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P. A. W. Lewis
G. S. Shedler

Empirically Derived Micromodels for Sequences
of Page Exceptions

Abstract: Based on a statistical analysis of actual computer program address traces, some results are presented of a study aimed at de
riving empirically valid stochastic models for program reference patterns in a computer system operating under demand paging. For the
address traces examined, a semi-Markov model for the (univariate) point process of page exceptions is formulated and found to be an
adequate characterization of the data. *
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1. Introduction
We present in this paper the initial results of an extensive
study aimed at deriving by the statistical analysis of
actual program traces empirically valid stochastic models
for program reference patterns in a demand paged com
puter system having a two-level memory.

Several related stochastic processes can be studied to
characterize page reference patterns:

1. Reference strings {R i }, i.e., sequences of page refer
ences, where R; is the name of the page referenced at
time i. These can be thought of as a multivariate point
process [1] in discrete time, the multivariate aspect
being the fact that the events (references to a page)
are of several types (different pages).

2. Distance strings {DJ, e.g., sequences of stack dis
tances for LRU (least recently used) replacement, as
defined in [2], where D, is the total number of distinct
pages referenced since the last reference to R;

3. The point processes corresponding to page exceptions
for various memory capacities c. i.e., (discrete)
times i at which D, exceeds the memory capacity.
Denote this by {T/ c) }, where T/c) is the time of
the jth page exception in memory of capacity c. It is
also possible to consider page exception processes
marked by the page name.

It is not necessarily simple to go (probabilistically)
from one of these representations to another, nor is it

'Partial support by the Office of Naval Research through Contract NR042-288
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clear yet which one is simplest to characterize probabilis
tically. It may, of course, be that one of the representa
tions would be more convenient than any of the others
in a particular application. The distance string represen
tation suppresses page names, which may be advan
tageous in that the process should be more nearly sta
tionary.

Modeling and analysis of page exceptions as a univari
ate, unmarked point process is a simpler task than that
for the distance strings, since, especially for large
memory size, available theory on rare events and thin
ning of point processes [3, Section 5.3] suggests that
these relatively rare events (i.e., page exceptions)
should be approximately a Poisson process.

This paper describes an attempt to model page ex
ception processes. The initial basis for the modeling
was the rare-event theory and its prediction of a Poisson
process for the page exception process; an extensive
analysis of data was then undertaken to reject or con
firm and extend the model. The analysis showed quickly
that the Poisson model for page exceptions was grossly
inadequate, but, on the basis of a previous analysis of
distance strings and certain sample characteristics from
the present data, a semi-Markov model for the (uni
variate) point process of page exceptions was for
mulated and found to characterize the data adequately.
We start, however, with a brief discussion of the model
ing of the distance strings, since this provided the key
to the derivation of the semi-Markov model.

Note that the paper does not attempt to derive multi
variate models for the page exception processes at dif-
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ferent levels c. The analysis is limited to comparison
of the estimated parameters of the univariate point pro
cess models for different capacities c. Nor have we ex
amined the marked univariate point processes consisting
of times of page exceptions and page name. These present
far greater difficulties of statistical analysis. The main
rationale for deriving models of the univariate page ex
ception processes alone is their utility in analytic studies
of multiprogrammed computers operating under demand
paging (e.g., [4,5]).

where d= L d;ln. The alternative estimator Pk is also
sometimes used.

For first-order Markovian normal sequences [8,9]
the test based on PI is the asymptotically most power
ful test. This is also true asymptotically for testing that
a point process is a Poisson process (independent
exponentially distributed intervals between events)
against the alternative that the intervals between
events have (marginal) exponential distributions, but
first-order serial dependence, the independence being
rejected if PI is too large or too small [10].

Asymptotically PI is normally distributed with
E (PI) "" 0, var (PI) "" (n - 1) -I under very general
conditions when PI = O.

3. Lastly, there are tests based on the periodogram, es
sentially testing for a flat spectrum [11,12]. The spec
tral density function of the sequence {D i } is, when it
exists,

2. Preliminary analysis ot distance strings
In the sequel we shall use the term "distance string" to
mean LRU distance string. Models for distance strings
{Dt } that assume that the D,'s are independent and iden
tically distributed random variables on 1,2,"', .c, where
.c is the total number of pages, are intuitively suspect and
for particular address traces have been shown formally
(by Lewis and Vue in [6]) to be inadequate. Tests of
independence of a stationary sequence of random vari
ables will be used later in the paper and are therefore
outlined here. The most useful are the following.
I. Nonparametric tests such as runs-up-and-down [7].

The nonparametric property is bought at the price of
smaller power, Le., probability of rejecting the hy
pothesis of independence when it is false.

2. Tests based on estimated serial correlation coeffi
cients. The estimated serial correlations of lag k are,
for a sequence of n observed values d, of a process
{D i } ,
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(3)

(2)

(5)(1'= 1,' ", v-1),

= E{[D1 - E(Di)][D j+k- E(l!i+k)]}
17 (D j ) 17 (D i+k )

(k = 0, ±1, ±2,' .. )

(-1T:::: w:::: +11"),

with the inverse relationship

Pk =r cos (kw) f(w) dw
-r.

Thus the Pk'Sare the Fourier coefficients off(w). Since
f(w) is an even function of w, i.e.,f(w) = f(-w), it is
usual to use only positive w's and definej', (w) = 2f(w)
for 0:::: w:::: 1T.

The periodogram (see [11,13]), which is the basis for
estimation and testing that f (w) = 1/21T (i.e., Pk = 0,
k#O),is

1 n-I
J(w)=21T L pkcos(kw) (-rr::'::w::'::1I") (4)

k~-(n-l)

It is thus the Fourier transform of Pk (see [13] for other
interpretations). At the values w/= 21Tt/n, I' = 1,'" v,
where v is the largest integer less than or equal to n/2
minus one, the J (we) would be independently exponen
tially distributed random variables if the {D) were inde
pendent normally distributed random variables. Conse
quently [11, p. 48; 9, p. 76]

are the order statistics from a random sample of size
(v - 1) of uniform (0,1) random variables. The distri
bution theory is approximately true for independent but
nonnormal {DJ, and a test for independence can there
fore be obtained by testing the uniformity of the S;'s
with a Kolmogorov-Smirnov statistic [11, Ch. 6]. The
distribution when the D;'sare independent exponentially
distributed random variables is given by Lewis in [4].

Spectral tests were used by Lewis and Vue [6] to
show that the distance strings they studied are correlated.
Such dependence can be shown much more simply, but
the estimated spectra have direct interpretations in terms
of program behavior.

