

nth best distance i s compared with the existing path, mjkn · The minimum 

* * of these two paths is mjkn' The mj kn rep l aced by mj kn is not simply 

discarded but becomes the mjk,n+l best distance. (It can be observed 

that when n, p and q· are all one, the above operation reduces to the 

same operation originally described in the Cascade Algorithm and 

A 1 gorithm 97.) 

To illustrate the procedure consider the network in fi qure 5 and 

its associated initi al distance matrix given below. 

M =I 0 3 4 9 INF 
I NF 0 6 I NF 7 
INF I NF 0 4 I NF 
IN F I NF INF 0 8 
INF INF 9 13 0 

The fi rst non-infinity column element encountered is mjin = m121 . 

Searc hing row 2, the first non - infinity element is mikn = m231 . . Follow­

ing is the first set of comparisons . 

1.1 ms = ml2l + m23l = 3 + 6 = 9 > ml31 = 4 

ml3l :f. ms 

1.2 ms = ml21 + m23l = 9 < ml 32 = I NF 

ml32 := 9 
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Continuing across row 2, 

2.1 ms = m121 + m251 = 3 + 7 = 10 < m151 = I NF 

ml5l : = 10 . 

Following are the steps for col um n 3. 

3.1 ms = m131 + m341 = 4 + 4 = 8 < m141 = 9 

ml42 := ml4l 

ml41 : = 8 

= 9 

3.2 ms = m132 + m341 = 9 + 4 = 13 > m142 = 9 

m142 :f ms 

3.3 ms = m132 + m341 = 13 < m143 = I NF 

ml43 := 13 

4.1 ms = m231 + m341 = 6 + 4 = 10 < m241 = INF 

m241 := 10 

5.1 ms = m531 + m341 = 9 + 4 = 13 = m541 

m541 : "f ms 

At this point the matrix wou ld be as given below. 

M = 0 
INF 
INF 
INF 
INF 

3 ~ 

o , 
INF 

IINF 
INF 

4 19 
6 
0 

H!F 
9 

8 9 13 10 
10 7 

4 I NF 
0 8 

13 0 

Upon comp letion of the algorithm, M* wou ld appear as below. 

M* =II 0 
INF 
INF, 
I NF 1 

INF 

3 
0 

4 919 8 91310 116117 
6 16 27 10 20 31 7 18 
0 21 4 25 12 

17 0 21 8 
9 13 0 121 

As before, the columns of the matrices are divi ded by do ub le lines. 

Between the dou bl e lines are the thr~e el ements of the third dimension, 

the first, second and third .bes t distances from j to k. 

Proof of the nth best path al 9orithm reli es on th e proof of 

Al gor i thm 97. Fo r i f Algorithm 97 i s vali d, it must be true that all 
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possible combination s of path s are enume rated and only the shortest 

retained. If Algorithm 97 fails to cons ider even one path from j to k, 

then no claim can be made of its va li dity. For there can be no guarantee 

that this one negl ected path i s not the shortes t. The proof of Algorithm 

97 has been sufficiently established by Warsh all [19], Murchland [15] and 

Hu [ll]. Thu s, · all possib le combinations of paths from j to k are con­

sidered and only the shortest kept. For the nth best path algorithm, 

the remaining paths are not discarded. All paths are essentially placed 

in order and stored. 

Th e procedure emp loyed in constructing MR to enable the path to be 

enumerated is the same as before. First no de replacement occu rs immed i-

ately after the distance replacement. Considering the preceding example, 

replacements in MR would occur as follows. 

1.2 

2. l 

3. l 

3.3 

mrl32 := mrl2l = 2 

mrl5l := mr l 2l = 2 

mrl42 := mrl4l = 4 

mrl4l := mrl3l = 3 

mrl43 := mrl32 = 2 

At this point the first row of MR wou ld appear_ as the following. 

Ill I I 112 I I 113 I 21 1\3 I 4 I 2 II 21 I II 

Following is MR as it exists upon completion of th~ algorithm . 

