
Calhoun: The NPS Institutional Archive
DSpace Repository

Faculty and Researchers Faculty and Researchers' Publications

2000

Online Multicast Grouping for Dynamic Data
Distribution Management

Morse, Katherine; Zyda, Michael

Katherine Morse and Michael Zyda Online Multicast Grouping for Dynamic Data
Distribution Management, Proceedings of the Fall 2000 Simulation Interoperability
Workshop, September 2000.
https://hdl.handle.net/10945/41535

This publication is a work of the U.S. Government as defined in Title 17, United
States Code, Section 101. Copyright protection is not available for this work in the
United States.

Downloaded from NPS Archive: Calhoun

ONLINE MULTICAST GROUPING FOR DYNAMIC DATA DISTRIBUTION
MANAGEMENT

Katherine L. Morse
Science Applications International Corporation

10260 Campus Point Drive, MS B-1-E
San Diego, CA 92121

858-826-5442, 858-826-5112
katherine.l.morse@saic.com

Michael Zyda

MOVES Academic Group
Naval Postgraduate School
Monterey, CA 93943-5118

zyda@acm.org

KEYWORDS: HLA, Data Distribution
Management, multicast, RTI

ABSTRACT

The High Level Architecture’s Data
Distribution Management (DDM) (Morse 1997,
DoD 1998) services are the most recent in a
succession of systems designed to reduce the
amount of data received by individual
simulations in large-scale distributed
simulations. A common optimization in these
interest management systems is the use of
multicast groups for sending data to a selected
subset of all potential receivers. The use of
multicast has met with considerable success in
this application. However, its use to date has
relied on a priori knowledge of communication
patterns between simulations and static
assignment of multicast groups to these
patterns. As larger, more complex, and less
predictable simulations are built, the need has
arisen for more efficient use of multicast groups
as they are a restricted resource. This paper
describes an implementation of online multicast
grouping, compares the message delivery time

of the resulting groupings against an offline
grouping algorithm, and projects the
performance impact on a production RTI.

1 INTRODUCTION
(Morse 2000b) describes two algorithms for
performing offline grouping for dynamic DDM
and analyzes their performance in terms of their
ability to deliver required updates in a timely
manner. In this paper we describe an online
implementation of one of those algorithms and
evaluate both the goodness of the groupings it
produces and the potential impact of
incorporating the algorithm in a production
RTI. In section 2, we analyze the potential
performance improvements for using multicast
grouping. Section 3 describes the offline and
online versions of the grouping algorithm.
Section 4 compares the goodness of the results
generated by both implementations and
analyzes the potential impact of implementing
online grouping in a production RTI. Section
4.2 outlines future work1.

1 Initial work on this project was funded under
DARPA ASTT contract MDA9972-97-C-0023.

2 MULTICAST GROUPING
The most promising optimization identified to
date is the use of multicast groups for routing
data to a controlled subset of all member
simulations in a simulation (Abrams, Watsen,
and Zyda 1998; Calvin et al. 1995; Macedonia
et al. 1995; Mastaglio and Callahan 1995; Rak
and Van Hook 1996). The ultimate measure of
effectiveness of any interest management
system is the latency between sending a piece
of data and an interested receiver getting it.
Broadcast makes sending fast, but at the
expense of time spent by the receiver discarding
irrelevant data. Point-to-point ensures that
receivers only get relevant data, but it requires
determining the destination for the data and
requires sending multiple copies of that data,
slowing transmission. The use of multicast
strikes a balance between broadcast and point-
to-point by reducing the time to send and the
amount of data received. Broadcast and point-
to-point represent opposite ends of the
send/receive time spectrum with various
applications of multicast occupying the area in
between. Even though multicast has the
potential of improving communication time, it
is not without its own challenges: multicast
hardware currently supports a limited number
of multicast groups, on the order of a couple
thousand; the time to reconfigure multicast
routers can be of the same order as the total
allowable latency for message delivery
(Mastaglio and Callahan 1995). As a result,
most implementations using multicast to date
have used static assignment of multicast groups,
usually to fixed geographic regions2. These
implementations have achieved good results,
but ultimately they are limited in scale as well
because they do not account for changing
connection patterns between senders and
receivers. The next step in optimization is
dynamic multicast grouping that adapts to
connection patterns.

2See (Macedonia et al. 1995) for an exception.