A more general alternative model for the distance
strings is a representation of the D;'s as a first-order
(Markov) chain, which is useful since it permits a formu
lation of "locality of reference" [5). Asymptotic-theory
maximum-likelihood tests of the hypothesis that the D;'s
are a first-order Markov chain against a hypothesis of
higher-order dependence are available [15], but are not

(1)
n-k

=-n- Pk'

1 n-k _ _

nL (d j - d) (dHk - d)
'" i=l
Pk= n

l~ (d.-cWn"'- I
1=1
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(6)
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Table 1 Counts of one step transitions for stack distances for
tape A with LRU replacement algorithm. Page size is 4K. The
table entries are Jj'k' the number of times d, =j and d'+l = k for
i = 1,"" to = 8,8ih.464.

Counts of one step transitions for LR U distances
.ilk 1 2 3 4 5 6 7

I 2,943,817 840,912210,91478,00241,50024,281 16,792
211,048,310 2,151,371 146,16335,192 26,01213,591 7,931
3 i 130,957 271,850176,386 16,570 5,693 2,804 2,318
4! 22,878 70,630 35,013 10,338 3,721 1,516 1,643
5 18,512 36,744 16,366 5,258 4,017 393 235
6 10,685 20,180 7,959 1,650 812 1,914 223
7 11,549 11,324 3,596 846 280 233 271
8 7,957 9,934 4,405 1,261 182 128 61
9 9,451 8,248 3,457 834 184 145 56

10' 7,274 8,657 2,641 769 639 268 76

applicable because the transition matrix of the {DJ pro
cess is highly skewed and has many nonzero entries. The
skewness is roughly the idea of locality and can be seen
in the upper left hand corner of the transition matrix of
the d/s (Table I) for the tape used in this study. The
entry n j k gives the number of times an observed distance
k (di+ 1 = k) immediately followed an observed distance
j (di = j). The maximum likelihood estimator of the transi
tion probability in a first-order Markov chain is Pj k =

njkln.

An informal test of the first-order hypothesis, which
relates to the length of dependence in the sequence {DJ,

is to estimate directly [11, p. 71] a variance-time se
quence

Vk = var (D; + D i_ 1 +... + D
i
+

k
_ l )

=kvar (D) {I +2 ~ (l-'f)PI}'
and also to estimate Vk using the estimated transition
probabilities Pjk' The length of dependence of the process
for the distance strings studied by Lewis and Yue [6],
estimated by observing the time k for r\to reach a steady
state, was much longer than those predicted by the first
order Markov model.

An altemative analysis that can be used to test for de
pendence of order greater than one, and which has po
tential for building an altemative model to the first-order
Markov chain, is to examine the successive intervals O;
during which the Dj's equal 1. The interpretation ofthese
runs of ones is that they are times during which the pro
gram references the same page. Under a first-order
Markov chain model (including the model of independent
{Dj } ) the 0k'S are a sequence of independent, geomet
rically distributed random variables:

(x= I, 2,"'), (7)

where P lI is the I-I transition probability in the chain;
the distribution given by (7) is actually the "geometric
plus one" distribution, the geometric distribution usually
being defined on 0, I, 2,' . "

The geometric assumption is very strong, implying that
no matter how long the program has been referencing the
page, the time to exit is still geometric (see [16] for a
discussion of this "lack of memory" property);

prob {Ok = X + ylOk > y} = (1- PII)Pll

x
-

t

(x, y= 1, 2,"').

This analysis, based on the sequence of runs of ones in
the distance strings, is attractive because long depen
dence could be built into a model simply by making the
0k'S nongeometric. Moreover the one-one transitions are
the bulk of the transitions in the distance string. In
Table 1 for a particular address trace, called tape A, there
are a total of 2,943,817 1-1 transitions out of a total of
8,802,464 giving PlI = 0.3344 and an estimated expected
value for Ok under the first-order Markov chain model of
II (1 - PlI ) = 1.502.

Statistical analysis of the 0k'S in tape A showed the
marginal distribution of the 0k'S to be highly positively
skewed and nongeornetric, and the sequence to have
strong dependencies. In fact spectral analysis showed a
strong quasicycle in the sequence reminiscent of those
seen in autoregressive sequences [8]. This prompted a
closer look at the transition matrix in Table 1 to see
what this would reveal.

Two features stand out. Although 1-1 transitions domi
nate, there are almost as many 2-2 transitions. Moreover
there are generally more transitions fromj states,j > 2,
to k = 2 than fromj states,j > 2. to k = I. Recalling that
distance strings suppress page names and that we are
considering LRU distance strings [2], an interpretation
of the above is that there are at least two types of paging
behavior. In one, the program stays mainly in one page, re
ferring occasionally to a very small group of other pages
(strong locality of reference) ; in the other the program re
fers to its pages almost at random (i.e., uniformly over
the set of pages and with no time dependence). Thus
locality becomes a dynamic. possibly two-state phe
nomenon. The analysis of page exceptions given below,
however, suggests the possibility of having to include a
third state in a model for the distance strings {D j } .

This insight into the {DJ sequence will be pursued
elsewhere. The importance at present is in explaining and
modeling the sequences of page exceptions. Distance
strings of several programs have been examined and ap
pear to exhibit similar behavior.

P. A. W. LEWIS AND G. S. SHEDLER IBM 1. RES. DEVELOP.



Memory capacity c (pages)
76 197 512

by g(w) and called the count spectrum, or Bartlett

spectrum, of the process:

Table 2 Sample characteristics of times-between-events. Page
exception process for tape A with LRU replacement algorithm.
Page size is 4K. Number of references to = 8,802,464.

n - number of page exceptions 1,807 820 517
p,-estimated mean time between
________ page exceptions 4,871 10,735 17,026
C (X) -estimated coefficient of

variation oftimes between 3.34 3.27 3.70
page exceptions (0.25)

Y, -estimated coefficient of
skewness oftimes between 10.34 7.14 6.87
page exceptions (1.95 )

Xmax-maximum time between
page exceptions 333,374 420,786 704,921

X min - minimum time between
page exceptions 2 2

X med - median time between
page exceptions 1,024 1,024 1,024

(11 )

(10)(J= 1, 2,"'),Tj(c) > i iff Ni(c):::j - 1

so that

prob {Tj(c) > i} = prob {Ni(c) :::j-l}

(j= 1,2,"')'

g(w) = L {I + ~ £[ {Si - £(0) }{OHk - £(oi+k)}]
27T £J var {S.}

k=1 t

X cos (kW)} (-7T::: w::: 7T). (9)

Note that frequency here is the reciprocal of periods T

in page exception time: w = 27Tf= 27T/T. Thus the
highest possible frequency is w = 7T, or T = 2 page ref
erences, and, although we have assumed the density to
exist, a delta function component in g(w) at w = 7T would
represent a strict alternation of period 2, i.e., page excep
tions every second reference.

