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CHAPTER l. INTRODUCTION 

The calculation procedures to be discussed in subsequent sections of this 
book offer a means of solution to a wide variety of separation problems. 
The very fact that they are so versatile, however, requires in their utiliza­
tion a thorough understanding of the formulation or setting up of the 
separation problems. To set up or describe a separation problem to be cal­
culated is simply to assign values to the number of independent variables 
needed to define the problem. The calculation then yields the values of all 
the.dependent variables. 

Although it is quite as important as the calculation, the subject of prob­
lem description has, until recently, been neglected in distillation literature. 
Gilliland and Reed,'" and K wauk5 have presented papers giving a rigorous 
treatment of problem description and Robinson and Gilliland' discuss the 
subject briefly in their book. The great bulk of the literature has been. 
concerned with development o( calculation methods suitable to the design 
of columns, and the problem set up to test the methods has almost ipevit­
ably been the same, viz., the independent variables have been two separa­
tion specifications, the reflux or reflux ratio, and the stipulation that the 
feed plate was to be located at the optimum point. Here, then, .calcula­
tions are made primarily to obtain values for the number of enriching and 
stripping stages, although they also yield the separation that will result 
for each component of the feed. This problem has been illustrated so often 
that its formulation is intuitive to those working in distillation design. 
However, the simple, general rule which governs how many variables are 
independent and must be set to define a separation problem, is not as well 
known. Therefore, it becomes desirable to state and discuss the rule. The 
rule as discussed here is, in essence, the same as the -m9re elegant formula­
tions ofKwauk but is much easier and quicker to apply. 

Associated with any fractionation problem are a number of variables 
which describe the column and its operation. These variables are flows, 

*Superscript numbers refer to bibliographical references at end of book. 
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temperatures, separation specifications, number of stages, column di­
ameter, and in general, any quantity that satisfies the requirement of de­
scribing the colu1nn or its operation. Obviously, not all of these variables 
are independent and can be arbitrarily set, and the number of independent 
ones changes with the column used and the operation performe~. A simple, 
general problem-description rule called the Description Rule, which will 
hold for any multistage contacting unit, can be stated as follows: To com­
pletely describe the separation operation, the number of independent variables 
which must be set must equal the number that can be set by construction or 
controlled by external means. Setting a lesser number in the problem de­
scription yields an infinitude of answers in solving for values of the remain­
ing Variables, whereas setting a greater number may lead to no answer. 

The use of the rule is extremely simple, but the terms "variables which 
can be set by construction or controlled by external means" are un­
fortunately vague and can best be clarified by the use of examples. A 
simple distillation column is shown in (a) of Figure 1. The act of draw­
ing the column and other equipment is tantamount to construction, and 
and feature of the drawing has been set by construction and hence is an 
independent variable. Not all the features of the column, however, enter 
the fractionation equations, and so these extraneous features can be ne­
glected. The important independent variables that can be set by construc­
tion in the figure are the numbers of theoretical stages in each column 
section. The fractionation equations written must, of course, recognize 
such structural stipulations as a partial condenser, but the influence of the 
bulk of the structural details on the fractionation can at present be only 
implicitly expressed in the estimate of the over-all stage efficiency for the 
column. 

Jn addition to being able to construct column (a) of Figure 1 with any 
desired number of theoretical stages in the two sections, there are a num­
ber of variables which can be externally controlled and determined by 
simply looking at the figure. It is apparent that an arbitrary amount of 
feed material may be introduced into the column, that an arbitrary amount 
of heat may be introduced in the reboiler, and that (within limits) an 
arbitrary amount of energy or heat may be withdrawn at the condenser. 
These are, then, additional independent variables. Lastly, it is apparent 
that the pressure at some point in the column can be arbitrarily set and 
controlled, and that the feed may have any composition and enthalpy 
content. 

The total list of independent variables which must be fixed to com­
pletely describe the problem is shown in the following table: 
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Independent Variables 

Feed composition (N components) 
Feed amount 
Feed enthalpy 
Pressure 
Condenser duty 
Reboiler duty 
Theoretical enriching stages 
Theoretical stripping.Stages 

Number 

N-l 
I 
I 

N+6 

The fractionation problem with the N + 6 specific independent variables 
above would seldom be defined. Among the variables listed, the condenser 
and reboiler duties are generally of little interest as independent variables. 
Instead, it is usually desired to specify something about the separation. 
This can be done, since for this example, all of the listed independent 
variables can be replaced in describing the problem with an equal number 
of any other independent variables; variables may be chosen which are most 
pertinent to the problem at hand. The Description Rule serves to tell how 
many independent variables· must be set. The ones used are a matter of 
free choice. 

