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ABSTRACT 

Advanced missile guidance laws may provide an air-to-air combat tactical advantage by 

increasing effective missile range. The current standard in missile guidance, proportional 

navigation (PN), is only optimal against a non-maneuvering target. Differential geometry 

(DG) guidance is optimized for a maneuvering target. Analysis of the DG guidance 

equation indicates noise degrades DG performance more than PN. This thesis evaluates 

the effect of Kalman filtered noise on PN and DG performance. 

A simplified three degree of freedom (DOF) discrete time version of previous 

researchers’ six DOF continuous time model is generated. Zero mean Gaussian white 

noise is inserted into simulated line-of-sight angle and range sensor measurements. 

Discrete time Kalman filters utilize these two noisy simulated sensor measurements to 

generate all guidance law inputs, including portions of the target state for DG. 

Simulations with Kalman filtered noise are conducted with both PN and DG guidance 

laws against maneuvering targets. Kinematic boundaries are used to evaluate a possible 

tactical advantage of DG over PN guidance in the presence of Kalman filtered noise. 



 vi 

THIS PAGE INTENTIONALLY LEFT BLANK 



 vii 

TABLE OF CONTENTS 

I. INTRODUCTION........................................................................................................1 
A. BACKGROUND ..............................................................................................2 
B. RELATED WORK ..........................................................................................7 
C. OBJECTIVES ..................................................................................................9 

II. GUIDANCE LAWS ...................................................................................................13 
A. PROPORTIONAL NAVIGATION .............................................................13 
B. DIFFERENTIAL GEOMETRY...................................................................14 

III. KALMAN FILTERING ............................................................................................17 
A. DYNAMIC PLANT .......................................................................................18 

1. State Equation ....................................................................................18 
2. Measurement ......................................................................................19 

3. Plant Covariance ................................................................................19 
B. PREDICTION PHASE ..................................................................................21 

1. Predicted State Estimate ...................................................................21 
2. Predicted State Estimate Covariance ...............................................21 

3. Predicted Measurement Estimate ....................................................22 
C. CORRECTION PHASE ................................................................................22 

1. Measurement Residual ......................................................................22 

2. Filter Gain...........................................................................................22 
3. Corrected State Estimate ..................................................................23 

4. Corrected State Estimate Covariance ..............................................23 

IV. THREE DOF SIMULATION METHODOLOGY .................................................25 

A. KINEMATIC BOUNDARY CONSTRUCTION ........................................25 
B. MISSILE MODEL .........................................................................................27 

1. Missile Motion ....................................................................................28 
2. Commanded Acceleration Limiter ...................................................29 
3. Thrust Characteristics .......................................................................29 

C. TARGET MODEL.........................................................................................29 
1. Target Motion.....................................................................................29 

2. Target Turn ........................................................................................30 
D. DRAG MODEL ..............................................................................................31 

1. Parasitic Drag .....................................................................................31 
2. Induced Drag ......................................................................................32 
3. Total Drag ...........................................................................................34 

4. Drag Model Validation ......................................................................34 
E. NOISE MODEL .............................................................................................34 

F. FILTER IMPLEMENTATION ...................................................................36 
1. State Estimate .....................................................................................36 
2. State Estimate Covariance ................................................................38 
3. Process Covariance ............................................................................39 

a. LOS Angle Weighting Factor .................................................39 



 viii 

b. Range Weighting Factor .........................................................41 

4. Deterministic Inputs ..........................................................................41 
a. LOS Angle Deterministic Input ..............................................42 

b. Range Deterministic Input......................................................43 
G. GUIDANCE LAW IMPLEMENTATION ..................................................44 

V. SIMULATION RESULTS AND ANALYSIS .........................................................47 
A. TEST A—PN: NOISELESS VERSUS FILTERED NOISE ......................48 
B. TEST B—DG: NOISELESS VERSUS FILTERED NOISE .....................50 

C. TEST C—KALMAN FILTERED NOISE: DG VERSUS PN ...................53 
D. TEST D—MAXIMUM SUSTAINABLE NOISE .......................................56 
E. TEST E—SAMPLE RATE SENSITIVITY ................................................58 

VI. CONCLUSIONS AND RECOMMENDATIONS ...................................................63 

A. CONCLUSIONS ............................................................................................63 
B. RECOMMENDATIONS FOR FURTHER RESEARCH .........................64 

1. Instability Investigation .....................................................................64 
2. Kalman Filter Improvement .............................................................65 

3. Classified AMRAAM Guidance Study ............................................65 
4. Adaptive Guidance Law Switching ..................................................65 

APPENDIX MATLAB® CODE ............................................................................67 

A. SIMULATION RUN SCRIPT FILES .........................................................68 
B. SIMULATION GUIDANCE LAW FILES ...............................................110 

C. SIMULATION FUNCTION FILES ..........................................................113 
D. SIMULATION FILTER FILES .................................................................127 

LIST OF REFERENCES ....................................................................................................137 

INITIAL DISTRIBUTION LIST .......................................................................................139 

  



 ix 

LIST OF FIGURES 

Figure 1. Commanded acceleration application for “true” and “pure” proportional 

navigation (after [13]). .....................................................................................14 
Figure 2. Typical DG encounter geometry (after [12]). ..................................................15 
Figure 3. One cycle in the state estimation of a linear system (from [15]). ....................18 
Figure 4. Example of a kinematic boundary. ..................................................................26 

Figure 5. Graph of the parasitic drag coefficient (from [10]). ........................................32 
Figure 6. Kinematic boundaries for PN guidance under noiseless and Kalman 

filtered noise conditions. ..................................................................................48 
Figure 7. Maximum effective range of PN guidance under noiseless and Kalman 

filtered noise conditions. ..................................................................................49 

Figure 8. Difference plot of PN maximum effective range under noiseless and 

Kalman filtered noise conditions. ....................................................................50 
Figure 9. Kinematic boundaries for DG guidance under noiseless and Kalman 

filtered noise conditions. ..................................................................................51 

Figure 10. Maximum effective range of DG guidance under noiseless and Kalman 

filtered noise conditions. ..................................................................................52 

Figure 11. Difference plot of DG maximum effective range under noiseless and 

Kalman filtered noise conditions. ....................................................................53 
Figure 12. Kinematic boundaries for PN and DG guidance with Kalman filtered 

noise. ................................................................................................................54 
Figure 13. Maximum effective range of PN and DG guidance with Kalman filtered 

noise. ................................................................................................................55 
Figure 14. Difference plot of PN and DG maximum effective range with Kalman 

filtered noise.....................................................................................................56 
Figure 15. Maximum noise factor for PN guidance. .........................................................57 

Figure 16. Maximum noise factor for DG guidance. ........................................................58 
Figure 17. Kinematic boundaries for PN guidance with Kalman filtered noise at 

various discrete time step sizes. .......................................................................59 
Figure 18. Difference plot of PN maximum effective range with Kalman filtered 

noise at various discrete time step sizes. ..........................................................60 
Figure 19. Kinematic boundaries for DG guidance with Kalman filtered noise at 

various discrete time step sizes. .......................................................................61 
Figure 20. Difference plot of DG maximum effective range with Kalman filtered 

noise at various discrete time step sizes. ..........................................................62 



 x 

THIS PAGE INTENTIONALLY LEFT BLANK 



 xi 

LIST OF TABLES 

Table 1. Radar missile deployment by platform circa 1986 (from [3]). ..........................4 
Table 2. Summary of MATLAB® files and their purpose. ...........................................67 



 xii 

THIS PAGE INTENTIONALLY LEFT BLANK 



 xiii 

LIST OF ACRONYMS AND ABBREVIATIONS 

ACEVAL air combat evaluation 

AIM air intercept missile 

AIMEVAL air intercept missile evaluation 

AMRAAM advance medium range air-to-air missile 

APN augmented proportional navigation 

AWG air weapons guidance 

DG differential geometry 

DOF degrees of freedom 

F fighter aircraft 

F/A fighter / attack aircraft 

FMS foreign military sales 

FOT&E follow on test and evaluation 

GAO Government Accountability Office 

GPS Global Positioning System 

JDRADM joint dual role air dominance missile 

JLENS Joint Land Attack Cruise Missile Defense Elevated Netted Sensor 

 System 

LOS line-of-sight 

NED north-east-down 

NGM next generation missile 

PN proportional navigation 

RIO radar intercept officer 

SAM surface to air missile 

SARH semi-active radar homing 



 xiv 

THIS PAGE INTENTIONALLY LEFT BLANK 



 xv 

LIST OF SYMBOLS 

 magnitude 

^  estimated value 

  discrete time step size 

  lead angle 

M  missile lead angle 

T  target lead angle 

L  line-of-sight angle 

Lnz  noisy line-of-sight angle 

  density 

  standard deviation 

r  range sensor standard deviation 

_r base  range sensor baseline standard deviation 

L
  LOS angle sensor standard deviation 

_L base  LOS angle sensor baseline standard deviation 

a  acceleration 

Ma  missile acceleration 

Maa  azimuth missile acceleration 

Mea  elevation missile acceleration 

Mca  commanded missile acceleration 

Mua  deterministic missile acceleration 

Mthrusta  missile acceleration due to thrust 

Mdraga  missile acceleration due to drag 

Ta  target acceleration 

Tperpa  target acceleration perpendicular to the line-of-sight 

Tparaa  target acceleration parallel to the line-of-sight 



 xvi 

turna  target turn acceleration 

e  elliptical planform 

noisef  noise multiplier 

randn  pseudorandom zero mean Gaussian value 

g  acceleration due to gravity 

k  discrete time 

  curvature 

M  curvature of missile maneuver 

T  curvature of target maneuver 

m  missile mass 

 2q k  process noise weighting factor 

r  range 

nzr  noisy range 

 u k  deterministic input vector 

v  velocity 

cv  closing velocity 

Mv  missile velocity 

Tv  target velocity 

 k  process noise 

 k  measurement residual 

turn  target angular turn rate 

 w k  measurement noise 

 x k  state 

 Mx k  missile x-axis position coordinate 

 Tx k  target x-axis position coordinate 

 x̂ k  predicted state estimate 



 xvii 

 z k  measurement 
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EXECUTIVE SUMMARY 

Air dominance is a crucial but rapidly deteriorating American wartime advantage. 

Evasive maneuvers improve with each generation of foreign fighter aircraft. The U.S. 

must expect our enemies to evolve. We must constantly strive to stay ahead of our 

adversary’s technology if we are to remain the premier air power in the world. 

Improvements in air-to-air missile guidance can help maintain our aerial combat 

advantage. 

Advanced missile guidance laws may provide an air-to-air combat tactical 

advantage by increasing effective missile range. The current standard in missile guidance, 

proportional navigation (PN), is only optimal against a non-maneuvering target. 

Differential geometry (DG) guidance is an advanced guidance law optimized for a 

maneuvering target. Analysis of the DG guidance equation indicates noise degrades DG 

performance more than PN. 

This thesis evaluates the effect of Kalman filtered noise on PN and DG 

performance. A simplified three degree of freedom (DOF) discrete time version of 

previous researchers’ six DOF continuous time model is generated. The model is based 

on open source characteristics of the AIM-120 advanced medium range air-to-air missile 

(AMRAAM). We assume onboard sensors provide actual position, velocity, and 

acceleration of the missile. Zero mean Gaussian white noise is inserted into simulated 

line-of-sight (LOS) angle L  and range r  sensor measurements. Discrete time Kalman 

filters utilize these two noisy simulated sensor measurements and the missile’s state 

vector to generate all guidance law inputs, including portions of the target state for DG. 

Simulations with Kalman filtered noise are conducted with both PN and DG guidance 

laws against maneuvering targets. The main objectives of this research are to: 

 Determine the effect of Kalman filtered noise on the performance of PN 

and DG guidance laws. 

 Determine if DG provides a tactical advantage over PN for guidance of the 

simulated AMRAAM in the presence of Kalman filtered noise. 
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The current standard in modern missile guidance is PN; it is simple, effective, and 

easy to implement [1]. It attempts to maintain the LOS angle constant as range closes. 

The PN commanded acceleration is [2] 

 
 cos

c L
Mc

M

N v
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 , (1.1) 

where cv  is the closing velocity, 
L is the LOS angle rate, and M  is the angle between 

the LOS and the velocity vector of the missile also known as the missile lead angle. Since 

the missile state is assumed to be known, an estimate of M  is also known based on the 

estimated LOS angle. The navigational constant N   is chosen to balance missile 

responsiveness with maximum range. For all simulations, 5N  . Commanded 

acceleration is applied in a direction perpendicular to the velocity vector of the missile as 

described in Figure 1 [2]. 

 

Figure 1. Commanded acceleration application for proportional navigation (after 

[3]). 

The DG guidance law uses classical differential geometry curve theory to 

navigate the missile to the target. It uses no predetermined target trajectory model. The 

magnitude of DG commanded acceleration is [4] 
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where T  is the angle between the LOS and the velocity vector of the target and Ta  is 

the magnitude of the target’s acceleration. Typical encounter geometry for DG is shown 
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in Figure 2. Similar to PN, DG commanded acceleration is applied perpendicular to the 

velocity vector of the missile. 

 

Figure 2. Typical DG encounter geometry (after [5]). 

The DG guidance law in (1.2) is remarkably similar to PN in (1.1). It applies PN 

guidance with an extra equation term that incorporates the curvature of the target 

maneuver. This extra term uses target parameters that must be extrapolated from noisy 

bearing and range measurements making DG quite susceptible to noise. 

Each guidance law uses two Kalman filters to obtain the necessary parameters for 

guidance implementation; one filter estimates the LOS angle state, the other estimates the 

range state. These states consist of estimated time derivatives of LOS angle and range 

based on noisy measurements received from the simulated missile sensors. Since PN only 

requires the missile lead angle M , LOS angle rate 
L  and closing speed cv , the LOS 

angle and range states are 
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Due to its increased complexity, DG filtering requires three dimensional theta and 

range states 
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Estimates of target acceleration magnitude ˆ
Ta  and lead angle ˆ

T  are calculated using 

the third dimension time derivatives of LOS angle and range. 

Unpredictable model inputs such as a target maneuver are modeled as zero mean 

white Gaussian process noise. Process covariance for two dimensional filters is [6] 
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where   is the discrete step size in seconds. Process covariance for our three 

dimensional filters is [6] 
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Since the LOS angle filters estimate angular velocity and angular acceleration, the 

weighting factor  2q k  varies inversely with the square of range. 
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Noisy LOS angle and range measurements in the three DOF model are generated 

by multiplying a pseudorandom value drawn from a zero mean Gaussian distribution with 

the simulated sensor’s standard deviation. A small standard deviation can have a 

significant effect on the maximum effective range of a missile. Measurement noise is 

interpreted by the missile guidance system as target acceleration. The guidance system 

responds to noise with slight guidance accelerations. These missile accelerations produce 

an induced drag that increases exponentially as missile speed approaches Mach 1. Small 

unnecessary guidance accelerations over the course of the entire missile flight can 

produce dramatic performance deterioration on the order of several kilometers. For the 

three DOF model, the range and LOS angle simulated sensor standard deviations are 

defined as 10 meters and 1 mrad as established by Pehr [10]. Noise with two to five times 

these standard deviations produces poor results for both PN and DG. This indicates the 

standard deviation values are reasonable in terms of measuring noise effects on 

performance. All Kalman filter models assume range and bearing measurements are 

unbiased and uncorrelated. 

Numerous three DOF discrete time model simulations were run, generating 

kinematic boundaries we used to investigate the objectives of this thesis. Kinematic 

boundaries were used to measure guidance law performance. Much like an operating 

envelope, the kinematic boundary shows the maximum range from which a missile will 

destroy the target. The missile is launched from the envelope edge directly at the target. 

The target is at the origin pointing down the negative x-axis, which is the initial direction 

of target motion [7]. In the kinematic boundary, the aspect angle is measured from the 

positive x-axis to the LOS. An aspect angle of zero degrees would indicate a tail chase. 

An aspect angle of 180 degrees is a head-on geometry. 

Instability in the aft quadrant appears in all kinematic boundaries in this thesis. 

The instability is likely due to transition from supersonic to subsonic speeds. This theory 

is supported by Pehr who experienced instability, which he eliminated by slightly 

smoothing the parasitic drag coefficient curve in the transonic region [4]. Kinematic 

boundaries can be reproduced for noiseless simulations but not for Kalman filtered noise 

simulations. Due to the pseudorandom nature of the Kalman filtered noise, the instability 



 xxiv 

in the aft quadrant is slightly different with each simulation. This can generate aft 

quadrant results in which maximum effective range with Kalman filtered noise is larger 

than noiseless range. 

The kinematic boundaries for PN performance under noiseless and Kalman 

filtered noise conditions are shown in Figure 3. The kinematic boundaries are practically 

identical with the exception of instability in the aft quadrant. The range difference 

between the two is shown in Figure 4. Excluding the instability in the aft quadrant, slight 

constant noise degradation throughout the 360 degree view of about one kilometer can be 

seen. 

 

Figure 3. Kinematic boundaries for PN guidance under noiseless and Kalman 

filtered noise conditions. 
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Figure 4. Difference plot of PN maximum effective range under noiseless and 

Kalman filtered noise conditions. 

The DG guidance law has a more pronounced sensitivity to Kalman filtered noise 

than PN guidance. The kinematic boundaries for DG performance under noiseless and 

Kalman filtered noise conditions are shown in Figure 5. The Kalman filtered noise 

kinematic boundary is noticeable shorter in most aspect angles and experiences more 

pronounced instability in the aft quadrant. Instability in simulations with Kalman filtered 

noise may be compounded by the extreme noise sensitivity of DG target state estimates. 

The range difference between the kinematic boundaries is shown in Figure 6. Excluding 

the instability in the aft quadrant, noise degradation throughout the 360 degree view 

varies from one to six kilometers. 
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Figure 5. Kinematic boundaries for DG guidance under noiseless and Kalman 

filtered noise conditions. 
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Figure 6. Difference plot of DG maximum effective range under noiseless and 

Kalman filtered noise conditions. 

DG does provide a tactical advantage over PN guidance. While DG guidance 

suffers slightly larger noise degradation in most aspect angles, it performs much better 

than PN in tail chase scenarios. The kinematic boundaries for DG and PN performance 

with Kalman filtered noise are shown in Figure 7. The range difference between the 

kinematic boundaries is shown in Figure 8. DG provides a maximum effective range that 

is extended between 17 to 20 kilometers beyond PN in the aft quadrant while sacrificing 

one to five kilometers in the remaining aspect angles. The effective range advantage in 

the aft quadrant outweighs the disadvantage in the other quadrants. These results serve as 

a point of departure for research of a hybrid combination of PN and DG guidance laws. 
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Figure 7. Kinematic boundaries for PN and DG guidance with Kalman filtered 

noise. 
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Figure 8. Difference plot of PN and DG maximum effective range with Kalman 

filtered noise. 

The objectives of this research were met. The DG guidance law has a more 

pronounced sensitivity to Kalman filtered noise than PN guidance. DG guidance suffers 

slightly larger noise degradation in most aspect angles, but provides a distinct advantage 

over PN in tail chase scenarios. Based on these results we believe DG does provide a 

tactical advantage over PN guidance for the simulated AMRAAM. 
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I. INTRODUCTION 

Air dominance is a crucial but rapidly deteriorating American wartime advantage. 

Evasive maneuvers improve with each generation of foreign fighter aircraft. The U.S. 

must expect our enemies to evolve. We must constantly strive to stay ahead of our 

adversary’s technology if we are to remain the premier air power in the world. 

Improvements in air-to-air missile guidance can help maintain our aerial combat 

advantage. 

Advanced missile guidance laws may provide an air-to-air combat tactical 

advantage by increasing effective missile range. The current standard in missile guidance, 

proportional navigation (PN), is only optimal against a non-maneuvering target. 

Differential geometry (DG) guidance is an advanced guidance law optimized for a 

maneuvering target. Previous research has shown that noise degrades DG performance 

more than PN. This thesis evaluates the effect of Kalman filtered noise on PN and DG 

performance. 

A simplified three degree of freedom (DOF) discrete time version of previous 

researchers’ six DOF continuous time model is generated. Zero mean Gaussian white 

noise is inserted into simulated line-of-sight (LOS) angle and range sensor measurements. 

Discrete time Kalman filters utilize these two noisy simulated sensor measurements to 

generate all guidance law inputs, including portions of the target state for DG. 

Simulations with Kalman filtered noise are conducted with both PN and DG guidance 

laws against maneuvering targets. Kinematic boundaries are used to evaluate a possible 

tactical advantage of DG over PN guidance in the presence of Kalman filtered noise. 

This thesis is organized as follows. The remainder of Chapter I discusses the 

historical background and benefits of improving air-to-air missile guidance, previous 

work improving missile guidance, as well as the objectives of this thesis. Chapter II 

closely examines the PN and DG guidance laws. Chapter III provides an understanding of 

the Kalman filter, which can be used to improve guidance law performance. Chapter IV  
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describes the simulation environment created for this thesis. Chapter V contains 

simulation results and performance analysis. Chapter VI discusses our conclusions and 

recommendations for further research. 

A. BACKGROUND 

The AIM-7A Sparrow of the 1950s was one of the earliest air-to-air missiles in 

the arsenal of the United States [1]. This missile used a beam rider guidance system, 

which required the shooting aircraft to maintain radar lock on its target [1]. The missile 

would adjust its control surfaces in flight to “ride” a radar beam into the target. The early 

Sparrow’s beam rider guidance was a simple design, giving it a distinct weight 

advantage. This form of guidance proved to be operationally useless as it was only 

successful against non-maneuvering targets, but radar-based guidance showed promise. 

Sparrow’s radar was a huge advantage over other guidance tools such as infrared. 

Its radar penetrated clouds and rain, allowing Sparrow to conduct terminal homing in all 

weather. Sparrow’s radar-based guidance could also track low altitude targets due to its 

ability to pick out a target in spite of radar ground clutter. Later variants of Sparrow 

would capitalize on the advantages of radar. 

The follow-on variant of Sparrow, AIM-7B, was ahead of its time [1]. AIM-7B 

used an active radar seeker, which sent radar pulses from the missile itself [1]. The 

onboard guidance would track the target without assistance from the shooting aircraft. 

This ability to “fire and forget” allows the shooter to engage multiple targets, which is 

crucial in modern air-to-air combat tactics. Unfortunately, implementation of this 

guidance was extremely heavy and complex prior to the advent of solid-state circuit 

technology. While the theory was sound, technological drawbacks kept this missile from 

being an operational reality [1]. A less advanced form of radar guidance would be needed 

for the next versions of Sparrow. 

Later versions of the Sparrow, AIM-7D–E, were severely limited. The AIM-7E 

used semi-active radar homing (SARH) guidance. The parent aircraft illuminated the 

target while the missile only detected and interpreted the radar returns [2]. The SARH 

guidance system was more advanced than beam riding, but it proved to be a crucial 
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weakness of Sparrow. It required the pilot to fly directly at his target and not change 

course until the target was destroyed [2]. Such maneuver restrictions directly impact the 

effectiveness of the weapon. 

By the 1970s, the standard air-to-air missile in the arsenal of the United States Air 

Force, AIM-7E Sparrow, was shown to be inadequate [3]. The air intercept missile 

evaluation / air combat evaluation (AIMEVAL/ACEVAL), conducted in the mid-1970s, 

proved the SARH guidance scheme put the pilot at significant risk [2]. The guidance 

system’s requirement to fly toward the target meant the winner of an engagement would 

likely be the pilot who shot first [2]. The study showed pilots using Sparrow were at a 

severe disadvantage during multiple target engagements [2]. A pilot could only engage 

one target at a time and had little defense against a second target, producing a one-to-one 

kill ratio [2]. Such a low ratio was unacceptable during the Cold War era due to the 

quantitative advantage held by the Russian-led Warsaw Pact powers of Europe [2]. The 

Sparrow’s form of guidance was not the only significant problem. 

The Air Force F-16 Falcon was incompatible with Sparrow missiles [3]. Sparrow 

could be launched from the Navy’s F-14 Tomcat and F/A-18 Hornet as well as the Air 

Force’s F-15 Eagle as shown in Table 1. The Falcon was unable to carry Sparrow for two 

reasons. First, it lacked the avionics necessary to communicate with the Sparrow’s 

guidance system [3]. Second, the 500 pound weight of the Sparrow precluded the missile 

from being mounted on the wingtip station of the Falcon [3]. The Falcon could carry 

Sparrow on the mounts under the body of the aircraft, but those spots were reserved for 

air-to-ground bombs during bombing missions [3]. The Air Force’s intention was to have 

Falcon compose two thirds of its fleet by the 1990s. While Sparrow was only precluded 

from one aircraft, the effect was severe. Falcon had no radar-based air-to-air weapon. 

 

 

 

 



 4 

Table 1.   Radar missile deployment by platform circa 1986 (from [3]). 

 
 

The Navy’s AIM-54 Phoenix was not a viable substitute. The Phoenix was a long 

range missile with an advanced radar guidance system based heavily on the Tomcat 

AWG-9 radar. Using the Tomcat radar, the radar intercept officer (RIO) could 

simultaneously track 24 targets and allocate a priority target for each of the six Phoenix 

missiles onboard [4]. This missile was designed to shoot down Russian bombers at 

incredible ranges. It had the “fire and forget” capability of the AIM-7B, allowing a pilot 
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to engage multiple targets. Tomcat could also fire multiple missiles nearly simultaneously 

[3], [4]. These characteristics of active radar missiles like Phoenix were desperately 

needed on more platforms than the Tomcat. 

The United States needed a new air-to-air missile. A joint service operational 

requirement was generated in 1978 for an advanced medium range air-to-air missile 

(AMRAAM) with active radar guidance. It was to be compatible with the Air Force’s 

Eagle and Falcon as well as the Navy’s Tomcat and Hornet [3]. This new missile would 

be a vast improvement over Sparrow. It was estimated the AMRAAM would have twice 

the combat capability at half the cost of Sparrow, resulting in a fourfold increase in cost 

efficiency [2]. The Air Force Chief of Staff had extremely high expectations. He 

estimated the Falcon’s kill ratio would increase by a factor of six and Eagle’s would 

double with AMRAAM [3]. Such vast improvement rarely comes easily. 

Production and development of AMRAAM was quite a challenge. Both 

manufacturers, Hughes Aircraft and Raytheon, were to have test-fired 10 missiles each by 

December 1981; Raytheon tested five and Hughes only three [2]. Neither had developed 

a stable missile design [2]. By 1984, the cost per missile had more than doubled (in 1987 

dollars) from $182,000 to $438,000, the development process was two years behind 

schedule, and there were regular calls from Congress to terminate the program [3]. The 

AMRAAM would likely have been scrapped without intense service support. The 

program was dramatically restructured in 1985, extending the timeline for production [2]. 

Secretary of Defense Caspar Weinberger was required by Congress to certify the program 

cost would not grow further and capabilities would not be reduced below current 

estimates [2]. This certification convinced Congress to continue funding in spite of a 

Government Accountability Office (GAO) report questioning Secretary Weinberger’s 

certification and the viability of the program as a whole [2]. The AMRAAM proved to be 

a wise investment. 

The AMRAAM developed into one of the most ubiquitous and highly capable 

missiles in the world. With the exception of the AIM-9 Sidewinder, AMRAAM has been 

evaluated more extensively than any other air-to-air missile [5]. During its final follow on 

test and evaluation (FOT&E) in the mid-1990s, 40 missiles were fired from 12 different 
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shot profiles [5]. The Director of Operational Test and Evaluation noted the missile 

reliability vastly exceeded user requirements [5]. In 1991, the GAO reported a pilot 

simultaneously engaged four targets with four AMRAAMs in the presence of electronic 

countermeasures, displaying both “fire and forget” and near simultaneous launch 

capabilities [6]. All four targets were considered kills [6]. The currently deployed 

AMRAAM, AIM-120C-7, is capable of intercepting anti-ship cruise missiles using the 

Joint Land Attack Cruise Missile Defense Elevated Netted Sensor System (JLENS) 

integrated radar system as shown in a recent test [7]. The AMRAAM was an international 

project with France, Germany and the United Kingdom nearly from its beginning [5]. It 

has been sold to 36 countries around the world via the United States’ foreign military 

sales (FMS) program [7]. It is currently the standard air-to-air missile in the United 

States’ arsenal. 