The other process considered in the analysis of point
processes is the sequence of times between page excep
tions {Xj(c)}, or the (cumulative) times to page ex
ceptions Tj (c) = L Xl (c), where the sum on t' is from
t'= 1 to t'=j. The two processes {Ni(c)} and {Tj(c)}

are related by the identity
I if event at time i ,

°i(c) =
o if no event at time i ,

3. Data and preliminaries
We display in this paper results for the particular address
trace referred to as tape A. From the sequence of ad
dresses traced, the distance string was derived by stack
processing techniques [2] for a page size of 4096
bytes. Conventionally this page size is referred to as 4K.
The data consisted of to= 8,802,464 references to a
total of 517 distinct pages. Results are given for three
values of the memory capacity c; the values chosen for
c (respectively, 76, 197, and 512) correspond to execu
tion of the program in a relatively constrained, moderate
ly constrained, and essentially unconstrained memory.

Much of the statistical analysis was done using the
SASE IV program [17] developed for analyzing series
of events. SASE IV can also be used for analyzing posi
tive valued time series such as {DJ

4. Point processes - discrete and continuous time
Given a memory capacity c and a sequence of page ref
erences, a page exception can occur on any of the suc
cessive page references. We consider the page references
to occur at equidistant time points (this is very nearly
true), and the intervals between references are taken to
be the unit of time in this study. The page exceptions
therefore constitute a point process (series of events) in
discrete time. Since the average times between page ex
ceptions is so large (fL in Table 2), it would be possible to
treat the process as if it occurred in continuous time.
Much of the continuous time analysis [11] has in fact
been used; the main problem with using it throughout
was the discovery that about 10% of the intervals be
tween page exceptions had a value of 1024, and thus
could only be modeled as a discrete component in the
distribution of times between page exceptions.

In considering discrete point processes there are two
main stochastic processes that can be and are considered.
One is the binary sequence {Oi(C)}, where

and we explicitly represent dependence on c, the memory
size, if necessary. The use of 0 and 1 to represent the
two states is convenient since then the cumulative
process

gives the number of events (page exceptions) up to and
including time i. The process {Ni (c) } is called the count

ing process and is the basic representation of the point
process. In particular, stationarity of the point process
means that {N; (c) } has stationary increments. The spec
trum of 0i(c)' following the definition Eq. (2), is denoted

Ni(c) = 2: °i(C)
k=l

(i = 1,"') (8) In actual fact the sequence {Xj (c)} is not stationary if
{N;(c)} is stationary [11, Sect. 4.2]. The stationary in
terval process usually analyzed is the sequence of inter
vals following an arbitrarily selected page exception in
the stationary process. We do not press this distinction
here (see [11, Ch. 4] for details), and refer to both inter
val sequences as Xj(c). The serial correlation coefficients
for this sequence will be denoted, as in Eq. (2), by Pkand 89
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Table 3 Tests for Poisson process and trend. Page exception
process for tape A with LRU replacement algorithm. Page size
is 4K. Number of references to = 8,802,464.

the normal distribution as one can get, and statements
and interpretations based on normal distribution theory
can be very misleading.

We have then for this "geometric plus one" distribution:

I
jL=E{Xj(c)} = (1-p)'

1 1
(T = [var {X/ C ) } ]2 = p'i/(l - p),

1
[var {X.(c)}]2

C(X) = coefficient of variation = E{XJ(c)}
)

the spectrum of intervals (2) by few). Note here that
frequency is related to serial numberj of page exceptions,
not page reference time i, and w = 71" corresponds to an
alternation on exception number.

The two spectra, beside their different interpretations,
are not equivalent, although related, and analyses based
on both will be used.

The null process for a discrete time point process cor
responding to the Poisson process in continuous time is a
Bernoulli process in which 8i ( c ) = 0 with probability p,

independently of previous values of {8i (c )}. For the
Bernoulli process the Pk'S equal 0 for k "" 0, the spectrum
is flat,f(w) = 1/271", and the intervals between page ex
ceptions are independent with identical geometric (plus
one) distributions (i.e., a particular renewal process)

5. Tests for trend and Poisson process
In estimating serial correlation coefficients, moments of
marginal distribution of intervals, etc., in point processes,
the assumption is made that the process is stationary.
Lack of stationarity can make a hash of estimated param
eters and therefore an analysis of page exceptions must
begin with tests for trend in the data. In the case of gross
inhomogeneity it might be required to characterize the
trend; see [11,14,18].

We follow here tests for trend given in [11, Ch. 3], and
in particular the test for a monotone trend in the rate of
events based on the centroid of the times-to-events,

where n is the number of page exceptions in the period of
observation.

For a Poisson process (Bernoulli process with p close
to 1) this statistic has, conditional on observing n events
in the fixed period of observation, to' mean to/2 and vari
ance to

2
/ (12n). The normalized statistic

is asymptotically normally distributed with mean 0 and
variance I.

It is particularly important to test the three series con
sidered (c = 76, 197,512) with a test for trend, since in
the test runs the memory was started empty and pages
brought in as requested by the program. Thus the page
exception process up until the time the memory was filled
could be expected to be nonstationary. For the three
capacities, time to filling the memory was 199,363,
1,081,730, and 7,940,780 page references, respectively.
Thus while for C = 76 and 197 there is probably only a
transient effect, the effect will be marked for c = 512 and
a stationary analysis of this data is to be viewed with
caution.

The values of U for the three memory capacities are
given in Table 3. The negative sign is consistent with a
decreasing trend, but the statistic is probably not signif
icantly large for c = 76, c = 197. This is because the
variance of 5 under a Poisson hypothesis has been used;
it can be shown to be inflated if the process is overdis
persed relative to a Poisson process, although exact re
sults are not known. The overdispersion in the data can
be seen by examining the sampling characteristics of the
three series given in Table 2. We return to this later in
this section.

n

5 = L Tj(c)/n,
j=1

u = _5_-------'to'--/2_
1

tot (12n)2

(12)

14.43
-18.11

15.56
-8.67

Memory capacity c (pages)
76 197 512

18.57
-2.83

"Upper 1% point is 1.518.

Transformed data
Kolmogorov statistic*

prob {Xj(c) = x} = (1 _ p sp""

(x = I, 2,' ..; 0 < p < 1) .

1

= p'i < 1 .