MR = Ill I I I I~ I" Il l ~ 2 2 13 4 2 2 \ 3 I 4 
5 3 b 5 3 5 3 

3 4 14 4 4 
5 14 5 5 
3 14 514 

Extraction of the path from MR is somewhat different than in the 
. 

previous examp l es . The first node of the nth best path from j to k wi ll 

not necessari ly be f ound in the nth, third dimens ional el ement . Con-

sider the nth best path u = (j, p, · ·, q, · ·, k). The first node 
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of the path u would be mr.k and found in the nth element. Succeeding 
J n 

first nod es may be found in the nth el ement until say the pth node is 

reached. Now the fir st node of th e path from p to k may be in the n- lst 

element, indicating that this is now the n- l st best path from p to k. 

Continuing, the path from q to k may be the first best path. Thus, the 

distance matrices (includi ng original) must be used in conjunction with 

the routing matrices as the path i s traced from j to k. Upon reaching 

the first nod e of u, mr.k , the· distance of the arc from j to mr.k must 
J n J n 

* be subtracted from the total distance of u. The elements of m k are 
. mrjkn' 

now searched for this l esser distance . The third-dimensional element 

will indicate what best path we shall continue on. 

* Using matrices M, M , and MR let us determine the second best path 

from node 1 to nod e 5. From mr152 we obtain the first node as 3. Sub­

tracting the original m131 from the total distance of the path m152 = 16, 

we obtain m35 i = 12. Searching m35 i we find i = l, meaning from now on 

we are on the first best path so no more subtracting is necessary. · Con-

tinuing, mr
351 

= 4 and lastly mr451 = 5. Thus, the second best path from 

1 to 5 is u = (1, 3, 4, 5) and has a distance of 16 units. 

10. The Traveling Salesman Problem 

Algorithm 97 determines the shortest path from j to k. The first 

extension discussed allowed us to expose all possible minimum paths. In 

both cases m . . was initialized to zero. If, instead, m .. was set to 
JJ JJ 

infinity, we could have extrac ted the minimum circuits. Extending this, 

if m . . was set to infinity in the nth best path algorithm, we would have 
JJ 

obtained the nth best circuit from j to j, for all j. If the nth best 

circuit contains all the nodes of the network and the only node appearing 

more th an once is j, which appears exact ly twice, first and last, that 
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circui t is defi ned as a tou r and i s a contender for the opti mal solu t ion 

to the traveli ng sal esman prob l em. Thu s , the traveling sa l esma n pro bl em 

model ed-as a nth best path prob l em i s next to be i nves tigated. 

Th e nth bes t path fo rmu l ati on in the previous section is not a 

minimum path fo rmul ation, as i s Pollack's. Thus, paths with loops can 

be expec ted. This could be remedi ed by the insertion into the computer 

program of a subroutine call ed, say, NOLOPS. Each time a new path was 

formed by adding t wo paths, NOLOPS wo~ld construct the path and discard 

it if it obtained a loop . 

Thus we are assured of loopless paths . Recall that alternate nth 

best paths we re discarded. Only the first nth best path was retained. 

There is no way of knowing if that di scarded alternate nth best path was 

optimal . A way of fi xing thi s would be to compare alternate paths as 

they arise and retain the one with th e most nodes. But this is not 

really correct . For that alternate nth best path thrown away may have 

combined with some other path and formed an optimal circuit. Thus, all 

alternate nth best paths must be retained . Now, all alternate nth best 

combinations of paths must be considered . This could be accomplished by 

adding a forth-dimension - to the matri ces M and MR. Each would be dimeri-

sioned NO x NO x NK x NA and m.k would be the pth alternate nth best 
J np 

path from j to k. Upon complet ion of the algorithm the n best circuits 

from j to j wo uld be searched and the first tour encountered would be 

an optimal solution , 

Thes~ mo difications wou ld seem to overcome the difficulties of the 

nth best fo rmul ation. The optimal solution would be an exact solution to 

the traveling salesman probl em . It is anticipated, however, that to handle 

large networks in this way a comp uter wo uld have to satisfy the foll ow ing 

conditions. 
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l . Handle four dimens ions 