The AMRAAM missile will be the premier medium range air-to-air missile for 

the foreseeable future. The newest AMRAAM, AIM-120D, has been upgraded 

significantly from its original form, incorporating Global Positioning System (GPS) 

navigation into the guidance system according to open source material [5], [7]. It is 

expected to be deployed in FY2014 [5]. The joint dual role air dominance missile 

(JDRADM), also referred to as the next generation missile (NGM), was slated to be the 

AMRAAM’s replacement. The NGM program has been cancelled due to budget 

constraints [8]. Our focus should be on improving AMRAAM performance until the next 

generation of air-to-air missiles is developed and fielded. One way to improve 

performance is to upgrade the missile’s guidance system. 

Open source material indicates most modern active radar missile guidance 

systems utilize a form of the PN guidance law [9]. The ubiquity of PN guidance can be 

traced to its effectiveness and simplicity [9]. This guidance was first used in the United 

States’ SAM-N-2 Lark prototype missile circa 1950 [9]. The guidance attempts to “lead” 

a target by pointing the missile ahead of the target and maintaining a constant LOS angle 

as range decreases. The LOS angle rate and closing velocity are all that is needed for PN 

guidance [9]. Infrared versions of PN guidance operate only on LOS angle rate and a 

rough guess of closing velocity [9]. The PN guidance law is capable of tracking a 
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maneuvering target and is the optimal guidance law for non-maneuvering targets. This 

law reacts to target maneuvers by rapidly reevaluating its course in an attempt to maintain 

a straight line to the collision point. The reactionary nature of PN tends to create 

superfluous guidance acceleration, wastes missile kinetic energy, and reduces the 

effective range of the missile. An advanced guidance law may reduce wasted energy and 

extend missile range. 

The DG guidance law is optimized for maneuvering targets. It uses the target’s 

magnitude of acceleration and lead angle to incorporate the curvature of a target 

maneuver into its commanded guidance. A lead angle is defined as the angle between the 

LOS and the velocity vector of either the missile or target. The DG guidance law has both 

advantages and disadvantages. 

The DG guidance law theoretically wastes less kinetic energy reacting to target 

maneuvers, resulting in a longer effective missile range. It provides the missile with a 

more optimal path to the target, increasing the probability of a hit. An increase in 

effective range would be a distinct tactical advantage. Pilots would be able to engage 

enemies from greater distances, reducing the threat of the target returning fire. In a 

dogfight, the life of the pilot and a multi-million dollar aircraft hang in the balance. Any 

small tactical advantage can make a significant difference. 

Accounting for target curvature has two distinct challenges. It requires more 

computation than PN and it is more sensitive to noise [10]. Filtering can reduce the 

effects of noise but further increases the computation requirements onboard the missile. 

Advances in modern micro-electronics have dramatically improved missile onboard 

processing power [11]. Based on the significant increase in computing capability, the DG 

guidance law may be operationally feasible. This method presents an opportunity for a 

tactical advantage over PN against maneuvering targets by extending a missile’s effective 

range [10], [12]. 

B. RELATED WORK 

Broadston conducted an in-depth comparison of optimal guidance laws in 2000 

[11]. He created a six DOF Simulink™ model to compare the performance of five 
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optimal guidance laws, including PN. These laws were evaluated against maneuvering 

and non-maneuvering targets at a constant altitude of 6000 meters. When maneuvering, 

the target pulled a 6 g turn in the x-y plane beginning three seconds prior to missile 

impact [11]. He determined augmented proportional navigation (APN) provided a 

significant improvement over PN, but did not analyze DG [11]. The fact that APN 

accounts for target maneuver is significant to my research. It simply added a term to the 

PN guidance equation that applied a constant portion of target acceleration to the missile 

guidance acceleration [9]. He showed the practice of adding a term to account for target 

maneuver could increase guidance performance. The estimation of the target state used in 

this extra term makes it sensitive to noise. 

Broadston conducted a brief noise study on a single approach angle; he inserted 

noise with a constant standard deviation into the actual range, range rate, LOS angle and 

LOS angle rate values [11]. Analyses of particular parameter noise effects were possible 

due to his “direct insertion” of noise, but this approach is unrealistic. A more accurate 

model of noise effects would simply provide the guidance system with noisy range and 

LOS angle measurements. The simulated missile in our model is equipped with range and 

LOS angle measurements only. Range rate and LOS angle rate are extrapolated from 

these inputs. 

Broadston introduced the kinematic boundary to quantify the performance 

differences between guidance laws. The kinematic boundary shows a 360 degree view of 

the maximum range from which a missile will reach the kill radius of five meters and 

cause “substantial, if not fatal damage” to the target aircraft [11]. Similar to an operating 

envelope, the kinematic boundary is an intuitive tool for analyzing missile performance 

[11]. The kinematic boundary was used by Pehr in continuation of Broadston’s work 

[10]. It will be discussed in detail in Chapter IV. 

Pehr conducted an analysis of APN, PN and DG performance and their response 

to unfiltered noise against maneuvering and non-maneuvering targets in 2011 [10]. He 

continued use of Broadston’s six DOF model and the “direct insertion” of white noise 

into signal parameters including target position, velocity and acceleration [10]. He 

established a noise testing range 10 percent below the noiseless maximum range to 
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measure sustainable noise. Pehr determined the maximum sustainable noise to be that in 

which the missile scored a hit in at least 70 out of 100 simulations at the noise testing 

range [10]. 

Pehr’s results showed DG to be superior overall [10]. With no noise applied, DG 

showed significant improvement over PN and APN in chasing maneuvering targets [10]. 

When unfiltered noise was applied, DG maintained a performance advantage over APN 

and PN when engaging maneuvering targets [10]. 

Comparison of DG, PN, and APN versus non-maneuvering targets in the presence 

of unfiltered noise revealed an interesting result. Both APN and DG experience 

significant degradation in performance with noise applied [10]. The PN law showed 

much less degradation in the presence of noise. This result supported the inference by 

Broadston that PN is optimal under a certain set of conditions, namely a non-

maneuvering target [11]. Pehr concluded the more extensive unfiltered noise degradation 

of APN and DG performance is intuitive since these laws are more complex [10]. 

The implementation of any guidance law is subject to the noise encountered in 

onboard sensors providing information about the target. It is very likely modern missiles 

incorporate filtering to combat the effects of noise. The DG guidance law has more 

sensitivity to noise since it is estimating more detailed information about the target 

trajectory. Both the DG and PN kinematic boundary could benefit from the filtering of 

this sensor noise. A Kalman filter is a common and effective discrete time linear state 

estimator that can mitigate the effects of noise. A logical question following Pehr’s work 

is how Kalman filtered noise will affect the performance of DG and PN. 

C. OBJECTIVES 

This thesis builds on previous research of the PN and DG guidance laws. The 

objectives of this thesis are fourfold: 

 Determine the effect of Kalman filtered noise on the performance of PN 

and DG guidance laws. 

 Determine if DG provides a tactical advantage over PN for guidance of the 

simulated AMRAAM in the presence of Kalman filtered noise. 
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 Determine what level of Kalman filtered noise these guidance laws can 

withstand. 

 Explore the effect of discrete time measurement sample rate on guidance 

law performance. 

Our objectives are achieved by creating a discrete time three DOF MATLAB® 

model based on open source characteristics of the AIM-120 AMRAAM. The discrete 

time model allows us to control the sample rate and use discrete time measurement noise. 

We assume the actual missile state is known due to accelerometers and a GPS transceiver 

onboard the simulated missile. Due to this assumption, the actual missile state vector is 

made available for all guidance law calculations. We validate our three DOF model by 

comparing the maximum missile range without noise for a stationary target with that of 

Broadston and Pehr. 

For simulations with noise, we implement a zero mean Gaussian white noise in 

range and LOS angle measurements. We use discrete time Kalman filters to generate all 

required guidance law inputs, including the target’s magnitude of acceleration and lead 

angle, from these two noisy sensor inputs. The kinematic boundary in simulations with 

Kalman filtered noise represents the maximum range from which the missile reaches the 

kill radius in at least 14 of 20 simulations. The number of simulations was chosen to 

balance the time required to generate a kinematic boundary and the appearance of 

statistical anomalies while still maintaining the 70 percent efficiency standard set by Pehr 

[10]. While our noise insertion method is more realistic than Broadston and Pehr’s “direct 

insertion” method, it does not permit a direct comparison with these earlier results. 

We compare kinematic boundaries under noiseless and Kalman filtered noise 

conditions to determine the effect of Kalman filtered noise on guidance law performance. 

We use these effects to evaluate the tactical advantage of DG over PN at the baseline 

noise level. The noise sensitivity associated with PN and DG is also evaluated. 

We determine the maximum sustainable filtered noise level in a fashion similar to 

Pehr. Simulations with increasing noise are run at a noise testing range 10 percent below 

the maximum noiseless range. The maximum sustainable Kalman filtered noise level is 

that in which the missile reaches the kill radius in at least 14 of 20 simulations. 
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We generate kinematic boundaries with Kalman filtered noise using a sample rate 

of 5, 10 (baseline), and 20 milliseconds. We evaluate the effect of sample rate on PN and 

DG guidance law performance by comparing these kinematic boundaries. 

In this chapter, we briefly discussed the current state of missile guidance. 

Previous generations of missile guidance have shown the superiority of onboard active 

radar guidance. The AMRAAM has been defined as the standard air-to-air missile in the 

U.S. arsenal for the foreseeable future. The DG advanced missile guidance has been 

identified as a possible way to improve the AMRAAM. Previous work in this area by 

Broadston and Pehr has shown DG provides an extended range for AMRAAM against 

maneuvering targets with “direct insertion” noise. Our main objectives in this thesis are 

to investigate the effects of Kalman filtered noise on the performance of PN and DG 

guidance laws and determine if DG can provide a tactical advantage over PN for 

guidance of the simulated AMRAAM in the presence of Kalman filtered noise. To 

achieve these objectives, we must better understand the PN and DG guidance laws 

discussed in the next chapter. 
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II. GUIDANCE LAWS 

In this chapter, we discuss the mechanics of the PN and DG guidance laws. The 

PN guidance law is optimized for a non-maneuvering target, meaning it assumes the 

target is traveling in a straight line. This is seldom the case in a real-world scenario. The 

DG guidance law does not use a fixed model of target maneuver. It uses classical 

differential geometry curve theory to incorporate target maneuver curvature into the 

missile’s guidance [10]. 

The following is the notation for this section. A dot over a symbol indicates a time 

derivative. Angles will be delineated by L  for the LOS angle or   for a lead angle. 

Parameters specific to the missile or target are given a subscript. For example, the missile 

lead angle is M . Navigational constant N   should not be confused with N , which is the 

ratio of target and missile velocity magnitudes. Vector lengths are annotated with double 

bars such as target speed Tv . Commanded accelerations will be denoted by Mca . 

A. PROPORTIONAL NAVIGATION  

The proportional navigation (PN) guidance law is the current standard in modern 

missile guidance; it is simple, effective, and easy to implement [9]. This guidance 

attempts to maintain the LOS angle L  constant as range r  closes. A collision is assured 

if the bearing to an object does not change as range decreases. The LOS angle is 

measured from a fixed coordinate axis, in this case the x-axis, to the LOS. The only 

information needed to implement PN guidance is LOS angle rate 
L  and closing speed 

 cv r  . (2.1) 

The PN commanded acceleration is [9] 

 Mc c La N v  . (2.2) 

The navigational constant N   is chosen to balance missile responsiveness with maximum 

range. For all simulations 5N   as was done by Pehr [10]. 
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The direction of commanded acceleration depends on the type of PN guidance 

being implemented. In the strictest sense of application, commanded acceleration should 

be applied perpendicular to the instantaneous LOS [9]. This is known as “true” PN [13]. 

As a matter of practical implementation of missile guidance, the commanded acceleration 

is applied in a direction perpendicular to the velocity vector of the missile [14]. This is 

known as “pure” PN and is the method implemented in this thesis [13]. These geometries 

are described in Figure 1. 

 

Figure 1. Commanded acceleration application for “true” and “pure” proportional 

navigation (after [13]). 

It is apparent in Figure 1 that the effect on the missile body is changed with the 

direction of acceleration. The commanded “pure” PN acceleration must be increased such 

that its projection onto the vector perpendicular to the LOS is of the same magnitude as 

the “true” PN acceleration. This modification is achieved using the missile’s lead angle 

M . The modified commanded acceleration is [14] 

 
 cos

c L
Mc

M

N v
a






 . (2.3) 

The missile lead angle is expected to be on the order of a few degrees. Application of 

“pure” PN slightly increases the portion of acceleration in the LOS. This effect on the 

performance of the guidance is negligible due to the small size of the missile lead angle. 

B. DIFFERENTIAL GEOMETRY  

The differential geometry (DG) guidance law utilizes classical differential 

geometry curve theory to navigate the missile to the target. This optimizes DG for a 
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maneuvering target by analyzing target trajectory curvature vice using a predetermined 

target trajectory model. Typical encounter geometry for DG is shown in Figure 2. 

 

Figure 2. Typical DG encounter geometry (after [12]). 

The curvature of the missile M is [12] 

 
 

   
2

2

cos

cos cos

T c L
M T

M M M

N v
N

v

 
 

 


  , (2.4) 

where T  is the target curvature, T  is the target lead angle, and N  is [12] 

 T

M

v
N

v
 . (2.5) 

A general equation for the curvature of a circular motion is 

 
2

a

v
  , (2.6) 

where a  is acceleration. Curvature of a circular motion is defined as a positive value and 

does not differentiate between a curve to the left and right. A unit vector perpendicular to 

the LOS extending to the left is used as the direction of commanded acceleration in this 

thesis. This vector allows us to distinguish left and right and alters the curvature equation 

for the missile to 
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Substituting (2.5), (2.6), and (2.7) into (2.4), yields [10] 
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Simplifying (2.8), produces commanded acceleration [10] 
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  . (2.9) 

In Chapter II, we discussed construction of the PN and DG guidance laws. The 

PN guidance assumes a non-maneuvering target model and strives to maintain a constant 

LOS angle. The DG guidance uses differential geometry curve theory, which avoids a 

specific target maneuver model. The DG guidance law in (2.9) is remarkably similar to 

PN in (2.3). It applies “pure” PN guidance with an extra equation term that incorporates 

the curvature of the target maneuver using the magnitude of the target’s acceleration Ta  

and lead angle T . These target parameters must be extrapolated from bearing and range 

measurements making DG quite susceptible to noise. In Chapter III, we discuss the 

Kalman filter, which we will use to mitigate the effects of noise in both PN and DG 

guidance. 
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III. KALMAN FILTERING 

The Kalman filtering algorithm is a highly effective linear state estimator. Known 

as the workhorse of estimation, the discrete time Kalman filter uses a recursive minimum 

mean square error process to correct a predicted state estimate after each 

measurement [15]. Put simply, a Kalman filter can estimate the position, velocity, and 

acceleration of a parameter given only noisy estimates of position. 

In this chapter, we describe the Kalman filtering process using the following 

notation. A particular discrete time step is referred to as the time and is annotated with k . 

A vector at time k  will be referred to with a lower case letter such as  x k . Matrices at 

time k  are annotated with the capital letters such as  P k . A hat above a symbol 

signifies an estimate. For example  ˆ 1x k k  will be read, “the estimated state at time 

1k   given the information from all previous time steps up to and including time k .” 

Magnitudes are annotated with double bars such as a . Matrix inversion and transpose 

will be shown as a superscript,  
1

S k


 and  S k   respectively. 

The Kalman filter algorithm can be broken into prediction and correction 

phases [14]. The prediction phase occurs at the end of the current time k . It calculates a 

predicted state estimate and covariance for the next time 1k   using the current time 

corrected state estimate and any known deterministic inputs. The measurement is taken 

between the prediction and correction phases and marks the beginning of time 1k   [14]. 

The correction phase then generates a corrected state estimate and covariance for time 

1k  . The flow of the algorithm is shown in Figure 3 [15]. Before we discuss prediction 

and correction phases further, we must describe the dynamic plant used to model a linear 

dynamic system. 
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Figure 3. One cycle in the state estimation of a linear system (from [15]). 

A. DYNAMIC PLANT 

The dynamic plant is the mathematical model of a system. Process noise is used 

to model unpredictable state variation. Measurement noise is used to model unpredictable 

variation in measurements. Each of these terms has an associated covariance that 

describes its accuracy. To understand the dynamic plant, we must first examine the state 

equation. 

1. State Equation 

The state equation describes a linear dynamic system using a vector difference 

equation. The state vector is the smallest vector that summarizes a deterministic system in 

full [15]. The updated state vector is [15] 

            1x k F k x k G k u k k    , (3.1) 
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where 0,1,...k  . The state transition matrix  F k  determines the change in state due 

only to the effect of time from k  to 1k  . The deterministic input vector  u k  accounts 

for known deterministic state inputs. The deterministic input gain matrix  G k  is an 

identity matrix that can be used to weight  u k . Process noise  k  is a zero mean 

white Gaussian noise. The state equation uses process noise to account for unpredictable 

state variation. The output of the state equation is the state vector  1x k  , from which 

the measurement  1z k   is derived. A typical three dimensional state vector is 

  

 

 

 

1

11

1

z k

z kx k

z k

  
 

   
  

. (3.2) 

2. Measurement 

The measurement  1z k   encompasses state translation and transients during the 

time elapsed between steps as well as measurement noise. It occurs between the 

prediction and correction phases at the beginning of time 1k  . The measurement at time 

1k   is [15] 

        1 1 1 1z k H k x k w k      . (3.3) 

The measurement extraction matrix  1H k   draws the measurement from the 

state vector for time 1k  . Measurement noise  1w k   is a zero mean white Gaussian 

noise that describes unpredictable variation in the measurement at time 1k   [15]. 

3. Plant Covariance  

Covariance is a measure of a variable’s accuracy at the current time. 

Measurement covariance  R k  and process covariance  Q k  are assumed to be 
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mutually independent [15]. Measurement covariance  R k  is the covariance of 

measurement noise  w k  and [15] 

      R k E w k w k 
  

, (3.4) 

where E  is the expectation. Measurement covariance is based on the standard deviation 

  of the measurement. Hence,  R k , typically a known constant in tracking 

applications, is [14] 

   2R k     . (3.5) 

Process covariance  Q k , the covariance of zero mean white Gaussian process 

noise, is [15] 

      Q k E k k  
  

. (3.6) 

It is based on the largest unpredictable state variation expected in the system being 

modeled. A large process covariance indicates the filter should expect large changes in 

measurements. When process covariance is large, the filter discounts prior estimates and 

measurements [14]. This allows the filter to maintain track in the event of large 

unpredictable state variation but inserts significant uncertainty when the state is 

constant [14]. A small process covariance discounts the current measurement, which 

allows for more precise estimation of a constant state, but limits the filter’s ability to 

track through large unpredictable state variations. 

The state covariance  P k  reflects the accuracy of the filter’s state estimate at 

time k . Assuming the state being modeled is known at time 0k  , state covariance is 

initialized with the measurement covariance. Over several time steps, the filter mitigates 

the effects of noise and creates more accurate estimates with lower covariance [14]. As 

more measurements are taken, state covariance is reduced until it reaches a minimum 
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steady state value based on the measurement covariance  R k  and process covariance 

 Q k . 

B. PREDICTION PHASE 

The prediction phase uses the corrected state estimate and covariance, as well as 

any known inputs from the current time k , to calculate the predicted state estimate and 

covariance for time 1k   [16]. This is done prior to collecting the actual noisy 

measurement at time 1k   [16]. The products of the prediction phase are: the predicted 

state estimate, predicted state covariance, and predicted measurement estimate. All of 

these are utilized in the correction phase to update the filter’s knowledge of the state 

vector’s past and improve its ability to predict the state’s future. 

1. Predicted State Estimate 

The state prediction equation generates a predicted state estimate at time 1k   

using only measurements up to time k . The state prediction equation is [15] 

          ˆ ˆ1x k k F k x k k G k u k   . (3.7) 

The predicted state estimate accounts for the state translation due to time and the 

deterministic input. It is the filter’s best guess of the state vector at time 1k  . 

2. Predicted State Estimate Covariance 

The predicted state estimate covariance  1P k k  estimates the accuracy of the 

predicted state estimate based on the corrected state covariance and process covariance of 

the previous time step k . It is given by [15] 

          1P k k F k P k k F k Q k   . (3.8) 

Predicted state estimate covariance  1P k k  accounts for the possibility of an 

unpredictable state variation from time k  to 1k   with process noise covariance  Q k . 
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The addition of process noise covariance causes the predicted state estimate covariance to 

increase. 

3. Predicted Measurement Estimate 

The predicted measurement estimate is what the filter expects the measurement to 

be at time 1k   based on its predicted state estimate, and is [15] 

      ˆˆ 1 1 1z k k H k x k k    . (3.9) 

C. CORRECTION PHASE 

The correction phase completes the Kalman filter cycle by updating the predicted 

state estimate and covariance to generate the corrected state estimate and covariance. In 

addition to the results of the prediction phase and measurement, measurement residual 

and filter gain are utilized in the correction phase. The update to the predicted state 

estimate will be proportional to the measurement residual and the filter gain. We must 

further explain these two factors as they dictate how quickly the corrected state estimate 

will adjust to unpredictable state variations. Only then can we discuss development of the 

corrected state estimate and corrected state estimate covariance. 

1. Measurement Residual 

Measurement residual  1k   is the difference between the measurement and 

the predicted measurement estimate, i.e., [15] 

      ˆ1 1 1k z k z k k      . (3.10) 

Large measurement residuals indicate the measurement and predicted measurement 

estimate are far apart. 

2. Filter Gain 

Filter gain controls the influence of previous estimates and the current 

measurement when updating the predicted state estimate and covariance. A small gain 
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increases the influence of previous measurements while a large gain emphasizes the 

current measurement. Filter gain  W k  is [15] 

        
1

1 1 1 1W k P k k H k S k
     . (3.11) 

The innovation covariance  1S k  , the covariance of the measurement residual 

 1k k  , is [15] 

          1 1 1 1 1S k R k H k P k k H k        . (3.12) 

3. Corrected State Estimate 

The corrected state estimate, which adjusts the predicted state estimate by a 

magnitude proportional to the measurement residual and the filter gain, is 

        ˆ ˆ1 1 1 1 1x k k x k k W k k       . (3.13) 

Provided the dynamic plant accurately models the actual state and measurement 

processes, the corrected state estimate will tend toward the actual system state. A non-

zero process noise prevents the corrected state estimate from reaching the actual state but 

over many time steps the corrected state estimate has less error than the measurements 

alone. In this manner, the effects of measurement noise are mitigated. 

4. Corrected State Estimate Covariance 

Over the course of several discrete time steps, corrected state covariance reduces 

to a steady state value independent of unpredictable state variations. In (3.8) predicted 

state estimate covariance  1P k k  expands by adding process covariance to account 

for unpredictable state variations The corrected state covariance  1 1P k k   contracts 

due to the new measurement. Over several time steps, the contraction in the correction 

phase gets smaller. Assuming the state and measurement covariance structure remains 

constant, the expansion in prediction and contraction in correction eventually reach 

parity, leaving a steady state corrected value. The corrected state covariance is [15] 
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          1 1 1 1 1 1P k k P k k W k S k W k         . (3.14) 

The corrected state estimate covariance in (3.14) is more sensitive to rounding 

errors and can be unstable due to generating negative eigenvalues [15]. The Joseph form 

of the corrected state covariance shown in (3.15) corrects these issues [15]. While more 

computationally expensive, the improvement in mathematical behavior is quite 

desirable [15], [16]. The Joseph form of corrected state estimate covariance is [15] 

 
           

     

1 1 1 1 1 1 1 ...

1 1 1 .

P k k I W k H k P k k I W k H k

W k R k W k

               

   

 (3.15) 

In Chapter III, we have discussed the Kalman filter algorithm. The dynamic plant 

models a system. The prediction phase generates a predicted state estimate and 

covariance at time k  for time 1k  . The measurement marks the beginning of time 1k  . 

The correction phase completes the Kalman filter’s cycle by generating a corrected state 

estimate and covariance for time 1k   that reduces the mean square of the measurement 

residual of previous time steps. The general Kalman filter algorithm must be tailored to 

each application. In Chapter IV, we examine simulation methodology. We will describe 

the three DOF model in detail as well as the Kalman filter modifications necessary for 

this thesis. 
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IV. THREE DOF SIMULATION METHODOLOGY 

The six DOF continuous time model derived by Broadston is simplified to a 

discrete time three DOF model. The depths of Broadston’s six DOF model in describing 

moments of inertia acting on a missile body in flight are overly complicated for this 

thesis. The point mass three DOF model adequately represents a missile for our purposes. 

Discrete time permits a Kalman filter at a specified measurement sample rate. 

In this chapter, we will study the simulation methods used in the three DOF 

discrete time model. We begin by examining the translation of the simulation into a 

kinematic boundary. The structure of missile and target motion and the effects of drag are 

carefully implemented to ensure the same in-flight characteristics as the six DOF model. 

Our method of discrete time noise injection is devised. We end this chapter by tailoring 

the Kalman filter and guidance laws to suit our application. 

Notation used in this chapter is as follows. The discrete time step size   is 

defined as the time elapsed between discrete time steps k  and 1k  . A dot above a 

symbol indicates a time derivative; two dots, a second derivative. A hat above a symbol 

signifies an estimate. Magnitudes are annotated with double bars . The capital letters 

M  and T  will refer to the missile and target respectively. For example,  M k  is the 

missile’s state vector while  Mx k  is the missile’s x-axis position coordinate at time k . 

A. KINEMATIC BOUNDARY CONSTRUCTION 

In this section we will establish an understanding of the kinematic boundary and 

its construction from several simulations. Broadston introduced the kinematic boundary 

to quantify the performance differences between guidance laws [11]. Pehr also used this 

measure of performance, but slightly modified the orientation [10]. The orientation of the 

simulation and kinematic boundary in this thesis are preserved from Pehr’s work. 

Kinematic boundary geometry has the missile launched from the envelope edge 

directly at the target. The target is at the origin pointing down the negative x-axis, which 

is the initial direction of target motion [11]. The aspect angle is measured from the 
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positive x-axis to the LOS. An aspect angle of zero degrees would indicate a tail chase. 

An aspect angle of 180 degrees is a head-on geometry. Much like an operating envelope, 

the kinematic boundary shows the maximum range from which a missile will reach the 

kill radius. The kill radius is defined as a five meter sphere around the center of the 

target, inside which a missile explosion would cause “substantial, if not fatal damage” to 

the target aircraft [11]. An example of a kinematic boundary is shown in Figure 4. 

 

Figure 4. Example of a kinematic boundary. 

The geometry of the three DOF simulation is translated to create the kinematic 

boundary. It allows the missile and target to begin on the x-axis in all simulations while 

maintaining the desired aspect angle. At the beginning of each three DOF simulation, the 

missile is initialized at the origin, pointing at the target. The target is initialized on the 

positive x-axis, separated from the missile by the range being tested. The initial heading 

of the target, measured from the x-axis, is set to the desired aspect angle. 
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The kinematic boundary is a locus of points constructed from many three DOF 

simulations. Similar to Broadston and Pehr, the three DOF simulation concludes if any of 

the following three conditions are met: 

 The missile velocity decreased below target velocity, indicating the 

missile no longer has the kinetic energy to chase down the target. 

 The range to target begins to open, indicating the missile has missed the 

target. 

 The missile comes within the kill radius (five meters) of the target, 

indicating a hit. 

Simulations are run at the specified aspect angle with increasing ranges until the 

missile can no longer reach the kill radius. The maximum range of successful interception 

of the target is presented as a point on the kinematic boundary at the tested aspect angle. 

Beginning with zero degrees, the aspect angle is incremented and the process is repeated, 

ultimately creating a 180 degree arc. The 180 degree arc of the kinematic boundary is 

mirrored to produce a 360 degree view. 

The results displayed in the kinematic boundary are greatly affected by the flight 

characteristics of the missile and target. An accurate missile model is the first step in 

creating meaningful kinematic boundaries. 