Note that as p becomes large, i.e., close to I, the mean
time between exceptions becomes large and C (X) ap
proaches 1, its value for the exponential distribution of
times between events in a Poisson process. The coef
ficient of skewness "Y1 and coefficient of kurtosis "Y2 for
this geometric distribution are complicated functions of p.

For large p they are approximately equal to the values
for an exponential distribution. For an exponential distri
bution "Y 1 = 2, "Y2 = 6.

Two points should be made here. The serial correla
tion coefficient for a Bernoulli process must be inter
preted with care. In particular, Pk = 0, k "" 0 does not
necessarily mean the process is Bernoulli. In a method
ological sense the Bernoulli variable is as far away from90
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Tests for trends that are not smooth, e.g., changes be
tween discrete levels, are performed in the SASE IV
program [17], and confirm stationarity for levels 76 and
197. However, it should be borne in mind that for long
programs discrete changes in the structure of the page
exception processes will almost certainly occur. This is
the case for a longer address trace (tape B) we have ex
amined. An investigation of whether these level changes
are stochastic but stationary would be in order, but con
stitutes a separate investigation. The models derived in
this paper should thus be considered to be micromodels.

In summary the trend analysis suggests that for capaci
ties of76 and 197 the observed page exception processes
can be treated as coming from stationary point processes.
The data for c = 5 12 has to be treated with care as almost
all sample characteristics except the spectra will be con
founded by lack of stationarity. In the spectra these long
term trends will primarily affect the low frequencies.

Returning to the tests for a Poisson process (Bernoulli
process with p close to 1) for the page exception proces
ses, little time has to be spent on a formal analysis. The
skewness of the times between page exceptions is so
marked in Table 2 that it is evident that the distribution is
not exponential. If the geometric assumption is used, the
maximum likelihood estimate of p under the assumption
of independent intervals is p = ({L - 1)/(L. For c = 76,
P= 0.99979 and C(X) should be approximately one.

-------.:..
However, the estimate of C (X) is C (X) = 3.34. This esti-
mate is obtained by averaging estimates in four time sec
tions of the data. The resulting estimated variance of

---------C(X) (three degrees of freedom) is 0.25. Clearly any
reasonable test would show C (X) "'" 1.

We return to analysis of the intervals in a later section
after independence of the intervals has been examined.

Results of formal tests for a Poisson process are given
in Table 3 (see [11, p, 152] for details). The upper 1%
point of the Kolrnogorov statistic is 1.628, well below the
value 18.57 observed for capacity 76.

6. Tests for renewal process
The next step in the analysis of the data and the search
for a model for the page exception processes is to test for
a renewal process [19,11,9], i.e., that the intervals X/c)
are independent and identically distributed. These tests
have been described in Section 2; the results for the data
are given in Table 4. For a capacity of 76 the estimated
serial correlation of lag 1, PI' using either the asymptotic
variance tn - 1) --l- or the estimate of the variance from
the sections (0.08, three degrees offreedom), is too large
to be consistent with a true value PI = O. Similarly the
tests based on the cumulated periodogram Eq. (5) and
described in Cox and Lewis [11, Ch. 6, p, 164] indicate
rejection of the renewal hypothesis. The upper 1% point
of D nl. , for large n, is 1.518.

Table 4 Tests for dependence on serial number and depen
dence between intervals. Page exception process for tape A
with LRU replacement algorithm. Page size is 4K. Number of
references to= 8,802,464.

Memory Capacity c
(pages)

76 197 512

n 1807 820 517
P, - estimated serial correlation +{J.188 +{J.I77 +{J.130

coefficient of order I (0.08)
for times between page
exceptions

I

+3.00(n-I)'p, +8.01 +5.11
(1.7)

1>, - estimated partial serial 0.035 0.065 0.002
correlation of order 1 (0.002)

Test for serial independence
based on cumulated
periodogram

Kolmogorov-Srnirnov
statistic* - D n/2 3.82 2.61 1.65

Anderson-Darling
statistic** - W n:

2
36.43 14.91 6.94

'Upper 1% point is 1.518.
"Upper 1% point is 3.857.

U sing the results informally there is an indication of
decreasing dependence as the memory capacity in
creases, the estimated serial correlation coefficients, for
instance, decreasing as c increases. (Again c = 512 must
be used carefully; a smooth trend will generally inflate
the value of the estimate PI') This trend in the value of P,
may indicate that the rare event theory is becoming
valid as c increases. In addition Table 2 indicates that the
intervals are becoming less skewed, but not inordinately
so. Thus a Poisson hypothesis would be out of the ques
tion.

The estimated partial serial correlation given in Table 4
will be defined and discussed later.

The next step is to find, if possible, a model for the page
exception processes in which the dependence between
intervals is accounted for. To do this we examine first in
more detail the marginal interval process {X/c)}.

7. Interval properties
A further search for a model, the Poisson and renewal
hypothesis having been rejected, could start with either
examination of the interval sequence {Xj (c)} or the
counting sequence {Ni(c)}. Actually the semi-Markov
model we describe below was derived from the analysis
of the distance strings {D) and the marginal and second
order joint properties of the intervals {Xj (c) }, the second
order properties of counts being used to verify the model.

We attempt now to describe this process of modeling,
although the description is of necessity truncated. 91
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Figure 1 Empirical log-survivor function In R(x) for Ilage exception process for tape A with LRU replacement algorithm. Page size
4K, capacity = 76, n = 1807, ,1= 4,871 references, t(X) = 3.34, '9, = 10.34, '9

2
= 151.22. Solid line i~ the fitted semi-Markov log

survivor function with estimated parameters 7T, = 0.066, '9 = 0.950, P, = 0.99997813, P2 = 0.99977748, k = 0.45.

• Marginal distribution ofintervals
We discuss first in further detail the estimated marginal
distribution of intervals, the sampling properties being
given in Table 2. The striking feature is the extreme
skewness of the distribution of the intervals between.....-....
page exceptions. For c = 76, we have estimates C (X) =
3.34,1'1 = 10.34 and 1'2 = 151.22, compared to the values
for an exponential distribution of C (X) = 1.0, 'Y1= 2,
'Y2 = 6. Moreover the maximum time between exceptions
for c = 76 is 333,374, the minimum value is 1, compared
to a mean of 4,871 and a median of 1024.

