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ABSTRACT 

This experiment was conducted to measure transverse vibrations of the 

blades in a transonic compressor rig at the Naval Postgraduate School. The 

compressor was instrumented with non-invasive laser light probes to measure 

changes in time of arrival of all the blades, relative to an expected arrival time. 

These times were then converted to blade deflections. Results proved that the 

primary observed vibration was a first bending mode. The frequencies that 

excited this mode precisely correlated with NASA predictions. It was shown that 

the modal frequency for the first bending mode was dependent on engine speed 

as a result of the untwisting blade. Maximum observed blade deflection was 

proved to occur during the surge event, resulting in maximum blade fatigue. It 

was concluded that certain operating regimes, with large blade deflections, 

should be avoided to extend blade life by limiting fatigue.      
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I. INTRODUCTION  

High-speed turbomachinery such as the transonic test compressor at the 

Naval Postgraduate School can experience tremendous centrifugal and gas 

bending loads. High-speed operation for such a system is commonplace. As a 

result, the compressor blades must be able to withstand high frequency 

oscillations of such loads due to either stall and surge, or rotor-stator interactions. 

Prior to this experiment there was no instrumentation in place to monitor the 

displacement of the blades during operation of the system. Such instrumentation 

provided valuable data on expected blade life of the system and on anticipated 

blade vibrations at specific engine speeds.  

The use of laser light probes to monitor blade vibration is not a new 

method of data acquisition. Historically, the use of strain gauges, internally 

mounted pressure transducers, and laser light probes have provided the 

methods for measuring blade vibration in high-speed turbomachinery. Laser light 

probes have the advantage of being non-invasive. They can provide accurate 

results without altering the characteristics of the blade. Strain gauges, while 

relatively inexpensive, present the challenge of being externally adhered to the 

blades, while internally mounted pressure transducers only respond to the 

normal pressure fluctuations on the blade surface. The pressure transducers are 

also expensive, and are further limited by altering the internal geometry of the 

blade, resulting in different modal frequencies. Both strain gauges and internally 

mounted pressure transducers encounter problems in capturing the data from the 

blade and moving it to an external data acquisition system in real time. The 

solution to this problem is the use of a slip ring, which is both costly and 

complicated. 

The major limitation of laser light probes is the inability to gain information 

on higher order modes of vibration. Each probe can only take data at a specific 

location along the arc of the blade, as well as at specific locations 

circumferentially around the casing. Blade displacement due to vibration could 
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occur where no laser probes are located, and the vibration would not be 

experimentally observed. Strain gauges and internal pressure transducers can 

record vibrations continuously as the blades rotate around the shaft. However, 

such sensors can be limited if mounted on or near a node (a point or zero 

displacement) or anti-node of the system.   

Since the modes that could be easily excited and resolved in this analysis 

were lower order (i.e. first through third), laser light probes were a good choice. 

This choice was justified because, when lower order modes are excited in a 

fixed-free bar, maximum displacement occurs at an anti-node. By definition of the 

system’s boundary conditions, one such anti-node occurs at the free end of the 

bar, closest to the casing. Since the laser light probes were mounted within the 

casing (and it was assumed that the blade would undergo similar displacements 

to that of a straight bar), they were in very close proximity to the point of 

maximum displacement. This made laser light probes a desirable system to 

resolve blade vibration in this configuration.    

Prior research in the study of blade vibration using laser light probes has 

been conducted at NPS by Osburn [2]. Osburn was able to validate the time of 

arrival (TOA) data obtained by the laser light probes using strobe photography 

and thus justify that such probes were able to resolve accurate speed and timing 

data.   

The problem of stall side flutter was addressed in 2003 by Sanders, Rabe 

and Hassen [3]. They examined blade displacement due to the first torsion 

(primary) and first bending modes. The fan blisk was a twenty-two bladed 

transonic system (similar to the TCR) and employed both strain gauges and 

miniature pressure transducers to monitor blade vibration as a response to 

flutter.  