2.1 Connection Graphs
By virtue of regions, we know the destination
of attribute updates before they are sent. Figure
2-1 illustrates the problem with a connection
pattern graph. Federate f1 sends the attribute
update(s) represented by connection path c1 to
federates f2 and f3. Federate f3 sends the
attribute update(s) represented by connection
path c2 to federates f2 and f4. Federate f1 also
sends c3 to f4. The connection set, C,
represented by this graph is {<f1 , c1, (f2, f3)>,
<f1, c3, (f4)>,{<f3>, c2, (f2, f4)}. Note that a
connection path doesn’t represent a single
message, but all updates of some set of object
attributes.

f1

f2

f3

f4

<c1,w1>

<c1,w1>

<c3,w3>

<c2,w2>

<c2,w2>

Figure 2-1. Example Connection Pattern
Graph

This problem is similar to the clique-covering
problem (Papadimitriou 1994) Intuitively, if a
clique exists in the connection pattern between
a set of nodes for a set of connections, assigning
a multicast group to these nodes for these
connections results in optimal routing. In
general, however, we cannot expect to be
fortunate enough to have many cliques in the
connection pattern graph. The algorithm's
accuracy is augmented by weighting the arcs in
the graph with the data transfer frequency over
the arc, known as the connection weight.

The multicast grouping algorithm uses
maximum tolerable latency, tmax, as its cost
measure. The goal is to group m connections,
c1, ... cm, into no more than n multicast groups,

g1, ... gn, such that no communication arrives at
its receiver in greater than tmax time, if
physically possible. The parameters to the
algorithm are:
• Number of available multicast groups (n)
• Maximum tolerable latency (tmax)
• Time to send (ts) - We assume that ts is

roughly the same for all federates.
• Time to receive (tr) - We assume that the

time to discard an irrelevant message is the
same as the time to receive a relevant one;
also that tr is roughly the same for all
federates.

• Time to propagate message through the
network (tp(fi,fj)) - measured between
federate fi and fj, the publisher and
subscriber of the connection, respectively.

The algorithms begin by assuming point-to-
point communication for all messages and falls
back to this position when the network and
scenario make multicast grouping impossible,
i.e. when ts + tp + tr + tq > tmax for some
connections.

The decision to add a connection, c, to a
multicast group is based on the expected impact
on tmax of all connections and federates already
in the group. If connection c is sent to k
receivers point-to-point, t(c), the time from the
beginning of c’s sending to the end of the last
receiver’s receipt is bounded by:

k • ts +max(t p (fi ,f j)) +max(t q (fj)) + tr

Equation 2-1. Time Bound for k Point-to-
point Communications

This bound is based on the worst case
assumption that the kth communication has the
longest tp and the longest tq.

We assume ts and tr are fixed, uniform, and
roughly equal. Time to propagate the update,

tp(fi,fj), is assumed to be fixed, but different and
measurable between source and destination,
federates i and j. Time in the queue, tq, varies
depending on the number and frequency of
messages received.

The use of multicast improves latency for a
message by reducing the average serial delay
send time, tds, for the k copies as given in
Equation 2-2. In fact, tds becomes exactly ts
when c is put in a multicast group.
Furthermore, this improvement is achieved each
time a message is sent for a connection.

ts ≤ tds(c) ≤ k • ts

Equation 2-2. tds for c not in a Group
However, adding connections to an existing
multicast group may cause extraneous
communication at some receivers, increasing tq
for some valid communications. For example,
putting all the connections in Figure 2-1 would
result in the following extraneous
communications:
• c3 to f2 and f3
• c1 to f4
• c2 to f1
This simple observation illuminates a much
larger point. We are addressing potential
performance improvements. There are some
circumstances under which we cannot improve
over the performance of point-to-point.

3 GROUPING ALGORITHMS

3.1 The Input-Restricted Largest Outgoing
Connection (IRLOC) Algorithm

The input-restricted largest outgoing connection
(IRLOC) (Morse 2000b) algorithm seeks to
minimize both tds and tq to produce better
average results than its predecessor, the largest
outgoing connection (LOC) algorithm. This
algorithm recognizes three facts about adding a
connection to an existing group:

• Any receivers of the connection who are not
already in the group will receive additional
connections equal to the sum of the
connections already in the group, the group
weight.

• Any group members who are not receivers
of the connection will receive the additional
weight of the connection.

• Assuming that ts = tr, improvements in
average message delivery time created by
sending a connection via multicast are
directly offset by the “negative weight”
created by the first two facts.

The IRLOC performs the following steps:
1. Calculate the positive cumulative effect of

each connection, (k - 1) • w.
2. Add the receivers of the connection with the

largest cumulative effect; in the event of a
tie, add the lowest numbered such
connection.