2. Have a storage capac i ty l arger than even the prese nt 

day advanced computers 

3. Be fas ter th an the presen t day computers 
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AP PENDIX I 

Fl ow Diagra1 n for the Shortest Path Alqorithm 

<J = l~ 

I TRUE ~· 
f J. I ;r I \,., I I\ V ~ J . ' 

AL_S;= 

'- '"; I 

TRU E ~1 

·-
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AP PEND I X II 

Flmv Dia :-: r am for the All 1-\lternat e Path r·,~o r ithm 

-, 

qN]_J 
,---~­
' 20 
J -,:· 1 ,f'<D 
'--...---

~-----_ TRU E --; CE ( Ll ,Jl= I~£_) 
I FALSE 
_'k'_ __ ) TRUE 

Cl::L .. 

d
ALS[ 

\ 

·ri(l)=I~ ) TRUE -----7j 
FALSE 

~--'- _]R_U __ E 
I=K _.../ --.-----

> 
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APPENDIX III 

r !lRTRAN IV C0'-1P tJT ER PROGRAM FO R TH F ALL !\LTE RNATF 
PATH ALGCRTHW 

C I Nf= I f'iFINIT Y 
C ~H> NU f'I-B E R OF: I·JCi Ul: S 
C 1\!A="'AX[MU 'vl ~LJI~ l-H:k OF EXPECT Ef1 F iRS T "J :lf!ES 
C f'~GG =FI RST N,JLH :J F PATH TO BE PR i f\JTEn (JilT 
C NEND= LA ST N00 f OF P ATH Tn RF PRINTED nuT 
C I'' tl L T = 1 I F fl E S I R E A L L A L T E R N t\ T F. P A T H S F R 0 M N 0 D c N G D T 0 
C NC DE NFND,O I F NOT 
C N~ AT = l I F DE S TqE AL L ALTE RNATE ROUT I NG MATR IC ES TO RF 
C PRINTFD OUT,O I F NOT 
C M(I,,J)= MA TR I X OF DISIANCES FROM f TO J. !IS READ ll\!,tS 
C DI STlll'iCE OF S I NGLE AR C FRC! :"1 I T IJ J,nr. I NFH.! TTY rr- "lrJ 
C SUC i ~ A!' C EX ISTS. AS P RI NTfr) flUT,IS s; :rlRTEST D TST.'l ~ I C[ 
C OF ~1\TH FRn M I r -: J 
C M R ( I , J 9 K l = ~z 0 lJ T T 1'1 G ,\1 AT R I X 
C N1,N2=PAR. M-~F.TFr~ s lJSt;:D TO FACIL!\T ~ PRINT OUT 

COMMON INF,ND 1 ~A 9 NGO,NENO,M,~R 
DI MENS I O~ ~ ~ ~O,SO ) ,MR ( 50 9 50,10 l 
N AMEL I ST /l ~P UT/ M 

C ~ EAD AND P~INT PARA~ETERS 
R E A D 3 8 , I N F , N ! ) , l'l A , N G 0 , 1\1 f: N D , \J A L T , N i~ ·~ T , N 1 , N 2 
PRINT 3B, I Nf , NO ,NA,NGflvNENO,NALT,N~dT,Nl 7 N2 

C ALL E L~ MENTS OF M(l ,J) ARE SET TO I NFINIT Y EXCEPT 
C DIAGON AL E L EM~N TS WHICH 4Rf ~FT Tn ZERO. MR CI,J, K) IS 
C INITI ALI ZED 

on 12 I=1, ~'>JO 
DO 11 J =1,t·..'O 
f-IR ( J , I , 1 l = I 
DO 10 K=2 9 f\4A 

1C MR (J , I, I< ) =INF 
11 ~ (I , Jl = I NF 
12 f'.!(I,l}=O 

C READ IN NON-INFI~ITY ELEMFNTS nF ~(I,Jl 
Rf:A 0 (5,I NFLJT) 

