
Calhoun: The NPS Institutional Archive
DSpace Repository

Faculty and Researchers Faculty and Researchers' Publications

1991-11

Status Report: Computer-Aided Prototyping

Luqi; Royce, Winston

Status Report: Computer-Aided Prototyping, with W. Royce, IEEE Software, Vol. 9,
No. 6, pp. 77-81.
https://hdl.handle.net/10945/40364

This publication is a work of the U.S. Government as defined in Title 17, United
States Code, Section 101. Copyright protection is not available for this work in the
United States.

Downloaded from NPS Archive: Calhoun

STATUS REPORE
COMPVCER=AIDED
PRoTwrYPlNG

This workshop report
assesses the role of

com puter-aided
prototyping in

software development,
identifies the supporting

technology necessary
for prototyping to reach

its potential, and
suggests some

directions for future
work.

LUQl
Naval Postgraduate School

WINSTON ROYCE
TRW

rototyping - the con- P struction and analvsis of
an executable model that ap-
proximates a proposed system
- is an accepted part of most
branches of engineering, but
has only recently been applied
to software engineering. Soft-
ware prototypes are used
somewhat differently than
hardware prototypes.

For the most part, hard-
ware prototypes are used to
measure and evaluate aspects
of proposed designs that are
difficult to determine analyti-
cally. For example, simulation
is widely used to estimate
throughput and device utiliza-
tion in proposed hardware ar-
chitectures. Although software
prototypes can be used like-
wise to determine time and
memory requirements, they
usually focus on evaluating the
accuracy of problem formula-
tion, exploring the range of
possible solutions, and deter-
mining the required interac-
tions between the proposed
system and its environment.

A prototype differs from
the proposed system in that it
may run on different hardware
and under different system

software, it may have different
performance and capacity
properties, and it may not in-
clude all details. For example,
early prototype versions often
assume that users don’t make
mistakes and operating envi-
ronments don’t malfunction
and so omit many error-han-
d h g capabilities.

Partial coverage of system
behavior in the initial proto-
type reduces costs and simpli-
fies the problem. But it takes
good judgment to decide
which aspects of the proposed
system are the most important
and least understood. A proto-
type should help clarify the
most uncertain aspects so that
development effort will not be
wasted on functions that do
not fulfill the customers’ de-
sires.

Prototyping has three main
benefits:

+ It improves communica-
tion through demonstration,
which enables earlier, more ef-
fective dialogue between users
and developers, helps to ex-
pose unstated assumptions,
and triggers some of the inevi-
table requirements changes
early in the process. Proto-
types thus aid requirements
engineering and reduce re-
building.

+ It reduces risk by making
communication between users
and developers more certain,
by helping to determine a pro-

posed design’s unknown prop-
erties, and by providing a basis
for assessing the feasibility and
performance of alternative de-
signs.

+ It is the most feasible way
to validate specifications. Vali-
dation attempts to ensure that
all parties - clients and devel-
opers - interpret the specifi-
cations in the same way. With-
out &IS assurance, developers
run a high risk of developing
and testing software built on
incorrect specifications. Pro-
totyping should be integrated
with the formulation and re-
cording of specifications and
the assessment of a design’s
feasibility and performance.

Prototyping can also pro-
vide many of the same benefits
when a system’s requirements
change after delivery. For
small changes, such as adjust-
ments to screen formats, the
delivered system can serve as a
basis for diagnosing the prob-
lem and evaluating proposed
changes. However, when the
proposed changes are so dras-
tic that they fundamentally
alter a system’s goals, the exist-

I E E E S O F T W A R E 07407459/91 /I 100/0077/$03 00 0 IEEE

-_. _- I - - - - -
I

7 7

DECIDIHG WHAT A SYSTEM SHOULD DO
Determining what a proposed system or enhancement

should do is becoming a dominant problem in software devel-
opment Systems analysts must determine what functions a
proposed system should provide to help its users carry out
their tasks most effectively, subject to cost and performance
constraints. This is difficult because analysts usually do not
know at the outset who the users will be, what their responsi-
bilities are, and how they will carry out their responsi

Analysts, &en, must determine a great deal of informa-
tion about the users and their responsibilities by communicat-
ing with people, who usually share many unconscious
assumptions and do not have an accurate undersrandmg of
the potential capabilities and limitations of sobare.

Inducing a new system also often triggers organiza-
tional restructuring, fundamentally changing how the organi-
zation does its business. This restructuring may drastically
change users' responsibilities and procedures, thus triggering
correspondmg changes in what role they want the system to
take. The system itself thus becomes a driving force for
changes in its requirements.