Graphical presentation for such a skewed empirical
distribution is difficult. On a scale such that the largest
observation is included, the logarithm of the empirical
survivor function, R(x), where

_ number of intervals greater than x
R (x) = total number of intervals, n

drops rapidly and then becomes linear for large x. If in
fact the sample came from a geometric distribution, this
plot would be linear, within the limits imposed by sam
pling fluctuations, since

the approximation holding with p close to one.
The nonlinearity of the plot is consistent with the re

jection of the Poisson (geometric) hypothesis. The initial
part of the log survivor function plot for c = 76 is shown
in Fig. 1. At the bottom of the figure we give a numerical,
rather than a graphical, histogram for an interval of
length 100. Both the individual cell counts and the cumu
lative cell counts are given. The plot encompasses only
2,000/333,374 = 0.006 of the observed range of the in
tervals between page exceptions, but a fraction 1124/
1807 = 0.62 of the observed number of intervals. Note92 (x= 1,2,'''), (l3 )

R(x)=px=e-Xln (lIp)

In R (x) = x In p ~ - xl J.t ,

(x = 1,2,"') , (14 )

(15)
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Table 5 Estimated parameters for semi-Markov model. Page exception process for tape A with LRU replacement algorithm. Page
size is 4K. Number of references to= 8,802,464.

&,- estimated transition prob. of type l ltype I
&,- estimated transition prob. of type 21type 2
7T, - estimated proportion of type 2 intervals
il, - mean of type I interval, assumed geometric
,1, - mean of type 2 interval
k - parameter of negative binomial distribution for type 2

interval
y- proportion oftype 2 intervals oflength other than 1024

,1; - mean negative binomial

'*Based on conditionalmeangreaterthan 30,000
** Based on conditionalmeangreaterthan50,000
*'* "Based on conditionalmeangreaterthan75,000

the large number of very short intervals, e.g., there are
192 intervals less than x = 50.

There are several other outstanding features in the
plot.
1. The plot is roughly convex, being always below the

dashed line - xl P. = - xI4,871, suggesting that the
model for the marginal distribution of intervals should
have a decreasing hazard and an exponential tail
(for details, see [II, p. 140]). For a continuous vari
able, models with these properties are the mixed ex
ponential and the gamma distribution. Discrete ana
logs are, respectively, the mixed geometric and the
negative binomial plus one:

p(x) = prob {Xj = x}

= 7TpX-I(1- p) + (1 -7T)rX-I(1- r)

(0 < 7T < 1, x = 1, 2,' ..)

(O<p<I;O<r<l)
(mixed geometric) (16)

p(x) = prob {Xj = x} = (k; ~ ~ 2)pX-I (1 _ p)k

(k > 0, x = I, 2," . )

(0 < p < 1) (negative binomial plus one) . (17)

Note that for the negative binomial plus one

kp
E(X) = 1 + (1 _ p) , (18)

kp 2 kp
var (X) = , C (X) = (19)

(l_p)2 [1-p(1-k)]2

For the moment we prefer a mixed model such as
the mixed geometric (exponential) for two reasons.

Memory Capacity c (pages)
76 197 512

0.458 0.453 0.346
0.962 0.941 0.937
0.934 0.903 0.913

45,715* 82,422** 155,230***
1,973. I 3,033.0 3,780.5

0.45 0.45 0.35
0.950 0.880 0.898

2022.8 3307.4 4,092.7

First, there is a suggestion of a two-state phenomenon
from the distance string analysis, and second, a mix
ture model is generated by the semi-Markov model for
the page exception times, the semi-Markov model
being strongly suggested by the second-order joint
properties of intervals given in the next subsection.

2. Note the jump in the plot at x = 1024. For capacity
c = 76 there were in fact 83 intervals between page
exceptions with this value. This is examined in Table 5
where the parameter '9 is such that (I - 71-

1
)'9 is the

proportion of intervals of length other than 1024. The
feature appears at all capacities; it appears to be a
situtation in which the program references sequential
ly each of the (4-byte) words in a (4K-byte) page.

We return to the problem of incorporating this feature
into the model later; the problem is whether it is a fea
ture of one state in a two-state model, or a separate state
or mode of referencing pages. The short table in Fig. 1
shows that this feature does not recur at harmonics or
subharmonics of 1024.

• Second-order joint properties of intervals
The sample (estimated) second-order joint moments of
the intervals are shown in Table 4. We have already re
marked that the estimated serial correlation coefficient
of lag 1, PI' is significantly large for all capacities.
Another outstanding feature is that the estimated par
tial serial correlations (Table 4), ;PI' are very small,
suggesting first-order Markov dependence of intervals.

The partial serial correlation of order one is [20, p.
64-5] simply the correlation between X j and X j +2 with

Xj +1 fixed:
2

6 P2 - PI
cf>1 = corr {(XjIXj+1),(Xj+2IX}"+I)} = 2' (20)

1 - PI

Note that with first-order Markov dependence Pk = Il, 93
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(29)

(25)

(27)

(24)

M{32(l - M) <: 1 {32

1 - M 2,82 - 4 1 - (M,8)2

(k = 1,2; ..) ,

Thus no matter whether P, is positive or negative, cPt
is positive and relatively small. Note in particular that
there is not first-order Markovian dependence in the
intervals between events in the semi-Markov model

where 1-'" (T,
2 and 1-'2' (T22 are the mean and variance of

intervals of the first and second types, respectively.
In Cox and Lewis [11, p. 196 - 7] an elementary der

ivation of the serial correlation coefficients Pk is given:

(I-', -1-'2)27T' 7T2 k £:,. k

Pk= 2 2 ( 2 {3 = M (3
7T,(T, + 7T2(T2 + 7T,7T2 1-', - 1-'2)

The outstanding feature of the serial correlations and
the spectrum is that they depend on p[ (x) and P2(x) only
through their first two moments. This characteristic of
the two-state semi-Markov process makes it attractive
for modeling the page-exception process. It also says
that a good deal of the detail of the process is not given
by the second-order joint moments of intervals.

The serial partial correlation of order one, cP
"

defined
by (20) is

M,82 - M 2,82

cP, = 1 _ M 2,82

where ,8 = (\', + (\'2 - 1. Note that ,8 = (\', - (1 - (\'2)

:::: (\',:::: 1, since (\', is a probability; in fact 1,8[:::: 1. We
have ,8 = -1 when (\', = 0 and 1 - (\'2 = 1, the case of
strict alternation between the two types of intervals.
When (\', = (l - (\'2)' f3 = 0 and therefore Pk = 0 for
k # O. In this case (\', + (\'2 = 1, and the process can be
shown to be a renewal process with the mixture interval
p.d.f. Eq. (24).

Note that while the Pk decrease geometrically, they
are modulated by M, which is zero, for instance, if
1-', = 1-'2 or P, (x) = P2(x), the latter case giving a re
newal process. Otherwise M lies between zero and one.
It is close to one, for example, if the difference in the
location of the two types of intervals (1-'2 - 1-',) is large
relative to the dispersions (T, and (T2 of the intervals.