C PRINT OUT I NITI AL f1ISTANCE MA TRI X 
PRINT 33 
PRIN T 39,( I,I=l,ND) 
D!J 1 3 I=l,t-JD 
P R I NT 40,I,!M(J,J),J-=l,NOl,I 

1 3 CO I'<TINUE 
C CG NVERT I NIT I AL MATRTX TO SHO RTES T 8ISTANCE MA TRIX AND 
C TRA NS FO RM ROU TI NG MATRIX 

DO 20 I=l, NO 
DO 20 J=1,NO 
IF(~(J,I ).F Q.INF) GO TO ?0 
IFCL EQ. J) GO TIJ 2 0 
DO 2 0 L<. = 1, "JD 
IFPHI,K).f t~.JNFl GO Tn 20 
IF(I.EQ.Kl GO TO 20 
MS = M ( J , I l + M ( I , K) 
IFP1S- M(J ,K il 14,16,70 

14 M(JIK)=MS 
DO 5 L=l,NA 

15 MR (J, K ,L)=M~(J,I,L) 
GIJ TO 20 

lf 00 1 9 L=l, NA 
IFU),R (Jv!,U.EO.II\IFI GO TO ?0 
DO 17 N= l, NA 
IF( MR (J, K,N l. EO .I NF ) GO TQ l R 
IF ( f'I,R ( J, I, L) -MR ( J, K, N) l 17, 19 , 17 

17 CO NT I NUE 
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PRI NT 3 7 
GLJ TO 3 2 

18 M~ (J 9 K,N ) =MP (J 9 I , Ll 
19 CONTI NUE: 
20 CONT I NU E 

C IF NMA T=l P:<. I NT OtJT MAT RICES 
IFIN ~A T oE W o Ol GO TO 31 

C DET ERM INE MAX I MUM NUW~ ER OF FIRST NO OE S 
l A= l 
DO 2 2 I =l, NO 
DO 22 J =l,NO 
KA=O 
DO 2 1 K=l,NA 
IFI MR(I , J, K).LT.INF) KA=K A+l 

21 CONTI NtJ E 
IF( KA.GT . Y,'J.l IA =KA . 

22 CONTI NUE 
C FO R E LE ~EN T S OF M(lfJ) = IN FI NIT Y MAKE CORR ESPONDI NG 
C EL EMENTS OF Mk (I,JvlJ = I NF I NITY 

00 23 I = t,.ND 
DO 23 J =l , ND 
IF {;'-1 ( I ,J) G L L I NF) GO TO 2 '1 
MK(! , J,1) = I NF 

23 CO NTINU E 
C PRINT OUT SHO RTES T DIST AN CE MAT RIX 

f'RI NT 34 
F ~ INT 4l,(I,I=l,Nll 
0 ~ ) 24 I =l,ND 
PRIN T 42~I,(M(I,J) 7 J = l?Nli,I 