B. MISSILE MODEL 

In this section, we will describe our model for missile motion and thrust. The 

missile model must account for the effects of gravity, parasitic and induced drag, engine 

thrust, and commanded guidance in flight. We must also prevent these forces from 

exceeding the capability of a typical missile frame. 

The missile is modeled as a point mass in the North-East-Down or NED 

coordinate system. The NED coordinate system dictates an x-axis pointing north, y-axis 

to the East and z-axis down toward the center of the Earth. This coordinate system 

assumes the surface of the Earth is approximated by the flat tangent plane, limiting the 

effective simulation range to less than 200 kilometers. The Earth pointing z-axis allows 

for a constant gravitational pull along this axis. Altitude above the surface of the Earth 

using NED coordinates is specified as a negative number. 
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1. Missile Motion 

Missile motion is described using a state vector with position and velocity 

components along the x, y, and z axes. The velocity vector is considered to be directly 

through the imaginary “frame” or central axis of the missile body due to the small angles 

of attack the missile will experience. The missile state vector  M k , which describes the 

position and velocity of the missile at any given discrete time step k , is 
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. (4.1) 

Missile motion is achieved using a transition matrix and missile acceleration 

matrix and is specified by 
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. (4.2) 

The missile transition matrix MF  translates the state vector from time k  to 1k   

assuming constant velocity. The missile acceleration matrix  aM k  accounts for 

deviation from a straight line trajectory due to gravity, parasitic and induced drag, engine 

thrust, and commanded guidance. 
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2. Commanded Acceleration Limiter 

The AMRAAM missile is assumed to be capable of withstanding accelerations up 

to 52 times the acceleration of gravity g  [10]. Broadston on Pehr placed a 30 g  limit on 

each dimension of commanded guidance acceleration to prevent the simulated missile 

from exceeding this value [10], [11]. Since our commanded acceleration is applied as a 

vector in the x-y plane, we chose to limit PN commanded guidance acceleration 

magnitude to 50 g . This limit proved too high for DG guidance to be effective. Based on 

observed improvements in performance not seen with PN, the limit for DG was reduced 

to 15 g . This observation indicates DG is more sensitive to noise than PN guidance. 

3. Thrust Characteristics 

The missile thrust is 23,000 newtons for the first six seconds or “boost phase” of 

flight. This thrust is congruent with Broadston’s six DOF model. Typical of most air-to-

air missile models, thrust accelerates the missile at a constant rate until the boost phase is 

complete. The missile then coasts, expending kinetic energy and reducing speed due to 

aerodynamic drag. 

C. TARGET MODEL 

In this section we will explain how target motion is modeled. The target is 

modeled as a simple point mass in NED coordinates. The effects of drag and gravity are 

not modeled in the target. The target maintains a constant speed of Mach 0.83 and an 

altitude of 6000 meters throughout all three DOF simulations. It maintains a straight line 

trajectory until three seconds before impact. A six g  turn is then initiated in the x-y plane 

and held until the simulation is complete. 

1. Target Motion 

Similar to the missile state vector, the target state vector  T k , which describes 

the position and velocity of the missile at any given discrete time step k , is 
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Straight line target motion is generated using the target transition matrix TF . This motion 

is unaffected by any acceleration and is specified by 
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2. Target Turn 

At three seconds to impact, the target begins a six g  turn in the x-y plane. The 

target maintains a constant speed of Mach 0.83 and altitude of 6000 meters. Turn rate is 

also a constant due to unchanging acceleration and speed in the turn. Target angular turn 

rate turn  is [14] 
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, (4.5) 

where target turn acceleration 6turna g . The turning motion is generated by modifying 

the target transition matrix TF  to form [14] 
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D. DRAG MODEL 

Drag is modeled in this thesis as the composition of induced and parasitic drag. 

Induced drag models the effects of guidance acceleration and gravity while parasitic drag 

models the effects of missile shape and cross section in level flight. We utilize an 

imaginary “frame,” which points in the direction of the missile’s velocity vector. The 

combined forces due to induced and parasitic drag are converted to an acceleration based 

on the missile mass and given a vector direction opposite the velocity vector of the 

missile. We will discuss induced and parasitic forces separately before combining their 

effects and validating our drag model. 

Drag is created by uneven pressures along the body of a missile [17]. The 

pressures on a missile change with the density of the air   and missile velocity Mv . 

Dynamic pressure Q , which is the function of missile velocity and altitude used to 

describe these changes, which impact both induced and parasitic drag, is [9] 

 

2

2

Mv
Q


 . (4.7) 

1. Parasitic Drag 

Parasitic drag accounts for friction based on the shape and cross section of a 

missile in level flight. Typical values for the parasitic drag coefficient 
dpC  are shown in 

Figure 5 [10]. It is clear the parasitic drag peaks at the sound barrier, Mach 1, and drops 

decidedly at supersonic speeds. Reduction in drag during boost phase due to the 
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aerodynamic effects of the plume at the tail of the missile is also evident. Force due to 

parasitic drag, which is proportional to the missile cross-sectional area REFS , is [10] 

 
dp dp REFF QC S . (4.8) 

 

 

Figure 5. Graph of the parasitic drag coefficient (from [10]). 

2. Induced Drag 

Induced drag accounts for friction due to guidance acceleration and gravity. 

Typically induced drag is calculated using angles of attack. Due to the point mass nature 

of this simulation, we assume the missile is pointing in the direction of its velocity vector. 

Induced drag is determined using normal forces in azimuth and elevation acting on the 

body [10]. Gravity is accounted for directly in the elevation component of induced drag. 

The normal induced drag forces in the azimuth iaF  and elevation ieF  directions are [10] 

  ia MaF m a  (4.9) 

and 
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 ( )ie MeF m a g  , (4.10) 

where Maa  and Mea  are the missile azimuth and elevation commanded accelerations 

respectively, and m  is the missile mass. Missile commanded accelerations are 

determined by the guidance law. 

The normal forces are converted to azimuth and elevation induced drag 

coefficients, [10] 

 ia
na
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  (4.11) 

and 
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 . (4.12) 

These coefficients are combined to determine the overall induced drag coefficient [10] 
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The wing efficiency relative to an elliptical planform e  and wing aspect ratio AR  are 

constants drawn from Broadston and Pehr [11]. 

At subsonic speed the overall induced drag coefficient is based on the highest 

subsonic parasitic drag coefficient, 0.25dpC  , and the applied force. Broadston makes 

this assumption noting it is a rough approximation that has a small impact for a short 

period of time at the beginning and end of the simulation [11]. The subsonic overall 

induced drag coefficient is [2] 
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 . (4.14) 

The induced drag coefficient encompasses the effect of gravity and all normal forces on 

the missile. The total induced drag diF , which incorporates dynamic pressure and the 

shape of the missile, is [10] 
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 di di REFF QC S . (4.15) 

3. Total Drag 

Total force due to drag is proportional to dynamic pressure, the missile cross-

sectional area, as well as the coefficients of parasitic and induced drag. It is converted to 

an acceleration based on the missile mass and given a vector direction opposite the 

velocity vector of the missile. The magnitude of acceleration due to drag is 

 
 dp di

Mdrag

F F
a

m


 . (4.16) 

4. Drag Model Validation 

We compared the three DOF and six DOF model maximum missile range to 

validate our drag model. To ensure an accurate comparison, a stationary target was used 

and the missile was allowed to travel until its speed reached zero. The difference in 

effective range is only a result of the drag forces experienced by the missile in flight. 

Open source data for the AIM-120D indicates a maximum range of 72 kilometers [10]. 

Pehr determined the maximum range of his drag model to be 76.6 kilometers [10]. The 

three DOF model yielded a maximum range of 77.2 kilometers. This is within roughly 

seven percent of the open source data and one percent of Pehr’s result. Based on this 

result we consider the three DOF model to be validated as a useful simplified version for 

Kalman filter implementation. 

E. NOISE MODEL 

The noise in this thesis is more accurately represented than in previous work by 

Broadston and Pehr. They used a “direct insertion” method, adding noise with a constant 

standard deviation into the actual range, range rate, LOS angle and LOS angle rate 

values [11]. The simulated missile in our model is equipped with range and LOS angle 

sensors only. LOS angle rate and range rate are extrapolated from these inputs. 

Noisy LOS angle and range measurements in the three DOF model are generated 

with 
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LLnz L randn     (4.17) 

and 

 nz r randr r n  , (4.18) 

where 
randn  is a pseudorandom value, drawn from a zero mean Gaussian distribution with 

variance of one. The simulated sensor standard deviations, which adjust the Gaussian 

variance, are 

 
_L Lnoise basef    (4.19) 

and 

 _r noise r basef  , (4.20) 

where noisef  is a multiplier used to systematically increase noise, and subsequently 

Kalman filter measurement covariance  R k , when desired. For the three DOF model, 

the baseline range and LOS angle simulated sensor standard deviations, _r base  and 

_L base  are defined as 10 meters and 1 mrad as established by Pehr [10]. Baseline noise, 

where 1noisef  , is used in all simulations with the exception of the maximum sustainable 

noise study. Due to the Gaussian nature of the noise, approximately 70 percent of the 

noisy measurements will be within one standard deviation of the actual LOS angle or 

range value. 

A small standard deviation can have a significant effect on the maximum effective 

range of a missile. Measurement noise is interpreted by the missile guidance system as 

target acceleration. The guidance system responds to noise with slight guidance 

accelerations. These missile accelerations produce an induced drag, which increases 

exponentially as missile speed approaches Mach 1. Small unnecessary guidance 

accelerations over the course of the entire missile flight can produce dramatic 

performance deterioration on the order of several kilometers. 
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F. FILTER IMPLEMENTATION 

In this section we will discuss the four filters of our three DOF model. They are 

divided into PN and DG filters, each guidance law having a range and bearing filter. The 

division stems from the nature of the laws themselves. Simple two dimension filters 

suffice for PN because it requires only LOS angle rate and range rate. The target state 

parameters used in DG guidance requires a more complicated three dimension filter. 

While it would be simpler to make both PN and DG operate with a three dimension filter, 

a higher dimension filter introduces more extrapolation and should only be used when 

necessary. 

Each guidance law uses two Kalman filters to obtain the parameters necessary for 

guidance implementation. The first filter estimates the LOS angle state, the second 

estimates range state. These filters estimate time derivatives of LOS angle and range 

based on noisy measurements received from the simulated missile sensors. Unique 

aspects of the two types of filters include: the state estimate, state estimate covariance, 

process covariance, and deterministic inputs. We will examine the PN and DG 

differences in each of these components one at a time. 

1. State Estimate 

The state estimate summarizes a deterministic system [15]. At any discrete time 

1k   the state estimate can be determined by (3.7). A Kalman filter estimates the state 

using the process described in Chapter III. Initial state estimates in this thesis are 

populated with the actual parameter values. This method assumes the launching platform 

has a tracking system accurate enough to make its noise negligible compared to the 

missile’s sensor noise. 

The PN guidance law only requires the missile lead angle M , LOS angle rate 
L  

and closing speed cv . Since the missile state is assumed to be known, an estimate of M  

is also known based on the estimated LOS angle. The LOS angle rate 
L  and closing 

speed cv  are estimated using two dimensional LOS angle and range states 
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The DG guidance law is more complex. To implement DG the following 

information is required: 

 target lead angle T , defined as the angle between the target’s velocity 

vector and the LOS. 

 missile lead angle M , defined as the angle between the missile’s velocity 

vector and the LOS. 

 magnitude of target acceleration Ta . 

 LOS angle rate of change 
L . 

 closing speed cv . 

To provide these parameters, DG filters use three dimensional state vectors 
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and 
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Estimates of target acceleration magnitude ˆ
Ta  and lead angle ˆ

T  are calculated using 

the third dimension time derivative in a process described later in this chapter. 
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2. State Estimate Covariance 

The state estimate covariance matrix  P k  reflects the accuracy of the filter’s 

state estimate at time k . The diagonal elements display the variance of each element in 

the state estimate. This implies the size of the state estimate covariance is determined by 

the dimensions of the state estimate. The state estimate covariance matrix is initialized 

with the covariance of the simulated missile’s onboard sensors. Over several time steps, 

the filter mitigates the effect of noise and creates more accurate estimates with a lower 

covariance. State covariance generally continues to decline to a steady state value as 

more measurements are taken, even if the target maneuvers. Initial two dimensional PN 

filter covariance matrices are [16] 
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and 
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Initial three dimensional DG filter covariance matrices are [16] 
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and 
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3. Process Covariance 

Process covariance  Q k  is the covariance of process noise, the zero mean white 

Gaussian process noise used to describe unpredictable state variations. Process 

covariance for two dimensional PN filters is [16] 
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Process covariance for three dimensional DG filters is [16] 
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The process covariance weighting factor  2q k  can be seen in (4.29) and (4.30). 

This weighting factor can be “tuned” prior to and during the simulation to improve 

missile performance. The weighting factor is determined by setting the plant covariance 

equal to the covariance of a state variable due to the most severe target maneuver. This 

can be done with any of the state variables, but higher dimensions are more conservative 

[16]. By using the most severe target maneuver, we are tuning the weighting factor to 

follow the target through any possible maneuver. These weighting factors are described 

individually. 

a. LOS Angle Weighting Factor 

The LOS angle weighting factor  2

L
q k  for both DG and PN filters is 

determined using the covariance of the LOS angle rate. The change in LOS angle L  is 

[14] 



 40 

    
 

 

 

 

2 2

1
ˆ ˆ

ˆ ˆ1 tan
ˆ ˆ2 2

Tperp Tperp

L L

a k a k
k k

r k r k
  

  
    
 
 

, (4.31) 

where ˆ
Tperpa  is the estimated magnitude of target acceleration perpendicular to the LOS. 

An approximation can be made since the change in LOS angle is very small in one time 

step. We consider the change in LOS angle to be the standard deviation of the scenario 

with the hardest feasible target turn perpendicular to the LOS if ˆ 6Tperpa g . By taking 

the square of this standard deviation we attain the covariance. Setting the two covariance 

values equal to each other yields [14] 
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Substituting the time derivative of (4.31) into (4.32) and solving for the LOS angle 

weighting factor yields [14] 
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It is important to note, the LOS angle weighting factor is dependent on range. As 

the missile closes with the target, target accelerations will affect a larger change in LOS 

angle. Since the weighting factor is range dependent, it will increase in size to 

compensate for the larger change in LOS angle. 

The LOS angle weighting factor is also manipulated to improve DG guidance 

performance and combat noise sensitivity. During flight toward the target, the LOS angle 

weighting factor is multiplied by 10 for DG guidance. This helped the filter track the 

target while limiting noise in commanded guidance acceleration and a corresponding 

drop in speed. When the missile reaches a range of 10 kilometers, the LOS angle 

weighting factor is multiplied by 100. The higher process covariance in the end game 

helps the filter account for terminal target maneuvers. Increasing the weighting factor at 

10 kilometers is logical because a target maneuver before this point is unlikely. At distant  
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ranges the missile can respond to target maneuvers with small course adjustments. A 

target maneuver is not likely until the missile is relatively close, which maximizes the 

strain on the missile guidance. 

b. Range Weighting Factor 

The range weighting factor  2

rq k  for both DG and PN filters is determined 

using the covariance of the range rate. The range state estimation is not sensitive to range. 

This means the range weighting factor is constant throughout the scenario. A change in 

range r  is [14] 

    
  2ˆ

ˆ ˆ1
2

Tparaa k
r k r k


   , (4.34) 

where ˆ
Tparaa  is the estimated magnitude of target acceleration parallel to the LOS. We 

consider the change in range to be the standard deviation of the scenario with the hardest 

feasible target turn parallel to the LOS if ˆ 6Tparaa g . Squaring the standard deviation 

and setting the two covariance values equal to each other yields [14] 
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Substituting the time derivative of (4.34) into (4.35), and solving for the range weighting 

factor yields [14] 
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4. Deterministic Inputs 

The deterministic input vector  u k  accounts for known changes in the state due 

to missile motion, namely accelerations due to missile drag and thrust. Known changes in 

the position, velocity, and acceleration of the state are added to the predicted state  
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estimate. The performance of the filter is improved when a deterministic input is 

provided to the predicted state estimation in (3.7) because the amount of motion being 

estimated is reduced. 

The directions of missile thrust and drag are opposite each other but parallel to the 

missile velocity vector. The deterministic input is [14] 

 
Mu Mthrust Mdraga a a  . (4.37) 

The portion of the deterministic input perpendicular to the LOS affects the LOS angle 

state estimation and the parallel portion affects the range state estimation. 

The PN and DG filters have similar deterministic inputs with one exception. We 

model target acceleration as process noise, so adding the deterministic acceleration of the 

missile would drastically increase the noise in the filter. We must wait until after the filter 

generates a corrected state estimate to add the deterministic acceleration of the missile. 

Let us first examine the LOS angle and then range deterministic inputs. 

a. LOS Angle Deterministic Input 

The LOS angle state estimation is affected by accelerations perpendicular to the 

LOS. The exact change in LOS angle L is determined as described in (4.31). The exact 

change in the LOS angle rate L  is [14] 
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Combining (4.31) and (4.38) gives the estimated PN LOS angle deterministic input [14] 

 

 

 

   

    

2

1

2 2 4

tan
ˆ2

ˆ ( )
ˆ4

ˆ4

L

Muperp

Muperp

Muperp

a k

r k
u k

a k r k

r k a k




  
   
  

  
 

    

. (4.39) 

Expanding (4.39) to three dimensions gives the estimated DG LOS angle deterministic 

input [14] 
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The acceleration portion of the DG LOS angle deterministic input will not be 

added to the predicted state estimate of (3.7). The altered predicted state estimate is 
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. (4.41) 

Deterministic acceleration is added to the corrected state estimate of (3.13), which 

yields 
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b. Range Deterministic Input 

The range state estimation is affected by accelerations parallel to the LOS. 

Acceleration parallel to the LOS is directly proportional to the change in range r  and 

range rate r . The estimated PN range deterministic input is [14] 
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Expanding (4.43) to three dimensions gives the estimated DG range deterministic 

input [14] 
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Corresponding altered predicted and corrected state estimate equations are 

          

2

2
ˆ ˆ1

0

Muparax k k F k x k k G k a k

 
 
   
 

 
 

 (4.45) 

and 
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G. GUIDANCE LAW IMPLEMENTATION 

The DG guidance law proved to be much more difficult to implement than PN 

guidance. Simple two dimensional filters provide direct estimates for the required 

parameters to implement the PN guidance law. Implementation of DG guidance requires 

knowledge of the magnitude of the target’s acceleration Ta  and lead angle T . 

Estimates of these two parameters, and subsequently DG guidance, are more sensitive to 

noise due to the extrapolation involved. 

The two target parameters required for DG guidance are estimated from available 

LOS information. Using three dimensional filters for DG we obtain estimates of the LOS 

angle acceleration 
ˆ
L  and range acceleration r̂ . Since we assume the missile state vector 

is known, we can remove the effects of the missile, leaving only the effects of the target. 

Using the remainders of LOS angle acceleration and range acceleration, we estimate the 

target’s magnitude of acceleration ˆ
Ta  and lead angle ˆ

T . 

The process we use to estimate the target parameters is different for DG guidance 

under noiseless and Kalman filtered noise conditions. To remove the effects of the missile 
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on the LOS, missile guidance acceleration must be known. The missile guidance 

acceleration is calculated using Kalman filter outputs. It is not available to the Kalman 

filter for estimation of target parameters in the same discrete time step. For estimates of 

target parameters in noiseless DG scenarios, we use the previous time step missile 

guidance acceleration and the current time step value of the remaining missile state 

parameters. Since noiseless scenarios have smooth guidance acceleration, the change is 

small from one time step to the next, which makes this method effective. For scenarios 

with Kalman filtered noise, guidance acceleration is not smooth. We use the previous 

time step for all missile state parameters that makes the calculation for guidance 

acceleration accurate and less erratic, but implements the guidance a time step late. To 

further smooth the commanded guidance acceleration, we average the current time step 

value with the previous three discrete time steps. These techniques, in conjunction with a 

maximum guidance acceleration limit, balance stability and responsiveness to effectively 

implement DG guidance. 

In Chapter IV, we examined the simulation methodology of the three DOF model. 

We built an understanding of the kinematic boundary and its relation to our simulation. 

Missile and target motion including the effects of drag were generated. Our four Kalman 

filters were described by their state estimate, state covariance estimate, process 

covariance, and deterministic inputs. Finally, implementation of PN and DG guidance 

laws were discussed. Using this three DOF model numerous simulations were run to 

investigate the objectives of this thesis: 

 Determine the effect of Kalman filtered noise on the performance of PN 

and DG guidance laws. 

 Determine if DG provides a tactical advantage over PN for guidance of the 

simulated AMRAAM in the presence of Kalman filtered noise. 

 Determine what level of Kalman filtered noise these guidance laws can 

withstand. 

 Explore the effect of discrete time measurement sample rate on guidance 

law performance. 

Chapter V summarizes the results and analysis of our simulations in pursuit of these 

objectives. 
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V. SIMULATION RESULTS AND ANALYSIS 

Several tests are completed in order to meet our objectives. Tests A (PN) and B 

(DG) compare individual guidance law performance under noiseless and Kalman filtered 

noise conditions. Test C compares PN against DG performance with Kalman filtered 

noise to determine any improvement in guidance of the simulated AMRAAM. Test D 

compares individual guidance law noise sensitivity at a test range 10 percent below the 

corresponding law’s noiseless maximum range. Noise sensitivity is measured by 

determining the maximum noise factor 
noisef  each law can withstand while still 

maintaining 70 percent efficiency. Test E compares individual guidance law performance 

at a baseline discrete time step size of 10 milliseconds with its performance at half and 

twice the baseline rate to determine sample rate sensitivity. 

The kinematic boundary in simulations with Kalman filtered noise represents the 

maximum range from which the missile reaches the kill radius in at least 14 of 20 

simulations. Defining the maximum range in this manner maintains the 70 percent 

efficiency standard set by Pehr [10]. As with any Gaussian white noise process, statistical 

outliers may exist. Kinematic boundaries with a one degree resolution provide 180 

opportunities for an outlier to appear. The number of simulations was chosen to minimize 

statistical outliers and keep the time required to generate a kinematic boundary below 72 

hours. Kinematic boundaries involving greater than 20 simulations are more statistically 

robust but exponentially time intensive. 

Instability in the aft quadrant appears in all kinematic boundaries in this thesis. 

Kinematic boundaries can be reproduced for noiseless simulations but not for Kalman 

filtered noise simulations. Due to the pseudorandom nature of the Kalman filtered noise, 

the instability in the aft quadrant is slightly different with each simulation. This can 

generate aft quadrant results in which maximum effective range with Kalman filtered 

noise is larger than noiseless range. The effects of particular simulation parameters on 

this instability are discussed as they present themselves in test results. Our hypothesis for 

the cause of this instability is presented in Chapter VI. 
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A. TEST A—PN: NOISELESS VERSUS FILTERED NOISE 

The PN guidance law has a low sensitivity to Kalman filtered noise. The 

kinematic boundaries for PN performance under noiseless and Kalman filtered noise 

conditions are shown in Figure 6. Due to the Gaussian nature of the noise, approximately 

70 percent of the noisy measurements will be within 10 meters or 1 mrad of the actual 

LOS angle or range value. The kinematic boundaries are practically identical with the 

exception of some instability in the aft quadrant. A plot of the maximum effective range 

for a 180 degree arc is shown in Figure 7. The range difference between the kinematic 

boundaries is shown in Figure 8. Excluding instability in the aft quadrant, slight constant 

noise degradation throughout the 360 degree view of about one kilometer can be seen. 

 

Figure 6. Kinematic boundaries for PN guidance under noiseless and Kalman 

filtered noise conditions. 
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Figure 7. Maximum effective range of PN guidance under noiseless and Kalman 

filtered noise conditions. 
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Figure 8. Difference plot of PN maximum effective range under noiseless and 

Kalman filtered noise conditions. 
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Figure 9. Kinematic boundaries for DG guidance under noiseless and Kalman 

filtered noise conditions. 
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Figure 10. Maximum effective range of DG guidance under noiseless and Kalman 

filtered noise conditions. 
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Figure 11. Difference plot of DG maximum effective range under noiseless and 

Kalman filtered noise conditions. 
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range advantage in the aft quadrant outweighs the disadvantage in the other quadrants. 

These results serve as a point of departure for research of a hybrid combination of PN and 

DG guidance laws. 

 

Figure 12. Kinematic boundaries for PN and DG guidance with Kalman filtered 

noise. 
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Figure 13. Maximum effective range of PN and DG guidance with Kalman filtered 

noise. 
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Figure 14. Difference plot of PN and DG maximum effective range with Kalman 

filtered noise. 
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but appears to oscillate every 30 degrees in the forward quadrant. The spike in DG noise 

factor at exactly 45 degrees appears to be a statistical outlier. Early versions of this test 

failed to produce the same spike at 45 degrees. Closer analysis also reveals the spike is a 

single data point and values at 44 and 46 degrees support the gradual curve of the data. 

A noise factor below one indicates the guidance was only effective at the test 

range with less than the baseline Kalman filtered noise. Several data points of zero noise 

factor for PN guidance appear in Figure 15. The maximum noise factor test range 

is 10 percent below the noiseless maximum effective range. The accuracy of the noise 

factor being tested is 0.1. A maximum noise factor of zero indicates PN guidance was 

unable to maintain 70 percent effectiveness at the test range with a noise factor of 0.1. 

The aspect angles that produce these zero values correspond to regions of instability. Zero 

values inside the region of instability are to be expected; differences between noiseless 

and noisy simulations can be on the order of 15 kilometers, as shown in Figure 8. 

 

Figure 15. Maximum noise factor for PN guidance. 
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Figure 16. Maximum noise factor for DG guidance. 
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between the kinematic boundaries is shown in Figure 18 using the baseline as a reference. 

The smaller rate appears as a positive difference, or improvement in maximum effective 

range; larger rates are shown as a negative difference, or deterioration. Clearly Figures 17 

and 18 support our supposition that lower rates provide better performance. 

 

Figure 17. Kinematic boundaries for PN guidance with Kalman filtered noise at 

various discrete time step sizes. 
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Figure 18. Difference plot of PN maximum effective range with Kalman filtered 

noise at various discrete time step sizes. 
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Figure 19. Kinematic boundaries for DG guidance with Kalman filtered noise at 

various discrete time step sizes. 
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Figure 20. Difference plot of DG maximum effective range with Kalman filtered 

noise at various discrete time step sizes. 

In Chapter V, we presented our simulation results in support of our thesis 

objectives. Chapter VI provides a summary of our conclusions and recommendations for 

areas of future research. 

0 20 40 60 80 100 120 140 160 180
-1

-0.5

0

0.5

1

1.5

2
x 10

4

Aspect Angle (deg)

R
a
n
g
e
 (

m
)

 

 

Half Baseline - Baseline

Twice Baseline - Baseline



 63 

VI. CONCLUSIONS AND RECOMMENDATIONS 

A. CONCLUSIONS 

The objectives of this research were met. The DG guidance law has been proven 

to be more sensitive to Kalman filtered noise than PN guidance. While DG guidance 

suffers slightly larger noise degradation in most aspect angles, it provides a distinct and 

significant increase in maximum effective range over PN in tail chase scenarios. Based 

on these results we believe DG does provide a tactical advantage over PN guidance for 

the simulated AMRAAM. 

Analysis of the kinematic boundaries shows instability in the aft quadrant of both 

PN and DG simulations under noiseless and Kalman filtered noise conditions. The 

instability was generally reduced as sample interval was lowered, which is expected since 

missile guidance response time is also lowered. This instability is likely due to transition 

from supersonic to subsonic speeds. As the missile’s speed approaches the transonic 

region, the parasitic drag coefficient, shown in Figure 5, rises exponentially. If the missile 

is not maneuvering, transition through the transonic region is accompanied by a slight 

decrease in missile speed due to parasitic drag and is otherwise uneventful. If the missile 

is maneuvering, we believe the exponential increase in parasitic drag causes the 

magnitude of guidance acceleration to also rise proportionately to maintain the desired 

missile maneuver. Exponential rise in guidance acceleration causes an exponential rise in 

the induced drag coefficient. This combination of parasitic and induced drag drastically 

reduces missile speed. Target maneuvers and corresponding missile maneuvers can be 

expected in the end game of air-to-air missile scenarios. Aspect angles in the aft quadrant 

correspond to scenarios in which the missile is passing through the transonic region in the 

end game of the scenario resulting in kinematic boundary instability. This theory is 

supported by Pehr who experienced regions of instability, which he eliminated by slightly 

smoothing the parasitic drag coefficient curve in the transonic region [10]. The effects of 

the transonic region on the kinematic boundary are consistent with noiseless simulations. 