Each blade is in essence a bar, fixed spatially at one end and free at the 

other. As a result, from the solution of the transverse wave equation, natural 

frequencies for the lower order modes of a bar were developed for comparison 

[1]. Since the geometry of the blade was not that of a simple bar, a finite element 
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analysis was performed on the blade shape to predict the modal frequencies, 

and in turn predict engine speeds at which maximum blade displacement was 

likely to occur. These relationships can be seen in the Campbell diagram of a 

specific system. The Campbell diagram for this system was verified for the first 

bending response during this experiment. 

Laser light probes were mounted along the casing of the transonic 

compressor rig (TCR) at specific locations relative to the blades. This mounting 

position allowed the tip displacement of the blades to be measured. Measured tip 

displacement could then be correlated to specific engine speeds and modal 

frequencies to determine operating speeds that should be avoided to increase 

the structural life of the blades.  
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II. EXPERIMENTAL APPARATUS AND PROCEDURE 
DESCRIPTION 

A. TEST EQUIPMENT  
 

The complete system that was used in this testing was a combination of 

non-intrusive sensors (laser light probes), high-speed pressure transducers, and 

hot-wire probes mounted on the transonic compressor rig. The schematic of all 

sensors employed in the system can be seen below.  

 

 
Figure 1.   Total system schematic of the transonic compressor rig 

 
This experimentation focused on the data taken from the non-intrusive 

stress measurement sensors (NSMS) shown above in green. The NSMS system 

consisted of three laser light probes configured around the casing of the 

transonic compressor rig. This NSMS experimentation was run in conjunction 

with other testing using both Kulite pressure transducers and hot-wire probes.  

The transonic compressor rig (TCR) located in the Turbopropulsion 

Laboratory on the campus of the Naval Postgraduate School is shown in Figure 

2. The TCR has a nominal pressure ratio of one and one-half. The compressor 
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was designed by NASA specifically for this rig using CFD techniques [8]. The 

light probe experimentation was done on the stage configuration of the TCR, with 

a 22 blade rotor and a 27 blade stator made of a high strength aluminum alloy, Al 

7075-T6. The material properties of Al 7075-T6 are presented in Table 1. The 

drive turbines (Figure 2) were driven by an Allis-Charmers compressor which in 

turn drove the test compressor. Air was pulled from atmosphere through flow 

straighteners and into the compressor. The throttle, which dictated the mass flow 

into the system was electronically actuated. The Sanger Stage Parameters for 

the stage configuration can be seen in Table 2. For a more detailed description of 

the system see Zarro [7].   
 

 

Figure 2.   The transonic compressor rig at the Naval Postgraduate School 
 
 

Table 1.  Material Properties AL7075-T6 [From 6] 
Attribute  Value Units 

Young’s Modulus 71.75 GPa 
Density 2740 kg/m3 

Poisson's Ratio 0.33   
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Table 2.  Sanger stage parameters [From 8] 
Parameter Value 

Rotor Pressure Ratio 1.61 
Stage Pressure Ratio 1.56 

Tip Speed 396.2 m/s 
Design Weight Flow 7.75 kg/s 
Specific Weight Flow 170.9 kg/sec-m2 

Specific Head Rise 0.246 
Tip Inlet Relative Mach Number 1.28 

Aspect Ratio 1.2 
Hub/Tip Radius Ratio 0.51 

Number of Rotor Blades 22 
Number of Stator Blades 27 

Tip Solidity- Rotor 1.3 
Tip Solidity- Stator 1.0 
Outside Diameter .2794 m 

Rotor Diffusion Factor- Tip 0.4 
Rotor Diffusion Factor- Hub 0.47 
Stator Diffusion Factor- Tip 0.52 
Stator Diffusion Factor- Hub 0.58 

 
Laser light probes were used to measure the time of arrival of the blade tips 

during this experiment. Each probe consisted of a red, He-Ne, laser located 

concentrically to a circular receiver. This receiver detected the laser reflections 

off surfaces within a close proximity to the laser (approximately 2.0 cm). That 

signal was then transmitted via collection fiber optic cables to the receiver stand. 