The traditional approach to requirements engineering is
to interview potential users and other stakeholders and pre-
pare a requirements document, which is reviewed and modi-
fied until there are no more objections. This approach has
not worked well in practice because users have not been effec-
tive in discovering requirements errors when they review the
documents

Some specijic difficulties:
+ A&p$y. Reviewers (users) and analysts and develop-

ers interpret words differently, and the " m u n i c a t i o n is
not detected.

ers never fully understand them, and hence miss some unde-
sirable features.

+ h%bitwl"ptim. Stakeholders overlook errors of
omission because some of the mising information is such a
fundamental assumption in their business that it is uncon-
scious to them. Uniike developers who aren't familiar with
the application, reviewers often can't imagine any other possi-
bility.

+ Noveky. When a new system stands to change business
processes fundamentally, stakeholders cannot visualize all of
its effem.

+ Ass-ing$usz&y. It is very difficult for developers to
assess performance and costs without developing designs and
measuring resource consumption.

+ Assedng @&am. Without experimental evaluation,
it is difficult for developers to predict the effectiveness of mn-
0-01 strategies for embedded systems or decision-support in-
formation.

+ Obsclnty. Documents are so complicated that review-

ing system may not be a good
basis for evaluating them. In
these cases, prototyping can
reduce uncertainty and the
number of times the opera-
tional system must be changed
before a satisfactory result is
obtained. This approach leads
to fewer operational failures
during the transition to the
new version, better stability of
operating procedures, and re-
duced retraining overhead.

To be useful, prototypes
must be built rapidly and de-
signed in such a way that they
can be modified rapidly; de-
signers use an iterative process
of demonstration and adjmt-
ment to improve their accu-
racy. Software tools facilitate
and speed prototyping and
help analysts formulate, un-
derstand, and comiunicate a
proposed system's properties
to users. A computer-aided
prototyping environment
should be integrated with tools
for measuring, optimizing,
and refining the prototype de-
sign into a production-quality
product.

SOFTWARE VERSUS SYSTEM

There is a close relation-
ship between software and sys-
tem prototyping. Especially in
the case of real-time systems, it
is very difficult to separate the
formulation processes for soft-
ware requirements and the re-
quirements for the larger s y -
tem in which it will be
embedded.

Many systems contain em-
bedded control-software sys-

tems that must meet real-time
constraints. Real-time con-
straints couple the embedded
system's software and hard-
ware design because response
time depends on the number
of instructions per second the
processors can execute, the
number of bits per second the
network and storage devices
can transfer, the number of in-
structions that must execute,
and the amount of data a soft-
ware action needs to com-
plete.

To evaluate, optimize, and
accept the entire system con-
figuration, designers use be-
havioral models of the soft-
ware system and any inter-
acting external systems, to-
gether with capacity models
for the host hardware. This
systems-level evaluation is es-
pecially important for real-
time systems because the feasi-
bility of the entire system
remains in doubt until all three
factors are specified and their
interactions evaluated.

System prototypes. Analysts
use system prototypes to es-
tablish rough feasibility assur-
ances early in design, identify
the aspects of the design that
most affect the feasibility of the
entire system, and track and
focus attention on critical areas
as the design becomes more
solid, more refined, and less
risky. Analysts must prototype
the entire embedded system,
not just the hardware or soft-
ware, to assess design decisions
on resource allocation and sys-
tem performance.

The result is a hybrid pro-
totype that models subsystems
at different levels of detail: The
parts of the system that will run
on existing hardware are eval-

~ ~ ~ ~~

7 8 N O V E M B E R 1 9 9 1

~

uated on actual equipment;
parts that will run on new
hardware are evaluated on
software simulations of the
hardware.

In this context, prototyp-
ing answers questions about
resource allocation relative to
the feasibility of timing con-
straints. There is a trade-off
between software function, re-
quired response times, and
hardware resources. To ensure
proper system integration, an-
alysts should explore the hard-
ware necessary to support 6xed
software functions and timing
constraints - and the combi-
nations of software functions
and response times that a given
hardware configuration can
support - be f i e they commit
to particular formulations of
either hardware or software
requirements. In current prac-
tice, a real-time system’s hard-
ware and software compo-
nents are often developed
independently, each based on
separate and fixed require-
ments.

Measuring a prototype’s
properties helps designers
when parameters of the hard-
ware configuration can be var-
ied to optimize a given soft-
ware design, or when software
functions can be vaned to best
use a iixed hardware configu-
ration.’ To be effective, de-
signers must be able to evalu-
ate such parameterized
hardware models and portable
software representations on
various hardware configura-
tions without modification.