Since Kalman filtered noise introduces unpredictable accelerations into the model, the 

kinematic boundary effects vary slightly with each boundary produced. The transonic 
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instability in DG simulations with Kalman filtered noise may be compounded by the 

extreme noise sensitivity of DG target state estimates. 

The definition of 70 percent efficiency, 14 of 20 simulations, proved to be 

adequate. Running at least 14 simulations at each tested range, at each angle, to generate 

a single point on the kinematic boundary is time intensive. Kinematic boundaries using a 

seven of 10 definition showed significant instability and could not be duplicated easily. 

Kinematic boundaries using 35 of 50 simulations were estimated to take six to eight days 

to generate. 

Both PN and DG guidance showed more noise sensitivity in the aft quadrant. This 

is likely due to the higher missile velocity in the end game of simulations with a tail 

chase trajectory. Target maneuvers, coupled with high missile velocity, produce a larger 

speed differential for the guidance to overcome. 

Our sample rate study showed performance does improve with lower discrete 

time sample intervals. As onboard processors improve, effective missile range should 

increase. The results for DG guidance sample rate sensitivity in the transonic region 

proved puzzling and merits further investigation. 

B. RECOMMENDATIONS FOR FURTHER RESEARCH 

In this thesis, the effects of Kalman filtered noise on the performance of PN and 

DG guidance laws were investigated. Future work in this area may address the following 

issues. 

1. Instability Investigation 

Instability in the aft quadrant is prevalent in all kinematic boundaries in this 

thesis. The instability was generally reduced as sample interval was lowered. Our sample 

rate study for DG provides counter-intuitive results as illustrated in Figures 19 and 20. 

Future work could investigate this instability and our theory for its existence. Possible 

modifications to the drag model could eliminate this instability completely. 
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2. Kalman Filter Improvement 

Our implementation of Kalman filtering can be modified. We developed estimates 

of range and LOS angle time derivatives with separate filters. A more advanced filter 

might incorporate both range and LOS angle measurements into a single filter to estimate 

the target state directly. This filter would be more complicated but might improve DG 

guidance performance. We could also modify the filters to incorporate direct range rate 

measurements from a Doppler type sensor. 

3. Classified AMRAAM Guidance Study 

The three DOF model in this thesis is based on open source data for the 

AMRAAM air-to-air missile. A classified thesis incorporating current AMRAAM 

specifications would make this model more closely parallel the currently fielded version 

of the missile. Simulations with actual AMRAAM parameters may improve our 

understanding of the tactical advantage DG guidance provides. 

4. Adaptive Guidance Law Switching 

The DG guidance law has not presented a clear advantage over PN in all 

quadrants as illustrated in Figures 12 and 14. An adaptive approach that allows the 

missile to switch between guidance laws based on the trajectory at launch, or even in 

flight, may provide superior results. 
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APPENDIX MATLAB® CODE 

The script and function files used in the three DOF simulation are contained in 

this appendix. The filenames and their purpose are summarized in Table 2. 

Table 2.   Summary of MATLAB® files and their purpose. 

FILENAME PURPOSE 

A. Simulation run script files 

init.m Initializes all simulation run script files. 

kb_generator.m Generates a kinematic boundary. 

sim_kb.m Runs a simulation for the kb_generator.m file. 

sim_single.m Runs a single simulation. 

max_noise.m Generates a plot of maximum sustainable noise. 

B. Simulation guidance law files 

propnav.m Implements the proportional navigation guidance law. 

diffgeo.m Implements the differential geometry guidance law. 

C. Simulation function files 

time_to_impact.m Calculates time remaining before impact with the target. 

mach_speed.m Calculates the mach number of missile speed. 

rho_value.m Calculates the density of air at a given altitude. 

cdp_value.m Calculates the parasitic drag coefficient from Figure 5.  

fdp_value.m Calculates the force on the missile due to parasitic drag. 

fdi_value.m Calculates the force on the missile due to induced drag. 

noisy_range.m Adds noise to range measurements.  

noisy_theta.m Adds noise to LOS angle measurements.  

missile_motion.m Updates the missile state vector. 

target_motion.m Updates the target state vector. 

D. Simulation filter files 

kalman_dg_range.m 
Generates corrected estimates of the range state for the differential 
geometry guidance law. 

kalman_dg_theta.m 
Generates corrected estimates of the LOS angle state for the differential 
geometry guidance law. 

kalman_pn_range.m 
Generates corrected estimates of the range state for the proportional 
navigation guidance law. 

kalman_pn_theta.m 
Generates corrected estimates of the LOS angle state for the proportional 
navigation guidance law. 
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A. SIMULATION RUN SCRIPT FILES 

% INIT 
% Generates global variables in the workspace. 
%---------------------------------------------------------------------- 
%---------------------------------------------------------------------- 
%   File:               init.m 
%   Name:               LT Adam Osborn 
%   Component Runtime:  8.1 (R2013a) 
%   Compiler:           4.18.1 (R2013a) 
%                       32-bit (Windows XP) 
%   Date:               06 February 2014 
%   Description:        Generates global variables in the workspace.  
%                       Allows user to modify initialization parameters 
%                       for a single simulation using single_sim.m. 
%   Inputs:             Provided by the user. 
%   Outputs:            Global variables in the workspace. 
%   Process:  
%   Assumptions: 
%   Comments: 
%---------------------------------------------------------------------- 
%---------------------------------------------------------------------- 

  
%------ define globals ------ 
global GRAV DELTA STP_TM ALT INITSPD TRN_TM TRN_G BST_TM PLOTS RUNS... 
    DEGSTEP MASS DIAM SREF eAR FBST PN_MAXG DG_MAXG NPRM SIG_THETA... 
    SIG_RNG Q2_PN_THETA Q2_PN_RNG Q2_SHIFT Q2_DG_THETA1 Q2_DG_THETA2... 
    Q2_DG_RNG INITRNG INITHDG NZ_FACTOR NZ LAW FILT        

  
%------ define input vector ------ 
INITRNG = 30000;    % Initial range (m) between missile and target. 
INITHDG = 10;      % Initial heading (deg) of the target. 
NZ_FACTOR = 1;      % Noise factor used as a multiplier to randn noise 
                    % added in noisy_theta.m and noisy_range.m. 
NZ = 1;             % Adds noise to simulated sensor readings of theta 
                    % and range if "ON". Set to 0 for "OFF" and 1 for 
                    % "ON". 
LAW = 1;            % Selects the guidance law to be implemented. Set 
                    % to 1 for PN and 2 for DG. 
FILT = 1;           % Guidance law uses kalman filter estimates to 
                    % calculate guidance acceleration when set to "ON" 
                    % and actual parameters when "OFF". If "OFF" 
                    % Kalman filters still run and generate plots but 
                    % outputs are not used 
                    % for guidance. Set to 0 for "OFF" and 1 for "ON". 
PLOTS = 1;          % Allows single_sim.m to plot scenario and filter  
                    % information when set to "ON". No plots are 
                    % generated when set to "OFF". Set to 0 for "OFF" 
                    % and 1 for "ON". 
RUNS = 20;          % Number of simulations used to determine missile  
                    % effectivness. 

                     
%------ define constants ------ 
% Scenario Constants 
GRAV = 9.8045;      % Gravitational constant (m/sec^2). 
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DELTA = .01;        % Discrete step size (sec). 
STP_TM = 300;       % Maximum scenario run time (sec). 
ALT = -6000;        % Constant altitude (m) of missile and target in  
                    % NED coordinates given in Pehr thesis pg. 25. 
INITSPD = 0.83 * mach_speed(ALT);  % Initial speed of missile and 
                                   % target are Mach 0.83 or 262.0310  
                                   % (m/sec) given in Pehr thesis  
                                   % pg. 25. 
TRN_TM = 3;         % Time remiaining before impact when target begins 
                    % turn given in Pehr thesis pg. 25. Set to 0 for 
                    % no turn.  
TRN_G = 6;          % Acceleration of target turn given in Pehr thesis  
                    % pg. 25. 
BST_TM = 6;         % Number of time steps boost is applied. 
DEGSTEP = 1;        % Heading increment for kb_generator.m and  
                    % max_noise.m simulation files. 

  
% Missile Constants 
MASS = 156.8;       % Mass of missile (kg) given in Pehr thesis pg. 74. 
DIAM = 0.1778;      % Diameter of missile (m) given in Pehr thesis 
                    % pg. 74 
SREF = pi*DIAM^2/4; % Missile cross sectional given in Pehr thesis 
                    % pg. 75 
eAR = 1.5;          % Unitless elliptical eff & aspect ratio given in 
                    % Pehr thesis pg. 88 
FBST = 23000;       % Constant thrust (N) during boost given in Pehr 
                    % thesis pg. 12 
PN_MAXG = 50;       % Maximum PN missile guidance acceleration (g). 
DG_MAXG = 15;       % Maximum DG missile guidance acceleration (g). 

  
% Filter Constants 
NPRM = 5;           % Guidance gain used by Pehr for all guidance laws 
                    % given in Pehr thesis pg. 25. 
SIG_THETA = NZ_FACTOR*0.001; % LOS angle sensor uncertainty (rad) given 
                             % in Pehr thesis pg. 16. 
SIG_RNG = NZ_FACTOR*10;      % Range sensor uncertainty (m) given in 
                             % Pehr thesis pg. 16. 
Q2_PN_THETA = 1;    % PN theta kalman filter plant noise covariance  
                    % multiplier. 
Q2_PN_RNG = 1;      % PN range kalman filter plant noise covariance  
                    % multiplier. 
Q2_SHIFT = 10000;   % Range (m) at which plant noise covariance  
                    % multiplier of the DG theta kalman filter shifts  
                    % from Q2_DG_THETA1 to Q2_DG_THETA2. 
Q2_DG_THETA1 = 1;   % DG theta kalman filter plant noise covariance  
                    % multiplier outside Q2_SHIFT range. 
Q2_DG_THETA2 = 100; % DG theta kalman filter plant noise covariance  
                    % multiplier inside Q2_SHIFT range. 
Q2_DG_RNG = 10;     % DG range kalman filter plant noise covariance  
                    % multiplier. 

  
%------ initialize variables ------ 
%------ functions ------ 
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function [rho] = kb_generator() 
% KB_GENERATOR 
% Generates a kinematic boundary. 
%---------------------------------------------------------------------- 
%---------------------------------------------------------------------- 
%   File:               kb_generator.m 
%   Name:               LT Adam Osborn 
%   Component Runtime:  8.1 (R2013a) 
%   Compiler:           4.18.1 (R2013a) 
%                       32-bit (Windows XP) 
%   Date:               06 February 2014 
%   Description:        Runs multiple simulations using kb_sim.m to 
%                       generate a kinematic boundary of the maximimum 
%                       effective missile range. 
%   Inputs:             Global variables provided by user in init.m  
%                       file. 
%   Outputs:            Kinematic boundary of the maximimum effective 
%                       missile range. 
%                       Rho vector of maximum ranges. (rho) (m) 
%   Process: 
%   Assumptions: 
%   Comments:           For simulations without noise the missile will 
%       `               reach the kill radius from this range in 100% 
%                       of simulations. Simulations with noise are 
%                       inconsistent near the boundary. To produce a  
%                       useful kinematic boundary, the boundary is  
%                       marked at the range from which the missile will 
%       `               reach the kill radius in 70% of simulations. 
%                       Portions of this code have been reused from  
%                       Pehr’s Thesis. 
%---------------------------------------------------------------------- 
%---------------------------------------------------------------------- 
%------ Initialize MATLAB® Workspace ------ 
format long;    % Scaled fixed point display format for all float  
                % variables with 15 digits for double and 7 digits 
                % for single. 

  
close all;      % Closes all previous figures. 

  
clear all;      % Clears all previous workspace variables. 

  
init;           % Runs init.m to load global workspace variables. 

  
%------ define globals ------ 
global DEGSTEP INITSPD ALT RUNS 

  
%------ define constants ------ 
%------ define input vector ------ 
%------ initialize variables ------ 
tic;    % Start timer for kinematic boundary generation time. 

  
% Initialize current maximum range matrix 
rho = zeros(((180/DEGSTEP)+1),1); 
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%------ functions ------ 
% Evaluate maximum effective range at each aspect angle 
for kk = 1:((180/DEGSTEP)+1)   % One cycle for each aspect angle. 

  
    % Determine target state variables for this aspect angle 
    T_hdg = (kk-1)*DEGSTEP; % Set target heading to aspect angle 
    x_spd = INITSPD*cos(T_hdg*pi/180); % Component of target speed  
                                       % along x-axis. 
    y_spd = INITSPD*sin(T_hdg*pi/180); % Component of target speed  
                                       % along y-axis. 

     
    load Final_Plotting_Workspace.mat   % Uses ranges from simulations 

with RUNS = 10 
                        % to speed up production of plots with  
                        % RUNS = 20. 
    if LAW == 1 
            first_rng = PN_noise(kk); 
            elseif LAW ==2 
                first_rng = DG_noise(kk); 
    end 
    % First test loop (10km step size) 
    for T_rng = first_rng : 10000 : 150000 
        disp(['*** ',num2str(T_rng),', 10km step size ***']) 

         
        % Set initial target state 
        T_init = [T_rng;x_spd;0;y_spd;ALT;0]; 

         
        %Reset variables 
        misses = 0; 
        hits = 0; 
        swings = 0; 

  
        % Determine if missile is effective at this range (100%  
        % effective for no noise, 70% effective for noisy simulations) 
        while swings <= RUNS 

             
            % Run simulation 
            [rngout] = sim_kb(T_init); 

             
            % Determine if missile hit 
            if min(rngout)<=5 
                disp(['>>> HIT, Heading ',num2str(T_hdg),... 
                    ' deg, Range ',num2str(T_rng), ' <<<']) 
                hits = hits + 1;        % Count number of hits. 
            else 
                disp(['>>> MISS, Heading ',num2str(T_hdg),... 
                    ' deg, Range ',num2str(T_rng), ' <<<']) 
                misses = misses + 1;    % Count number of misses. 
            end 

             
            % Missile is ineffective if it misses 30% of the time 
            if misses == 0.3*RUNS; 
                max_rng = T_rng-10000;  % Save missile's longest  
                                        % effective range. 
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                break 
            end 

             
            % Missile is effective if it hits 70% of the time 
            if hits == 0.7*RUNS; 
                max_rng = T_rng;        % Save missile's longest  
                                        % effective range. 
                break 
            end 

            
            swings = swings + 1;        % Increment simulation count 
        end 

         
        % If missile is ineffective, move to the next test loop 
        if misses == 0.3*RUNS; 
            break 
        end 
    end 

     
    % Second test loop (1km step size) 
    for T_rng = max_rng+1000 : 1000 : max_rng + 9000 
        disp(['*** ',num2str(T_rng),', 1km step size ***']) 

         
        % Set initial target state 
        T_init = [T_rng;x_spd;0;y_spd;ALT;0]; 

         
        %Reset variables 
        misses = 0; 
        hits = 0; 
        swings = 0; 

         
        % Determine if missile is effective at this range (100% 
        % effective for no noise, 70% effective for noisy simulations) 
        while swings <= RUNS 

              
            % Run simulation 
            [rngout] = sim_kb(T_init); 

             
            % Determine if missile hit 
            if min(rngout)<=5 
                disp(['>>> HIT, Heading ',num2str(T_hdg),... 
                    ' deg, Range ',num2str(T_rng), ' <<<']) 
                hits = hits + 1;        % Count number of hits. 
            else 
                disp(['>>> MISS, Heading ',num2str(T_hdg),... 
                    ' deg, Range ',num2str(T_rng), ' <<<']) 
                misses = misses + 1;    % Count number of misses. 
            end 

             
            % Missile is ineffective if it misses 30% of the time 
            if misses == 0.3*RUNS; 
                max_rng = T_rng-1000; % Save missile's longest  
                                      % effective range. 
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                break 
            end 

             
            % Missile is effective if it hits 70% of the time 
            if hits == 0.7*RUNS; 
                max_rng = T_rng;      % Save missile's longest  
                                      % effective range. 
                break 
            end 

             
            swings = swings + 1; % Increment simulation count. 
        end 

         
        % If missile is ineffective, move to the next test loop 
        if misses == 0.3*RUNS; 
            break 
        end 
    end 

     
    % Third test loop (100m step size) 
    for T_rng = max_rng+100 : 100 : max_rng + 900 
        disp(['*** ',num2str(T_rng),', 100 m step size ***']) 

         
        % Set initial target state 
        T_init = [T_rng;x_spd;0;y_spd;ALT;0]; 

         
        %Reset variables 
        misses = 0; 
        hits = 0; 
        swings = 0; 

        
        % Determine if missile is effective at this range (100%  
        % effective for no noise, 70% effective for noisy simulations) 
        while swings <= RUNS 

             
            % Run simulation 
            [rngout] = sim_kb(T_init); 

             
            % Determine if missile hit 
            if min(rngout)<=5 
                disp(['>>> HIT, Heading ',num2str(T_hdg),... 
                    ' deg, Range ',num2str(T_rng), ' <<<']) 
                hits = hits + 1;        % Count number of hits. 
            else 
                disp(['>>> MISS, Heading ',num2str(T_hdg),... 
                    ' deg, Range ',num2str(T_rng), ' <<<']) 
                misses = misses + 1;    % Count number of misses. 
            end 

             
            % Missile is ineffective if it misses 30% of the time 
            if misses == 0.3*RUNS; 
                max_rng = T_rng-100;    % Save missile's longest  
                                        % effective range. 
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                break 
            end 

             
            % Missile is effective if it hits 70% of the time 
            if hits == 0.7*RUNS; 
                max_rng = T_rng;        % Save missile's longest  
                                        % effective range. 
                break 
            end 

             
            swings = swings + 1;        % Increment simulation count. 
        end 

         
        % If missile is ineffective, move to the next test loop 
        if misses == 0.3*RUNS; 
            break 
        end 
    end 

     
    % Update rho plotting vector with maximum effective range at this 
    % aspect angle 
    rho(kk) = max_rng; 

  
end 

  

  
toc     % Stop timer for kinematic boundary generation time. 

  
% Generate theta vector for plotting 
theta = pi/180*(0:DEGSTEP:180); 
theta_plot = [theta, -1*fliplr(theta)]'; % Mirror the 180 degree arc of 
                                         % theta to create a full 360  
                                         % kinematic boundary. 

  
% Generate rho vector for plotting 
rho_plot = [rho; flipud(rho)];           % Mirror the 180 degree arc of 
                                         % range to create a full 360  
                                         % kinematic boundary. 

  
% Plot kinematic boundary 
figure(1) 
polar (theta_plot, rho_plot) 
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function [rngout] = sim_kb(T_INIT) 
% SIM_KB 
% Conducts a single simulation for the automated kinematic boundary 
% generator in kb.m. 
%---------------------------------------------------------------------- 
%---------------------------------------------------------------------- 
%   File:               sim_kb.m 
%   Name:               LT Adam Osborn 
%   Component Runtime:  8.1 (R2013a) 
%   Compiler:           4.18.1 (R2013a) 
%                       32-bit (Windows XP) 
%   Date:               06 February 2014 
%   Description:        Conducts a single simulation for the automated 
%                       kinematic boundary generator in kb_generator.m. 
%   Inputs:             Initial target state (T_INIT). 
%   Outputs:            Actual range output matrix (rngout) (m) 
%   Process:            The initial target state vector is given. The 
%                       missile state vector is determined. Actual 
%                       measurements of LOS angle and range are 
%                       created. Gaussian white noise is added to the 
%                       actual measurements of LOS angle and range. The 
%                       Kalman filters generate corrected estimates of 
%                       LOS angle and range time derivatives. These 
%                       estimates are used to generate guidance 
%                       acceleration. The missile and target state 
%                       vectors are updated and the process is 
%                       repeated. 
%   Assumptions: 
%   Comments: 
%---------------------------------------------------------------------- 
%---------------------------------------------------------------------- 
%------ Initialize MATLAB® Workspace ------ 
format long;    % Scaled fixed point display format for all float 
                % variables with 15 digits for double and 7 digits 
                % for single. 

  
%------ define globals ------ 
global GRAV DELTA STP_TM ALT INITSPD TRN_TM MASS FBST BST_TM ... 
    SIG_THETA SIG_RNG INITRNG NZ LAW FILT PN_MAXG DG_MAXG 

  
%------ define constants ------ 
% Position and velocity matrices. 
Hp = [1, 0, 0, 0, 0, 0;   % Extracts position components from the  
      0, 0, 1, 0, 0, 0;   % missile or target state vector. 
      0, 0, 0, 0, 1, 0]; 

  
Hv = [0, 1, 0, 0, 0, 0;   % Extracts velocity components from the  
      0, 0, 0, 1, 0, 0;   % missile or target state vector. 
      0, 0, 0, 0, 0, 1]; 

  
% Missile boost acceleration (g). 
mab = FBST/(MASS*GRAV); 

  
%------ define input vector ------ 
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% Initial target state vector: [x; vx; y; vy; z; vz] 
T = T_INIT;     % Input vector from kinematic boundary file  
                % kb_generator.m. 

  
% Initial missile state vector: [x; vx; y; vy; z; vz] 
M = [0;         % Start missile pointing target at (0,0) and  
    INITSPD;    % co-altitude of 6000 meters. 
    0; 
    0; 
    ALT; 
    0]; 

  
%------ initialize variables ------ 
% Turn value 
turn = 0;   % Initial target motion is straight. Turn value is 0 when  
            % target motion is straight, 1 when turning. 

  
% Boost value 
boost = 1;  % Simulation begins when "boost phase" is initiated. Boost  
            % value is 1 during "boost phase" (first 6 sec) and 0  
            % afterward. 

  
% Filter inputs 
Fdp = fdp_value(ALT, INITSPD, boost);    % Initial parasitic drag  
                                         % force (N). 

  
Mag = [0;   % Guidance is not applied until after  
       0;   % filters are initialized. 
       0]; 

  
Fdi = fdi_value(Mag, INITSPD, ALT);     % Initial induced drag  
                                        % force (N). 

  
mad = (Fdp + Fdi)/(MASS*GRAV);          % Magnitude of acceleration  
                                        % due to drag (g). 

  
mac_paraL_k1 = mad - mab; % Magnitude of acceleration (g) parallel to  
                          % the LOS. Signs are in terms of the effect  
                          % on the LOS. The acceleration due to drag  
                          % (mad) is positive because it opens range. 
                          % The acceleration due to boost (mab) is  
                          % negative because it closes range.The entire 
                          % magnitude of mad and mab are parallel to  
                          % the LOS at intialization because the  
                          % missile points the target. 

  
mac_perpL_k1 = 0;         % Magnitude of acceleration (g) parallel to  
                          % the LOS is zero at initialization since all  
                          % missile velocity is pointing at the target. 

  
Ma = [-mac_paraL_k1; 0; 0;];    % Total missile acceleration at  
                                % initialization is all in LOS.  
                                % mac_paraL_k1 is negative since it is  
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                                % in terms of the effect on the LOS  
                                % while Ma is in terms of the effect on 
                                % the missile. 

  
thetaLM_k0 = 0; % The DG guidance law uses the previous time step  
                % corrected estimate of thetaLM (thetaLM_k0) when the  
                % guidance law is receiving kalman filter corrected  
                % estimates vice actual parameters (FILT = 1).  
                % Initialized at zero because the missile is pointing  
                % at the target. 

  
thetaLM_k1 = 0; % The DG and PN guidance laws uses the current time  
                % step corrected estimate of thetaLM (thetaLM_k1) when 
                % the guidance law is receiving kalman filter corrected 
                % estimates vice actual parameters (FILT = 1). The  
                % kalman filters are not initialized until the fourth  
                % time step (kk = 4). Setting thetaLM_k1 to zero for  
                % the first four time steps has no effect since the  
                % output of the guidance laws are also set to zero  
                % until kk = 4 and kk = BST_TM/DELTA for PN and DG  
                % respectively. 

  
VM_old = Hv*M;  % The DG guidance law uses the missile velocity vector 
                % (VM) from the previous time step (VM_old) when the  
                % guidance law is receiving kalman filter corrected  
                % estimates vice actual parameters (FILT = 1).  
                % Initialized to actual VM. 

  
thetadt_old = T(4)/INITRNG; % Initialized to the actual LOS angle rate. 
                            % Used for calculating actual LOS angle  
                            % acceleration (thetadtdt).  

  
rngdt_old = 0;  % Initialized to the actual range rate. Used for  
                % calculating actual range acceleration (rangedtdt). 

  
% Output matrices (Built in advance to speed MATLAB® processing.) 
% Missile guidance acceleration (g). 
magout = zeros(1, (STP_TM/DELTA));             
% Actual LOS angle (rad). 
thetaout = zeros(1, (STP_TM/DELTA));           
% Current time step corrected estimate of LOS angle (rad). 
theta_k1out = zeros(1, (STP_TM/DELTA));        
% Current time step corrected estimate of LOS angle rate (rad/sec). 
thetadt_k1out = zeros(1, (STP_TM/DELTA));      
% Current time step corrected estimate of LOS angle acceleration  
% (rad/sec^2). 
thetadtdt_k1out = zeros(1, (STP_TM/DELTA));    

  
% Actual range to target (m) output matrix. 
rngout = zeros(1, (STP_TM/DELTA));             
% Current time step corrected estimate of range to target (m). 
rng_k1out = zeros(1, (STP_TM/DELTA));         
% Current time step corrected estimate of range rate to target (m/sec). 
rngdt_k1out = zeros(1, (STP_TM/DELTA));        
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% Current time step corrected estimate of range acceleration to target 
% (m/sec^2). 
rngdtdt_k1out = zeros(1, (STP_TM/DELTA));      

  
%------ functions ------ 
% Primary Loop 
for kk = 1:(STP_TM/DELTA) 

    
    % Calculate actual scenario parameters 
    malt = M(5);       % Missile altitude (m) in NED coordinates 
    VM = Hv*M;         % Missile velocity vector 
    VMu = VM/norm(VM); % Unit vector in direction of VM 
    mspd = norm(VM);   % Missile speed (m/sec) 
    VT = Hv*T;         % Target velocity vector 
    tspd = norm(VT);   % Target speed (m/sec) 
    PL = Hp*(T - M);   % LOS position vector from missile to target 
    PLu = PL/norm(PL); % Unit vector in the direction of PLu 
    VL = Hv*(T - M);   % LOS velocity vector from missile to target 
    rng = norm(PL);    % Range (m) 
    rngdt = VL'*PLu;   % Range rate (m/sec) 
    theta = atan2(PL(2), PL(1));    % LOS angle (rad) 
    thetaVM = atan2(VM(2), VM(1));  % Angle between missile velocity  
                                    % vector and x-axis. 
    thetaLM = thetaVM - theta;      % Missile lead angle defined as  
                                    % the angle between PL and VM. 