For the test data sets, three of these probes were mounted around the casing of 

the TCR. They were used to measure the time difference between specific blade 

passes in order to determine blade deflection.  

 

 

Figure 3.   Mounting bolt and laser light probe with fiber optic cable 
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The laser transmitter and receiver stand was capable of managing signals 

from up to four laser probes simultaneously. The light that reflected off of the 

blade surface was received via the light probe and transmitted to the test stand. 

When the power of the received signal reached a defined level, a time stamped 

voltage, proportional to that power was sent to the acquisition computer via the 

Blade Vibration Sensor Interface (BVSI) boards.  The voltage level to trigger that 

signal was controlled by the BVSI boards and could be manually altered 

depending on the strength of the reflected laser.  

There were two BVSI boards used. Each board acted as an interface 

between the test stand and the acquisition software for up to two probes and a 

once per revolution signal. The boards were essentially amplifiers that provided 

adjustable gain within the trigger levels.  The paired boards could simultaneously 

manage signals from up to four probes, and control the trigger levels for each 

probe individually.  The once per revolution (OPR) signal for each board had to 

be identical to the other. As a result, a single OPR signal was split between the 

two boards.     

 

 

Figure 4.   Laser power supply and receiving optics 
 

Transmitters 

Receivers 
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Figure 5.    Two blade vibration sensor interface boards (BVSI) 
 
 

The Blade Vibration Interface Software, which was used as the data 

acquisition software, was developed by Hood Technologies of Mt. Hood, Oregon 

[4]. The software received the data from each of the probes through the BVSI 

boards and used precise time measurements to record blade positions relative to 

an expected arrival time. The data required to initialize the program were: 

number and diameter of blades, and the location of the probes along the casing. 

Using this data the software was able to develop an extremely accurate 

anticipated arrival time for each blade passing each probe.  
 
 
B. APPROACH TO THE TESTING PROCESS 
 

Prior to the insertion of the laser light probes into the casing of the TCR 

there was no method for securing their depth. As a result, the plug bolts that 

were in place to block the test holes in the casing wall were used for this 

purpose. A hole with a diameter just larger than that of the probe was drilled 

through the plug bolts so that the probe (without the casing) could be snugly 

inserted into the hole. A smaller hole was then drilled perpendicular to the first 

hole through the head of the bolt. That hole was then tapped, and a locking 
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screw was inserted. The locking screw prevented the probe from slipping due to 

the vibration of the rig itself. The probes were then mounted flush with the inner 

wall of the casing of the TCR, which allowed the probes to be mounted within 

close proximity to the blades without potential for damage.         

 The probes themselves were then calibrated for the experiment. It was 

desirable to arrange the probes in such a way so as to maximize the laser power 

output from each, while achieving the maximum average outputted power from 

all the probes simultaneously. The outputted power from each probe proved to 

be a function of multiple variables. In order to test this, a laser power meter was 

used to measure the outputted power from each probe in every possible 

configuration. The probes were then numbered according to the corresponding 

station that maximized the average power.  

 In addition to the probes being calibrated, the software had to be 

configured. For this, two function generators were used to approximate the 

signals that would be inputted to the software by the BVSI boards. Since there 

were twenty-two individual blades on the compressor, one function generator 

modeled an impulse signal corresponding to once per revolution while the other 

modeled twenty-two impulse signals in that same time period. This data was fed 

as real system data into the software. As a trial, that data was recorded and 

analyzed. Obviously, it yielded no meaningful results, but it did prove that the 

system was configured correctly.  

 In initial testing of the system, one of the probes was damaged, leaving 

only three laser probes for the actual testing. As a result, the probes had to be 

positioned in such a way as to maximize the information that could be 

ascertained from the data. This configuration can be seen in the following 

diagram.  
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Figure 6.    Longitudinal view of the system casing from the rear of the system  

         
 
C. METHOD OF DATA ACQUISITION 
 
 As mentioned, the laser probes measured the passing of each blade by 

sensing the reflection of the emitted laser off of the metallic surface of that 

specific blade. The software used the inputted data seen in the table below to 

compute the time between multiple passes of a specific blade.  