24 CONTINU E 
lF(N2.t C. Ol GO TO 26 
PRINT 439 (I ,I =N 2, NO) 
DO 25 [=l,ND 
FRINT 42,!,(M(I , J),J=N2,ND),l 

25 CO NTINU E 
C PRI NT OUT ROUTI NG MA TRIX 

26 PRINT 35 . 
CO 30 l=l,IA 
PRINT 4l,(L,L=1,Nll 
00 27 J = l,ND 
PRINT 42,J,( MR (J,K,I},K=l,Nl),J 

27 CONTINUE 
IF(N2oE OoOl GO TO 29 
PRINT 43 7 (L,L =NZ,NO) 
00 2 8 J=1,ND 
FRitH 42,J 7 ( MR (J, K,I),K=N2 9 NDl,J 

28 CO NTI NUE 
29 IF!I A.E Ooil GO TO 3C 

PRINT 36 
30 CONTINU E 

C IF NALT = l PRI NT CJ UT ALL ALTE RNATE PATHS F RO'-~ NUDE NGO TO 
C NODE NEND 

31 IF(NALT.EO.Ol GO TO 32 
CALL .t>LTE RN 

32 Ci.J NTI NUE 
33 FOR MAT(l Hl,' I NITIAL MA TRIX',//) 
34 FOR MAT(l Hl ,• SHO RTEST DISTA NCE MATR!X v,//) 
35 FO R'·lA T(lHl ,• ROUTI NG MATRIX',//) 
36 FO RM AT(lHl ,• ALT ERNA TE ROUTIN G MAT RIX',//) 
37 FORMA T(l Hl ?' NU MBER OF FI RST NODES EXCEEDS STO RAGE') 
38 Fi.JR MA T( 9I8 l 
39 FORMA T( 6X r50I2 , //) 
40 FO RMA T(I3 , 3 X,50 I 2,1 6 ) 
41 FOR MAT C6X ,2 5 I 49 //l 
42 FO RMA T( [3 , 3X , 25I4,I5) 
43 FORMA T(1Hl,5X , 25!4,//) 

END 
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SUBROUTIN E ALTERN 
CO MMON IN F 9 NOvNA 9 NGO,NENOvM, ~ R 
DI MENSION M(50 1 50)vMR(50,50vl0} 
~IN= M (N G O,N~NOI · 
PR INT 17,NGO,NENO~~IN 
PRINT 1 8 
DO 2 I =J.,ND 
M(2v!)=0 
DO 1 J=:t,NA 
IF( MR(IvNEND,JloGEoiNF ) GO TO 2 

1 M(2,IJ=M(2,Il+l 
2 CO NTINUE 

N=O 
J =l 
K=NGO 
DO 3 I =l,ND 
M(1,ll=IN F 

3 1"(3, I ) =INF 
M(l,J) =K 
J=Ji·l 

4 IF( K-NENO ) 5,10,5 
5 IF( M(2, Klo LE.l) GO TO 7 

Ni\J =M ( 2,K)-l 
00 6 I=l,NN 
N=N+l 

6 f.!'!{3,Nl=K 
L=K 

7 MAI=M(2,t<) 
IF( MAleEO.l) GO TO 9 
MAl= 1 
00 8 I=l vNO 
IF( M!3,I l .EO.K) MAI=MAI+l 

8 CONTINUE 
9 NEXT= MR (K9NEND9 MA I) 

M(1,Jl =NEXT 
K=NEXT 
J=J +l 
GO TO 4 

10 I I=J - 1 
PRINT 19, (M(l ,I lvi =l,I I) 
IF( N. LEeO l GO TO 16 
00 11 I =1,ND 
JF( M(1 ,J-l ). E0o l} GO TO 12 
J=J-1 

11 M(1,Jl=INF 
12 CONTINUE 

M(3,N)=INF 
N=N- 1 
MAI=M(21ll 
JF( MA I .EOol l GO TO 14 
MAI=l 
DO 13 I=l,NO 
IF(M(3 ,I ) .EQ. L) MAI=MAl+l 

13 CONTINU E 
14 NEXT= MR (L,NEND,MAIJ 

M(l,J)=N EX T 
J=J+l 
!<=NEXT 
IF( N-·0 ) 4,4,15 

15 L= M(3,N l 
GO TO 4 

16 CO NTINUE 
17 FOR MA T!lHl, 1 MINIMU~~.DI ST ANCE FROM NODE 1 ,!3,' TO NODE' , 

1 13, 1 IS',I3,' UNITS' l 
18 FOR MA T!////, 1 MINIMUM PATHS') 
19 FORMAT(/,3013) 

RETURN 
END 
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Fl ow Di agram fo r th e Nth Best Path Al gor ithm 
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APPENDIX V 