     
    % Generate noisy measurements 
    if NZ == 0         % Adds noise to simulated sensor readings of  
                       % theta and range if "ON". Set to 0 for "OFF" 
                       % and 1 for "ON". 
        nz_theta = theta; 
        nz_rng = rng; 
    else               % Noise "ON" 
        nz_theta = noisy_theta(theta); 
        nz_rng = noisy_range(rng); 
    end 

     
    % Generate actual LOS angle rate 
    VLperp = VL - rngdt * PLu;      % Portion of LOS velocity vector  
                                    % (VL) perpendicular to LOS  
                                    % position unit vector (PLu) 

     
    if norm(VLperp) == 0            % Prevent divide by zero. 
        VLperpu = cross([0;0;1], PLu); 
    else 
        VLperpu = VLperp/norm(VLperp);  % Unit vector in direction  
                                        % of VLperp. 
    end 

     
    sign_thetadt = sign(cross(PLu, VLperpu));   % Sign of LOS angle  
                                                % rate depends on the  
                                                % direction of VLperpu. 
    thetadt = sign_thetadt(3)*norm(VLperp)/rng; % Actual LOS angle rate 
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    % Generate Actual LOS angle acceleration (thetadtdt) and range  
    % acceleration (rngdtdt) 
    thetadtdt = (thetadt - thetadt_old)/DELTA; 
    rngdtdt = (rngdt - rngdt_old)/DELTA; 

     
    % Initialize filters using first three time steps 
    if kk == 4 
        % Previous time step corrected estimate of LOS angle (rad). 
        theta_k0 = thetaout(1,3);  
        % Previous time step corrected estimate of LOS angle rate  
        % (rad/sec). 
        thetadt_k0 = (thetaout(1,3) - thetaout(1,2))/DELTA;  
        % Previous time step corrected estimate of LOS angle  
        % acceleration(rad/sec^2). 
        thetadtdt_k0 = (((thetaout(1,3) - thetaout(1,2))/DELTA)-... 
            ((thetaout(1,2) - thetaout(1,1))/DELTA))/DELTA;  

       
        % Previous time step corrected estimate of range (m). 
        rng_k0 = rngout(1,3);  
        % Previous time step corrected estimate of range rate (m/sec). 
        rngdt_k0 = (rngout(1,3) - rngout(1,2))/DELTA;  
        % Previous time step corrected estimate of range acceleration  
        % (m/sec^2). 
        rngdtdt_k0 =(((rngout(1,3) - rngout(1,2))/DELTA)-... 
            ((rngout(1,2) - rngout(1,1))/DELTA))/DELTA;  

         
        % Initialize state covariance matrices 
        if LAW == 1 % PN 
            % Initialized with simulated LOS angle sensor accuracy. 
            Ptheta_old = diag([SIG_THETA^2;  
                              (2/(DELTA^2))*SIG_THETA^2]);  
            % Initialized with simulated range sensor accuracy. 
            Prng_old = diag([SIG_RNG^2;  
                            (2/(DELTA^2))*SIG_RNG^2]); 

  
        elseif LAW == 2 % DG 
            % Initialized with simulated LOS angle sensor accuracy. 
            Ptheta_old = diag([SIG_THETA^2;  
                              (2/(DELTA^2))*SIG_THETA^2;  
                              (4/(DELTA^4))*SIG_THETA^2]); 
            % Initialized with simulated range sensor accuracy. 
            Prng_old = diag([SIG_RNG^2;  
                            (2/(DELTA^2))*SIG_RNG^2;  
                            (4/(DELTA^4))*SIG_RNG^2]); 
        end 
    end 

     
    % Kalman filters 
    if kk >= 4 
        if LAW == 1 %PN filters 
            % Current time step corrected estimate of range and its  
            % time derivatives. 
            [ rng_k1, rngdt_k1, Prng ] = kalman_pn_range(rng_k0,... 
                rngdt_k0, nz_rng, Prng_old, mac_paraL_k1); 
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            % Current time step corrected estimate of LOS angle and its  
            % time derivatives. 
            [ theta_k1, thetadt_k1, Ptheta ] = kalman_pn_theta... 
                (theta_k0, thetadt_k0, nz_theta, Ptheta_old, ... 
                mac_perpL_k1, rng_k1); 

             
        elseif LAW == 2 %DG filters 
            % Current time step corrected estimate of range and its  
            % time derivatives. 
            [ rng_k1, rngdt_k1, rngdtdt_k1, Prng ] = kalman_dg_range... 
                (rng_k0, rngdt_k0, rngdtdt_k0, nz_rng, Prng_old, ... 
                mac_paraL_k1); 

  
            % Current time step corrected estimate of LOS angle and its 
            % time derivatives. 
            [ theta_k1, thetadt_k1, thetadtdt_k1, Ptheta ] = ... 
                kalman_dg_theta(theta_k0, thetadt_k0, thetadtdt_k0, ... 
                nz_theta, Ptheta_old, mac_perpL_k1, rng_k1); 

             
            % Adjust corrected estimates to include deterministic 
            % acceleration inputs. 
            thetadtdtplot_k1 = thetadtdt_k1 + 

(mac_perpL_k1*GRAV/rng_k1);  
                        % Update current time step corrected estimate  
                        % of LOS angle acceleration (thetadtdt_k1)to  
                        % include the deterministic acceleration input  
                        % (missile's drag and boost accelerations  
                        % perpendicular to the LOS). This term cannot  
                        % be added inside the filter because changes  
                        % in LOS angle acceleration are modeled by the  
                        % filter as white noise. 

  
            rngdtdtplot_k1 = rngdtdt_k1 + (mac_paraL_k1*GRAV); 
                        % Update current time step corrected estimate  
                        % of range acceleration (rangedtdt_k1) to  
                        % include the deterministic acceleration input  
                        % (missile's drag and boost accelerations  
                        % parallel to the LOS). This term cannot be 
                        % added inside the filter because changes in  
                        % range acceleration are modeled by the filter 
                        % as white noise. 
        end 

         
        % Generate current time step corrected estimate of missile  
        % lead angle (thetaLM_k1) for guidance law. 
        thetaLM_k1 = thetaVM - theta_k1;     
                        % Corrected estimate of angle between LOS and  
                        % VM for accel perpendicular to VM 
    end 

     
    % Missile guidance 
    if LAW == 1         % PN guidance. 
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        if FILT == 0    % Actual scenario parameters given to guidance  
                        % law in propnav.m. 
            [ mag ] = propnav(thetaLM, thetadt, rngdt);  
                        % PN guidance acceleration (g). 

                         
        else            % Kalman filter estimates given to guidance  
                        % law in propnav.m. 

             
            if kk < 4   % Delays guidance acceleration until after  
                        % Kalman filters have been initialized. 
                mag = 0;% Sets guidance acceleration to zero. 

                 
            else 
                [ mag ] = propnav(thetaLM_k1, thetadt_k1, rngdt_k1);  
                        % PN guidance acceleration (g). 
            end 
        end 
        % Limit guidance acceleration to MAXG to prevent excessive  
        % drag and missile damage. 
        if abs(mag) > PN_MAXG 
            mag = sign(mag)*PN_MAXG; % Reassigns guidance acceleration 
                                     % to the maximum value while still 
                                     % retaining the sign. 
        end 
    end 

     
    if LAW == 2         % DG guidance. 

         
        if FILT == 0    % Actual scenario parameters given to guidance  
                        % law in diffgeo.m. The previous time step 
                        % missile acceleration vector (Ma) is used  
                        % since the output of this function affects the 
                        % current time step Ma. Using the previous time 
                        % step Ma introduces some error into the  
                        % guidance but since the filter is "OFF"  
                        % (FILT = 0) the noise switch must also be  
                        % "OFF" (NZ = 0). The guidance doesn't track  
                        % with noise and no filter. With no noise, Ma  
                        % is very smooth and the difference between Ma  
                        % in one time step is rather small. 

             
            [ mag ] = diffgeo(theta, thetadt, thetadtdt, ...  
                rng, rngdt, rngdtdt, VM, Ma, thetaLM); 
                        % DG guidance acceleration (g). 

  
        else            % Kalman filter estimates given to guidance law 
                        % in diffgeo.m. The previous time step missile  
                        % acceleration vector (Ma) is used since the  
                        % output of this function affects the current  
                        % time step Ma. Using the previous time step Ma 
                        % introduces some error into the guidance. With 
                        % noise, Ma can be very rough and the  
                        % difference between Ma in one time step can be 
                        % large. To combat the error introduced, we  
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                        % have given the guidance law Kalman filter  
                        % estimates from the previous time step so all  
                        % information is from the same time step. This  
                        % generates a guidance acceleration that is  
                        % much more accurate but applied one time step  
                        % late. The result is a much smoother guidance  
                        % output. 

  
            if kk <= BST_TM/DELTA % Estimates are rough until the  
                                  % Kalman filters have a some time to  
                                  % settle. Delaying guidance  
                                  % acceleration until after boost  
                                  % results in much smoother guidance 
                                  % output. 

                 
                mag = 0; % Sets guidance acceleration to zero. 

                 
            else 
                [ mag ] = diffgeo(theta_k1out(kk-1),... 
                    thetadt_k1out(kk-1), thetadtdt_k1out(kk-1), ... 
                    rng_k1out(kk-1), rngdt_k1out(kk-1), ... 
                    rngdtdt_k1out(kk-1), VM_old, Ma, thetaLM_k0);  
                        % DG guidance acceleration (g). 

                         
                % Average guidance output  
                mag = (mag + magout(kk-1) + magout(kk-2) ... 
                    + magout(kk-3))/4;  
                        % Averages guidance output with three previous  
                        % outputs. The result is a much smoother  
                        % guidance output. 
            end 
        end 
        if abs(mag) > DG_MAXG 
            mag = sign(mag)*DG_MAXG; % Reassigns guidance acceleration  
                                     % to the maximum value while still 
                                     % retaining the sign. 
        end 
    end 

  
    % Generate guidance vector 
    Magu = cross([0;0;1],VMu);  
                        % Guidance unit vector (Magu) is perpendicular 
                        % to the missile velocity unit vector (VMu).  
                        % It is always in x-y plane since both target  
                        % and missile remain in x-y plane. The sign of 
                        % guidance acceleration controls the direction  
                        % of Magu. 

     
    Mag = mag*Magu;     % Generates a guidance vector of appropriate  
                        % length and direction. 

     
    % Missile boost 
    if kk < (BST_TM/DELTA)  % Boost phase is active. 
        Mab = mab*VMu;      % Missile acceleration (g) due to boost.  
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                            % Boost thrust is always applied in the  
                            % direction of the missile velocity unit  
                            % vector (VMu). 
        boost = 1;          % Maintains boost phase. 
    else                    % Boost phase terminated. 
        Mab = [0; 0; 0];    % Boost no longer contributes to missile 
                            % acceleration. 
        boost = 0;          % Terminates boost phase. 
    end 

     
    % Missile Drag 
    % Determine current parasitic drag coefficient. 
    Fdp = fdp_value(malt, mspd, boost); % Parasitic drag force (N). 

  
    % Determine current induced drag coefficient. 
    Fdi = fdi_value(Mag, mspd, malt); % Induced drag force (N). 

     
    % Determine acceleration due to total drag (g). 
    mad = (Fdp + Fdi)/(MASS*GRAV);  
                      % Magnitude of acceleration due to drag (mad) is  
                      % due to parasitic and induced drag. 
    Mad = mad*(-VMu); % Acceleration due to drag is always applied in  
                      % the opposite direction of the missile velocity  
                      % unit vector (VMu). 

     
    % Calculate deterministic inputs for Kalman filters from  
    % LOS perpective 
    if kk >= 4  % Estimated theta and range are not available for  
                % deterministic inputs until after the Kalman filters  
                % are initialized. 
        PL_k1 = [cos(theta_k1)*rng_k1; sin(theta_k1)*rng_k1; 0];  
                % Kalman filters only have access to an estimate of the  
                % LOS position vector (PL). 
        PLu_k1 = PL_k1/norm(PL_k1);     % Estimated LOS position  
                                        % unit vector. 

                                         
        % Combined deterministic missile accelerations (g)  
        % due to boost and drag. 
        Mac = Mab + Mad;            

         
        % Estimated magnitude of combined deterministic missile  
        % acceleration parallel to the LOS (mac_paraL_k1) (g). 
        mac_paraL_k1 = Mac'*PLu_k1;      

         
        % Estsimated vector of combined deterministic missile  
        % acceleration parallel to the LOS (Mac_paraL_k1) (g). 
        Mac_paraL_k1 = mac_paraL_k1*PLu_k1;  

         
        % Estsimated vector of combined deterministic missile  
        % acceleration perpendicular to the LOS (Mac_perpL_k1) (g). 
        Mac_perpL_k1 = Mac - Mac_paraL_k1;  

         
        % Estimated magnitude of combined deterministic missile  
        % acceleration perpendicular to the LOS (mac_perpL_k1) (g). 
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        mac_perpL_k1 = norm(Mac_perpL_k1);  

         
        % Sign of mac_perpL_k1 gives direction and must be preserved. 
        sign_mac_perpL_k1 = ... 
            sign(cross((Mac_perpL_k1/norm(Mac_perpL_k1)), PLu));  

         
        % A positive mac_paraL_k1 from the missile's perspective  
        % actually causes the LOS range to decrease. 
        mac_paraL_k1 = -mac_paraL_k1;  

        
        % Deterministic input mac_perpL_k1 causes theta to increase. 
        if sign_mac_perpL_k1(3) < 0      

  
        % A positive mac_perpL_k1 from the missile's perspective  
        % actually causes the LOS angle to decrease. 
            mac_perpL_k1 = -mac_perpL_k1;                                 
        end 
    end 

     
    % Total missile acceleration 
    Ma = Mag + Mad + Mab; % Total missile accel in (g) due to Guidance  
                          % (Mag), Drag (Mad), and Boost (Mab). 

     
    % Update output matrices 
    % Missile guidance acceleration (g). 
    magout(1,kk) = mag;                          
    % Actual LOS angle (rad). 
    thetaout(1,kk) = theta;      
    % Actual range to target (m). 
    rngout(1,kk) = rng;                         

     
    if kk >= 4  % Available to update only after Kalman filters  
                % have been initialized. 
        % Current time step corrected estimate of LOS angle (rad). 
        theta_k1out(1,kk) = theta_k1;            
        % Current time step corrected estimate of LOS angle  
        % rate (rad/sec). 
        thetadt_k1out(1,kk) = thetadt_k1;        
        % Current time step corrected estimate of range to target (m). 
        rng_k1out(1,kk) = rng_k1; 
        % Current time step corrected estimate of range rate to  
        % target (m/sec). 
        rngdt_k1out(1,kk) = rngdt_k1;            

  
        if LAW == 2 % Available only if DG guidance is used. 
            % Current time step corrected estimate of LOS angle 
            % acceleration (rad/sec^2). 
            thetadtdt_k1out(1,kk) = thetadtdtplot_k1;  
            % Current time step corrected estimate of range  
            % acceleration to target (m/sec^2). 
            rngdtdt_k1out(1,kk) = rngdtdtplot_k1;        
        end 
    end 
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    % Stop criteria 
    % Actual range rate (rngdt) is opening after boost has  
    % been terminated. 
    if (rngdt > 0) && (kk > BST_TM/DELTA)    
                % Time delay allows for boost to overcome drag and  
                % accelerate missile speed above target speed. 
        break   % Stops simulation. 
    end 

     
    % 2)Missile speed is less than target speed 
    if (mspd < tspd) && (kk > BST_TM/DELTA)  
                % Time delay allows for boost to overcome drag and  
                % accelerate missile speed above target speed. 
        break   % Stops simulation. 
    end 

     
    % 3) Range to target is less than 5m 
    if (rng < 5) 
        break% Stops simulation. 
    end 

     
    % Update filter variables 
    thetadt_old = thetadt;  % Actual LOS angle rate (rad/sec). 
    rngdt_old = rngdt;      % Actual range rate (m/sec). 
    VM_old = VM;            % Actual missile velocity vector. 
    thetaLM_k0 = thetaLM_k1;% Estimate of angle (rad) between missile  
                            % velocity vector and x-axis. 

     
    if kk >= 4  % Available to update only after Kalman filters  
                % have been initialized. 
        theta_k0 = theta_k1;    % Estimate of LOS angle (rad). 
        thetadt_k0 = thetadt_k1;% Estimate of LOS angle rate (rad/sec). 
        Ptheta_old = Ptheta;    % Theta corrected estimate covariance. 

         
        rng_k0 = rng_k1;        % Estimate of range (m). 
        rngdt_k0 = rngdt_k1;    % Estimate of range rate (m/sec). 
        Prng_old = Prng;        % Range corrected estimate covariance. 

         
        if LAW == 2 % Available only if DG guidance is used. 
            thetadtdt_k0 = thetadtdt_k1;% Estimate of LOS angle  
                                        % acceleration (rad/sec^2). 
            rngdtdt_k0 = rngdtdt_k1;    % Estimate of range  
                                        % acceleration (m/sec^2) 
        end 
    end 

  
    % Missile Motion 
    M = missile_motion(M, Ma);  % Returns updated missile state vector. 

     
    % Target motion 
    if time_to_impact(rng, rngdt) < TRN_TM  % Initiates turn when  
                                            % impact is TURN_TIME  
                                            % seconds away 
        turn = 1;               % Turn value is 0 when target motion  
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                                % is straight, 1 when turning. 
    end 

     
    T = target_motion( T, turn );% Returns updated target state vector. 
end % End primary loop 

  
% Update outputs to the kinematic boundary file kb_generator.m  
% by removing unused columns. 
rngout = rngout(1,1:kk);        % Actual range to target (m). 
end 
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% SIM_SINGLE 
% Conducts a single simulation from user inputs in init.m. 
%---------------------------------------------------------------------- 
%---------------------------------------------------------------------- 
%   File:               sim_single.m 
%   Name:               LT Adam Osborn 
%   Component Runtime:  8.1 (R2013a) 
%   Compiler:           4.18.1 (R2013a) 
%                       32-bit (Windows XP) 
%   Date:               06 February 2014 
%   Description:        Conducts a single simulation based on the user 
%                       inputs from init.m. 
%   Inputs:             Global variables provided by user in init.m  
%                       file. 
%   Outputs:            Figure (1) - Overall summary of the simulation. 
%                       Figure (2) - Summary of actual and estimated  
%                       time derivatives of theta. 
%                       Figure (3) - Summary of actual and estimated  
%                       time derivatives of range. 

  
%   Process:            Inputs are drawn from the init.m file. Target   
%                       and missile states are generated. Actual  
%                       measurements of LOS angle and range are  
%                       created. Gaussian white noise is added to the  
%                       actual measurements of LOS angle and range.  
%                       The Kalman filters generate corrected estimates  
%                       of LOS angle and range time derivatives. These  
%                       estimates are used to generate guidance  
%                       acceleration. The missile and target state 
%                       vectors are updated and the process is  
%                       repeated.  
%   Assumptions: 
%   Comments: 
%---------------------------------------------------------------------- 
%---------------------------------------------------------------------- 
%------ Initialize MATLAB® Workspace ------ 
format long;    % Scaled fixed point display format for all float  
                % variables with 15 digits for double and 7 digits  
                % for single. 

  
close all;      % Closes all previous figures. 

  
clear all;      % Clears all previous workspace variables. 

  
init;           % Runs init.m to load global workspace variables. 

  
%------ define globals ------ 
global GRAV DELTA STP_TM ALT INITSPD TRN_TM MASS FBST PN_MAXG... 
    DG_MAXG BST_TM SIG_THETA SIG_RNG INITRNG INITHDG NZ LAW FILT PLOTS 

  
%------ define constants ------ 
% Position and velocity matrices. 
Hp = [1, 0, 0, 0, 0, 0;     % Extracts position components from the  
      0, 0, 1, 0, 0, 0;     % missile or target state vector. 



 88 

      0, 0, 0, 0, 1, 0]; 

  
Hv = [0, 1, 0, 0, 0, 0;     % Extracts velocity components from the  
      0, 0, 0, 1, 0, 0;     % missile or target state vector. 
      0, 0, 0, 0, 0, 1]; 

  
% Missile boost acceleration (g). 
mab = FBST/(MASS*GRAV); 

  
%------ define input vector ------ 
% Initial target state vector: [x; vx; y; vy; z; vz] 
T = [INITRNG; 
     INITSPD*cos(INITHDG*pi/180); 
     0; 
     INITSPD*sin(INITHDG*pi/180); 
     ALT; 
     0]; 

  
% Initial missile state vector: [x; vx; y; vy; z; vz] 
M = [0;         % Start missile pointing target at (0,0) and  
     INITSPD;   % co-altitude of 6000 meters. 
     0; 
     0; 
     ALT; 
     0]; 

  
%------ initialize variables ------ 
% Turn value 
turn = 0;       % Initial target motion is straight. Turn value is 0  
                % when target motion is straight, 1 when turning. 

  
% Boost value 
boost = 1;      % Simulation begins when "boost phase" is initiated.  
                % Boost value is 1 during "boost phase" (first 6 sec)  
                % and 0 afterward. 

  
% Filter inputs 
Fdp = fdp_value(ALT, INITSPD, boost);   % Initial parasitic drag  
                                        % force (N). 

  
Mag = [0;   % Guidance is not applied until after  
       0;   % filters are initialized. 
       0]; 

  
Fdi = fdi_value(Mag, INITSPD, ALT);     % Initial induced drag  
                                        % force (N). 

  
mad = (Fdp + Fdi)/(MASS*GRAV);          % Magnitude of acceleration  
                                        % due to drag (g). 

  
mac_paraL_k1 = mad - mab; % Magnitude of acceleration (g) parallel to  
                          % the LOS. Signs are in terms of the effect  
                          % on the LOS. The acceleration due to drag  
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                          % (mad) is positive because it opens range. 
                          % The acceleration due to boost (mab) is  
                          % negative because it closes range.The entire 
                          % magnitude of mad and mab are parallel to  
                          % the LOS at intialization because the  
                          % missile points the target. 

  
mac_perpL_k1 = 0;         % Magnitude of acceleration (g) parallel to  
                          % the LOS is zero at initialization since all  
                          % missile velocity is pointing at the target. 

  
Ma = [-mac_paraL_k1; 0; 0;];    % Total missile acceleration at  
                                % initialization is all in LOS.  
                                % mac_paraL_k1 is negative since it is  
                                % in terms of the effect on the LOS  
                                % while Ma is in terms of the effect on 
                                % the missile. 

                                 
thetaLM_k0 = 0; % The DG guidance law uses the previous time step  
                % corrected estimate of thetaLM (thetaLM_k0) when the  
                % guidance law is receiving kalman filter corrected  
                % estimates vice actual parameters (FILT = 1).  
                % Initialized at zero because the missile is pointing  
                % at the target. 

  
thetaLM_k1 = 0; % The DG and PN guidance laws uses the current time  
                % step corrected estimate of thetaLM (thetaLM_k1) when 
                % the guidance law is receiving kalman filter corrected 
                % estimates vice actual parameters (FILT = 1). The  
                % kalman filters are not initialized until the fourth  
                % time step (kk = 4). Setting thetaLM_k1 to zero for  
                % the first four time steps has no effect since the  
                % output of the guidance laws are also set to zero  
                % until kk = 4 and kk = BST_TM/DELTA for PN and DG  
                % respectively. 

                 
VM_old = Hv*M;  % The DG guidance law uses the missile velocity vector 
                % (VM) from the previous time step (VM_old) when the  
                % guidance law is receiving kalman filter corrected  
                % estimates vice actual parameters (FILT = 1).  
                % Initialized to actual VM. 

  
thetadt_old = T(4)/INITRNG; % Initialized to the actual LOS angle rate. 
                            % Used for calculating actual LOS angle  
                            % acceleration (thetadtdt).  

  
rngdt_old = 0;  % Initialized to the actual range rate. Used for  
                % calculating actual range acceleration (rangedtdt). 

  
% Output matrices (Built in advance to speed MATLAB® processing.) 
% Target position (m). 
Tpout = zeros(1, (STP_TM/DELTA));              
% Missile position (m). 
Mpout = zeros(1, (STP_TM/DELTA));              
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% Missile guidance acceleration (g). 
magout = zeros(1, (STP_TM/DELTA));             
% Missile drag acceleration (g). 
madout = zeros(1, (STP_TM/DELTA));             
% Missile speed (m/sec^2). 
mspdout = zeros(1, (STP_TM/DELTA));            
% Time (sec). 
tout = zeros(1, (STP_TM/DELTA));               

  
% Actual LOS angle (rad). 
thetaout = zeros(1, (STP_TM/DELTA));           
% Noisy LOS angle (rad). 
nz_thetaout = zeros(1, (STP_TM/DELTA));        
% Actual LOS angle rate (rad/sec). 
thetadtout = zeros(1, (STP_TM/DELTA));         
% Actual LOS angle acceleration (rad/sec^2). 
thetadtdtout = zeros(1, (STP_TM/DELTA));       
% Current time step corrected estimate of LOS angle (rad). 
theta_k1out = zeros(1, (STP_TM/DELTA));        
% Current time step corrected estimate of LOS angle rate (rad/sec). 
thetadt_k1out = zeros(1, (STP_TM/DELTA));      
% Current time step corrected estimate of LOS angle  
% acceleration (rad/sec^2). 
thetadtdt_k1out = zeros(1, (STP_TM/DELTA));    
% Output matrix for sqrt of maximum eigenvalue of current time step  
% theta corrected estimate covariance. 
sqePthetaout = zeros(1, (STP_TM/DELTA));   

  
% Actual range to target (m). 
rngout = zeros(1, (STP_TM/DELTA));             
% Noisy range to target (m). 
nz_rngout = zeros(1, (STP_TM/DELTA));          
% Actual range rate to target (m/sec). 
rngdtout = zeros(1, (STP_TM/DELTA));           
% Actual range acceleration to target (m/sec^2). 
rngdtdtout = zeros(1, (STP_TM/DELTA));         
% Current time step corrected estimate of range to target (m). 
rng_k1out = zeros(1, (STP_TM/DELTA));          
% Current time step corrected estimate of range rate to target (m/sec). 
rngdt_k1out = zeros(1, (STP_TM/DELTA));        
% Current time step corrected estimate of range acceleration to  
% target (m/sec^2). 
rngdtdt_k1out = zeros(1, (STP_TM/DELTA));      
% Output matrix for sqrt of maximum eigenvalue of current time step  
% range corrected estimate covariance. 
sqePrngout = zeros(1, (STP_TM/DELTA));      

  
%------ functions ------ 
% Primary Loop 
for kk = 1:(STP_TM/DELTA) 

     
    % Calculate actual scenario parameters 
    malt = M(5);        % Missile altitude (m) in NED coordinates 
    VM = Hv*M;          % Missile velocity vector 
    VMu = VM/norm(VM);  % Unit vector in direction of VM 
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    mspd = norm(VM);    % Missile speed (m/sec) 
    VT = Hv*T;          % Target velocity vector 
    VTu = VT/norm(VT);  % Unit vector in direction of VT 
    tspd = norm(VT);    % Target speed (m/sec) 
    PL = Hp*(T - M);    % LOS position vector from missile to target 
    PLu = PL/norm(PL);  % Unit vector in the direction of PLu 
    VL = Hv*(T - M);    % LOS velocity vector from missile to target 
    rng = norm(PL);     % Range (m) 
    rngdt = VL'*PLu;    % Range rate (m/sec) 
    theta = atan2(PL(2), PL(1));    % LOS angle (rad) 
    thetaVM = atan2(VM(2), VM(1));  % Angle between missile velocity  
                                    % vector and x-axis. 
    thetaLM = thetaVM - theta;      % Missile lead angle defined as the  
                                    % angle between PL and VM. 

