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Abstract 

We examine the propagation of electromagnetic waves across a liquid crystal polymer 

(LCP) domain using the finite-difference time-domain (FDTD) method.  In the limit of perfect 

LCP alignment, the order parameter s approaches unity, and the LCP recovers a uniaxial 

alignment completely described by the major director n given by Leslie-Ericksen theory.  We 

use a Doi-Marrucci-Greco tensor model formulation for the LCP orientation to examine the 

effect of less-than-perfect alignment.  In a one-dimensional system with the orientation allowed 

to vary across the gap between two glass plates, we first examine uniaxial orientations for which 

s<1, and then we examine the effects of biaxial orientations, and in each case, we look at the role 

of using different anchoring directions at the two plates, which can induce deformations in the 

major director.  Also, we examine oblate defect phases in which the sample is not isotropic but 

still fails to have a well defined major director. 

Keywords:  Liquid crystal polymers, Light propagation in anisotropic media, Finite-Difference 

Time-Domain method   

Nomenclature 

α = dimensionless strength of the DMG distortional elasticity potential 

β = DMG biaxiality parameter  
�D= rescaled electric flux 
�E = rescaled electric field 

�    = = = = relativity permittivity tensor 

�|| = extraordinary relativity permittivity constant 

�� = ordinary relativity permittivity constant 

H = magnetic field 

h = width of the gap between the two plates 

M = second moment tensor from DMG theory 

id = eigenvalues of M 

m = the axis of symmetry of our idealized spheroidal molecules 

n = major director from Leslie-Ericksen theory 

n1= major director from DMG tensor theory 
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n2= minor director from DMG tensor theory 

N = DMG dimensionless concentration parameter 

s = DMG order parameter 

0s = DMG nematic equilibrium order parameter 

  

Introduction 

Liquid crystal displays have become commonplace due to the dynamic controllability of 

the anisotropic refractive indices of the liquid crystals.  We wish to examine the effectiveness of 

an anisotropic liquid crystal layer as a defense against a laser weapon through mathematical 

modeling of the propagation of a beam through a liquid crystal layer.  Usage of the Finite-

Difference Time-Domain (FDTD) method for modeling light propagation in liquid crystal 

polymers (LCPs) is becoming more common [Hwang and Rey, 2005ab, 2006; Hwang et al, 

2007; Kriezis and Elston, 1999, 2000]. This is due to its ability to handle spatial gradients in the 

molecular orientation better than previous methods.   

These studies use Leslie-Ericksen (LE) theory [de Gennes and Prost, 1993] to model the 

molecular orientation.  This theory describes the orientation with the major director n, a unit 

victor field that gives the average direction of the alignment of the axes of symmetry of the 

ensemble of liquid crystal molecules, which we idealize as rigid spheroids with no positional 

ordering of their centers of mass.  Doi-Marrucci-Greco (DMG) theory, however, provides more 

degrees of freedom in the orientation field by using the second moment tensor M of an 

orientational probability density function as its primitive variable [Wang, 2002].  This provides 

both a full director frame and also information about how the orientation conforms to its average 

direction.  The authors have previously examined the differences of the predictions of these two 

models in the context of flows of LCPs [Choate, et al, 2008, Choate, et al, 2010] and found that 

in some instances the predictions of the models can differ significantly.  In this paper, we 

investigate the effect of the choice between these two orientational models on the propagation of 

a plane wave through an LCP domain.  

The extra orientational information of the DMG model includes an order parameter s that 

that describes how strongly focused the orientation is around the major director.  This effect 

applies to uniaxial distributions, which LE theory assumes, but in addition the DMG model 

includes a biaxial order parameter β that measures the attraction to a secondary direction in the 

plane transverse to the major director, which LE theory does not allow.  These order parameters 

also allow for certain oblate defect structures in which the major director is not well defined, 

including the isotropic case, which cannot be represented by LE theory.   

We examine two cases in which the extra degrees of freedom of the DMG model affect 

the predictions of the propagation of light in a different way than LE theory.  In some contexts, 

the LE model can be thought of as the infinite concentration limit of DMG theory.  We find that 

finite concentration effects can effectively lower the anisotropy of a uniaxial permittivity tensor.   

We also explore the anchoring conditions on glass plates separated by an LCP layer that 

impose a twisting of the major director.  LE theory predicts a helical structure of the director, 

which refracts light and allows it to pass through crossed polarized films on the plates, a 

mechanism exploited by liquid crystal displays.  However, we find that for films thinner than a 
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and the electrodynamics vary only in the z-direction.  Our goal is to probe the differences in the 

light propagation due to the choice of model used to describe the structure of molecular 

alignment.   