 
Table 3.  Inputted data into blade pass software for 80 MHz 

BVM 
Channel Device Label Pulse Train  

Type #  Blades Diameter  
(in) 

Location  
(deg) 

0 0 1/rev TOA Only 1 11 0 

1 0 Probe # 4 TOA Only 22 11 250.9 

2 0 Probe # 3 TOA Only 22 11 267.3 

3 1 1/rev TOA Only 1 11 0 

4 1 Probe # 2 TOA Only 22 11 10.9 

 
 

As seen in the above table, the inputted data included: how to trigger the 

signal, the blade number, probe location, and diameter, as well how each probe 

was connected to the computer via the BVSI boards. 



12 

 From the inputted data, the software used the blade diameter, blade 

number, and probe location, as well as a measured rotor once-per-revolution 

(OPR) signal to compute a highly accurate prediction of arrival time. This 

prediction was made for all blades at each individual probe. As a result, the 

software was able to continuously predict a relative time when each blade should 

pass each probe. The laser light probe data was used in conjunction with an 80 

MHz clock to record the specific time that each blade passed each probe. The 

software computed the time difference between the anticipated (non-vibrating) 

arrival time and the measured arrival time. Using the measured rotor speed with 

a known blade diameter, the software was able to correlate that time difference 

to a positive or negative blade deflection on the order of 0.025 mm (one 

thousandth of an inch). This calculation was performed for all blades for each 

revolution, with the engine operating at a nominal speed of 25,000 RPM.  

 
 
D. TESTING PROCEDURE 
 

Each individual test correlated to a specific percentage of the maximum 

rotational speed of the compressor. The data collected for this experimentation 

included 80, 90, and 95 percent of the maximum compressor speed (27,085 

RPM). Each of those data sets was taken separately. Once a percentage of the 

compressor speed was chosen for the specific test, the TCR was run through 

start up procedures. The first data set taken was at steady state with open 

throttle. To obtain the data, the Acquire and then Record functions of the blade 

pass software were employed. Data was then taken for each subsequent throttle 

setting at that engine speed. When the system neared stall, both steady state 

and unsteady data were taken. The unsteady data was observed as the throttle 

setting changed, and the steady state data as taken after the compressor’s 

speed stabilized. Unsteady data was also taken for steam ingestion tests, in 

which steam was injected into the system upstream of the compressor.  

The blade pass software was used to capture these data sets and was 

recorded graphically as seen in the figures below. 



13 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 7.   Screenshot of software record function 

 
 

 

 
Figure 8.    Screenshot of data for 95% speed, open throttle setting 
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III.  ANALYTICAL PROCEDURE   

A. MODEL DEVELOPMENT 
 

In order to develop the five frequencies corresponding to the first five 

modes of vibration, ANSYS software was used to construct a finite element 

model. This model employed thirty points in space which corresponded to the 

physical blade geometry. These points were separated into three planes where 

the planes corresponded to the hub, middle, and tip of the blade profile 

respectively. The profiles were connected in the span-wise axis of the blade as 

seen in Figure 9. Three areas of these profiles were then created, and then a 

single volume defined by those areas was developed. The volume was then fixed 

in space along the compressor hub to satisfy the system boundary conditions. 

The geometry was then meshed using a tetrahedron mesh to avoid ambiguity 

along the leading edge area, as seen in Figure 10. A modal analysis was then 

completed with 529 nodes and 222 elements. The modal analysis yielded the 

eigenvalues of the stiffness matrix and in turn was used to develop the modal 

shapes or vibration modes.  

 

 
Figure 9.   Connected blade profiles 
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Figure 10.   Tetrahedron mesh of the blade volume 
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IV.  RESULTS 

A. MODAL RESULTS 
 

The meshed compressor blade that was spatially fixed at the hub yielded 

the following frequencies (seen in Table 4) for the first five modes of vibration. 