F-'P\___ F--., ___ _ 

,., 
"' '" (d) 

Figure l. 
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Practical limitations enter, however, in the .selection of independent 
variables, because the calculations are too difficult to carry out unless 
certain variables are set. Thus it is imperative that variables describing 
the feed, and also the column pressure, be set in order to do calculations, 
and it becomes convenient in thinking about the Description Rule to con­
sider these as always set. For column (a) of Figure I, the last four variables 
of the above list are available for replacement by other variables in a 
specific problem description. 

The Description Rule is just as easily applied to more complex opera­
tions. As a further example, column (a) of Figure 2 shows a distillation 
column with a side stream, S, withdrawn from a stage in the enriching 
section. Again, the column may be fed with feed of any amount, com-

F---..i F 

steam 

b 

steam 

'---+b 
)•) )b) 

Figure 2. 
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position, and enthalpy, and may be operated at any pressure; these in­
dependent variables can be considered as arbitrarily set. From inspection 
of column (a), Figure 2, the remaining independent variables a.re: 

Condenser duty 
Reboiler duty 
Enriching stages 
Intermediate stages 

(between side·draw stage 
atld feed stage) 

Stripping stages 
Sidc.-draw amount 

Thus there are six independent variables (in addition to feed variables and 
column pressure) compared to four for the column and operation of (a) in 
Figure l. 

Probably the most complex column and operation that will normally be 
encountered is a crucle-oit distillation column, a somewhat simplified ii~ 
lustration of which is shown in (b) of Figure 2. Again, all the feed 
variables and the column pressure are set, and the remaining variables are 
written down by simply inspecting the figure and noting the points that may 
be controlled. 

Main stripping·steam amount 
Main stripping·steam enthalpy 
Side·stripper·steam amount 
Side·stripper·steam enthalpy 
Enriching stages 
Intermediate stages 
Stripping stages 
Side·stripper stages 
Sidc.-draw amount 
Condenser duty 
Reflux amount 

L =II 

The Description Rule may be applied with ease to any multistage opera­
tion such as distillation, absorption, extraction, etc., and will yield the num~ 
ber of independent variables that must be set in defining a problem. 
However, the variables listed in the process of applying the rule are those 
which are fixed either through construction or through direct external con­
trol; and as noted above, these are not necessarily of greatest interest in 
the definition of a specific problem. 

Jn almost all problems the variables describing the feed and column pres­
sure are set; but when the remaining variables are replaced with other in­
dependent variables, four considerations enter: 
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(a) The replacement variables must be independent. 
(b) The variables listed in the problem description must be set at values 

which lie within the limiting range of possible values. 
( c) In some problems, all of the variables counted by the Description 

Rule cannot be replaced with variables describing the separation. 
( d) Those variables should be chosen which allow a reasonably easy so­

lution of the problem. 

Each of these considerations needs further discussion. 
Variables are independent if they are not defined through a mass bal­

ance, an energy balance, or a fractionation equation defining the relation 
·between concentrations, stages, and flows. Column (a) of Figure 1 serves 
to illustrate these points. Consider the column operating to separate a 
given amount of feed (an N-component mixture of specified composition 
and enthalpy) into a top product, d, and a bottom product, b. It is ap­
parent that the amount of component 1 in the top product, d(x 1),, and the 
amount of the same component in the bottom product, b(x 1) b• are not both"' 
independent, since 

However, one of the two, say d(x 1)d, is independent. In the same way, for 
other components, d(x:J,, d(x 3),, and d(x 4), are independent variables, 
since they are not connected through mass balances. It might be assumed 
that the amounts of all other components in the top product are also in­
dependent, but in this case the Description Rule allows only four in­
dependent variables; the remaining variables are thus dependent through 
fractionation relations. 

Variables may also be dependent through energy balance. This can be 
determined for specific variables only by writing the appropriate energy 
balance. However, because composition, amount, and temperature are 
needed to define an enthalpy flow, and since it is uncommon to set all these 
variables, this is seldom of concern. To ilJustrate again with (a) of Figure l, 
it is possible (although it seems at first glance unlikely), to arbitrarily set 
the temperatures of any four stages, since they are all independent 
variables. However, such a fractionation-problem definition would be 
unusual to say the least. 

The second consideration is often of concern because it is not always 
easy to find the limits within which certain variables can be set. Again, 
column (a) of Figure I, separating an N-component mixture, serves as an 
illustration. For purposes of this illustration, a useful variable for describ­
ing the separation of a specified component is introduced, viz., the recovery 
fraction of that component in a product. The recovery fraction of comR 
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ponent i in the top product is defined as the fraction of the amount of 
that component in the feed which appears in the top product, and there­
fore for component i this recovery fraction becomes d(x1),/ F(X1), 

and is assigned the symbol (/i),. The recovery fraction of a component in 
any other product, in this case the bottom product, is defined in a similar 
manner: (/i), ~ b(x,),j F(X,) ,. If (as here) there are only two products, 
then (/i), + (/i), ~ 1, and only one of these variables is independent. 