THROWAWAY VERSUS
EVOLUTIONARY

Before the availability of
computer-aided design, pro-
totype construction was done
with quick-and-dirty manual
coding and the elimination of
“luxuries” like design docu-
mentation and written re-
quirements. Manual construc-
tion did not work very well: It
was neither very rapid nor in-
expensive, and it resulted in
prototypes that could not be
changed very effectively when
radical reformulations were
required.

Prototyping approaches
have evolved significantly.
Today, two main approaches
are used, throwaway and evo-
lutionary.

Throwaway. Throwaway
prototypes are sometimes per-
ceived as a waste of effort, and
there is some justification for
h s point of view. The simple-
minded, management argu-
ment is that developing code
that will be thrown away is a
waste of resources. It is true
that prototype code is often
too inefficient and insuffi-
ciently general to be directly
incorporated into a final prod-
uct. But this argument ignores
the fact that production-qual-
ity code often must be dis-
carded because it is based on
incorrect requirements. It is
more cost-effective to correct
the requirements by evaluat-
ing and discarding a relatively
inexpensive prototype instead
of an expensive implementa-
non.

In addition, those who re-
ject throwaway prototypes fail

to recognize that their main
contribution is not code, but
the insight they give analysts
into correct system behavior
and the structure of a feasible
design. However, a pro-
totyping effort should produce
more tangible results than just
improved understanding. If it
doesn’t, the lessons learned
may be imperfectly transferred
to the final product and the in-
sight gained may disappear
when analysts change jobs.

Reliance on throwaway
prototypes signals insufficient
technological support for re-
cording, transforming, track-
ing, and implementing specifi-
cations and designs.

Evolutionary. The availability
of powerful design environ-
ments has given
rise to evolu-

the analysts, their familiarity
with the application domain,
the complexity of the intended
system, and how closely the re-
quired real-time performance
approaches the target hard-
ware’s maximum capability.
The accuracy of the require-
ments model improves with
the number of iterations,
which in practice is limited by
available time and funds.

Once the series has con-
verged, the result is turned into
a software product by transfor-
mations that simplify and then
optimize the design and code.3
The transformations can dra-
matically change the code’s
appearance, although its prin-
ciples of operation remain es-
sentially the same.

Transformations require
explicit repre-
sentations of

t ionary pro- - specifications
totyping, in Prototyping and the high-
which a series of level design that
prototypes is approaches have can be pro- . .
produced converges on that an evolved a great ;;;;.m;;h;;;
acceptable ver- deal. The WO most transformation
sion of system from prototype
behavior via cli- popular today are to production

from ent feedback prototype throwaway and ;::;?&
demonstrations.’ evolu~onarv. temptation d l
Parts of the de-

scription and
design of each version are re-
used in the next version to the
extent that the two versions
share common requirements,
subfunctions, and data.

The number of iterations
required depends on many
factors, including the skill of

I be to fix faults
directly in the

production code to meet dead-
line pressures. This will cause
the production version to di-
verge from the prototype, and
the prototype will gradually be
abandoned.

If the prototype is not
abandoned, it can be used as a
starting point when mainte-
nance efforts result in new re-

I E E E S O F T W A R E

I

7 9

quirements. I t is better to base
maintenance changes on the
flexible prototype instead ofon
the optimized implementation
because transformations intro-
duce conceptual dependencies
that increase the fraction of the
code affected by a require-
ments change.

STATE OF TECHNOLOGY

T h e most important
emerging technologies are
prototyping languages, sup-
port for reuse and program
generation, and decision sup-
port for designers:

PrototypinS knguages. A pro-
totyping language defines an
executable sys-

Specification languages
need not be executable and
need not support clear-box de-
scriptions. However, they
must support formal reason-
ing, whch is a lower priority
for prototyping languages.
Many specification languages
contain unrestricted quantifi-
ers because they are useful in
proof systems and provide ex-
pressive power to designers
and analysts. However, lan-
guages containing such quan-
tifiers cannot be completely
executable because they can
define functions that are not
computable. Executable speci-
fication languages must there-
fore have less expressive power
than unrestricted specification

languages. Exe-
tem model cutable specifica-
with both - tion languages
black- box Amona the most can be used to
and clear-box imprta'it emerging ;:::;:;:;;
descriptions. A
p r o t o t y p i n g technologies are but mostofthem
language is not are weak on eval-
obligated to prototyping uating a pro-
give detailed languages and posed design's
algorithms for performance.

ponents as long languages are
as the model is and design used to record
descriptive and decision- making conventions and
e x e c u t a b l e . * interconnections

auvtemcom- support for reuse + ~ e s i g n

Today, pro-
totyping languages are distinct
from specification, design, and
p r o g r e g languages.