The first three modes compared favorable to those predicted by NASA [8] during 

the design of the rotor by Sanger. 

 
Table 4.  Modal frequencies 

Mode Frequency (Hz) NASA Predictions (Hz) 
1 755.81 750 
2 2,659.60 2,700 
3 2,786 3,050 
4 4,758.40  
5 5,670.10  

 
The analysis of the blade yielded the relative displacements shown below. 

The displacements for the first bending mode are seen in Figure 11.  

 

 
Figure 11.   First bending mode of the blade 

 
The presented frequency for the first bending mode, 755.81 (Hz) closely 

matched the first bending mode presented in the Campbell diagram shown in the 
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next section. The curve presented in that figure accounts for the untwisting of the 

blade with increasing engine speed.  The first bending mode curve presented on 

the Campbell diagram below is based on empirical predictions by NASA 

accounting for the untwisting blade.  The ANSYS finite element model did not 

account for this but proved to be a very good baseline, low engine speed 

estimate. The second through fifth vibration modes are presented in figures 12 

through 15 respectively. The second mode (Figure 12) is representative of the 

first torsion mode of the blade, with differing deflections along the chord of the 

blade. The third mode (Figure 13) corresponds to the second bending mode of 

the blade. Figure 14, which is the fourth mode, shows an edgewise bending 

mode. The fifth mode presented as Figure 15 shows a higher order torsion mode. 

 

 
Figure 12.   First torsion mode of the blade 

 

 
Figure 13.   Second bending mode of the blade 
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Figure 14.   First edgewise bending mode of the blade   

 
 

 
Figure 15.   Second torsion mode of the blade 
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B. SANGER ROTOR CAMPBELL DIAGRAM ANALYSIS 
 

 
Figure 16.   Sanger rotor Campbell diagram 

 
The Sanger diagram above depicts engine rotational speed in RPM on the 

abscissa and frequency of vibration in Hertz on the ordinate. It shows plots of 

both engine orders and bending and torsion modes. The dotted lines 

corresponding to the modes are extensions of the low speed ANSYS predictions, 

while the solid lines are NASA predications from empirical data. Engine order is 

represented by the solid lines stemming from the origin and can be best 

described as the number of transverse vibrations a blade undergoes per 

revolution. For example, an engine order of one means that a given blade will 

oscillate through one cycle as it rotates one full revolution. Above it can be seen 

that at an engine speed of 30,000 RPM, the first engine order is at 500 Hz. Also 

from the diagram it can be seen that the first bending mode at 30,000 RPM 

should occur at approximately 1,100 Hz. The difference between the 1,100 Hz 

depicted in the Campbell diagram and the ANSYS modal solution that yielded 

755.81 Hz is again, due to the untwisting of the blade with increasing speed.
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 From this diagram areas of interest can also be observed. Fatigue on a 

blade can be related to both frequency of vibration and the magnitude of the 

corresponding deflection. Since deflection magnitude drops significantly with 

higher order bending modes, some of the least optimal running conditions in 

terms of blade fatigue can occur at lower order bending modes (large deflection) 

and high engine orders (frequent deflection). One such operating area presented 

in the Campbell diagram is easily achievable by the TCR.  That area of operation 

can be seen to be the intersection of the third engine order and the first bending 

mode. This would result in three large transverse deflections per revolution at an 

engine speed of approximately 18,000 RPM.           

 
 
C. DEVELOPMENT OF FIRST BENDING MODE ASSUMPTION 
 
 For simplicity the figures from one data set will be shown for the following 

development. All figures correspond to the steam stall test conducted at 90 

percent speed or 24,375 RPM. That test yielded the RPM trace shown below and 

analysis was conducted on probes three and four. 