We assume that in both models that the molecular orientation is decoupled from the 

electromagnetic field so that the LCP is quenched into a solid phase before the light is passed 

through the sample.  In LE theory, the orientation is captured by a single unit vector field n(x) 

called the major director, which is the average direction of the axes of symmetry m of the 

molecules located at x.  (The molecules are assumed to have a fore-aft symmetry and so there is 

no distinction between n and .−n )  In the absence of flow and neglecting reorientation by the 

electromagnetic field, n is given by the steady-state equation [de Gennes and Prost, 1993] 

 2( )· .= − ∇0 I nn n  (1) 

DMG theory describes the orientation through the second moment tensor 

|| || 1
( , )f d

=
= ∫m

M mm m x m of an orientational probability density function f.  Since m is a unit 

vector, M is symmetric and has trace 1, and so it has five independent components.  

Orientational information can be read from M by looking at its spectral representation 

 

 1 1 2 2
3 3 3

( ) ( )s β= − −+ +I I I
M n n n n  (2) 

where the major director n1 is the eigenvector associated with the unique largest eigenvalue d1.  

The order parameter 
1 3s d d= − gives us a measure of how strongly ordered the system is.  The 

biaxiality parameter 
32d dβ = − measures how far the alignment is from a uniaxial solution, and 

when 0β > , the eigenvector n2 , or minor director, gives the most preferred direction of the 

projections of the molecules onto in the plane orthogonal to n1. The limit ( 1, 0)s β= = represents 

perfect alignment, in which case the tensor model reduces to the LE model.  The steady-state 

equation for M is a balance of an excluded volume potential that imposes the nematic ordering if 

the concentration is strong enough and a distortional elasticity potential:   

 2 2 2

46 [ ( · : )] · · 2 :
3

Nα − − − = ∇ + ∇ − ∇
4

I
M M M M M M M M M M M  (3) 

where N is a dimensionless concentration parameter that measures the overall strength of the 

excluded volume potential, and
2

2

8h

NL
α = , where the dimensionless strength of the distortional 

elasticity potential relative to the excluded volume effects for the persistence length L of the 

distortional elasticity potential [Wang, 2002].  We approximate the fourth moment tensor as 

4 ≈M MM to close the system on M. 

 Equation (3) has an important degenerate equilibrium if there are assumed to be no 

spatial gradients.  In the spectral variables (2), the order parameters are given by   
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where (1( )(1 21 )( / 3) ) .U ss N ss − += −  The solution is degenerate because any three constant 

orthonormal vectors define a set of eigenvectors.  This eigenvector degeneracy can be broken by 

an external force such as a flow or in the present case by anchoring conditions at a hard wall 

boundary.  There are two stable equilibrium order parameter solutions.  The isotropic solution 

( ) (0,0),s β =  exists for any value of the concentration parameter N, but it is only stable if N < 3.  

This case has no molecular alignment and cannot be described by LE theory.  The uniaxial 

nematic equilibrium solution 0) (( , ,0)s sβ = where 0 (1 3 1 8 / (3 )) / 4s N= + − is defined if N > 

8/3 and is stable if defined.  There is a bistable region when 8/3 < N < 3.  As N →∞ , 0 1s → , 

and so LE can be thought of as the infinite concentration limit.  Figure 2 shows the stable 

equilibrium values of s as a function of N.  

In this paper, we create one-dimensional structures between the two glass plates by 

Figure 2.  Equilibrium solutions for s from (4) as functions of the concentration parameter N.  Solid curves are  

stable, dotted curves are unstable.  



imposing the orientation at the plates.  For the LE model, we simply impose the major directors 

topn  and bottomn on the top and bottom plates, respectively.  For the DMG model, we use these 

same major directors to construct uniaxial tensor anchoring conditions at the nematic equilibrium 

so that 0 ( )
3 3

top top tops= − +
I I

M n n  and 0 ( )
3 3

bottom bottom bottoms= − +
I I

M n n .  If bottomtop =n n , then the 

orientation is constant across the gap for both models.    

Once the orientation is determined, the effect on the electrodynamics of the assumed 

nonmagnetic molecules lies in the relative permittivity tensor ε .  Both models have an 

extraordinary relative permittivity constant �|| for the direction parallel to the major director and 

an ordinary relative permittivity constant  �� for the orthogonal directions.  The LE relative 

permittivity tensor is LE ε ε⊥= + ∆ε I nn , where ||ε ε ε⊥∆ = − , and the DMG relative permittivity 

tensor is DMG ε ε⊥= + ∆ε I M .  We use the relative permittivity values �|| = 2.89 and ��= 2.25 

from [Hwang and Rey, 2005ab, 2006].   We also assume the relative permeability is 1. 