A set of inderendent variables describing the problem might then be 
(/1),, (/2),, (/3),, and reflux amount. Although these can all be set ar­
bitrarily-that is, they can take on an infinitude of values-there are cer­
tain limitations on these values. If the vapor-liquid equilibria for the 
system of components are not highly nonideal and components 1, 2, and 3 
are progressively less volatile, it is apparent that (/1), must be greater 
than (/2),, which in turn must be greater than (/3),. If (/1), is set first, it 
is limited only to values between 0 and l. If (/2), is set next, it is limited to 
values between (/1), and 0. If then reflux quantity is set, it is limited to 
values between the minimum necessary to effect the specified separation on 
components 1 and 2, and infinite reflux. If reflux is set at some value 
within these limits, (/3), is now limited to values within those obtained 
with either a maximum number of enriching·stages or a maximum number 
of stripping stages (usually an infinity of stages in either section). These 
limits could all be obtained by calculation; and if a separation problem 
were to be described by the four variables used above, it would be neces­
sary that the values chosen were within the allowed limits. 

The third consideration states that although all the variables obtained 
through the Description Rule are independent, they are not necessarily all 
replaceable with a completely free choice of other independent variables. 
This can best be shown by considering columns (a), (b), and (c) of Figure 1, 
for which it will be understood that all feed variables and pressure have 
been set. The only difference between these columns is that column (a) has 
a partial condenser, (b) a total condenser, and (c) a total condenser plus a 
reflux cooler. The Description Rule will correctly predict the number of 
remaining independent variables that must be set to define a problem for 
each of these columns. These variables are shown in Table I. 

Regarding column (a), all the variables listed in Table I have direct 
bearing on the fractionation being done, i.e., if any one of the variables 
is changed, the separation will be changed. If the feed contains four com­
ponents (1, 2, 3, 4, or more), then each of the variables listed could be 
replaced with the recovery fraction of one of the components or with var­
iables that are functions of concentrations, such as four stage temperatures. 
Thus, in theory at least, it would be possible to design a column like (a) 
of Figure 1 to perform a set separation on four components. 
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TABLF. I. INDEPENDENT VARIABLES FROM DESCRIPTION RULE 

(fn addition to feed variables and column pressure) 

Figure l,Col.(n) 

Enriching stages 
Stripping st;-iges 
Reboiler duty, QR 
Condenser duty, Qc 

Figure 1, Col. (b) 

Enriching stages 
Stripping stages 
Reboiler duty, QR 
Condenser duty, Oc 
Reflux amount, r 

Figure l,CoL(c) 

Enriching stages 
Stripping stages 
Reboiler duty, QR 
Condenser duty, Qc 1 
Reflux amount, r 
Rellux cooler duty, Q, 

With column (b), it might be expected that five independent recovery 
fractions could be set, and (in like manner) six for column (c). However, 
'it is possible to represent (b) and (c) of Figure 1 by the column shown in 
( d). In this last column the reflux stream has been separated from the top­
product stream. In reality this is also occurring with the reflux streams of 
(b) and (c), since they can be considered as following a closed cycle about 
the column tops. In all three cases, then, the reflux streams have the same 
effect in producing liquid flow off the top stage. Also, in column ( d), the 
top product has been shown as condensing in a separate condenser. Thus, . 
if the top product and reflux leave their condensers at the same tempera­
ture, column (d) becomes equivalent to column (b); and if they leave at dif­
ferent temperatures, (d) is equivalent to (c). It is apparent that the top­
product condenser of column ( d) has no influence on the fractionation, 
since it is completely removed from it. Also, it is apparent that the 
amount of reflux flow around the closed loop of ( d) is irrelevant to the 
fractionation. The only relevant variable is the heat extracted at the top 
stage; this can be accomplished with an infinitude of external reflux flows, 
depending on subcooling. Hence, this heat load can be replaced in both 
columns (b) and (c) by a separation variable or-what is the same thing 
-the condenser load of which it is a part can be replaced. Alternatively, 
the variables associated with the condenser might be taken as reflux amount 
and reflux temperature, in which case one or the other, but not both, could 
be replaced by a fractionation variable. In all three cases then (columns 
(a), (b), and (c)), only four separation variables can replace the variables 
counted by the Description Rule. 

With columns (b) and (c), if the reflux amount were set, it would still 
be necessary to set the reflux temperature in the problem description. 
In column ( c), in addition to the reflux temperature out of the condenser, 
the reflux temperature from the cooler would also have to be set. It is 
usually desirable to set the temperature of the reflux rather than the con­
denser or cooler duty. 