+ Specification languages
record both external interfaces
in the function-specification
stage and internal interfaces at
the highest abstraction levels
during architectural design.
They are also used to verify the
correctness and completeness
of a design or implementation.

during architec-
tural and module design. They
are usually not executable be-
cause they do not specify com-
putations in complete detail.

+ Programming languages
are designed for efficient exe-
cution. Unlike prototyping
languages, programming lan-
guages usually require algo-
rithms and data structures to

be defined completely before
they can be executed, and usu-
ally do not record require-
ments, specification, and de-
sign information. A proto-
typing language is far more
likely than a programming
language to include default
values for design parameters,
and so incompletely specified
functions can be executed and
modifications can be made
more easily.

T h e main challenge in
designing a prototyping lan-
guage is how to execute partial
descriptions. T h s support can
be provided by reusable code,
transformation templates, and
systems of default assump-
tions. However, to be useful
the default assumptions must
correspond to reasonable de-
signs most of the time.' Better
ways to support partial de-
scriptions would be very useful
- this is one of the central is-
sues in prototyping research.

Reuse and proyam generation.
Software reuse is critical for
speeding implementation and
for executing behavioral speci-
fications that do not produce
algorithms and data structures.

Evolutionary prototyping
naturally emphasizes reuse at
all levels. To develop and mod-
ify prototypes quickly, the de-
signer must be able to easily
combine compatible sets of re-
usable parts at various levels
and in different ways. In addi-
tion to reusable function5 and
data types, designers need re-
usable templates for combin-
ing parts into larger structures
with predictable pro-perties.

Sets of reusable parts are
dependent on the application
so making reuse work requires
systematic and long-range

planning, investment, and co-
ordination by different organi-
zations developing the same
kmds of applications. So, in ad-
dition to techcal issues, &e
component classification, re-
trieval, and integration, reuse
involves managerial, eco-
nomic, and cultural issues.

Domuin d k If several sys-
tems for an application domain
already exist, analysts can
evolve a domain model from
the experience gained in devel-
opment. To reduce the invest-
ment required up front, the
domain model can be incre-
mentally extended to cover
each new system in the domain
as it is developed. This way,
when a designer reuses parts of
a domain model's require-
ments, design, and code, they
get coverage of all the systems
developed to date.

The main challenges in
evolving domain models are
how to automatically recog-
nize two concepts that are vari-
ations on the same theme and
how to generalize previous de-
signs and code so that they
cover all cases.

Once a domain has been
well-explored, designers will
be able to use generic domain
models and their associated
generic designs and generic
programs to instantiate new
prototypes. %s will let them
focus on determining the ap-
propriate instantiation param-
eters. This goal of simplifica-
tion is behnd the recent efforts
to develop domain- specific ar-
chitectures.

~

8 0 N O V E M B E R 1 9 9 1

However, prototyping is
needed most in domains that
are not well-understood. In
these domains, reuse is much
more difficult because compo-
nents are being reused in con-
texts that were not anticipated
when they were created.

Automted retievol. Successful
reuse in prototyping depends
critically on the development
of automated component re-
trieval. If we want to use com-
ponents in new contexts, then
retrieval technology must go
beyond keyword and multi-
attribute paradigms. To ac-
complish &IS, some research-
ers focus on syntax alone;
others uy to exploit both syn-
tax and semantics.

Successful retrieval will
have to employ all these tech-
niques, using the shallow but
fast methods to reduce the
number of candidate compo-
nents and the more sophisti-
cated techques to improve
selectivity and accuracy. Fast
filtering can be based on a
function’s type signature and
on test cases that eliminate
candidates with clearly inap-
propriate behavior. Once the
set ofcandidates is reduced to a
manageable size, symbolic
processing and theorem-prov-
ing techques can rank the re-
maining components or cer-
tify that some of them do in
fact meet the requirements.

Progmm generotion. The set of
potentially reusable programs
is practically infinite, so each
item in the reuse database

should represent an un-
bounded family of generic
components rather than an in-
dividual program. Generic
components take (unbound-
edly) less work to create than
the set of all possible individual
instances, require less storage
space, and are (unboundedly)
more likely to be reused.