For the electric flux and field, we use the rescalings � 0 0/ ε µ=D D and � 0 0/ε µ=E E  so 

that Maxwell’s equations with the linear constitutive equations become 
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where D is the electric flux, E is the electric field, H is the magnetic field, ε is the relative 

permittivity tensor of either the LE or DMG models, 0ε is vacuum permittivity, and 0µ is vacuum 
permeability.   For simplicity, we drop the tildes for the rest of the paper. 

 

 We solve these numerically with a one-dimensional Finite-Difference Time-Domain 

scheme [Taflove and Hagness, 2005].  The electric field and flux and the relative permittivity are 

known on the space-time grid while the magnetic field is staggered on the half-grid.  They are 

updated by  
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where ( , ,0)n n n T

k k kDx Dy=D and ( , , )n n n n T

k k k kEx Ey Ez=E are the electric flux and field at z k z= ∆ and 

t tn= ∆ , 1

k

−
ε is the inverse of the relative permittivity tensor at z k z= ∆ , and

1/2 1/2 1/2

1/2 1/2 1/2( , ,0)n n n T

k k kHx Hy+ + +
+ + +=H  is the magnetic field at 1 / 2)(k zz = + ∆ and ( 1/ 2)n tt = + ∆ .  The 

update equations for 1n

kDy + and 3/2

1/2

n

kHy +
+ are similar.  The update scheme preserves the divergence 

conditions · 0∇ =D and · 0∇ =H if they are satisfied by the initial conditions.  Also, due to the 

assumption of no gradients in the x- and y-directions, Dz and Hz remain at their initial values, 

which we assume to be zero.  However, due to the anisotropy in (9), Ez can be nonzero for some 

orientational structures.  We use µm6.33h = , z∆ = 15.83 nm, and 172.64 10t −∆ = × s.  

 The glass plates are assumed to be isotropic with a relative permittivity equal to the 

ordinary relative permittivity of the LCP.  We use a scattered field/total field formulation to 

introduce the incident wave at the lower boundary of the total field region.  We use uniaxial 

perfectly matched layers to truncate the computational domain without creating artificial 

reflections.      

 

Comparison of Leslie-Ericksen and Doi-Marrucci-Greco Models 

The easiest direct comparison of the two models is when the same tangential anchoring 

conditions are applied on each plate.  In this case, the anchoring extends across the gap to give a 

constant uniaxial orientation throughout for both LE and DMG, which focuses the attention on 

the concentration effects of the DMG model through the equilibrium order parameter.   For 

example, if we choose (1,0,0)Ttop bottom= =n n , then LE theory gives
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and DMG theory gives 
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Here we can identify effective extraordinary and ordinary relative permittivities for the DMG 

model as functions of the extraordinary and ordinary relative permittivities and the equilibrium 

order parameter as  
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Since 0s is a function of the concentration parameter N, the effective relative 

permittivities are also functions of N, as shown in Figure 3.   In the infinite concentration limit, 

the effective relative permittivities approach the LE values, which is consistent with the LE 

formulation being the infinite concentration limit of DMG theory.  For finite concentrations in 

the nematic regime, the DMG model effectively decreases the uniaxial anisotropy, with 

eff

0 || 0)( eff eff ssε ε ε ε⊥=∆ − = ∆ .  In the isotropic regime, 0 0s = so that
||

||

2

3

eff eff
ε ε

ε ε ⊥
⊥

+
= = and there 

is no effective anisotropy.   For the rest of this paper, we use N = 6, which makes 0 0.809s = , 

|| 2.81effε =  and 2.29effε⊥ = . 

 

Now we turn our attention to twisted anchoring conditions.  In this case we anchor the 

director to be parallel to the plates on both the top and the bottom, but on the bottom plate, it is 

parallel to the x-axis, and on the top it is parallel to the y-axis.  We can parameterize the exact 

helical LE solution as (cos ( ),sin ( ),0)TLE LEz zψ ψ=n for the director angle ( )
2

LE

z
z

h

π
ψ = .    

 

Figure 3.  DMG Effective relative permittivities as functions of concentration parameter N 



The behavior of the DMG model is more complicated.  When the distortional elasticity 

parameter α in (3) is larger than a critical value, the behavior of the director is very similar to a 
uniaxial helical structure like the LE prediction.  For N =6, this critical value is approximately 

0.83, which would represent small gap widths when compared with the size of the molecules.  