The fourth consideration, that the variables chosen must be such that a 
reasonably easy solution can be obtained, is the most important. The com-
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plete set of equations expressing mass balance, energy balance, and inter­
phase equilibria can be written for any multistage process of fixed numbers 
of stages operating on any number of components. Iii general, however, 
since the equations are nonlinear, no simple solution of the set of equations 
can be obtained. 

If, however, a complete set of flows and temperatures is assumed and 
equilibrium stages are postulated, the equations can be reduced to a linear 
set of equations in concentration of the individual components. These 
equations can be·solved to yield compositions in the stages; and from these 
compositions, corrections to the assumed flows and temperatures can be 
obtained. The solution of the problem can thus be made into an iterative 
process converging on the correct solution to the nonlinear set of equations. 

In further discussion of the general method of solution, it might be best 
to direct emphasis to the type of column solution to be discussed in subse­
quent sections of this work. The problems to be discussed are those for 
which a column already exists or for which column design is to be effected 
by calculating the flow requirements of a series of likely columns and 
choosing the optimum column. It is thus the reverse of the design pro­
cedure which calculates the column required at some reflux arbitrarily 
greater than minimum. Rather, the calculation yields reflux requirements 
for a column arbitrarily greater than the minimum number of stages at 
total reflux. 

In the setting up of fractionation problems of this type the numbers of 
theoretical stages in each column section are always independent variables 
and are set in the problem description. All feed variables and column 
pressure must also be set. The number of "remaining" independent var­
iables is usually small, and often zero. For column (a) of Figure 1 there 
are only two; in more complex columns there' are still relatively few re­
maining. 

As noted above, the iterative solution of the problem requires the 
knowledge of all flows and temperatures either through setting as in­
dependent variables or through assumption and subsequent correction. 
Correction procedures for estimation of new values of the assumed var­
iables have been developed only for a few simple problem descriptions, 
namely the problems in which the remaining variables are chosen either as 
flows or energy inputs or outputs. Since, in general, it is desirable to 
work with flows, the remaining variables should be chosen as flows. 

As an example, consider the simple distillation column (a) in Figure I. 
The particular problem of interest might consist of setting values for the 
variables: 

Enriching stages, 
Stripping stages, 
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Recovery fraction of component 1 in the top product, and 
Recovery fraction of component 2 in the top product. 

Since this problem cannot be solved directly by the iterative schemes 
proposed, the solution must be obtained through the solution of a series of 
simple problems in which the last two variables are replaced with: 

Top product amount, and 
Reflux amount, 

until the values of top product and reflux are found under which the 
separations obtained on components l and 2 are those desired. 

It may appear that the method of approach is unnecessarily devious for 
.what is a rather simple problem. But it is readily applicable, no matter 
what the last two variables in the problem are. For example, they could 
be the recovery and purity of a component in a product, or the octane 
number and amount of a product, or any two variables which are functions 
of the compositions and amounts of the products. Also, the basic prob­
lem is almost as easily solved for complex processes, such as multiple~ 
feeds, interlinked columns, etc., as for simple columns. The real useful­
ness of the methods then is in their general applicability. 

In any multistage separation process, both mass: balance and energy bal­
ance must be satisfied. However, it is possibl1t by postulating heating or 
cooling in each stage to create an additional group of independent var­
iables which may be arbitrarily set and held. The number of these variables 
is equal to the number of stages which are heated or cooled. 

Thus, in a distillation process, one of the flows from each stage can be 
set. This fixes the complete flow map of the column, assuming that re­
boiler load and condenser load have been replaced in the Description Rule 
with two flows. Because of the additional independent variables available, 
a temperature map and composition map can be calculated which are cor­
rect for the fixed flow map. In general, this calculation requires the as­
su1nption of a temperature map. The set of equations is solved to yield a 
composition map which is used to correct the temperatures for subsequent 
iterations. 

The postulate of heating or cooling on each stage can be dropped after 
the converged temperature gradient is found and the flows corrected to 
correspond to energy balance. The temperature map will usually have to be 
corrected again, followed by correction of flows, correction of tempera­
tures, etc., until convergence is reached on both. In general, it is not neces­
sary to converge the temperature map before correcting the flow map; but if 
desired, the temperature map could be converged for any flow map. 

Conversely, in a liquid-liquid extraction column, it is advantageous to 
reverse the order of calculation. A temperature map is set (usually 
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constant) through the postulate of heating or cooling on each stage. A flow 
map is assumed, the set of equations is solved to determine compositions, 
and these compositions are used to correct the flow map for subsequent 
iterations if desired. The postulate of heating or cooling can then be 
dropped and the temperature map corrected to correspond to energy 
balance. 
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