FO RTRAN I V CO ~PU TE R PROGRAM FO R TH E NTH HEST 
PATH ALGO RITHM 

C I NF=INFINITY 
C NO = NUM~EP OF NODES 
C . NK= NIJ~1t1 ER OF K BEST PATHS 
C NGO =FIRST NODE OF PATH TO Bf PRINTEO OUT 
C NEND =LAST NODE OF PATH TO BE PRINT ED OUT 
C NKTH=l IF .DESI RE ALL K BEST PATHS FRO~ NODE NGO TO NOD F 
C NEND 9 0 IF NQT . 
C NMAT =l I F DESIRE ALL K BE ST ROUTING MA TRICES TO BE 
C PRINTED OUT,O I F NOT 
C M(I 9 J, K)=MATRIX OF DISTANCES F RO~ I TO J o AS RFAD IN,IS 
C DISTANC E OF ~IN G LE ARC FR O~ I TO J,n R INFINITY I F NO 
C SU CH ARC EXhTSo AS PRINTfO OUT ,IS KTH BES T DISTANCE OF 
C Pt. T H f R 0 lvl I Hl J 
C MR ( I,J ,K }=ROUTING MATRIX 
C Nl,N2 =PARM-1E TE rS USED TO FACILA TE PR INT OUT 

DI MENS ION M(~G,50yl5 l vMR(5G, 50r15 ) , MI(50,50l 
C 0 M t-1 0 N I N F , ~ J I"~ , N K , N G 0 , N EN 0 r ~-~ , M P , M I 
NAMELIST /I NPUT / M 

C READ AND PRINT PARAMETERS 
READ 3C ,I NF,ND,NK,NGO,NENO,NK TH, NMAT,NlvN 2 
PRIN T 30, I NF 9 NO,NK,NGO , NENO,NKTH,N MAT ,Nl,N2 

C ALL ELE fvlE NTS OF M{ I , J ,K l ARE SET TO I NFINITY EXC F: PT 
C OIAGONA L , ELE ~FN T S FO R K=l 1 WH I CH A~E SET TO ZERO. 
C MR([ , J, K) IS INI TIAL I ZED 

DO 11 I=1 ,ND 
DO 10 J=l,ND 
t-IR (J,l,l)=l 
M(I ,J,l l = I NF 
D 0 l 0 I< ·= 2 , N K 
M (l,J ~K J =INF 

10 MR (J , I ,K l=IN F 
11 ~~ (l,f,ll = O 

C READ IN NON-INFINITY ELEMENTS OF M(J,J,K) 
READ(5, I NP UT} 

C ST ORE M(I ,J , ll I N MI (l , JJ FClR. USE I N SU BROUTINE KBEST 
DO 12 l = l ,NO 
DO 12 J=l?NO 

12 Ml(I 9 J)= M( lt J , 1) 
C PRI NT OUT INITI AL DISTANCE MA TRIX 

PRINT 27 
PRI NT 3l,(I,I ~ l, ND ) 
DO 13 I =l,ND 
PRINT 32, I,( M([,J,ll,J=lt ND l,I 

13 CONTI NUE 
C FOR ELEMENTS OF M(I , JJ = I NF I NITY MAK F CORRESPClNDING 
C ELEM ENTS OF "1R ( I, J,l )= I NFI\liTY 

OLJ 1 t~ I= 1, N D 
[If) 14 J =1r"-lD 
lF( M( I , J , ll eLL I NF l GO TC 14 
I•\ R ( I , J v 1 ) = I N F 

1. 4 CO NTI NUE 
C CONVER T I NITI AL MATR I X TO KTH BEST DIS TANCE MATR I X AND 
C TRANSFORM ROUT I NG MATR IX 

DO 20 I=1 9NO 
D.O 2 C J = l , N 0 
I FOHJ,I,lloEQ.,INF) GO TO 2'J 
I F (I .EO.,Jl GO - TO 20 
DIJ 20 K=l NO 
l F ( M(I, K,i. l oEO .. I NF l GO TO 20 
I F ( I ,.EQGK) GO TO 20 
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DO 1.9 L.A =l 1 NK 
DO 19 LB=l,NK 
MS =M(J, l 1 LA!-t- M{ [pK,LB) 
DO 15 LC=ltNK . 
IF( MS-M (J ,K, LC )) 16,19 9 15 