  
    % Generate noisy measurements 
    if NZ == 0          % Adds noise to simulated sensor readings of  
                        % theta and range if "ON". Set to 0 for "OFF"  
                        % and 1 for "ON". 
        nz_theta = theta; 
        nz_rng = rng; 
    else                % Noise "ON" 
        nz_theta = noisy_theta(theta); 
        nz_rng = noisy_range(rng); 
    end 

     
    % Generate actual LOS angle rate 
    VLperp = VL - rngdt * PLu;  % Portion of LOS velocity vector (VL)  
                                % perpendicular to LOS position unit  
                                % vector (PLu) 

     
    if norm(VLperp) == 0        % Prevent divide by zero. 
        VLperpu = cross([0;0;1], PLu); 
    else 
        VLperpu = VLperp/norm(VLperp);  % Unit vector in direction  
                                        % of VLperp. 
    end 

     
    sign_thetadt = sign(cross(PLu, VLperpu));   % Sign of LOS angle  
                                                % rate depends on the  
                                                % direction of VLperpu. 
    thetadt = sign_thetadt(3)*norm(VLperp)/rng; % Actual LOS angle rate 

  
    % Generate Actual LOS angle acceleration (thetadtdt) and range  
    % acceleration (rngdtdt) 
    thetadtdt = (thetadt - thetadt_old)/DELTA; 
    rngdtdt = (rngdt - rngdt_old)/DELTA; 

     
    % Initialize filters using first three time steps 
    % Initialize filters using first three time steps 
    if kk == 4 
        % Previous time step corrected estimate of LOS angle (rad). 
        theta_k0 = thetaout(1,3);  
        % Previous time step corrected estimate of LOS angle rate  
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        % (rad/sec). 
        thetadt_k0 = (thetaout(1,3) - thetaout(1,2))/DELTA;  
        % Previous time step corrected estimate of LOS angle  
        % acceleration(rad/sec^2). 
        thetadtdt_k0 = (((thetaout(1,3) - thetaout(1,2))/DELTA)-... 
            ((thetaout(1,2) - thetaout(1,1))/DELTA))/DELTA;  

         
        % Previous time step corrected estimate of range (m). 
        rng_k0 = rngout(1,3);  
        % Previous time step corrected estimate of range rate (m/sec). 
        rngdt_k0 = (rngout(1,3) - rngout(1,2))/DELTA;  
        % Previous time step corrected estimate of range acceleration  
        % (m/sec^2). 
        rngdtdt_k0 =(((rngout(1,3) - rngout(1,2))/DELTA)-... 
            ((rngout(1,2) - rngout(1,1))/DELTA))/DELTA;  

                 
        if LAW == 1 % PN 
            % Initialized with simulated LOS angle sensor accuracy. 
            Ptheta_old = diag([SIG_THETA^2;  
                              (2/(DELTA^2))*SIG_THETA^2]);  
            % Initialized with simulated range sensor accuracy. 
            Prng_old = diag([SIG_RNG^2;  
                            (2/(DELTA^2))*SIG_RNG^2]); 

  
        elseif LAW == 2 % DG 
            % Initialized with simulated LOS angle sensor accuracy. 
            Ptheta_old = diag([SIG_THETA^2;  
                              (2/(DELTA^2))*SIG_THETA^2;  
                              (4/(DELTA^4))*SIG_THETA^2]); 
            % Initialized with simulated range sensor accuracy. 
            Prng_old = diag([SIG_RNG^2;  
                            (2/(DELTA^2))*SIG_RNG^2;  
                            (4/(DELTA^4))*SIG_RNG^2]); 
        end 
    end 

     
    % Kalman filters 
    if kk >= 4 
        if LAW == 1 %PN filters 
            % Current time step corrected estimate of range and its  
            % time derivatives. 
            [ rng_k1, rngdt_k1, Prng ] = kalman_pn_range(rng_k0,... 
                rngdt_k0, nz_rng, Prng_old, mac_paraL_k1); 

  
            % Current time step corrected estimate of LOS angle and its  
            % time derivatives. 
            [ theta_k1, thetadt_k1, Ptheta ] = kalman_pn_theta... 
                (theta_k0, thetadt_k0, nz_theta, Ptheta_old, ... 
                mac_perpL_k1, rng_k1); 

             
        elseif LAW == 2 %DG filters 
            % Current time step corrected estimate of range and its  
            % time derivatives. 
            [ rng_k1, rngdt_k1, rngdtdt_k1, Prng ] = kalman_dg_range... 
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                (rng_k0, rngdt_k0, rngdtdt_k0, nz_rng, Prng_old, ... 
                mac_paraL_k1); 

  
            % Current time step corrected estimate of LOS angle and its 
            % time derivatives. 
            [ theta_k1, thetadt_k1, thetadtdt_k1, Ptheta ] = ... 
                kalman_dg_theta(theta_k0, thetadt_k0, thetadtdt_k0, ... 
                nz_theta, Ptheta_old, mac_perpL_k1, rng_k1); 

             
            % Adjust corrected estimates to include deterministic 
            % acceleration inputs. 
            thetadtdtplot_k1 = thetadtdt_k1 + 

(mac_perpL_k1*GRAV/rng_k1);  
                        % Update current time step corrected estimate  
                        % of LOS angle acceleration (thetadtdt_k1)to  
                        % include the deterministic acceleration input  
                        % (missile's drag and boost accelerations  
                        % perpendicular to the LOS). This term cannot  
                        % be added inside the filter because changes  
                        % in LOS angle acceleration are modeled by the  
                        % filter as white noise. 

                         
            rngdtdtplot_k1 = rngdtdt_k1 + (mac_paraL_k1*GRAV); 
                        % Update current time step corrected estimate  
                        % of range acceleration (rangedtdt_k1) to  
                        % include the deterministic acceleration input  
                        % (missile's drag and boost accelerations  
                        % parallel to the LOS). This term cannot be 
                        % added inside the filter because changes in  
                        % range acceleration are modeled by the filter 
                        % as white noise. 
        end 

  
        % Determine the square root of the maximum eigenvalue of  
        % the current time step corrected estimate covariance 
        sqePtheta = sqrt(max(eig(Ptheta))); 
        sqePrng = sqrt(max(eig(Prng))); 

         
        % Generate current time step corrected estimate of missile  
        % lead angle (thetaLM_k1) for guidance law. 
        thetaLM_k1 = thetaVM - theta_k1;     
                        % Corrected estimate of angle between LOS and  
                        % VM for accel perpendicular to VM 
    end 

     
    % Missile guidance 
    if LAW == 1         % PN guidance. 

  
        if FILT == 0    % Actual scenario parameters given to guidance  
                        % law in propnav.m. 
            [ mag ] = propnav(thetaLM, thetadt, rngdt);  
                        % PN guidance acceleration (g). 

                         
        else            % Kalman filter estimates given to guidance  
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                        % law in propnav.m. 

             
            if kk < 4   % Delays guidance acceleration until after  
                        % Kalman filters have been initialized. 
                mag = 0;% Sets guidance acceleration to zero. 

                 
            else 
                [ mag ] = propnav(thetaLM_k1, thetadt_k1, rngdt_k1);  
                        % PN guidance acceleration (g). 
            end 
        end 
        % Limit guidance acceleration to MAXG to prevent excessive  
        % drag and missile damage. 
        if abs(mag) > PN_MAXG 
            mag = sign(mag)*PN_MAXG; % Reassigns guidance acceleration 
                                     % to the maximum value while still 
                                     % retaining the sign. 
        end 
    end 

     
    if LAW == 2         % DG guidance. 

         
        if FILT == 0    % Actual scenario parameters given to guidance  
                        % law in diffgeo.m. The previous time step 
                        % missile acceleration vector (Ma) is used  
                        % since the output of this function affects the 
                        % current time step Ma. Using the previous time 
                        % step Ma introduces some error into the  
                        % guidance but since the filter is "OFF"  
                        % (FILT = 0) the noise switch must also be  
                        % "OFF" (NZ = 0). The guidance doesn't track  
                        % with noise and no filter. With no noise, Ma  
                        % is very smooth and the difference between Ma  
                        % in one time step is rather small. 

             
            [ mag ] = diffgeo(theta, thetadt, thetadtdt, ...  
                rng, rngdt, rngdtdt, VM, Ma, thetaLM); 
                        % DG guidance acceleration (g). 

  
        else            % Kalman filter estimates given to guidance law 
                        % in diffgeo.m. The previous time step missile  
                        % acceleration vector (Ma) is used since the  
                        % output of this function affects the current  
                        % time step Ma. Using the previous time step Ma 
                        % introduces some error into the guidance. With 
                        % noise, Ma can be very rough and the  
                        % difference between Ma in one time step can be 
                        % large. To combat the error introduced, we  
                        % have given the guidance law Kalman filter  
                        % estimates from the previous time step so all  
                        % information is from the same time step. This  
                        % generates a guidance acceleration that is  
                        % much more accurate but applied one time step  
                        % late. The result is a much smoother guidance  
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                        % output. 

  
            if kk <= BST_TM/DELTA % Estimates are rough until the  
                                  % Kalman filters have a some time to  
                                  % settle. Delaying guidance  
                                  % acceleration until after boost  
                                  % results in much smoother guidance 
                                  % output. 

                 
                mag = 0; % Sets guidance acceleration to zero. 

                 
            else 
                [ mag ] = diffgeo(theta_k1out(kk-1),... 
                    thetadt_k1out(kk-1), thetadtdt_k1out(kk-1), ... 
                    rng_k1out(kk-1), rngdt_k1out(kk-1), ... 
                    rngdtdt_k1out(kk-1), VM_old, Ma, thetaLM_k0);  
                        % DG guidance acceleration (g). 

                         
                % Average guidance output  
                mag = (mag + magout(kk-1) + magout(kk-2) ... 
                    + magout(kk-3))/4;   
                        % Averages guidance output with three previous  
                        % outputs. The result is a much smoother  
                        % guidance output. 
            end 
        end 
        if abs(mag) > DG_MAXG 
            mag = sign(mag)*DG_MAXG; % Reassigns guidance acceleration  
                                     % to the maximum value while still 
                                     % retaining the sign. 
        end 
    end 

  

         
    % Generate guidance vector 
    Magu = cross([0;0;1],VMu);  
                        % Guidance unit vector (Magu) is perpendicular 
                        % to the missile velocity unit vector (VMu).  
                        % It is always in x-y plane since both target  
                        % and missile remain in x-y plane. The sign of 
                        % guidance acceleration controls the direction  
                        % of Magu. 

     
    Mag = mag*Magu;     % Generates a guidance vector of appropriate  
                        % length and direction. 

        
    % Missile boost 
    if kk < (BST_TM/DELTA)  % Boost phase is active. 
        Mab = mab*VMu;      % Missile acceleration (g) due to boost.  
                            % Boost thrust is always applied in the  
                            % direction of the missile velocity unit  
                            % vector (VMu). 
        boost = 1;          % Maintains boost phase. 
    else                    % Boost phase terminated. 
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        Mab = [0; 0; 0];    % Boost no longer contributes to missile 
                            % acceleration. 
        boost = 0;          % Terminates boost phase. 
    end 

     
    % Missile Drag 
    % Determine current parasitic drag coefficient. 
    Fdp = fdp_value(malt, mspd, boost); % Parasitic drag force (N). 

     
    % Determine current induced drag coefficient. 
    Fdi = fdi_value(Mag, mspd, malt); % Induced drag force (N). 

     
    % Determine acceleration due to total drag (g). 
    mad = (Fdp + Fdi)/(MASS*GRAV);  
                      % Magnitude of acceleration due to drag (mad) is  
                      % due to parasitic and induced drag. 
    Mad = mad*(-VMu); % Acceleration due to drag is always applied in  
                      % the opposite direction of the missile velocity  
                      % unit vector (VMu). 

         
    % Calculate deterministic inputs for Kalman filters from  
    % LOS perpective 
    if kk >= 4  % Estimated theta and range are not available for  
                % deterministic inputs until after the Kalman filters  
                % are initialized. 
        PL_k1 = [cos(theta_k1)*rng_k1; sin(theta_k1)*rng_k1; 0];  
                % Kalman filters only have access to an estimate of the  
                % LOS position vector (PL). 
        PLu_k1 = PL_k1/norm(PL_k1);     % Estimated LOS position  
                                        % unit vector. 

                                         
        % Combined deterministic missile accelerations (g)  
        % due to boost and drag. 
        Mac = Mab + Mad;            

         
        % Estimated magnitude of combined deterministic missile  
        % acceleration parallel to the LOS (mac_paraL_k1) (g). 
        mac_paraL_k1 = Mac'*PLu_k1;      

         
        % Estsimated vector of combined deterministic missile  
        % acceleration parallel to the LOS (Mac_paraL_k1) (g). 
        Mac_paraL_k1 = mac_paraL_k1*PLu_k1;  

         
        % Estsimated vector of combined deterministic missile  
        % acceleration perpendicular to the LOS (Mac_perpL_k1) (g). 
        Mac_perpL_k1 = Mac - Mac_paraL_k1;  

         
        % Estimated magnitude of combined deterministic missile  
        % acceleration perpendicular to the LOS (mac_perpL_k1) (g). 
        mac_perpL_k1 = norm(Mac_perpL_k1);  

         
        % Sign of mac_perpL_k1 gives direction and must be preserved. 
        sign_mac_perpL_k1 = ... 
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            sign(cross((Mac_perpL_k1/norm(Mac_perpL_k1)), PLu));  

         
        % A positive mac_paraL_k1 from the missile's perspective  
        % actually causes the LOS range to decrease. 
        mac_paraL_k1 = -mac_paraL_k1;  

         
        % Deterministic input mac_perpL_k1 causes theta to increase. 
        if sign_mac_perpL_k1(3) < 0      

  
        % A positive mac_perpL_k1 from the missile's perspective  
        % actually causes the LOS angle to decrease. 
            mac_perpL_k1 = -mac_perpL_k1;                                 
        end 
    end 

     
    % Total missile acceleration 
    Ma = Mag + Mad + Mab; % Total missile accel in (g) due to Guidance  
                          % (Mag), Drag (Mad), and Boost (Mab). 

     
    % Update output matrices 
    % Target position (m). 
    Tpout(1:3,kk) = Hp*T;            
    % Missile position (m). 
    Mpout(1:3,kk) = Hp*M;                        
    % Missile guidance acceleration (g). 
    magout(1,kk) = mag;                          
    % Missile drag acceleration (g). 
    madout(1,kk) = mad;                          
    % Missile speed (m/s). 
    mspdout(1,kk) = mspd;                        
    % Time (sec) . kk-1 is uesd because no zero index available. 
    tout(1,kk) = (kk-1)*DELTA;                   
    % Actual LOS angle (rad). 
    thetaout(1,kk) = theta;                      
    % Noisy LOS angle (rad). 
    nz_thetaout(1,kk) = nz_theta;                
    % Actual LOS angle rate (rad/sec). 
    thetadtout(1,kk) = thetadt;                  
    % Actual LOS angle acceleration (rad/sec^2). 
    thetadtdtout(1,kk) = thetadtdt;              

     
    % Actual range to target (m). 
    rngout(1,kk) = rng;                          
    % Noisy range to target (m). 
    nz_rngout(1,kk) = nz_rng;                    
    % Actual range rate to target (m/sec). 
    rngdtout(1,kk) = rngdt;                      
    % Actual range acceleration to target (m/sec^2). 
    rngdtdtout(1,kk) = rngdtdt;                  

     
    if kk >= 4  % Available to update only after Kalman filters  
                % have been initialized. 
        % Current time step corrected estimate of LOS angle (rad). 
        theta_k1out(1,kk) = theta_k1;            
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        % Current time step corrected estimate of LOS angle  
        % rate (rad/sec). 
        thetadt_k1out(1,kk) = thetadt_k1;   
        % Output matrix for sqrt of maximum eigenvalue of current  
        % time step theta corrected estimate covariance. 
        sqePthetaout(1,kk) = sqePtheta;    

         
        % Current time step corrected estimate of range to target (m). 
        rng_k1out(1,kk) = rng_k1; 
        % Current time step corrected estimate of range rate to  
        % target (m/sec). 
        rngdt_k1out(1,kk) = rngdt_k1;            
        % Output matrix for sqrt of maximum eigenvalue of current  
        % time step range corrected estimate covariance. 
        sqePrngout(1,kk) = sqePrng;        

         
        if LAW == 2 % Available only if DG guidance is used. 
            % Current time step corrected estimate of LOS angle 
            % acceleration (rad/sec^2). 
            thetadtdt_k1out(1,kk) = thetadtdtplot_k1;  
            % Current time step corrected estimate of range  
            % acceleration to target (m/sec^2). 
            rngdtdt_k1out(1,kk) = rngdtdtplot_k1;        
        end 
    end 

     
    % Stop criteria 
    % Actual range rate (rngdt) is opening after boost has  
    % been terminated. 
    if (rngdt > 0) && (kk > BST_TM/DELTA)    
                % Time delay allows for boost to overcome drag and  
                % accelerate missile speed above target speed. 
        break   % Stops simulation. 
    end 

     
    % 2)Missile speed is less than target speed 
    if (mspd < tspd) && (kk > BST_TM/DELTA)  
                % Time delay allows for boost to overcome drag and  
                % accelerate missile speed above target speed. 
        break   % Stops simulation. 
    end 

     
    % 3) Range to target is less than 5m 
    if (rng < 5) 
        break% Stops simulation. 
    end 

     
    % Update filter variables 
    thetadt_old = thetadt;  % Actual LOS angle rate (rad/sec). 
    rngdt_old = rngdt;      % Actual range rate (m/sec). 
    VM_old = VM;            % Actual missile velocity vector. 
    thetaLM_k0 = thetaLM_k1;% Estimate of angle (rad) between missile  
                            % velocity vector and x-axis. 
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    if kk >= 4  % Available to update only after Kalman filters  
                % have been initialized. 
        theta_k0 = theta_k1;    % Estimate of LOS angle (rad). 
        thetadt_k0 = thetadt_k1;% Estimate of LOS angle rate (rad/sec). 
        Ptheta_old = Ptheta;    % Theta corrected estimate covariance. 

         
        rng_k0 = rng_k1;        % Estimate of range (m). 
        rngdt_k0 = rngdt_k1;    % Estimate of range rate (m/sec). 
        Prng_old = Prng;        % Range corrected estimate covariance. 

         
        if LAW == 2 % Available only if DG guidance is used. 
            thetadtdt_k0 = thetadtdt_k1;% Estimate of LOS angle  
                                        % acceleration (rad/sec^2). 
            rngdtdt_k0 = rngdtdt_k1;    % Estimate of range  
                                        % acceleration (m/sec^2) 
        end 
    end 

     
    % Missile Motion 
    M = missile_motion(M, Ma);  % Returns updated missile state vector. 

     
    % Target motion 
    if time_to_impact(rng, rngdt) < TRN_TM  % Initiates turn when  
                                            % impact is TURN_TIME  
                                            % seconds away 
        turn = 1;               % Turn value is 0 when target motion  
                                % is straight, 1 when turning. 
    end 

         
    T = target_motion( T, turn );% Returns updated target state vector. 
end % End primary loop 

  
%Update output matrices by removing unused columns. 
% Target position (m). 
Tpout = Tpout(1:3,1:kk);             
% Missile position (m). 
Mpout = Mpout(1:3,1:kk);             
% Missile guidance acceleration (g). 
magout = magout(1,1:kk);             
% Missile drag acceleration (g). 
madout = madout(1,1:kk);             
% Missile speed (m/sec^2). 
mspdout = mspdout(1,1:kk);           
% Time (sec). 
tout = tout(1,1:kk);                 

  
% Actual LOS angle (rad). 
thetaout = thetaout(1,1:kk);          
% Noisy LOS angle (rad). 
nz_thetaout = nz_thetaout(1,1:kk);    
% Actual LOS angle rate (rad/sec). 
thetadtout = thetadtout(1,1:kk);      
% Actual LOS angle acceleration (rad/sec^2). 
thetadtdtout = thetadtdtout(1,1:kk);  
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% Current time step corrected estimate of LOS angle (rad). 
theta_k1out = theta_k1out(1,1:kk);    
% Current time step corrected estimate of LOS angle rate (rad/sec). 
thetadt_k1out = thetadt_k1out(1,1:kk);      
% Current time step corrected estimate of LOS angle  
% acceleration (rad/sec^2). 
thetadtdt_k1out = thetadtdt_k1out(1,1:kk);      
% Output matrix for sqrt of maximum eigenvalue of current time step  
% theta corrected estimate covariance. 
sqePthetaout = sqePthetaout(1,1:kk);    

  
% Actual range to target (m). 
rngout = rngout(1,1:kk);             
% Noisy range to target (m). 
nz_rngout = nz_rngout(1,1:kk);          
% Actual range rate to target (m/sec). 
rngdtout = rngdtout(1,1:kk);           
% Actual range acceleration to target (m/sec^2). 
rngdtdtout = rngdtdtout(1,1:kk);           
% Current time step corrected estimate of range to target (m). 
rng_k1out = rng_k1out(1,1:kk);          
% Current time step corrected estimate of range rate to target (m/sec). 
rngdt_k1out = rngdt_k1out(1,1:kk);        
% Current time step corrected estimate of range acceleration to  
% target (m/sec^2). 
rngdtdt_k1out = rngdtdt_k1out(1,1:kk);       
% Output matrix for sqrt of maximum eigenvalue of current time step  
% range corrected estimate covariance. 
sqePrngout = sqePrngout(1,1:kk);      

  
% Generate error arrays 
% Difference between actual and noisy LOS angle (rad). 
theta_err = thetaout - nz_thetaout; 
% Difference between actual and estimated LOS angle (rad). 
theta_k1err = thetaout - theta_k1out; 
% Difference between actual and estimated LOS angle rate (rad/sec). 
thetadt_k1err = thetadtout - thetadt_k1out; 
% Difference between actual and estimated LOS angle  
% acceleration (rad/sec^2). 
thetadtdt_k1err = thetadtdtout - thetadtdt_k1out; 

  
% Difference between actual and noisy range (m). 
rng_err = rngout - nz_rngout; 
% Difference between actual and estimated range (m). 
rng_k1err = rngout - rng_k1out; 
% Difference between actual and estimated range rate (m/sec). 
rngdt_k1err = rngdtout - rngdt_k1out; 
% Difference between actual and estimated range  
% acceleration (rad/sec^2). 
rngdtdt_k1err = rngdtdtout - rngdtdt_k1out; 

  
%Plotting Results 
    if PLOTS == 1 % Plotting switch turns off plots when PLOTS == 0. 
    screen_size = get(0,'ScreenSize');  
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    % Overall Scenario Plots 
    figure(1) 
    subplot(2, 3, 1); 
    plot(tout, rngout) 
    title(['Range to Target (m), Miss Distance = ' ... 
        num2str(min(rngout))]); 
    xlabel('Time (sec)'); 
    ylabel('Range (m)'); 

     
    subplot(2, 3, 2); 
    plot(tout, mspdout) 
    title('Missile Speed (m/s)'); 
    xlabel('Time (sec)'); 
    ylabel('Speed (m/s)'); 

     
    subplot(2, 3, 3); 
    plot(tout, thetaout*180/pi) 
    title('Theta (LOS Angle wrt x-axis) (deg)'); 
    xlabel('Time (sec)'); 
    ylabel('Theta (deg)'); 

     
    subplot(2, 3, 4); 
    plot(tout, magout) 
    title('Magnitude of Missile Guidance (g)'); 
    xlabel('Time (sec)'); 
    ylabel('Guidance (g)'); 
    axis([0 ((kk*DELTA) + 2) -30 30]); 

     
    subplot(2, 3, 5); 
    plot(tout, madout) 
    title('Magnitude of Missile Drag (g)'); 
    xlabel('Time (sec)'); 
    ylabel('Accel (g)'); 

     
    subplot(2, 3, 6); 
    plot(Tpout(1, :), Tpout(2, :), 'r-', 'LineWidth', 2) 
    hold on 
    plot(Mpout(1, :),Mpout(2, :), 'b-') 
    title('Encounter Geometry in the x-y plane'); 
    axis('equal'); 
    xlabel('x-axis'); 
    ylabel('y-axis'); 

     
    f1 = figure (1); 
    set(f1, 'Position', [0 0 screen_size(3) screen_size(4)]);  
                                % Enlarges plot to full screen. 

  
    %Theta filter plots 
    figure(2) 
    subplot(2, 3, 1); 
    plot(tout, nz_thetaout*180/pi,'g') 
    hold on 
    plot(tout, theta_k1out*180/pi,'r') 
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    plot(tout, thetaout*180/pi) 
    title('Noisy, Est and Actual Theta (deg)'); 
    xlabel('Time (sec)'); 
    ylabel('Theta (deg)'); 
    legend('Noisy Theta', 'Estimated Theta', 'Actual Theta'); 

     
    subplot(2, 3, 4); 
    plot(tout, theta_err*180/pi, '.') 
    hold on 
    plot(tout, sqePthetaout*180/pi, 'g'); 
    plot(tout, theta_k1err*180/pi, 'r') 
    title('Measured and Est Theta Error (deg)'); 
    xlabel('Time (sec)'); 
    ylabel('Error (deg)'); 
    legend('Measured Theta Error', 'Estimated SqePtheta',... 
        'Estimated Theta Error'); 
    axis([0 ((kk*DELTA) + 2) 0 0.5]) 

     
    subplot(2, 3, 2); 
    plot(tout, thetadt_k1out*180/pi, 'r'); 
    hold on 
    plot(tout, thetadtout*180/pi); 
    title('Actual and Est Thetadot (deg/sec)'); 
    xlabel('Time (sec)'); 
    ylabel('Thetadot (deg/sec)'); 
    legend('Estimated Thetadot','Actual Thetadot'); 
    axis([0 ((kk * DELTA) + 2) -2 2]) 

     
    subplot(2, 3, 5); 
    plot(tout, thetadt_k1err*180/pi, 'r'); 
    title('Estimated Thetadt Error (deg/sec)'); 
    xlabel('Time (sec)'); 
    ylabel('Error (deg/sec)'); 
    legend('Est Thetadt Error'); 
    axis([0 ((kk*DELTA) + 2) -2 2]) 

     
    subplot(2, 3, 3); 
    plot(tout, thetadtdtout*180/pi); 
    title('Actual Thetadtdt (deg/sec^2)'); 
    xlabel('Time (sec)'); 
    ylabel('Thetadtdt (deg/sec^2)'); 
    legend('Actual Thetadtdt'); 
    axis([0 ((kk*DELTA) + 2) -15 15]); 

     
    if LAW == 2 
        subplot(2, 3, 3); 
        plot(tout, thetadtdt_k1out*180/pi, 'r'); 
        hold on 
        plot(tout, thetadtdtout*180/pi); 
        title('Actual and Est Thetadtdt (deg/sec^2)'); 
        xlabel('Time (sec)'); 
        ylabel('Thetadtdt (deg/sec^2)'); 
        legend('Estimated Thetadtdt','Actual Thetadtdt'); 
        axis([0 ((kk*DELTA) + 2) -15 15]) 
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        subplot(2, 3, 6); 
        plot(tout, thetadtdt_k1err*180/pi, 'r'); 
        title('Estimated Thetadtdt Error (deg/sec^2)'); 
        xlabel('Time (sec)'); 
        ylabel('Thetadtdt (deg/sec^2)'); 
        legend('Estimated Thetadtdt Error'); 
        axis([0 ((kk*DELTA) + 2) -20 20]) 
    end 
    f2 = figure (2); 
    set(f2, 'Position', [0 0 screen_size(3) screen_size(4)]); 
                            % Enlarges plot to full screen. 