 

 
Figure 17.   RPM trace of 90% speed stall 

                                        
The area of interest can be seen in the above RPM trace between 2.0 and 7.0 

seconds. This time period corresponded to the surge event shown, which 

resulted from steam injection at a throttle setting of 7.4. This operating area can 

be seen as the intersection of the curves corresponding to steam surge and 90 

percent speed data, point A presented in Figure 18. These data correspond to 

the transient response of the injection of a slug of steam. During the steam 

injection, the compressor was forced into a surge cycle which can be seen in the 

RPM trace presented as Figure 17.  
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Figure 18.   Compressor performance map 

 
From the synchronous timing data extracted from the laser light probes, 

specifically from probes three and four, the assumption can be made that the 

primary response of the blades was in the first bending mode. The raw timing 

data can be extracted as shown below. 

 

 
Figure 19.   Raw timing data from 90% data test 

 
 

 

A 
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It can be seen in the above diagram that greatest blade displacement from the 

reference occurs at times that corresponded to the surge event.  Specifically, it 

appears that for each of the saw tooth spikes in RPM there is a corresponding 

maximum in blade displacement.  Zooming in on the first spike in displacement 

yields the following plot.  

 

 
Figure 20.   Expanded raw timing data 

 
From the above plot, much information can gathered. As previously stated, this 

data corresponded to light probes three and four, which were mounted at 267.3˚ 

and 250.9˚ respectively, with probe three near the leading edge and probe four at 

the half chord. Since the probes were very closely spaced together in the casing 

and mounted at different axial locations on the blade, the above plot shows that 

the blades were responding in the first bending mode. This can be seen because 

the amplitude of displacement for both probes relative to the anticipated position 

was nearly the same, at exactly the same time. This shows that transverse 

displacement was independent of chord position, which signifies a bending 

mode. A torsion mode would have leading and trailing edge of the blades being 

maximum values. 
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D. EXPERIMENTAL CAMPBELL DIAGRAM DEVELPOMENT 
 
 A fast Fourier transform (fft) was done on the relevant RPM data. No 

smoothing function was applied to the data and the timing data was referenced to 

the rotor mean. The applied fft was 512 points, with one average and 50% bin 

overlap. The fft looked at the frequency spectrum through the surge cycle with 

time on the ordinate, and engine order on the abscissa. The fft of the raw data 

yielded the following waterfall plot. Each frequency band seen below 

corresponded to a specific stall event in the surge cycle. 

 

  
Figure 21.   Waterfall plot 

 
From this waterfall plot multiple areas of interest were chosen that 

corresponded to the maximum displacement (those frequencies) at lower engine 

orders were analyzed. The software used the data from the specified location on 

the plot to guess the best nodal diameter (N) of the blade. 

The concept of a nodal diameter can be best described as similar to a 

type of vibrating membrane, where there exists a section of blades having 

positive displacement and a section where all blades have negative 

displacement. For example, an N=0 nodal diameter at first bending mode means 

that the transverse motion of all blades move at first bending and are in phase 

with each other. N=1 means that 2 blades on opposite sides of the compressor 

will be 180 degrees out of phase. At N=2 first bending, all blades separated by 90 

degrees will be 180 degrees out of phase. 
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Figure 22.   Nodal diameter description 

 
Once the best nodal diameter had been fit to the data, the true frequency 

of the data was calculated. The true frequency was used on the experimental 

Campbell diagram. The following equation was used to develop that true 

frequency: 

Equation 1: True Frequency Calculation   

observed true shaftNω ω ω= +  

where the observed frequency is the frequency calculated from the timing data.  

The calculated true frequency was plotted with respect to engine speed and 

formed the experimental Campbell diagram shown below. 
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Figure 23.   Campbell diagram single data set 

 
The same process for all test speeds was conducted to generate true 

frequency data across the tested speed spectrum. The data was generated for 

80, 90, and 95 percent speed. The Campbell diagram below shows this data. 
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Figure 24.   Campbell diagram all data 
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E. THEORETICAL TO EXPERIMENTAL COMPARISON 
 

In comparison to the theoretical Campbell diagram, the experimental data 

proved very similar. The overlaid NASA predictions are reproduced on the 

experimental data in Figure 25. 