The spectrum I, (w), for this univariate semi-Markov
process is derived from (2) and (27), and is

p(x) = 7T,P, (x) + 7T2P2 (x) .

Also

f (or) = 1[1 + 2Mf3{ c~s w - f3 }]. (28)
+ 7T 1 + (3 - 2,8 cos w

(22)

(23 )

(21 )

1 - (\',
7T2 = I - 7TI = -----=--

2 - (\', - (\'2

so that in equilibrium the probability is 7T[ that at the time
when an event occurs we choose the next interval with
p.d.f. P, (x), etc. Thus the marginal p.d.f. of intervals is

(

11

p=

2'

so that given that X j _
1

has p.d.f. P, (x), the probability
that X j has p.d.f. P2(x) is 1 - (\',, the probability that X j

has p.d.f. P, (x) is (\'1' etc., independently of the type or
length of previous intervals.

N ate that while this is the underlying structure. it is
assumed that the type of interval is not observable. i.e.,
we have a univariate point process. Further, while the
probabilistic properties of the bivariate process are
simple to derive, those of the univariate process are more
difficult. Moreover, like the renewal process, the two
state semi-Markov process has very special indepen
dence properties that are not likely to be true in real
situations. It is thus simply a convenient model, not gos
pel truth; possible relaxations of the assumptions are
discussed later.

Now the equilibrium distribution associated with P,
the probability vector solution of the matrix equation
1TP = 1T, is

8. Two-state semi-Markov model for univariate point
processes
A two-state semi-Markov model for univariate point
processes is discussed in detail by Cox and Lewis
[11, p. 194 - 7]. We summarize these results here and
give extensions. Note that the model is usually used as a
model for bivariate point processes (e.g., [I] ).

The model is defined on the intervals {X
j

} rather than
on the counts {6J. Thus we suppose there are two types
of intervals with probability density functions (con
tinuous time) or probability distributions (discrete
time), P, (x) and P2(X). The model postulates that there
is a two-state Markov chain with transition matrix

The semi-Markov model for intervals is not quite
Markovian (hence its name) as we will show below, but
it does give a small partial correlation coefficient. This
and the observed interval properties and the results of
the analysis of the distance strings suggest adopting a
two-state semi-Markov process as a tentative model for
the data. We now give the details of the model and the
results of fitting the model to the data.

1,81 < 1, so that

,82 - (,8)2
cP[ = 2 =0.

1-,8

94
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(31 )

from the distinct degenerate distribution with all its mass
at x = 1024 and

fJ. = 1 :lpI+ (l - 7TI) [I'{ 1 + 1~~J + (1 - 1') 1024J.
(35)

This estimation method is not a simple procedure and
there is no guarantee of a unique solution. Consequently
a modified method was used in which estimates of a" a 2

and P2 were obtained using PI = iiI - 1/iil' y,and a fixed 95

(34 )
otherwise.

x= 1024

(v)

(vi)

There are now six parameters to estimate:

1
B(x - 1024) =

o

!
(i )

P (ii)

PI (x) { (iii)

(iv)

aI' the transition probability of type I ltype

1 intervals, (22);
a 2 , the transition probability of type 21type
2 intervals, (22);
fJ., = 1/(1- PI)' the mean of the type 1 in
terval;
fJ.2 = 1 + kp.] (l - pzl, the mean of the
negative binomial distribution in the type 2
interval distribution mixture, (33);
k, the second parameter of the negative

binomial distribution in the type 2 interval
distribution mixture, (33);
1', where 1 - l' is the probability that a
type 2 interval comes from the distribution
with all its mass at 1024, (34).

The estimated parameters are shown in Table 5. The
parameter fJ.

I
was estimated as the slope of the linear

tail of the log survivor function; this involved an eyeball
judgement of where the linearity set in; for c = 76 this
point was taken to be x = 30,000 and actually iiI was
taken to be the estimated conditional mean of the ob
servations greater than 30,000. Specifically, take all ob
served intervals X with value greater than 30,000, sub
tract 30,000 from each such observation and take the
average. We are assuming here that 1T2V2 (x ), where the
sum is for x greater than 30,000, is so small that with very
high probability all the observations greater than 30,000
came from the tail of the geometric distribution P I (x) .

The parameter l' was estimated by setting 7T2 (l - y)
equal to the proportion of intervals between page ex
ceptions with length 1024. This involves a very small
bias of picking up intervals from PI (x) or P

2
(x ;k ).

The remaining four parameters can be estimated by
the method of moments, i.e., solving the equations for
PI' E(X), E(X2

) , E(X
3

) , using estimates of these quanti
ties from Tables 2 and 4. The equation for PI is given in
(27); E(X) = fJ. in terms of the parameters, using (33)
and (18) is, for example,

1
fJ. I = 1 - PI'

To obtain the convex shape of the log survivor function
in Fig. 1, it would be sufficient to mix PI (x) with another
geometric distribution, but the large number of short
intervals and the extreme skewness of the interval be
tween page exception distribution suggested using a
distribution for the type 2 interval, P2 (x), which is more
skewed than the geometric distribution and has a de
creasing hazard. A fairly arbitrary choice, made to keep
the number of parameters down, is the "negative
binomial-plus-one distribution" (17):

It remains to take care of the discrete component at
x = 1024. As remarked above, this could be the result of
a third state, but on the same rough grounds it was de
cided to include this in with the type 2 intervals as a
mixture. Thus we have, in toto, for the marginal distri
bution of the intervals between page exceptions

9. Estimation of parameters in the model
Estimation of parameters of the semi-Markov model is
intimately connected with the detailed assumptions made
in the model, and has been done in an ad hoc manner
for the three capacities c = 76, 197 and 512. The results
were shown in Table 5.

We now describe this estimation process, giving de
tails of the further assumptions made, these being pri
marily the functional form of PI (x) and P

2
(x ) . Recalling

the detailed discussion of the empirical log survivor func
tion in Section 7, the linear tail of the empirical plot,
plus the rare-event theory, suggested using a geometric
plus-one distribution for PI (x), this being the interval,
referred to as type 1, with the largest mean value:

prob {X = x} = px(x)

=1T IP, (x) + (1-1T I)[I'P2 (x ;k ) + (l-I')B(x-l024)]

(x= 1,2,···), (33)

where 1 - l' is the probability that a type 2 interval comes

(0<p
2<I;k>0;x=1,"·).

(32)

PI (x) = PI
X

-
1
(1 - PI) (0 < PI < 1; x = 1,2,"'), (30)

(k + X- 2) X-I(1 )k
P2(x;k) = x-I P2 - P2

for univariate point processes, i.e., given Xi' the distri
bution of X i+1 is not completely determined.