15 CLJ NT I 1\IUE 
GO T 0 l 9 

16 NA =-NK- LC 
IF (NAgEQ .O l GO TO 10 
DIJ 17 I A= 1, NA 
NB== NK- I .6.+ 1 
M (J ,K,NB)=M( J ~ K 9 N B-ll · 

17 MR(J,KpNB) =MR lJ 9K,NB- ll 
18 M( J ,K,LC)=MS 

MR(J ,K, LC) =MR (J,I,LA) 
1.9 CONT IN UE 
20 COJH I NUE 
IF NMA T= l PRINT OU T MATRI CES 

IF( NMAToEOoO) GO TO 2 5 
PRINT OUT K BEST DIST ANCE MA TRI CES 

00 22 J =l,NK 
PRINT 28 1 J 
PRINT 33,(l,I=l,Nll 
DO 21 I=l , ND 
PRI NT 3 4, I,( M(I ,K,J)v l<=l,Nl l,l 

21 CO NTINUE 
IF(N2 oEQo0) GO TO 22 
PRINT 35d I ,I =N2,ND) 
DO 22 I = l ,ND 
PR INT 34,£, OH I,K,J) 9 K=N2,ND ) ,I 

22 CONT I NUE 
FRI NT OU T K BEST ROUTING MA TRICES 

DO 24 J = l , NK 
PRINT 29,J 
PRIN T 33i(I,I=l,Nl l 
00 23 I= ,NO 
PRINT 34·,l 9 (MR(!,K,J) , K=l,Nli,I 

23 CO NTINUE 
IF( N2oEQ.O) GO TO 24 
PRINT 35 1 (I,I=N2,NDl 
DO 24 I=i,ND 
PRINT 34,I,(MR(I,K , J) ,K=N2 9 ND) ,I 

2't CO NTINUE 
25 I F ( NKTH~EQ.O ) GO TO 26 
IF NKTH= l PRINT OUT ALL K BEST PATHS FROM NODE NGO TO 

NO DE NEND 
CALL KBEST 

26 CONTINUE 
27 FORMAT ClHl, ' I NITIAL MATR IX', //) 
28 FO RMA T{lHl ,I4,'TH BEST DIST ANCE MATR IX', //) 
29 FO RI'v1AT !1 Hl r1 4v'TH BEST ROUT I NG MATR I X 1

1 //) 

30 F- ORMA T(91 8 ) 
31 FOR MAT ( 6X, 5CI2 , //l 
32 FO RMAT (I3 , 3X ,5 0I2yl6) 
33 FORMAT(6Xv25I4, //J 
34 FO RiviA T( I3,3X,25I4, 15) 
35 FO RMAT (1Hl ,5X,25 I4,//l 

END 
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SU HROUT I NE KREST 
COMMON I NF,NO,NK,NGO,NENO,M,MR,MI 
DI MENS I ON M(~0,50F l 5 l ,MR ( 50,50,15 1 9MI ( 50,50),MK ( 30) 
PRI NT 7 
DO 6 I = 1 , ~ : K 
I TH= I 
MOIS=~( ~GO,NEND, Il 
MDIST =I..., DIS 
00 1 L=l dO 

1 MK(L)=INF 
KA =NG r 
N=l 
f'-IK (N )=KA 

2 K~ =MR ( K\ 9 NENO, ITH) 
N=N+l 
MK( N ) =K~ 
!F( KB.E0 .N END ) GO TO 5 
MOIS =~Q [S- M I( KA,KB } 
00 3 J = l,N t< 
IF( M( KB,NfNO,J ) GEQ.MD IS} GO TO 4 

3 CONTI NUF-
4 ITH=J 

KA=K6 
GO TO 2 

5 PRINT 8, I ,NGO,NENO,MOTST 
PRI NT 9 9 (;'-l K(L} ,L=l,N) 

6 CO NTINUE 
7 F 0 R t~ A T ( 1 H 1 l 
8 FORMA T( /// ,I4,'TH BfST DIST ANCE FROM NODE 1

7 I3,' TO NO DE', 
1 139' rs•,rs,' UNITS' l 

9 FOR MAT {// ,3013) 
RETU RN 
fNO 
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