 

 
Figure 25.   Campbell diagram side by side comparison 
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From this comparison it can be seen that the average of the data sets at 

each speed test match closely to theoretical first bending prediction.  

 
Table 5. Campbell diagram comparison 

 Measured Natural 
Frequency (Hz)  

Experimental      
Frequency(Hz)  

(Excluding Outliers)   

   Color Nodal Diameter Maximum Minimum
 

80% Speed 
 

990 
  

Orange 
  

-1 
  

1090 
  

975 
  

Blue 7 1150 950  
90% speed 

 
1010 

  Purple -1 1150 1010 

Pink -1 1190 1050  
95% speed 

 
1050 

  Green 7 1189 1050 
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V. CONCLUSIONS AND RECOMMENDATIONS  

Laser light probes were successfully installed on the NPS transonic 

compressor and used to determine blade vibration modes at varying speeds. The 

slope of the theoretical Campbell diagram provided by NASA closely matched 

the experimental results of the Sanger compressor blade. Higher rotor speed 

leads to untwisting of the blades which can be seen in the increasing frequency 

of the first bending mode of the blade data.  It was shown that the primary mode 

observed in the experimentation was the first bending mode. Furthermore, it was 

seen that during the stall event at maximum deflection the displacement of the 

blade relative to the expected position was on the order of 30 mils, a significant 

increase over any other recorded deflection throughout the engine cycle. From 

the data, operational areas of avoidance were developed. Certain engine speeds 

and throttle settings were shown to correspond to the greatest blade deflections.  

The most important aspect for further research is the examination of lower 

engine speed tests. Since first bending mode was the primary mode excited, it is 

imperative to look at its predicted interactions between moderately high engine 

orders which means lower engine speeds. Specifically, the intersection between 

the first bending mode and the third engine order, occurring at approximately 

70% engine speed would be beneficial to examine. If that engine speed is high 

enough to excite the first bending mode at the third engine order, the blades 

would be placed under tremendous intermittent loading. This could result in rapid 

structural blade fatigue. Quick acceleration through this engine speed could 

prove advantageous to prolonging blade life. Since this experiment only tested 

80 through 95 percent engine speed, no direct conclusion can be made about 

that specific interaction. 

Furthermore, the implementation of multiple sensors mounted along the 

blade chord could be used to observe torsion modes of the system. A more 

accurate engine RPM monitoring system could be employed to record a better 

RPM trace, increasing the fidelity of all aspects of the data.      
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APPENDIX: SOFTWARE INSTRUCTIONS 

The Hood Technology Corporation software is in two parts, Acquire Blade 
Vibration Data 8.2, and Analyze Blade Vibration 6.1 (Analyze 6.0 will not work 
with two BVSI boards). 
 
 
With a properly instrumented system, with probes oriented at varying chord 
locations and unequally spaced intervals along the casing, data acquisition is 
very easy. 
 
First open the program, Acquire Blade Data 8.2. 
 
In the top left corner, scroll down to the Acquire mode. 
 
In the PXI/PCI-6602 setup window that opens, enter the clock frequency (either 
20 MHz or 80 MHz). The 80MHz clock can cause some problems with two 
boards due to the programs inability to exactly synchronize the times for each 
board. The specific probes must be then defined in type and in space. Each 
board must have a 1/rev reference (use BVM channels 0 and 3). The other 
channels can be designated for specific probes. The pulse train type for an active 
probe should read TOA Only. For the channels designated 1/rev the blade 
number should be 1, otherwise it should correspond to the number of blades in 
the system. The diameter should be the tip to tip diameter. The location should 
be the probe location in degrees to a specific reference (if you analyze with time 
of flight, only the difference is important.) The following setup was used. 
 