     
    %Range filter plots 
    figure(3) 
    subplot(2, 3, 1); 
    plot(tout, nz_rngout, 'g') 
    hold on 
    plot(tout, rng_k1out,'r') 
    plot(tout, rngout) 
    title('Actual and Est Range (m)'); 
    xlabel('Time (sec)'); 
    ylabel('Range (m)'); 
    legend('Noisy Range', 'Estimated Range', 'Actual Range'); 

     
    subplot(2, 3, 4); 
    plot(tout, rng_err, '.') 
    hold on 
    plot(tout, sqePrngout, 'g'); 
    plot(tout, rng_k1err, 'r'); 
    title('Measured and Est Range Error (m)'); 
    xlabel('Time (sec)'); 
    ylabel('Error (m)'); 
    legend('Measured Range Error', 'Estimated SqePrange',... 
        'Estimated Range Error'); 
    axis([0 ((kk*DELTA) + 2) 0 100]) 

     
    subplot(2, 3, 2); 
    plot(tout, rngdt_k1out, 'r'); 
    hold on 
    plot(tout, rngdtout); 
    title('Actual and Est Range Rate (m/sec)'); 
    xlabel('Time (sec)'); 
    ylabel('Range Rate (m/sec)'); 
    legend('Estimated Range Rate','Actual Range Rate'); 
    axis([0 ((kk*DELTA) + 2) -1200 100]) 

     
    subplot(2, 3, 5); 
    plot(tout, rngdt_k1err); 
    title('Estimated Rngdt Error (m)'); 
    xlabel('Time (sec)'); 
    ylabel('Error (m/sec)'); 
    legend('Est Rngdt Error'); 
    axis([0 ((kk*DELTA) + 2) -100 100]) 
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    subplot(2, 3, 3); 
    plot(tout, rngdtdtout); 
    title('Actual Rngdtdt (deg/sec^2)'); 
    xlabel('Time (sec)'); 
    ylabel('Rngdtdt (m/sec^2)'); 
    legend('Actual Rngdtdt'); 
    axis([0 ((kk*DELTA) + 2) -200 200]) 

     
    if LAW == 2 
        subplot(2, 3, 3); 
        plot(tout, rngdtdt_k1out, 'r'); 
        hold on 
        plot(tout, rngdtdtout); 
        title('Actual and Est Rngdtdt (deg/sec^2)'); 
        xlabel('Time (sec)'); 
        ylabel('Rngdtdt (m/sec^2)'); 
        legend('Estimated Rngdtdt','Actual Rngdtdt'); 
        axis([0 ((kk*DELTA) + 2) -500 500]) 

         
        subplot(2, 3, 6); 
        plot(tout, rngdtdt_k1err, 'r'); 
        title('Estimated Rngdtdt Error(deg/sec^2)'); 
        xlabel('Time (sec)'); 
        ylabel('Rngdtdt (m/sec^2)'); 
        legend('Estimated Rngdtdt Error'); 
        axis([0 ((kk*DELTA) + 2) -100 100]) 

         
    end 

     
    f3 = figure (3); 
    set(f3,'Position',[0 0 screen_size(3) screen_size(4)]); 
                            % Enlarges plot to full screen. 

     
end 
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% MAX_NOISE 
% Generates a plot of the maximum noise factor vs. LOS angle. 
%---------------------------------------------------------------------- 
%---------------------------------------------------------------------- 
%   File:               max_noise.m 
%   Name:               LT Adam Osborn 
%   Component Runtime:  8.1 (R2013a) 
%   Compiler:           4.18.1 (R2013a) 
%                       32-bit (Windows XP) 
%   Date:               06 February 2014 
%   Description:        Runs multiple simulations using sim_kb.m to 
%                       determine the maximum amount of noise the  
%                       applied guidance can withstand while still  
%                       maintaining 70% effectiveness.  
%   Inputs:             Vector of maximum effective missile range with  
%                       no noise (rho) (m) generated by kb_generator.m. 
%   Outputs:            Plot of maximum noise multiplier vs. LOS angle. 
%   Process: 
%   Assumptions: 
%   Comments:           Simulations with increasing noise factors are  
%                       run at a constant target range. This test range   
%                       is 10% below maximum effective missile range   
%                       with no noise at the corresponding aspect  
%                       angle. Adjusting NZ_FACTOR global value also  
%                       affects the variance of the simulated LOS angle 
%                       and range sensors. 
%---------------------------------------------------------------------- 
%---------------------------------------------------------------------- 
%------ Initialize MATLAB® Workspace ------ 
format long;    % Scaled fixed point display format for all float  
                % variables with 15 digits for double and 7 digits 
                % for single. 

  
% close all;    % Closes all previous figures. 
%  
% clear all;    % Clears all previous workspace variables. 

  
init;           % Runs init.m to load global workspace variables. 

  
% Load noiseless range from simulations with RUNS = 10. 
 load 'Final_Plotting_Workspace.mat'; 
 if LAW == 1 
     rho = PN_no_noise; 
 elseif LAW ==2 
     rho = DG_no_noise; 
 end 

  
%------ define globals ------ 
global DEGSTEP INITSPD ALT RUNS NZ_FACTOR SIG_RNG SIG_THETA 

  
%------ define constants ------ 
%------ define input vector ------ 
%------ initialize variables ------ 
% Start timer for kinematic boundary generation time. 
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tic; 

  
% Initialize current maximum noise factor matrix 
max_factor = zeros(((180/DEGSTEP)+1),1);  

  
%------ functions ------ 
% Evaluate maximum effective noise factor at each aspect angle 
for kk = 1:((180/DEGSTEP)+1)    % One cycle for each aspect angle. 

        
    % Determine target state variables for this aspect angle 
    T_hdg = (kk-1)*DEGSTEP;     % Set target heading to aspect angle 
    x_spd = INITSPD*cos(T_hdg*pi/180);  % Component of target speed  
                                        % along x-axis. 
    y_spd = INITSPD*sin(T_hdg*pi/180);  % Component of target speed  
                                        % along y-axis. 
    T_rng = 0.9 * rho(kk);      % Reduce noiseless range by 10% 

  
    % Set initial target state 
    T_init = [T_rng;x_spd;0;y_spd;ALT;0]; 

  
    % First test loop (step size = 10) 
    for NZ_FACTOR = 10 : 10 : 100 
        disp(['*** Noise Factor =',... 
            num2str(NZ_FACTOR),', step size = 10 ***']) 

  
        %Reset variables 
        misses = 0; 
        hits = 0; 
        swings = 0; 

         
        % Update sensor variance 
        SIG_THETA = NZ_FACTOR*0.001;    % LOS angle sensor uncertainty  
                                        % (rad) given in Pehr thesis  
                                        % pg. 16. 
        SIG_RNG = NZ_FACTOR*10;         % Range sensor uncertainty (m)  
                                        % given in Pehr thesis pg. 16. 

  
        % Determine if missile is effective at this noise level 
        while swings <= RUNS 

             
            % Run simulation 
            [rngout] = sim_kb(T_init); 

             
            % Determine if missile hit 
            if min(rngout)<=5 
                disp(['>>> HIT, Heading ',... 
                    num2str(T_hdg),' deg, Noise Factor = ',... 
                    num2str(NZ_FACTOR), ' <<<']) 

                 
                hits = hits + 1; 
            else 
                disp(['>>> MISS, Heading ',... 
                    num2str(T_hdg),' deg, Noise Factor = ',... 



 107 

                    num2str(NZ_FACTOR), ' <<<']) 

                 
                misses = misses + 1; 
            end 

             
            % Missile is ineffective if it misses 30% of the time 
            if misses == 0.3*RUNS; 
                noise_factor = NZ_FACTOR-10; % Save missile's longest  
                                            % effective range. 
                break 
            end 

             
            % Missile is effective if it hits 70% of the time 
            if hits == 0.7*RUNS; 
                noise_factor = NZ_FACTOR;   % Save missile's longest  
                                            % effective range. 
                break 
            end 

             
            swings = swings + 1; % Increment count of simulations 
        end 

         
        % If missile is ineffective, move to the next test loop 
        if misses == 0.3*RUNS; 
            break 
        end 
    end 

     
    % Second test loop (step size = 1) 
    for NZ_FACTOR = noise_factor+1 : 1 : noise_factor+9 
        disp(['*** Noise Factor =',... 
            num2str(NZ_FACTOR),', step size = 1 ***']) 

  
        %Reset variables 
        misses = 0; 
        hits = 0; 
        swings = 0; 

         
        % Update sensor variance 
        SIG_THETA = NZ_FACTOR*0.001;    % LOS angle sensor uncertainty  
                                        % (rad) given in Pehr thesis  
                                        % pg. 16. 
        SIG_RNG = NZ_FACTOR*10;         % Range sensor uncertainty (m)  
                                        % given in Pehr thesis pg. 16. 

  
        % Determine if missile is effective at this noise level 
        while swings <= RUNS 

             
            % Run simulation 
            [rngout] = sim_kb(T_init); 

             
            % Determine if missile hit 
            if min(rngout)<=5 
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                disp(['>>> HIT, Heading ',... 
                    num2str(T_hdg),' deg, Noise Factor = ',... 
                    num2str(NZ_FACTOR), ' <<<']) 

                 
                hits = hits + 1; 
            else 
                disp(['>>> MISS, Heading ',... 
                    num2str(T_hdg),' deg, Noise Factor = ',... 
                    num2str(NZ_FACTOR), ' <<<']) 

                 
                misses = misses + 1; 
            end 

             
            % Missile is ineffective if it misses 30% of the time 
            if misses == 0.3*RUNS; 
                noise_factor = NZ_FACTOR-1; % Save missile's longest  
                                            % effective range. 
                break 
            end 

             
            % Missile is effective if it hits 70% of the time 
            if hits == 0.7*RUNS; 
                noise_factor = NZ_FACTOR;   % Save missile's longest  
                                            % effective range. 
                break 
            end 

             
            swings = swings + 1; % Increment count of simulations 
        end 

         
        % If missile is ineffective, move to the next test loop 
        if misses == 0.3*RUNS; 
            break 
        end 
    end 

  
        % Second test loop (step size = 0.1) 
    for NZ_FACTOR = noise_factor+0.1 : 0.1 : noise_factor + 0.9 
        disp(['*** Noise Factor =',num2str(NZ_FACTOR),... 
            ', step size = 0.1 ***']) 

  
        %Reset variables 
        misses = 0; 
        hits = 0; 
        swings = 0; 

  
        % Update sensor variance 
        SIG_THETA = NZ_FACTOR*0.001;    % LOS angle sensor uncertainty  
                                        % (rad) given in Pehr thesis  
                                        % pg. 16. 
        SIG_RNG = NZ_FACTOR*10;         % Range sensor uncertainty (m)  
                                        % given in Pehr thesis pg. 16. 
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        % Determine if missile is effective at this noise level 
        while swings <= RUNS 

             
            % Run simulation 
            [rngout] = sim_kb(T_init); 

             
            % Determine if missile hit 
            if min(rngout)<=5 
                disp(['>>> HIT, Heading ',... 
                    num2str(T_hdg),' deg, Noise Factor = ',... 
                    num2str(NZ_FACTOR), ' <<<']) 

                 
                hits = hits + 1; 
            else 
                disp(['>>> MISS, Heading ',... 
                    num2str(T_hdg),' deg, Noise Factor = ',... 
                    num2str(NZ_FACTOR), ' <<<']) 

                 
                misses = misses + 1; 
            end 

             
            % Missile is ineffective if it misses 30% of the time 
            if misses == 0.3*RUNS; 
                noise_factor = NZ_FACTOR-0.1; % Save missile's longest  
                                              % effective range. 
                break 
            end 

  
            % Missile is effective if it hits 70% of the time 
            if hits == 0.7*RUNS; 
                noise_factor = NZ_FACTOR;     % Save missile's longest  
                                              % effective range. 
                break 
            end 

             
            swings = swings + 1; % Increment count of simulations 
        end 

         
        % If missile is ineffective, move to the next test loop 
        if misses == 0.3*RUNS; 
            break 
        end 
    end 

     
    % Update max_factor plotting vector with maximum noise  
    % factor at this aspect angle 
    max_factor(kk) = noise_factor; 

     
end 

  
% Stop timer for noise factor plot generation time. 
toc 
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% Generate theta vector for plotting 
theta = pi/180*(0:DEGSTEP:180); 

  
% Plot maximum noise factor vs. aspect angle 
figure(1) 
plot(theta, max_factor) 

 

B. SIMULATION GUIDANCE LAW FILES 

function [ mag ] = propnav (thetaLM_k1, thetadt_k1, rng_dt) 
% PROPNAV 
% Computes the PN guidance acceleration vector. 
%---------------------------------------------------------------------- 
%---------------------------------------------------------------------- 
%   File:               propnav.m 
%   Name:               LT Adam Osborn 
%   Component Runtime:  8.1 (R2013a) 
%   Compiler:           4.18.1 (R2013a) 
%                       32-bit (Windows XP) 
%   Date:               06 February 2014 
%   Description:        Uses the proportional navigation guidance law  
%                       to compute the magnitude of the missile  
%                       guidance acceleration vector (mag). 
%   Inputs:             Missile lead angle estimate (thetaLM_k1) (rad) 
%                       based on the Kalman filter's current time step  
%                       estimate of LOS angle (theta_k1) (rad). 
%                       Kalman filter's current time step estimates of: 
%                       LOS angle rate (thetadt_k1) (rad/sec) 
%                       range rate (rngdt_k1) (m/sec) 
%   Outputs:            Magnitude of the missile guidance acceleration 
%                       vector (mag) (g). 
%   Process:             
%   Assumptions:         
%   Comments:            
%---------------------------------------------------------------------- 
%---------------------------------------------------------------------- 
%------ define globals ------ 
global NPRM GRAV 
%------ define constants ------ 
%------ define input vector ------ 
%------ initialize variables ------ 
%------ functions ------ 
% Magnitude of missile guidance acceleration vector (g) 
mag = NPRM*(-rng_dt)*thetadt_k1/(cos(thetaLM_k1) * GRAV); 

  
end 
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function [ mag ] = diffgeo (theta_k1, thetadt_k1, thetadtdt_k1,... 
    rng_k1, rngdt_k1, rngdtdt_k1, VM, Ma, thetaLM_k1) 
% DIFFGEO 
% Computes the DG guidance acceleration vector. 
%---------------------------------------------------------------------- 
%---------------------------------------------------------------------- 
%   File:               diffgeo.m 
%   Name:               LT Adam Osborn 
%   Component Runtime:  8.1 (R2013a) 
%   Compiler:           4.18.1 (R2013a) 
%                       32-bit (Windows XP) 
%   Date:               06 February 2014 
%   Description:        Uses the differential geometry guidance law to  
%                       compute the magnitude of the missile guidance   
%                       acceleration vector (Mag). 
%   Inputs:             Missile velocity vector (VM) (m/sec) 
%                       Missile acceleration vector (Ma) (g) 
%                       Missile lead angle estimate (thetaLM_k1) (rad) 
%                       based on the Kalman filter's current time step  
%                       estimate of LOS angle (theta_k1) (rad). 
%                       Kalman filter's current time step estimates of: 
%                       LOS angle (theta_k1) (rad) 
%                       LOS angle rate (thetadt_k1) (rad/sec) 
%                       LOS angle acceleration  
%                           (thetadtdt_k1) (rad/sec^2) 
%                       range (rng_k1) (m) 
%                       range rate (rngdt_k1) (m/sec) 
%                       range acceleration (rngdtdt_k1) (m/sec^2) 
%   Outputs:            Magnitude of the missile guidance acceleration 
%                       vector (mag) (g). 
%   Process:            Differential geometry guidance requires the 
%                       magnitude of the target's acceleration vector   
%                       (Ta) as well as the target's lead angle  
%                       (thetaLT). The target lead angle is defined as  
%                       the angle from the target's velocity vector  
%                       (VT) to the LOS position vector (PL).  
%                       The Kalman filter provides an estimate of the  
%                       velocity and acceleration of the LOS. Missile  
%                       velocity and acceleration effects are 
%                       removed leaving an estimate of the target's   
%                       velocity and acceleration. These estimates are  
%                       used to calculate the DG guidance acceleration  
%                       for the missile.  
%   Assumptions:        The actual missile velocity vector (VM) and  
%                       acceleration vector (Ma) are assumed to be  
%                       known. 
%   Comments:           The missile acceleration vector (Ma) provided  
%                       as an input is unavailable for the same  
%                       discrete time step as the remaining inputs.  
%                       This is because the DG guidance acceleration  
%                       being calculated affects the missile  
%                       acceleration vector (Ma). The previous time  
%                       step missile acceleration vector is used. This  
%                       introduces an error which is negligible when  
%                       the output is smooth and the difference from  
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%                       one time step to the next is small. This is  
%                       the case when the simulation is being run with  
%                       no noise. For simulations with noise, the error  
%                       introduced can be significant. To counter this  
%                       error, all inputs are drawn from the previous  
%                       time step for simulations with noise. This  
%                       generates an output that is accurate, but  
%                       applied one time step late. The effect on the  
%                       missile guidance during simulations with noise  
%                       has proved to be favorable to those with the  
%                       significant error previously described.  
%---------------------------------------------------------------------- 

  
%------ define globals ------ 
global NPRM GRAV 
%------ define constants ------ 
%------ define input vector ------ 
%------ initialize variables ------ 
%------ functions ------ 
%% Estimate the target's lead angle 

  
% Estimate of the LOS position unit vector (PLu) 
PL_k1 = [cos(theta_k1)*rng_k1; % Estimate of the LOS  
         sin(theta_k1)*rng_k1; % position vector (PL). 
                            0];  
PLu_k1 = PL_k1/norm(PL_k1);    % Estimate of PLu. 

  
%% Estimate of the target's velocity vector parallel to PLu. 
% Estimate of the missile's velocity vector parallel to PLu. 
VMpara_k1 = (VM'*PLu_k1)*PLu_k1;             
% Estimate of the missile's velocity vector perpendicular to PLu. 
VMperp_k1 = VM - VMpara_k1;                  
% Estimate of the target's velocity vector parallel to PLu. 
VTpara_k1 = (rngdt_k1*PLu_k1) + VMpara_k1;   

  
% Estimate of the LOS velocity vector perpendicular to PLu. 
VLperp_k1 = thetadt_k1*rng_k1*(cross([0;0;1],PLu_k1));   
% Estimate of the target's velocity vector perpendicular to PLu. 
VTperp_k1 = VLperp_k1 + VMperp_k1;  

  
% Estimate of the target's velocity vector 
VT_k1 = VTpara_k1 + VTperp_k1;   
% Estimate of the target's velocity unit vector 
VTu_k1 = VT_k1/norm(VT_k1);  

  
% Estimate of the target's lead angle 
thetaLT_k1 = acos(PLu_k1'*VTu_k1); 

  
%% Estimate the target's acceleration vector 

  
% Convert the missile's acceleration vector to (m/sec^2) 
AM = Ma*GRAV; 

  
% Estimate of the missile's acceleration vector parallel to PLu. 
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AMpara = (AM'*PLu_k1)*PLu_k1;    
% Estimate of the target's acceleration vector parallel to PLu. 
ATpara_k1 = (rngdtdt_k1*PLu_k1) + AMpara;    

  
% Estimate of the missile's acceleration vector perpendicular to PLu. 
AMperp = AM - AMpara;      
% Estimate of the LOS acceleration vector perpendicular to PLu. 
ALperp_k1 = thetadtdt_k1*rng_k1*(cross([0;0;1],PLu_k1));   
% Estimate of the target's acceleration vector perpendicular to PLu. 
ATperp_k1 = ALperp_k1 + AMperp;  

  
% Estimate of the target's acceleration vector  
AT_k1 = ATpara_k1 + ATperp_k1;  

  
%% Magnitude of missile guidance acceleration vector (g) 
mag = (norm(AT_k1)*cos(thetaLT_k1))/(cos(thetaLM_k1)*GRAV) + ... 
    (NPRM*(-rngdt_k1)*thetadt_k1)/(cos(thetaLM_k1)*GRAV); 

  

  

C. SIMULATION FUNCTION FILES 

function [ tgo ] = time_to_impact ( rng, rngdt ) 
% TIME_TO_IMPACT 
% Computes time to impact with target. 
%---------------------------------------------------------------------- 
%---------------------------------------------------------------------- 
%   File:               time_to_impact.m 
%   Name:               LT Adam Osborn 
%   Component Runtime:  8.1 (R2013a) 
%   Compiler:           4.18.1 (R2013a) 
%                       32-bit (Windows XP) 
%   Date:               06 February 2014 
%   Description:        Computes time remaining until impact (tgo) with 
%                       target based on range and range rate. 
%   Inputs:             LOS range (rng) (m) 
%                       LOS range rate (rngdt) (m/sec) 
%   Outputs:            Time remaining until impact (tgo) (sec). 
%   Process: 
%   Assumptions: 
%   Comments:           Portions of this code have been reused from  

%                       Pehr’s Thesis. 

 
%---------------------------------------------------------------------- 
%---------------------------------------------------------------------- 
%------ define globals ------ 
%------ define constants ------ 
%------ define input vector ------ 
%------ initialize variables ------ 
%------ functions ------ 

  
if (rngdt == 0) % Prevent dividing by zero when rngdt = 0. 
    tgo = 100;  % Choose some large number to prevent turn at the  
                % beginning of the simulation. Simulation ends if  
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                % rngdt goes positive. 
else 
    tgo = rng / (-rngdt);   % Range rate should always be less than or  
                            % equal to zero. 
end 
end 
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function [ mach_speed ] = mach_speed ( malt ) 
% MACH_SPEED 
% Computes Mach speed (m/sec) for a given altitude. 
%---------------------------------------------------------------------- 
%---------------------------------------------------------------------- 
%   File:               mach_speed.m 
%   Name:               LT Adam Osborn 
%   Component Runtime:  8.1 (R2013a) 
%   Compiler:           4.18.1 (R2013a) 
%                       32-bit (Windows XP) 
%   Date:               06 February 2014 
%   Description:        Computes the linear approximation of Mach 1 
%                       velocity (m/sec) for a given altitude based on 
%                       standard ICAO atmosphere. 
%   Inputs:             Missile altitude (malt) (m) 
%   Outputs:            Velocity of Mach 1 (mach_speed) (m/sec)  
%   Process:            Uses polynomial fit of the altitude/velocity  
%                       curve of Mach 1 in a standard ICAO atmosphere. 
%   Assumptions: 
%   Comments:           Portions of this code have been reused from  

%                       Pehr’s Thesis. 
%---------------------------------------------------------------------- 
%---------------------------------------------------------------------- 
%------ define globals ------ 
%------ define constants ------ 
% Constants for altitude/velocity curve in standard ICAO atmosphere. 
A = [-0.0041 340.3];    % Altitudes below 11km. 
B = 295.1;              % Altitude of 11-20km. 
C = [0.00067 281.7];    % Altitudes greater than 20km. 

  
%------ define input vector ------ 
%------ initialize variables ------ 
malt = abs(malt);   % Absolute value accounts for NED coords 

  
%------ functions ------ 
if (malt<11000) % Use A variables if altitude is below 11km. 
    mach_speed = polyval(A,malt); % Velocity of Mach 1 (m/sec). 

     
elseif (malt>20000) % Use B variables if altitude is above 20km. 
    mach_speed = polyval(C,malt); % Velocity of Mach 1 (m/sec). 

     
else 
    mach_speed = B;   % Velocity of Mach 1 (m/sec). 
end 

  
end 
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function [ rho ] = rho_value ( malt ) 
% RHO_VALUE 
% Computes the atmospheric density. 
%---------------------------------------------------------------------- 
%---------------------------------------------------------------------- 
%   File:               rho_value.m 
%   Name:               LT Adam Osborn 
%   Component Runtime:  8.1 (R2013a) 
%   Compiler:           4.18.1 (R2013a) 
%                       32-bit (Windows XP) 
%   Date:               06 February 2014 
%   Description:        Computes the atmospheric density at the given  
%                       altitude for ICAO standard atmosphere. 
%   Inputs:             Missile altitude (malt) (m) 
%   Outputs:            Atmospheric density (rho) (kg/m^3) 
%   Process:              
%   Assumptions:  
%   Comments:           Portions of this code have been reused from  

%                       Pehr’s Thesis. 
%---------------------------------------------------------------------- 
%---------------------------------------------------------------------- 
%------ define globals ------ 
%------ define constants ------ 
%------ define input vector ------ 
%------ initialize variables ------ 
malt = abs(malt);   % Absolute value accounts for NED coordinates. 

  
%------ functions ------ 
if malt > 9144  % Atmospheric density below 9144 meters. 
    rho = 1.75228763*exp(-malt/6705.6); % Atmospheric density  
                                        % (kg/m^3). 

     
else    % Atmospheric density above or at 9144 meters. 
    rho = 1.22557*exp(-malt/9144);      % Atmospheric density 
                                        % (kg/m^3). 
end 

  
end 
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function [ Cdp ] = cdp_value (mach, boost) 
% CDP_VALUE 
% Computes approximation of zero lift drag coefficient. 
%---------------------------------------------------------------------- 
%---------------------------------------------------------------------- 
%   File:               cdp_value.m 
%   Name:               LT Adam Osborn 
%   Component Runtime:  8.1 (R2013a) 
%   Compiler:           4.18.1 (R2013a) 
%                       32-bit (Windows XP) 
%   Date:               06 February 2014 
%   Description:        Computes approximation of zero lift drag  
%                       coefficient from graph of Cdp vs. Mach number. 
%   Inputs:             Missile mach number (mach) (unitless) 
%                       Boost value (boost) (1 during "boost phase", 0 
%                       otherwise) 
%   Outputs:            Parasitic drag coefficient (Cdp) (unitless) 
%   Process:            Uses polynomial fit of the parasitic drag  
%                       coefficient curve given in Pehr thesis pg. 18. 
%   Assumptions:  
%   Comments:           Broadston used a similar curve but experienced 
%                       large transients transitioning out of  
%                       supersonic speed (below Mach 1). Pehr modified  
%                       the parasitic drag coefficient curve by  
%                       reducing the slope of the curve at Mach 1 which  
%                       smoothed the transition. This modification is  
%                       described in Pehr's thesis pg. 18. 

%                       Portions of this code have been reused from  

%                       Pehr’s Thesis. 
%---------------------------------------------------------------------- 
%---------------------------------------------------------------------- 
%------ define globals ------ 
%------ define constants ------ 
% Constants for the parasitic drag coefficient curve  
NoBoost = [-0.0014 0.0299 -0.2110 0.6256];  % Curve when boost  
                                            % value is 0. 
Boost = [-0.0012 0.0243 -0.1521 0.4044];    % Curve when boost 
                                            % value is 1. 

  
%------ define input vector ------ 
%------ initialize variables ------ 
%------ functions ------ 
if (boost & (mach<0.7)) 
    Cdp=0.15; 
end 

  
if (~boost & (mach<0.7)) 
    Cdp=0.25; 
end 

  
if (boost & (mach>=0.7) & (mach<1.2)) 
    Cdp=(mach-0.7)*0.2 + 0.15; 
end 

  
if (~boost & (mach>=0.7) & (mach<1.2)) 
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    Cdp=(mach-0.7)*0.3 + 0.25; 
end 

  
if ((mach>=1.2) & (boost~=0)) 
    Cdp=polyval(Boost, mach); 
end 

  
if ((mach>=1.2) & (boost==0)) 
    Cdp=polyval(NoBoost, mach); 
end 

  
if ((mach>5 & boost)) 
    Cdp=0.10; 
end 

  
if ((mach>6.4) & ~boost) 
    Cdp=0.132; 
end 

  
end 
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function [ Fdp ] = fdp_value (malt, mspd, boost) 
% FDP_VALUE 
% Computes missile's parasitic drag force. 
%---------------------------------------------------------------------- 
%---------------------------------------------------------------------- 
%   File:               fdp_value.m 
%   Name:               LT Adam Osborn 
%   Component Runtime:  8.1 (R2013a) 
%   Compiler:           4.18.1 (R2013a) 
%                       32-bit (Windows XP) 
%   Date:               06 February 2014 
%   Description:        Computes the parasitic drag force for a missile 
%                       with frontal area SREF in standard atmosphere. 
%   Inputs:             Missile altitude (malt) (m) 
%                       Missile speed (mspd) (m/sec) 
%                       Boost value (boost) (1 during "boost phase", 0 
%                       otherwise) 
%   Outputs:            Parasitic drag force (Fdp) (N) 
%   Process: 
%   Assumptions: 
%   Comments:           Portions of this code have been reused from  

%                       Pehr’s Thesis. 
%---------------------------------------------------------------------- 
%---------------------------------------------------------------------- 
%------ define globals ------ 
global SREF 

  
%------ define constants ------ 
%------ define input vector ------ 
%------ initialize variables ------ 
rho = rho_value(malt);          % Atmospheric density (kg/m^3). 
mach = mspd/mach_speed(malt);   % Missile speed converted to mach value 
                                % (unitless). 
Q = rho*mspd^2/2;               % Dynamic pressure (kg*m/sec^2 or N) 
Cdp = cdp_value(mach,boost);    % Parasitic drag coefficient 
                                % (unitless). 
%------ functions ------ 
%% Determine parasitic drag force 
Fdp = Q*Cdp*SREF;               % Force due to parasitic drag (kg*m/s^2 

or N) 

  
end 
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function [ Fdi] = fdi_value( Mag, mspd, malt ) 
% FDI_VALUE 
% Computes missile's induced drag force.  
%---------------------------------------------------------------------- 
%---------------------------------------------------------------------- 
%   File:               fdi_value.m 
%   Name:               LT Adam Osborn 
%   Component Runtime:  8.1 (R2013a) 
%   Compiler:           4.18.1 (R2013a) 
%                       32-bit (Windows XP) 
%   Date:               06 February 2014 
%   Description:        Computes the drag force on the missile induced  
%                       by application of guidance acceleration. 
%   Inputs:             Guidance acceleration vector (Mag) (g) 
%                       Missile speed (mspd) (m/sec) 
%                       Missile altitude (malt) (m) 
%   Outputs:            Induced drag force (Fdp) (N) 
%   Process:            Uses guidance acceleration forces (Mag) to  
%                       determine the induced drag coefficients (Cdi)  
%                       and subsequently use these coefficents to  
%                       calculate the total induced drag force on  
%                       the missile. 
%   Assumptions:  
%   Comments:           Induced drag is normally determined by the  
%                       angle of attack. In this point mass model, we  
%                       use normal forces to account for induced drag. 
%                       The maximum subsonic parasitic drag coefficient  
%                       (when boost is not applied) is used to   
%                       approximate the subsonic induced drag  
%                       coefficient as shown in Broadston's thesis  
%                       pg. 19. Gravity is accounted for in this point  
%                       mass model as an elevation guidance force. 