Properties of the counting process {BJ can be derived
by straight renewal-theoretic methods. They are, how
ever, messy and depend on the functional form of PI (x)
and P2 (x). The spectrum of counts, in particular, follows
from results in Cox and Lewis [11, p. 197] and will not
be given here.
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Figure 2 Fitted semi-Markov spectrum of intervals for page exception process for tape A with LRU replacement algorithm. Page size
4K, capacity = 76, n = 1807. Theoretical (solid line) spectrum for semi-Markov process with estimated parameters 7T, = 0.066, f.=

0.45, '9 = 0.950, tX2 = 0.962, ti, = 0.458, it, = 45,715, it2 = 1,973.1.

(36)96

k, Estimates for several values of k were then used in an
expression for the log survivor function and that k that
gave the best fit to the empirical log survivor function
(Fig. 1) was chosen. The fitted log survivor function is
shown as a solid line in Fig. 1.

The estimated parameters are shown in Table 5, and
again the nonstationarity for capacity c = 512 should be
recalled. Nevertheless the overall impression is that the
estimated structural parameters <XI' <X

2
, k and '9 are fairly

consistent over the range of capacities examined, the
main difference at different capacities being the scale
of the process, measured by #i-/ and iLl'

We have not used serial correlations beyond the first
in this parameter estimation scheme. The serial correla
tion of lag two enters into the partial serial correlation
coefficient of order one, tP" given by (20). For capacity
c= 76 this was estimated (Table 4) to be 0.035. Using
the estimated parameter values in (29), we get~ '" 0.42,
!VI '" 0.45 and 1>1 '" 0.02. The values are roughly com-

parable, indicating a reasonable goodness-of-fit of the
model. This is explored further in the next two sec
tions.

10. Test of fit based on the spectrum of intervals
We now consider the fit of the model, using the estimated
parameters, by examining the computed and estimated
spectrum of intervals for capacity c = 76.

The computed spectrum J, (w), obtained by using the
estimates a1' a2, ,1" ,12' k and y from Table 5 to calculate
the constants in the expression (28), is shown in Fig. 2.
It has the characteristic shape of the spectrum of a first
order process with positive dependence.

Two smoothed estimates J+ (w) of the spectrum of
intervals are shown in Fig. 2. These were obtained using
a Parzen lag window Aj [II, p. 108] directly on the esti
mated serial correlations Pj given by (I):

J+(w)=l{l +i: Aijcos VW)},
rr j~l
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( A

2: l(wk)!f(wk)
S" = !5Ck -=.!''-- _

( V

2: I (wJ/J(wk )

k=l

was not made because of computational limitations. The
estimated and computed spectra for capacities c = 197
and c = 512 have not been displayed in the paper.

Note that this is a relatively weak form of goodness-of
fit since the theoretical spectrum (28) does not depend on
detailed assumptions about P, (x) and P2 (x), and the com
puted spectrum J+(w) has been adjusted to fit J+(w) to 97

(38)

[0- 1

21(w) = 1 + 2 2: Pk cos (w(k)
k~[

some extent by estimating the parameters in the semi
Markov model from the data.

A far more critical test of the model is obtained by com
paring estimated and computed spectra of counts, and
this we do next.

where
1. to(=8,802,464) is the number of page references ob

served. or the total time of observation;
2. n is the number of page exceptions observed in (O,to];
3. here w = 21Tt>/t and not 21Tt>/n as for the spectrum

( 0'

of intervals;
4. the period T( corresponding to WI' since w( = 21T/T( =

21Tt>/to' is T( = toft>;
5. the quantity within the absolute value sign is the finite

Fourier transform oU>;(c) or the finite Fourier-Stieljes
transform of Ni(c):

11. Tests of fit based on the spectrum of counts
We now consider the count spectrum R(w) given by (9),
the spectrum of the binary count sequence Hl;(cn, for
capacity c = 76. Again we will normalize and actually
work with a spectrum for positive w; g+(w) = 21Tg(W).
For a Bernoulli process (Poisson) g+(w) = I for all w.

Again it is important to note that this is a spectrum for
page reference time, not serial number of the page ex
ceptions. Thus w = 21T/T, where T is the period of the
cycle in page reference time, T = 2 being the shortest
possible period, corresponding to page exceptions every
other reference.

With the highly skewed marginal distribution of inter
vals between page exceptions seen in this study, there is
an extreme problem of resolution of spectral components.
Thus with the many short intervals there might be signifi
cant dynamic effects with periods of 2,3, etc; there might
also be dynamic effects around periods corresponding to
the estimated mean time between page exceptions, to the
mean times between page exceptions of the two types of
intervals and to the period 1024 of the discrete com
ponent in the intervals. The latter is of particular interest
as the estimated spectrum should tell us whether to model
the discrete (1024) component as a third state in a semi
Markov model, rather than lumping it with type 2 inter
vals.

Let tj be the observed value of Tj (c), :he number of
page references to the jth page exception. Then the
periodogram for {Oi(C)} is, using (9) and (4),

(37)

where (e.g., [11, p. 108]):

6/
1 - 2 (j~ m/2),

m (l - jlm';

A.=2(l-j/m)3 (m/2<j~m),
J

o (j>m).

The reason for smoothing directly on the estimated
correlation coefficients instead of on the periodogram is
that this is the way it was written into the SASE IV pro
gram. The two methods are equivalent [13].

The coefficient of variation of individual estimates
J+ (w(), w( = 21Tt>/n, using the Parzen window with a
given m is approximately (m/n). Thus as m decreases
(bandwidth increases) the coefficient of variation de
creases, the curve gets smoother, and individual esti
mates become more biased. The question of which m

gives the best "resolution" is purely empirical; estimates
for m = 50 and m = 150 are shown as black circles and
triangles, respectively. The m = 50 window seems to
give the best resolution.

The estimates were actually obtained by applying the
Parzen window estimate (36) to four distinct sections
of the intervals between events and averaging the four
estimates obtained at each frequency w( = 21Tt>/(n/4)
(see [13] for details). This allows one to obtain estimates
(three degrees of freedom) of the standard deviation of
the averaged estimates ofJ+(w(). The estimated standard
deviations are shown in Fig. 2 as horizontal lines im =

50), one estimated standard deviation on either side of
the smoothed estimated spectral value. These are not
true confidence intervals but are shown only to give an
idea of the precision of the smoothed spectral estimate.