Program generation is
therefore an important part of
reuse: In addition to locating
the proper reusable template,
the retrieval process must also
instantiate a generalized tem-
plate that generates the spe-
cific program the designer
needs. Ada’s generic modules
are a step in thls direction, but
much more powerful and flex-
i b 1 e program -genera ti on
schemes are both possible and
desirable.

Today’s program-genera-
tion tools are rough models for
the reusable templates of to-
morrow. Progress has been
made in domains like graphcal
user interfaces, formal-nota-
tion parsers, and syntax edi-
tors. We need more declara-
tive ways to define program-
generation schemes, more
general methods to design
such schemes for more varied
applications, and methods and
tools for analyzing such
schemes. We also need ways to
certify that all programs gen-
erated by a scheme have the
specified properties and ways
to satisfy a reuse query by iden-
tifymg and generating the ap-
propriate program-generation
scheme if it exists.

Decision support. A pro-
totyping environment’s inter-
face should shield the designer
from data-management details

and the boundaries between its
tools. Technologies k e Inter-
Views and Idraw? for creating
graphical interfaces, help build
tools that can do that. Just as
important are syntax editors
and attribute-grammar tech-
nologies,’ which go beyond
user-fnendly interfaces. These
technologies can automatically
propagate design constrain^ to
ensure consistency and forward-
chain inferences to fill in the
more mundane consequences of
a designer’s decisions.

Other aspects of decision
support are technologies to
manage the prototype’s evolu-
tion,’ generate scenarios for
prototype demonstrations that

expos e un r e s o h e d issues ,
monitor and evaluate proto-
type execution, optimize pro-
totype design, and analyze the
consequences of timing con-
s t r a in t~ .~

rototyping is an amactive P approach to systems de-
velopment, but its practical
usefulness depends on tech-
nologies for computer-aided
design and analysis. Progress
to date has shown that it is fea-
sible to develop thls technol-
ogy,”’ but a great deal of re-
search and developnient
remain before thls technology
realizes its full potential. +

ACKNOWLEDGMENTS
This report was developed out ofa June workshop whose participants were

members of the IEEE Suftwure editorial and industry advisory boards. The edito-
rial hoard participants were Peter Anderson, Rochester Institute of Technology,
and Young-fu Chang, AT&T Bell Labs. The industry advisor?; board participmh
were Takashi Kojo, NE(:; Himshi Isobe, Hitaclii Ltd.; Pertti Lounamaa, Nokia
Research Center; Tomoo Matsubara, independent consultant; Melissa Smam
~Murphy, Sandia National Laboratories; Jack Wang, KT&T Bell Labs. Other par-
hcipants were industry liaison Robert Lai, Software Productivity Consomum, and
’I’ashi ,hano, University of Illinois.

REFERENCES
I . H. Oshome, “Update Plans,” pI-0~. hit’! Hua.ub COT$ Syrtem Srieizces,

2. I q i and 1: Berzina, “Rapidly Prototyping Real-Time Systems,” IEEE Sof-

3. 1: Berdns, Luqi, and A. Yehudai, “Uslng’Transforrnauons in Specification-

4. Luqi and M. Ketabchi, “‘4 Computer Aided Prototy+g System,” IEEE Sofi-

5 . I q i . “Computer-Aided Software Prototpng,” Computer, Sept. 1991, pp.

6. At. Linton,J. X’lissides, and P. Calder, “Composing User Interfaces with Inter-

7 , T Reps and T. Teitelbaum, The Sjmthe.s~zer Ceuerutn,.: A Sy.rtemf.r Conshurting

8. Luqi, “A Graph AModel for Software Evoluuon,” IEEE 7i.ms. S O ~ U U T Y Eizg., ’ 9. Luqi, “Real-Time Constraints in a Rapid Prototvping Lanpage,”j. COnrpute7-

1 10. Luqi, “CAmputer-Aided Prototyping for a Command-and-Control System
I

IEEE CS Press, Los Aaniitos, Calif., 1992, pp. 488-196.

mre, Sept. 1988, pp. 2-5-36.

Baaed Prototy@ng,” IEEE Eum. Sof iuw Eng., to appear.

Z~RTT, Mar. 1988, pp. 66-72.

111-112.

\5ews,” Comnptpr, Feb. 1989, pp. 8-22.

I.utigiugc-Bured Editom, Springer-Verlag, New York, 1988.

Aug. 1990, pp. 917-927.

Lutzg~~ges, Apr. 1992, pp. 77-103.

Using CAPS,”IEEESofru.are, Jan. 1992, pp. 56-67.

I E E E S O F T W A R E 8 1

--
- I---