%                       Portions of this code have been reused from  

%                       Pehr’s Thesis. 
%---------------------------------------------------------------------- 
%---------------------------------------------------------------------- 
%------ define globals ------ 

  
%------ define input vector ------ 
%------ initialize variables ------ 
%------ functions ------ 
%------ define globals ------ 
global MASS SREF eAR GRAV 

  
%------ define constants ------ 
Max_Cdp = 0.25; % The maximum subsonic parasitic drag coefficient when  
                % boost is not applied. Used to determine the subsonic 
                % induced drag coefficient  

           
%------ initialize variables ------ 
rho = rho_value(malt);          % Atmospheric density (kg/m^3). 
mach = mspd/mach_speed(malt);   % Missile speed converted to mach 
                                % value (unitless). 
Q = rho*mspd^2/2;               % Dynamic pressure (kg*m/sec^2 or N) 
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%------ functions ------ 
%% Determine azimuthal and elevation guidance forces 
% Missile azimuthal acceleration (m/sec^2). 
Maa = sqrt(Mag(1)^2+ Mag(2)^2)*GRAV;     
% Missile elevation acceleration (m/sec^2). 
Mae = Mag(3)*GRAV;   
% Azimuthal guidance force (kg*m/sec^2 or N). 
Fa = MASS*Maa;   
% Elevation guidance force (kg*m/sec^2 or N). 
Fe = MASS*(Mae-GRAV);    

  
%% Determine azimuthal and elevation normal force coefficients 
Cna = Fa/(Q*SREF);  % Azimuthal normal coefficient (unitless). 
Cne = Fe/(Q*SREF);  % Elevation normal coefficient (unitless). 

  
%% Determine the overall induced drag coefficient 
if (mach<1)     % Missile is subsonic. 
    Cdi = Max_Cdp*sqrt(Fa^2+Fe^2)/(MASS*GRAV);  

     
else            % Missile is supersonic. 
    Cdi = (Cna^2+Cne^2)/(pi*eAR);   % Unitless induced drag coefficient 

  
end 

  
%% Determine induced drag force 
Fdi = Cdi*Q*SREF;   % Force due to induced drag (kg*m/sec^2 or N). 

  
end 
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function [ nz_rng ] = noisy_range (rng) 
% NOISY_RANGE 
% Adds noise to range measurements. 
%---------------------------------------------------------------------- 
%---------------------------------------------------------------------- 
%   File:               noisy_range.m 
%   Name:               LT Adam Osborn 
%   Component Runtime:  8.1 (R2013a) 
%   Compiler:           4.18.1 (R2013a) 
%                       32-bit (Windows XP) 
%   Date:               06 February 2014 
%   Description:        Adds white noise to range based on noise  
%                       multiplier of randn. 
%   Inputs:             Actual LOS range (rng) (m) 
%   Outputs:            Simulated range sensor noisy LOS range  
%                       measurement (nz_rng) (m) 
%   Process:            Global variable NZ_FACTOR is used as a  
%                       multiplier to the sensor accuracy (SIG_RNG).  
%                       The range measurement (nz_rng) is generated by  
%                       adding white noise with the randn function. 
%   Assumptions:  
%   Comments: 
%---------------------------------------------------------------------- 
%---------------------------------------------------------------------- 
%------ define globals ------ 
global SIG_RNG 

  
%------ define constants ------ 
%------ define input vector ------ 
%------ initialize variables ------ 
%------ functions ------ 
% Generate simulated range sensor noisy measurement (nz_rng). 
nz_rng = rng + randn * SIG_RNG; % Add random zero mean  
                                            % gaussian white noise to  
                                            % actual range. 
end 
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function [ nz_theta ] = noisy_theta (theta) 
% NOISY_THETA 
% Adds noise to theta measurement. 
%---------------------------------------------------------------------- 
%---------------------------------------------------------------------- 
%   File:               noisy_theta.m 
%   Name:               LT Adam Osborn 
%   Component Runtime:  8.1 (R2013a) 
%   Compiler:           4.18.1 (R2013a) 
%                       32-bit (Windows XP) 
%   Date:               06 February 2014 
%   Description:        Adds white noise to theta based on noise  
%                       multiplier of randn. 
%   Inputs:             Actual LOS angle (theta) (rad) 
%   Outputs:            Simulated LOS angle sensor noisy LOS angle 
%                       measurement (nz_theta) (rad) 
%   Process:            Global variable NZ_FACTOR is used as a  
%                       multiplier to the sensor accuracy (SIG_THETA).  
%                       The LOS angle measurement (nz_theta) is  
%                       generated by adding white noise with the  
%                       randn function. 
%   Assumptions:  
%   Comments: 
%---------------------------------------------------------------------- 
%---------------------------------------------------------------------- 
%------ define globals ------ 
global SIG_THETA 
%------ define constants ------ 
%------ define input vector ------ 
%------ initialize variables ------ 
%------ functions ------ 
% Generate simulated LOS angle sensor noisy measurement (nz_theta). 
nz_theta = theta + randn * SIG_THETA;    
                        % Add random zero mean gaussian white noise  
                        % to actual range. 
end 
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function [ M ] = missile_motion( M, Ma) 
% MISSILE_MOTION 
% Updates missile state vector (M). 
%---------------------------------------------------------------------- 
%---------------------------------------------------------------------- 
%   File:               missile_motion.m 
%   Name:               LT Adam Osborn 
%   Component Runtime:  8.1 (R2013a) 
%   Compiler:           4.18.1 (R2013a) 
%                       32-bit (Windows XP) 
%   Date:               06 February 2014 
%   Description:        Computes the updated missile state vector (M) 
%                       including straight line motion and changes due  
%                       to total acceleration (drag, guidance, boost). 
%   Inputs:             Missile state vector (M) 
%                       Missile total acceleration (Ma) 
%   Outputs:            Updated Missile state vector (M) 
%   Process:            The straight line motion transition matrix is  
%                       used when turn value is 0. The turn transition  
%                       matrix is used when turn value is 1. 
%   Assumptions: 
%   Comments: 
%---------------------------------------------------------------------- 
%---------------------------------------------------------------------- 
%------ define globals ------ 
global GRAV DELTA 
%------ define constants ------ 
% Missile transition matrix for straight line motion. 
Fm = [1, DELTA, 0,     0, 0,     0; 
    0,     1, 0,     0, 0,     0; 
    0,     0, 1, DELTA, 0,     0; 
    0,     0, 0,     1, 0,     0; 
    0,     0, 0,     0, 1, DELTA; 
    0,     0, 0,     0, 0,     1]; 

  
%------ define input vector ------ 
%------ initialize variables ------ 
%------ functions ------ 
%Motion 
xmzz = Ma*GRAV*(DELTA^2)/2; % Change in missile position (m) with  
                            % constant acceleration. 

                             
vmzz = Ma*GRAV*DELTA;   %Change in missile velocity (m/sec) with  
                        % constant acceleration. 

  
% Total change in missile state other than straight line motion 
Xmz = [xmzz(1), vmzz(1), xmzz(2), vmzz(2), xmzz(3), vmzz(3)]'; 

  
%Updated missile state vector 
M = Fm*M + Xmz; % Adds straight line motion effects with the  
                % accererlations due to drag, guidance, and boost. 
end 
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function [ T ] = target_motion( T, turn ) 
% TARGET_MOTION 
% Updates target state vector (T). 
%---------------------------------------------------------------------- 
%---------------------------------------------------------------------- 
%   File:               target_motion.m 
%   Name:               LT Adam Osborn 
%   Component Runtime:  8.1 (R2013a) 
%   Compiler:           4.18.1 (R2013a) 
%                       32-bit (Windows XP) 
%   Date:               06 February 2014 
%   Description:        Computes the updated target state vector (T) 
%                       during straight line motion and changes due to 
%                       turn acceleration. Turn is based on turn value. 
%                       Target conducts turn toward missile of  
%                       magnitude TRN_G (g) when turn value is 1.  
%                       This occurs at TRN_TM (sec) from impact.  
%                       TRN_TM is defined in init.m. 
%   Inputs:             Target state vector (T) 
%                       turn value (0 for no turn, 1 for turn) 
%   Outputs:            Updated target state vector (T) 
%   Process:            The straight line motion transition matrix is  
%                       used when turn value is 0. The turn transition  
%                       matrix is used when turn value is 1. 
%   Assumptions: 
%   Comments: 
%---------------------------------------------------------------------- 
%---------------------------------------------------------------------- 
%------ define globals ------ 
global TRN_G GRAV DELTA  

  
%------ define constants ------ 
% Acceleration 
a_turn = TRN_G*GRAV;    % Magnitude of TRN_G (g)  
                        % converted by GRAV to (m/s^2). 

  
%------ define input vector ------ 
%------ initialize variables ------ 
%------ functions ------ 
% Angular acceleration 
w = a_turn/sqrt((T(2))^2 + (T(4))^2);   % Determined by dividing  
                                        % tangential acceleration  
                                        % (accel) by euclidean distance 
                                        % of target from origin. 
% Motion 
if turn == 0    % Straight line motion from the beginning of the  
                % simulation until turn value shifts to 1 when time to  
                % impact (tgo) is less than or equal to TRN_TM from  
                % init.m. 

     
    % Target transition matrix for straight line motion. 
    Ft = [1, DELTA, 0,     0, 0,     0; 
          0,     1, 0,     0, 0,     0; 
          0,     0, 1, DELTA, 0,     0; 
          0,     0, 0,     1, 0,     0; 
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          0,     0, 0,     0, 1, DELTA; 
          0,     0, 0,     0, 0,     1]; 

     
else   % Curved motion from tgo = TRN_TM (sec) to impact  
       % with TRN_G (g) curvature. 
    % Target transition matrix during a turn. Found in Prof. Hutchins 
    % EC3320 notes Section 2 page 33. Modified for 3D translation. 
    Ft = [1,     sin(w*DELTA)/w, 0, (1-cos(w*DELTA))/w, 0,     0; 
          0,     cos(w * DELTA), 0,      -sin(w*DELTA), 0,     0; 
          0, (1-cos(w*DELTA))/w, 1,     sin(w*DELTA)/w, 0,     0; 
          0,       sin(w*DELTA), 0,       cos(w*DELTA), 0,     0; 
          0,                  0, 0,                  0, 1, DELTA; 
          0,                  0, 0,                  0, 0,     1]; 
end 

  
T = Ft*T;   % Updated target state matrix after target motion 
end 
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D. SIMULATION FILTER FILES 

function [rng_k1, rngdt_k1, rngdtdt_k1, Prng_k1] = kalman_dg_range... 
    (rng_k0, rngdt_k0, rngdtdt_k0, nz_rng, Prng_k0, mac_paraL_k1) 
% KALMAN_DG_RANGE 
% Generates an estimate and covariance of the three dimensional range  
% state. 
%---------------------------------------------------------------------- 
%---------------------------------------------------------------------- 
%   File:               kalman_dg_range.m 
%   Name:               LT Adam Osborn 
%   Component Runtime:  8.1 (R2013a) 
%   Compiler:           4.18.1 (R2013a) 
%                       32-bit (Windows XP) 
%   Date:               06 February 2014 
%   Description:        Kalman algorithm which generates current  
%                       discrete time step corrected estimates of  
%                       range, range rate, and range acceleration as  
%                       well as the corrected covariance of the  
%                       estimation. 
%   Inputs:             Kalman filter's previous time step estimate of: 
%                       range (rng_k0) (m) 
%                       range rate (rngdt_k0) (m/sec) 
%                       range acceleration (rngdtdt_k0) (m/sec^2) 
%                       Kalman filter's previous time step corrected  
%                       range covariance (Prng_k0) 
%                       Noisy range measurement (nz_rng) (m) 
%                       Estimated magnitude of combined deterministic  
%                       missile acceleration parallel to the LOS  
%                       (mac_paraL_k1). 
%   Outputs:            Kalman filter's current time step estimate of: 
%                       range (rng_k1) (m) 
%                       range rate (rngdt_k1) (m/sec) 
%                       range acceleration (rngdtdt_k1) (m/sec^2) 
%                       Kalman filter's current time step corrected  
%                       range covariance (Prng_k1) 
%   Process:             
%   Assumptions:  
%   Comments:           Position and velocity portions of the missile's  
%                       deterministic acceleration inputs are applied  
%                       inside the filter. The acceleration portion is  
%                       applied outside the filter since unpredictable  
%                       accelerations are modeled as white noise inside  
%                       the filter. 
%---------------------------------------------------------------------- 
%---------------------------------------------------------------------- 
%------ define globals ------ 
global DELTA SIG_RNG Q2_DG_RNG GRAV TRN_G  

  
%------ define constants ------ 
% Transition matrix 
F = [1,DELTA,(DELTA^2)/2; 
     0,    1,      DELTA; 
     0,    0,         1]; 
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% Covariance matrix for uncorrelated range measurements 
R = (SIG_RNG^2); 

   
% Measurement matrix 
H =[1, 0, 0]; 

  
% Plant noise gain matrix 
G = eye(3); 

  
%------ define input vector ------ 
% Set corrected range state values from previous discrete time step 
xc = [     rng_k0; 
         rngdt_k0; 
      rngdtdt_k0]; 

   
Pc = Prng_k0; 

  
%------ initialize variables ------ 
% Plant noise covariance multiplier 
q2 = Q2_DG_RNG*3*DELTA*((TRN_G*GRAV)^2)/4; % Based on velocity variance 

  
% Plant noise covariance 
Q = q2*[(DELTA^5)/20, (DELTA^4)/8, (DELTA^3)/6; 
        (DELTA^4)/8,  (DELTA^3)/3, (DELTA^2)/2; 
        (DELTA^3)/6,  (DELTA^2)/2,       DELTA]; 

             
%------ functions ------ 
%% Prediction phase 
% Predicted range state 
u = (mac_paraL_k1)*GRAV*[(DELTA^2)/2; DELTA; 0];  
                    % Position and velocity portions of the missile's  
                    % deterministic acceleration inputs only.  
xp = F*xc + G*u;    % Predicted range state 

  
% Predicted range state estimation covariance 
Pp = F*Pc*F' + Q; 

  
%% Correction Phase 
% Calculate Kalman Gain (W) 
S = R + H*Pp*H';    % Innovation covariance 
W = S\(Pp*H');      % A\b used vice inv(A)*b for speed of computation. 

  
% Calculate the innovations 
v = nz_rng - H*xp; 

  
% Calculate corrected state vector (xc) 
xc = xp + W*v; 

  
% Calculate corrected covariance (Pc) 
Pc = (eye(3)-W*H)*Pp*(eye(3)-W*H)' + W*R*W'; 

  
% Corrected range state values for current discrete time step 
rng_k1 = xc(1);  
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rngdt_k1 = xc(2); 
rngdtdt_k1 = xc(3); 

  
Prng_k1 = Pc; 

  
end  
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function [theta_k1, thetadt_k1, thetadtdt_k1, Ptheta_k1] = ... 
    kalman_dg_theta(theta_k0, thetadt_k0, thetadtdt_k0, nz_theta, ... 
    Ptheta_k0, mac_perpL_k1, rng_k1) 
% KALMAN_DG_THETA 
% Generates an estimate and covariance of the three dimensional theta 
% state. 
%---------------------------------------------------------------------- 
%---------------------------------------------------------------------- 
%   File:               kalman_dg_theta.m 
%   Name:               LT Adam Osborn 
%   Component Runtime:  8.1 (R2013a) 
%   Compiler:           4.18.1 (R2013a) 
%                       32-bit (Windows XP) 
%   Date:               06 February 2014 
%   Description:        Kalman algorithm which generates current 
%                       discrete time step corrected estimates of  
%                       theta, theta rate, and theta acceleration as  
%                       well as the corrected covariance of the  
%                       estimation. 
%   Inputs:             Kalman filter's previous time step estimate of: 
%                       LOS angle (theta_k0) (rad) 
%                       LOS angle rate (thetadt_k0) (rad/sec) 
%                       LOS angle acceleration  
%                           (thetadtdt_k0) (rad/sec^2) 
%                       Kalman filter's previous time step corrected 
%                       theta covariance (Ptheta_k0) 
%                       Kalman filter's current time step estimate of 
%                       range (rng_k1) (m) 
%                       Noisy theta measurement (nz_theta) (rad) 
%                       Estimated magnitude of combined deterministic 
%                       missile acceleration perpendicular to the LOS 
%                       (mac_perpL_k1). 
%   Outputs:            Kalman filter's current time step estimate of: 
%                       LOS angle (theta_k1) (rad) 
%                       LOS angle rate (thetadt_k1) (rad/sec) 
%                       LOS angle acceleration  
%                           (thetadtdt_k1) (rad/sec^2) 
%                       Kalman filter's current time step corrected 
%                       theta covariance (Ptheta_k1) 
%   Process: 
%   Assumptions: 
%   Comments:           Position and velocity portions of the missile's 
%                       deterministic acceleration inputs are applied 
%                       inside the filter. The acceleration portion is 
%                       applied outside the filter since unpredictable 
%                       accelerations are modeled as white noise inside 
%                       the filter. 
%----------------------------------------------------------------------

- 
%----------------------------------------------------------------------

- 
%------ define globals ------ 
global DELTA SIG_THETA Q2_DG_THETA1 Q2_DG_THETA2 GRAV TRN_G Q2_SHIFT 
%------ define constants ------ 
% Transition matrix 
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F = [1,DELTA,(DELTA^2)/2; 
    0,    1,      DELTA; 
    0,    0,         1]; 

  
% Covariance matrix for uncorrelated bearing measurements 
R = (SIG_THETA^2); 

  
% Measurement matrix 
H =[1, 0, 0]; 

  
% Plant noise gain matrix 
G = eye(3); 

  
%------ define input vector ------ 
% Set corrected theta state values from previous discrete time step 
xc = [    theta_k0; 
        thetadt_k0; 
      thetadtdt_k0]; 

   
Pc = Ptheta_k0; 

  
%------ initialize variables ------ 
% Plant noise covariance multiplier 
if rng_k1 >= Q2_SHIFT 
    q2 = Q2_DG_THETA1*3*DELTA*... 
        ((TRN_G*GRAV)^2)/(4*(rng_k1^2)); % Based on velocity variance 
else 
    q2 = Q2_DG_THETA2*3*DELTA*... 
        ((TRN_G*GRAV)^2)/(4*(rng_k1^2)); % Based on velocity variance 
end 

  
% Plant noise covariance  
Q = q2*[(DELTA^5)/20, (DELTA^4)/8, (DELTA^3)/6; 
        (DELTA^4)/8,  (DELTA^3)/3, (DELTA^2)/2; 
        (DELTA^3)/6,  (DELTA^2)/2,  DELTA]; 

  
%------ functions ------ 
%% Prediction phase 
% Predicted theta state 
u = [    atan2(mac_perpL_k1*GRAV*(DELTA^2), 2*rng_k1);  
               4*mac_perpL_k1*GRAV*rng_k1*DELTA / ... 
     (4*(rng_k1^2) + (mac_perpL_k1*GRAV)^2*(DELTA^4));  
                                                    0]; 
                    % Position and velocity portions of the missile's  
                    % deterministic acceleration inputs only.  
xp = F*xc + u;      % Predicted theta state 

  
% Predicted range state estimation covariance 
Pp = F*Pc*F' + Q; 

  
%% Correction Phase 
% Calculate Kalman Gain (W) 
S = R + H*Pp*H';    % Innovation covariance 
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W = S\(Pp*H'); % A\b used vice inv(A)*b for speed of computation. 

  
% Calculate the innovations 
v = nz_theta - H*xp; 

  
% Calculate corrected state vector (xc) 
xc = xp + W*v; 

  
% Calculate corrected covariance (Pc) 
Pc = (eye(3)-W*H)*Pp*(eye(3)-W*H)' + W*R*W'; 

  
% Corrected theta state values for current discrete time step 
theta_k1 = xc(1);  
thetadt_k1 = xc(2); 
thetadtdt_k1 = xc(3); 

  
Ptheta_k1 = Pc; 

  
end 
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function [rng_k1, rngdt_k1, Prng_k1] = kalman_pn_range... 
    (rng_k0, rngdt_k0, nz_rng, Prng_k0, mac_paraL_k1) 
% KALMAN_PN_RANGE 
% Generates an estimate and covariance of the two dimensional range  
% state. 
%---------------------------------------------------------------------- 
%---------------------------------------------------------------------- 
%   File:               kalman_pn_range.m 
%   Name:               LT Adam Osborn 
%   Component Runtime:  8.1 (R2013a) 
%   Compiler:           4.18.1 (R2013a) 
%                       32-bit (Windows XP) 
%   Date:               06 February 2014 
%   Description:        Kalman algorithm which generates current  
%                       discrete time step corrected estimates of range  
%                       and range rate as well as the corrected  
%                       covariance of the estimation. 
%   Inputs:             Kalman filter's previous time step estimate of: 
%                       range (rng_k0) (m) 
%                       range rate (rngdt_k0) (m/sec) 
%                       Kalman filter's previous time step corrected  
%                       range covariance (Prng_k0) 
%                       Noisy range measurement (nz_rng) (m) 
%                       Estimated magnitude of combined deterministic  
%                       missile acceleration parallel to the LOS  
%                       (mac_paraL_k1). 
%   Outputs:            Kalman filter's current time step estimate of: 
%                       range (rng_k1) (m) 
%                       range rate (rngdt_k1) (m/sec) 
%                       Kalman filter's current time step corrected  
%                       range covariance (Prng_k1) 
%   Process:             
%   Assumptions:  
%   Comments:            
%----------------------------------------------------------------------

- 
%----------------------------------------------------------------------

- 
%------ define globals ------ 

  
global DELTA SIG_RNG Q2_PN_RNG GRAV TRN_G 
%------ define constants ------ 
% Transition matrix 
F = [1, DELTA; 
     0,     1]; 

  
% Covariance matrix for uncorrelated bearing measurements 
R = (SIG_RNG^2); 

  
% Measurement matrix 
H =[1, 0]; 

  
% Plant noise gain matrix 
G = eye(2); 
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%------ define input vector ------ 
% Set corrected theta state values from previous discrete time step 
xc = [   rng_k0; 
       rngdt_k0]; 

   
Pc = Prng_k0; 

  
%------ initialize variables ------ 
% Plant noise covariance multiplier 
q2 = Q2_PN_RNG*3*((TRN_G*GRAV)^2)*DELTA/4; 

  
% Plant noise covariance  
Q = q2*[(DELTA^3)/3, (DELTA^2)/2; 
        (DELTA^2)/2,       DELTA]; 

  
%------ functions ------ 
%% Prediction phase 
% Predicted range state 
u = (mac_paraL_k1)*GRAV*[(DELTA^2)/2; DELTA];  
                    % Position and velocity portions of the missile's  
                    % deterministic acceleration inputs only.  
xp = F*xc + G*u;    % Predicted range state 

  
% Predicted range state estimation covariance 
Pp = F*Pc*F' + Q; 

  
%% Correction Phase 
% Calculate Kalman Gain (W) 
S = R + H*Pp*H';    % Innovation covariance 
W = S\(Pp*H');      % A\b used vice inv(A)*b for speed of computation. 

  
% Calculate the innovations 
v = nz_rng - H*xp; 

  
% Calculate corrected state vector (xc) 
xc = xp + W*v; 

  
% Calculate corrected covariance (Pc) 
Pc = (eye(2)-W*H)*Pp*(eye(2)-W*H)' + W*R*W'; 

  
% Corrected range state values for current discrete time step 
rng_k1 = xc(1);  
rngdt_k1 = xc(2); 

  
Prng_k1 = Pc; 

   
end  
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function [theta_k1, thetadt_k1, Ptheta_k1] = kalman_pn_theta... 
    (theta_k0, thetadt_k0, nz_theta, Ptheta_k0, mac_perpL_k1, rng_k1) 
% KALMAN_PN_THETA 
% Generates an estimate and covariance of the two dimensional theta 
% state. 
%---------------------------------------------------------------------- 
%---------------------------------------------------------------------- 
%   File:               kalman_pn_theta.m 
%   Name:               LT Adam Osborn 
%   Component Runtime:  8.1 (R2013a) 
%   Compiler:           4.18.1 (R2013a) 
%                       32-bit (Windows XP) 
%   Date:               06 February 2014 
%   Description:        Kalman algorithm which generates current  
%                       discrete time step corrected estimates of theta  
%                       and theta rate as well as the corrected  
%                       covariance of the estimation. 
%   Inputs:             Kalman filter's previous time step estimate of: 
%                       LOS angle (theta_k0) (rad) 
%                       LOS angle rate (thetadt_k0) (rad/sec) 
%                       Kalman filter's previous time step corrected 
%                       theta covariance (Ptheta_k0) 
%                       Kalman filter's current time step estimate of 
%                       range (rng_k1) (m) 
%                       Noisy theta measurement (nz_theta) (rad) 
%                       Estimated magnitude of combined deterministic 
%                       missile acceleration perpendicular to the LOS 
%                       (mac_perpL_k1). 
%   Outputs:            Kalman filter's current time step estimate of: 
%                       LOS angle (theta_k1) (rad) 
%                       LOS angle rate (thetadt_k1) (rad/sec) 
%                       Kalman filter's current time step corrected 
%                       theta covariance (Ptheta_k1) 
%   Process: 
%   Assumptions: 
%   Comments:            
%---------------------------------------------------------------------- 
%---------------------------------------------------------------------- 
%------ define globals ------ 
global DELTA SIG_THETA Q2_PN_THETA GRAV TRN_G 
%------ define constants ------ 
% Transition matrix 
F = [1, DELTA; 
     0,     1]; 

  
% Covariance matrix for uncorrelated bearing measurements 
R = (SIG_THETA^2); 

  
% Measurement matrix 
H =[1, 0]; 

  
% Plant noise gain matrix 
G = eye(2); 

  
%------ define input vector ------ 
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% Set corrected theta state values from previous discrete time step 
xc = [    theta_k0; 
        thetadt_k0]; 

   
Pc = Ptheta_k0; 

  
%------ initialize variables ------ 
% Plant noise covariance multiplier 
q2 = Q2_PN_THETA*3*DELTA*((TRN_G*GRAV)^2)/(4*(rng_k1^2)); 

  
% Plant noise covariance  
Q = q2*[(DELTA^3)/3, (DELTA^2)/2; 
        (DELTA^2)/2,       DELTA]; 

            
%------ functions ------ 
%% Prediction phase 
% Predicted theta state 
u = [    atan2(mac_perpL_k1*GRAV*(DELTA^2), 2*rng_k1);  
                          4*mac_perpL_k1*GRAV*rng_k1*DELTA / ... 
               (4*(rng_k1^2) + (mac_perpL_k1*GRAV)^2*(DELTA^4))];  
                    % Position and velocity portions of the missile's  
                    % deterministic acceleration inputs only.  
xp = F*xc + G*u;    % Predicted theta state 

  
% Predicted range state estimation covariance 
Pp = F*Pc*F' + Q; 

  
%% Correction Phase 
% Calculate Kalman Gain (W) 
S = R + H*Pp*H';    % Innovation covariance 
W = S\(Pp*H'); % A\b used vice inv(A)*b for speed of computation. 

  
% Calculate the innovations 
v = nz_theta - H*xp; 

  
% Calculate corrected state vector (xc) 
xc = xp + W*v; 

  
% Calculate corrected covariance (Pc) 
Pc = (eye(2)-W*H)*Pp*(eye(2)-W*H)' + W*R*W'; 

  
% Corrected theta state values for current discrete time step 
theta_k1 = xc(1);  
thetadt_k1 = xc(2); 

  
Ptheta_k1 = Pc; 

    
end  
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