BVM 
Channel Device Label Pulse Train  

Type #  Blades Diameter  
(in) 

Location  
(deg) 

0 0 1/rev TOA Only 1 11 0 

1 0 Probe # 4 TOA Only 22 11 250.9 

2 0 Probe # 3 TOA Only 22 11 267.3 

3 1 1/rev TOA Only 1 11 0 

4 1 Probe # 2 TOA Only 22 11 10.9 

 
 
Next, the location where the acquired data will be saved can be entered after 
selecting the “DAQ” tab at the top left of the screen (below acquire selection). 
The status tab (beside the “DAQ” tab) should be green at all times while taking 
data. If it turns yellow or red, either the trigger level on the corresponding board 
should be adjusted, the blade should be cleaned (with a blast of air through the 
probe hole), or the sensor should be moved closer to the blade. The “RPM” tab 
traces the RPM of the system. 
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Once the probes are receiving good data, the “record” button at the top of the 
screen can be clicked. After the test period, press the “stop” button.  
 
To replay the data, shift the mode from acquire to replay, and select the file you 
wish to see from the window that opens. The quality of the data can be observed 
by replaying it. If a probe is intermittent throughout the data, retake that data set.  
  
After the data is observed, it must be analyzed.  
 
To analyze the data, open Analyze Blade Vibration 6.1 (Do not use 6.0 if working 
with two BVSI boards). 
 
Click on the “select run” tab to determine a data set to be analyzed. Once a data 
set is chosen, the RPM trace will appear on the screen. The data must then be 
sorted. Click the “Process Binary” tab and create a new file for the sorted data in 
the window that appears (name it sorted data for simplicity). Select the new file 
and click the “current folder” tab at the bottom right of the directory window. Once 
the data has loaded, press the “OK” tab. 
 
A diagram will then appear on the screen showing a theoretical image of the 
compressor. Make sure the probe orientation relative to the direction of rotation is 
correct (remember for a time of flight only the angular difference between 
sensors being analyzed is important). 
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To determine the mode of vibration (can only determine first bending mode this 
way), click on the “Synchronous” tab at the top left of the screen.   
 
At the top of the screen that appears, select the “SDOF curve fit” tab. Below the 
top figure, change the RPM scale to “time, sec” (by clicking the down arrow). 
Next, below the top figure, select the sensors to be viewed and their reference. 
At the right of the screen, change the smoothing parameters to “No Smoothing”, 
“Ref to Rotor Mean”, and “Do Not Eliminate Outliers.” Finally, at the bottom of the 
screen, surround the area of interest in the RPM data with the black bars located 
in the RPM plot (they can be dragged). It should yield a figure of the form: 
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This figure can then be zoomed in on by clicking the magnifying glass to the right 
of the figure. A box zoom can be completed by choosing the top left option once 
the magnifying glass has been selected. 
 
If two probes located closely in angular separation on the casing at different point 
on the chord of the blade have very similar deflections, it can be assumed that a 
bending mode is being excited. 
 
To analyze the data further, the “Non-Integral” tab at the top of the screen must 
be selected. For smooth data, change the Npoints in FFT, # Avgs , and % 
Overlap in the blue box to 512, 1, and 50 respectively. This will result in smoother 
data. Also in the blue box, the rotor mean must be referenced. Again, surround 
the interesting point of the RPM trace with the black cursors. Also, click the 
unlocked button beside both Amplitude (mils) designators underneath the first 
figure.  
 
This will generate a waterfall plot (FFT of the data) of the form: 

 
 
   Once the waterfall plot has been generated, surround the area of interest in the 
waterfall plot with the four black bars on the plot (they can be dragged). Once this 
is complete click the “Process Nodal Diameter” tab on the screen that arises and 
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deselect all probes except the Cross:Probe X ref Y (where X and Y are probes of 
interest). At the bottom right, examine the nodal diameter figure and choose its 
maximum as the nodal diameter. 
 
Click the “Campbell diagram” tab and change the “Best fit Nodal Diameter” to 
“Force Nodal Diameter” and insert the maximum from the previous page. The 
figure should be of the form: 

 
 
This data can then be overlaid with other run data to form a more comprehensive 
Campbell Diagram: 
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