For gaps wider than this, the order parameters are very close to their nematic equilibrium values 

with 0s s≈  and 0β ≈ , and the director angle is nearly  linear and approximately equal to ( ).LE zψ    

Figure 4 shows the field components Ex, Ey, Hx, and Hy for the two models with 53α ≈ , 

which is greater than the critical value.  For both models, the incoming wave is polarized to 

match the anchoring conditions with (1,0,0)Tbottom =n  so that initially Ey and Hx are zero.  

However, as it crosses the gap, the helical director rotates the polarization to be aligned with 

(0,1,0)top

T=n  so that Ex and Hy are now nearly zero.  Due to the slightly weaker effective 

anisotropy, the DMG model does not damp Ex and Hy as strongly as the LE model.  

 

Figure 4 Electric and magnetic field for twisted anchoring above the critical value of α 



 

The DMG model is significantly different for α  below the critical value.  The LE model 

is independent of α , and so its director angle is still the linear interpolation ( )
2

LE

z
z

h

π
ψ = .  

However, as shown in Figure 5 for α = 0.66, the DMG director angle is discontinuous, with  
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This discontinuity corresponds to an order parameter oblate defect.  As shown in Figure 6, the 

orientation becomes significantly biaxial away from the plates.  At the midpoint, s β= , which 

implies that M fails to have a unique largest eigenvalue, and therefore no director can be chosen.  

There is no rotation in the eigenvector frame or the optical axes across the gap as in the helical 

LE model or the DMG model above the critical value of α , but instead the change is in which 
eigenvector is labeled as the major director. 

 

There is a noticeable difference in the electromagnetic propagation.  While the LE 

solution behaves similarly to the previous example by rotating the polarization, since the DMG 

Figure 5 Director angles for α below the critical value 



model has no rotation of the optical axes, there is no change in the polarization, and as shown in 

Figure 7, Ey and Hx remain zero.   

 

We observed no significant differences between the Poynting vectors of the two models.  

In each case, the only nonzero component was the z-component, and the intensities were 

essentially the same. 

 

We examined another case in which the DMG model has a similar generation of a defect 

below a threshold value of α.  In the case of splay anchoring with anchoring parallel to the plate 

on the bottom (1,0,0)Tbottom =n  but orthogonal anchoring on the top plate (0,0,1)top

T=n .  The 

LE case is again exactly solvable with ( ) (cos ( ),0,sin ( ))TLE LEz z zθ θ=n  for the director angle 

( )
2

LE

z
z

h

π
θ = .  The DMG director is similar for large α but discontinuous for small α.  However, 

we found no significant differences between the predictions of the light propagation between the 

two theories.  In the splay case, the Poynting vector does have a nonzero x-component, but it is 

essentially the same for both theories, and we saw no significant differences in the intensity. 

 

Figure 6.  Order parameters for α below the critical value.  There is an oblate defect when s = β 



   

 Conclusions and future work 

 We have examined the effect of the choice of modeling the orientation of a nematic 

liquid crystal polymer layer between with the major director n of Leslie-Ericksen theory or with 

the second moment tensor M from Doi-Marrucci-Greco theory.  We found that the finite 

concentration effects of the DMG theory can effectively lessen the degree of anisotropy of a 

uniaxial distribution.   

We probed thin-film situations in which the DMG model predicts an oblate order 

parameter defect layer halfway through the gap connecting two regions with a constant major 

Figure 7. Electric and magnetic fields for  below the critical value.  The DMG model does not rotate the 

polarization like the LE model does. 



director that matched the anchoring conditions at the nearer boundary.  For twisted anchoring, 

this defect structure cannot rotate the polarization as the helical structure predicted by LE theory 

or DMG theory for wider gaps can.   

Our next goal is to understand fully three dimensional orientational structures to see if 

they have similar dependence on the models, and then to examine the effect of the model choice 

on laser propagation.   

 As far as the intensity of the transmitted light is concerned, we found that the two models 

are very similar, even in the small gap regime when the orientation is different.  This suggests 

that the overall differences between the models are not that significant for static orientations.  

Another way of looking at the two models is that LE theory is the limiting case of DMG theory 

as the timescale of rotational diffusion goes to zero.  In the future, when we couple the 

orientation with the electromagnetic fields, larger nematic polymers for which the timescale of 

rotational diffusion is longer, we wish to revisit this issue.     

 The authors would like to thank the Office of Naval Research for the grant that supported 

this work.     
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