One such estimate for m = 150 is shown at t> = 80 as
round brackets about the estimated value 1+ (wso) ' desig-

1 1

nated by 6. It should be approximately (l50/50)I = (3)2

as wide as the band for m = 50.
Within the limits of the sampling fluctuations the esti

mated and computed spectra tally well. A formal test of
fit [II, p. 172] based on the adjusted cumulated periodo
gram (from Eq. (4))
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Figure 3 Fitted semi-Markov spectrum of counts for page exception process for tape A with LRU replacement algorithm. Page size
4K, capacity = 76, n = 1807. Smoothed spectrum, average of four sections, each smoothed with quadratic window. 50 points (dashed
line). Theoretical spectrum (solid line) for semi-Markov process with estimated parameters y = 0.950, lC = 0.45, rJ, = 0.99977748,
p, = 0.99997813, a, = 0.458, &2 = 0.962.

98

since ilk(c) only equals one where k = ti' for some j.

No further details of the estimation of g+ (w) are given
here (see [11, Ch. 5; 21]). In Fig. 3 we give an estimate
2i;+ (we) of 2g ..(w) obtained by smoothing the periodo
gram 2I(w(). The smoothing involved a 50-point quad
ratic window [11, p. 131] applied directly to periodo
grams for four nonoverlapping sections of the data. The
four estimates were then averaged, at each w

l
' to give a

final estimate.
Again the sectioning was done to save computation

time and to obtain estimates of the variances of the in
dividual estimates 2g+ (w), and the adequacy of the
amount of smoothing was judged empirically.

The estimate 2g+(w() in Fig. 3 is shown as a jagged
dashed line, the straight line dashed segments connecting
the individual estimates. It was only computationally feas
ible to go out to t' = 4900, or w( = 2rr X 4900/8,802,464
f'-.J 0.0035rr. Up to that point the estimated spectrum lies
above the value 2, which is the theoretical value for a
Bernoulli process.

The computed spectrum of counts, 2g+ (w), for the
two-state semi-Markov model, using the estimated
parameters, is shown as a solid line in Fig. 3. In general
it agrees very well with the estimated spectrum.

The main anomaly in the figure is the small peaks in
the estimated spectrum at periods of approximately
T = 2 X 1024, T = 1024, and T = 1024/2 = 512. These
are multiples or submultiples of the length 1024 of the
distinct group of intervals between page exceptions seen
in Fig. 1. The conclusion from the spectral analysis would
be that these intervals should be modeled as a separate

state in the semi-Markov model, instead ofbeing lumped
in with state 2.

Computation of the spectra of counts for the other
capacities was not done. It should be noted that these
computations are extremely expensive if the whole spec
trum is required. It now seems possible, however, to use
fast Fourier transform techniques [22] and this type of
analysis should become more feasible.

12. Summary and conclusions
The result of this study has been the following.

1. On the basis of observation of data on page reference
patterns and (LRU) page exceptions, we have postu
lated a two-state semi-Markov model for the univari
ate page exception process for a given memory ca
pacity c.

2. Parameters of the model have been estimated in an
ad hoc manner from the data.

3. The goodness-of-fit of the model to the data has been
examined by estimating the spectra of counts and in
tervals and comparing these to theoretical spectra.
The fit is generally good, the main exception being
the conclusion that the distinct group of intervals of
length 1024 should be modeled dynamically as a third
state in the model.

4. The effect of the change in the capacity c on the model
seems to be roughly to change the scale of the distri
butions of times between exceptions without changing
structural parameters, e.g., transition probabilities,
drastically.
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Limitations of the study have been the following.

1. The ad hoc method of estimating the parameters in
the model. The main need here is to formalize the es
timation procedure.

2. Estimates of parameters from sections of the data are
needed to examine the sensitivity of the estimation
procedure.

3. The study needs to be done for more capacities c in
order to get a better idea of the change of the param
eters with c. Other (smaller) page sizes should also
be studied. The effect of other replacement algorithms
is also of interest.

4. Eventually a study of the joint properties of page ex
ception processes {Tj ( c)} at different capacities c
would have to be done. It might be simpler, rather than
to deal directly with multivariate page exception pro
cesses, to go back to the distance strings {D i } and
model them.

5. The page exception process of only one other tape
was examined, showing roughly the same character
istics on a different scale.

The model for the page exception process itself has
utility for driving models of uniprogrammed or multipro
grammed paging machines (see, e.g., [4]), Recalling
that it is at best a model that fits the details observable
from finite samples, there are also other limitations.

1. There is a need to relate parameter values not only
to different capacities c, but to some measurable char
acteristic of the program. This is a difficult calssifica
tion problem.

2. There is a need to model the changes in parameters
over time. As remarked before, the model is a micro
model in time, and dynamic changes with time will
occur. Are these simply changes in parameter values,
or is the model particular to certain sections of the
data?

3. Details of the model may not be correct and it might
perhaps have been better to use generalizations such
as the pseudo-Markov model of Ekholm [23]. This,
however, introduces additional parameters, and it does
not seem possible to differentiate such fine points
from the available data.

Finally we remark on theoretical underpinnings for
the model. Semi-Markov models, like renewal models,
have very special dependency structure that seldom oc
curs in practice. Allusion has been made to the theory of
rare events to suggest a Poisson process. In the face of
two-state phenomena in the basic distance string process,
will the "rare" events of page exceptions {D j > c} lead
to approximate semi-Markov models? The question is
difficult and will be addressed elsewhere. We note, how
ever, two points.

In available "rare-event" theory, events are deleted
independently with probability p, and as p ~ 1 the pro
cess of remaining events on a suitably scaled time axis,
goes to a Bernoulli or Poisson process (see [3] for de
tails). We know of no work in which the deletion process
is more general.

However, a situation in which a type of thinning occurs
on a self-generated basis is in level-crossing theory [24].
Again Poisson or Bernoulli limits occur. For discrete
time, join the points {Dpi} and {Dl+l'i + I} by a straight
line. If the line goes up across a level c, we say we have an
upcrossing event at i + I, if it goes down across a level
c we have a downcrossing at i + I; see [25]. The page
exception process we have considered in this paper is
slightly different. A page exception occurs at each up
crossing time plus the times i between an up-crossing
and the successive down-crossing. No theory exists for
this process, although for high c this process is very close
to the up-crossing process. No other limits than Poisson
limits are known.

One special case is that in which the {D j } are inde
pendent. Then the page exception process is a Bernoulli
process. If the D; have two distributions that occur during
different alternating periods of random duration, and if
the D, are independent, given the period, the level cross
ings are a doubly stochastic Bernoulli process [26]. It
is known then that the spectrum of counts is just the spec
trum of the alternating process, but is not known how
close the exception process is to a semi-Markov process.
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