3. Add the next largest connection such that a)
the input weight of the current group
members does not exceed tmax by the
addition of the connection weight, b) the
input weight of the connection’s receivers
not already in the group does not exceed
tmax by the addition of the group weight, c)
the positive cumulative effect is greater than
the negative weight. Note that the positive
cumulative effect is only a function of the
connection, while the negative weight is a
function of the connection and the current
state of the group.

4. Repeat step 3 with the remaining
connections. Halt when all connections are
assigned or all multicast groups are used.

3.2 The Online Grouping Algorithm
The online, distributed IRLOC algorithm is
built on top of a baseline prototype (Morse
2000b) implemented in the MESSENGERS
mobile agents system (Bic 1996). The baseline
prototype implements a minimal subset of RTI
necessary to test DDM. The online IRLOC
algorithm integrates the baseline prototype with

the basic structure of the IRLOC algorithm. The
distributed algorithm operates with degraded
information for several reasons. First, the
information about connections and incoming
weights is distributed among the federates, and
collecting it would be prohibitive in a very large
scale distributed simulation. If the simulation
were small enough to be able to collect all this
data at a central point and still make timely
grouping decisions, it wouldn’t need multicast
grouping. Second, this same information is
changing in real time. Regions and region
intersections are changing while the grouping
decisions are being made. Even if the algorithm
had access to global information when it started
grouping, there is a non-zero probability that
the information would be out of date by the
time the grouping completed. Finally, the
MESSENGERS system doesn’t provide a
straightforward, timely mechanism for passing
dynamic data structures to Messengers. Some
simplifying assumptions have been made which
account for this. In a production system this
final constraint could be relaxed.

The online grouping algorithm is triggered by
the discovery of a connection or connections. A
grouping Messenger is injected which begins
searching for a potential group. The grouping
Messenger searches three places in the
following order:
1. on the init node on the local machine;
2. at the multicast server where it may find an

unused group;
3. at most one hop from the multicast server at

another machine.

If the grouping Messenger finds an unused
group at the multicast server, it marks the group
as taken to the requesting federate’s machine
and “carries” the group home. This is how
groups migrate away from the multicast server.
If the group is unused, there’s no need to check
for overflow and the group can be used
immediately. Before a partially used group can
be taken from another federate, it must be

checked for overflow. The grouping
Messengers carries the connection weight and
connection receivers with it. The current group
weight and members is always stored with the
group at its current init node. All of this
information is consistent with the IRLOC
algorithm and is always up to date. However,
the IRLOC algorithm also makes use of the
current incoming connection weights of both
the current group members and the connection’s
receivers. Here is where slightly degraded
information is used. Instead of having the
current incoming weights of all the
connection’s receivers, the grouping Messenger
carries the last known, largest incoming weight
of all the receivers. The incoming weights of
receivers are piggybacked on subscription
regions, so they may be out of date due to
subsequent subscriptions. Instead of the current
incoming weights of all the group’s members,
the group is stored with the last known, largest
incoming weight of any of all the group’s
members.

If the grouping succeeds, the group’s weight
and member list is updated. The grouping is
reported to the requesting federate which
changes its connectivity and adjusts its outgoing
connection weight down. It also injects “join”
Messengers for all the connection receivers who
were not previously members of the group. In
this system, this Messenger only informs the
receiver to adjust its incoming weight upward
to account for other traffic from the group and
to add to a reference count for this group. If
multicast hardware were available, this
Messenger would also be the trigger for the
receiver to issue the appropriate system calls to
join the multicast group.

4 RESULTS
There are two measures of merit for a DDM
implementation, latency and overhead. As
described in Section 2, we wish to minimize the
average message delivery time while not
incurring too much overhead cost.

4.1 Grouping Results
The first experiments performed were to
determine the goodness of the groupings
generated by the online grouping algorithm
relative to the offline version. These
experiments were conducted with random
connection sets. For each desired random
connection set we generated 10 sets of the given
size, using different random seeds, and
averaged the 10 results. This is to minimize the
impact on the results of randomly pathological
connection sets. Table 4-1 lists the parameters
of the random connection sets generated.

Table 4-1. Random Connection Set Tests

f 10
tr = ts 10 milliseconds3
tp 10 milliseconds between

all federates
tmax 1000 milliseconds
(n, m) (5, 2), (5, 3), (6, 2)

Since the online grouping algorithm can only be
run in real time with the MESSENGERS system
underneath, this comparison test required
manually generating regions and DDM API
calls whose resulting region intersections
produce the connection sets listed in Table 4-1.
The groupings produced in this way were
manually edited into connection set files and
run through the offline simulator. In the online
configuration there is no way to create the
entire connection set statically. As soon as a
connection or connections are detected at any
federate, the RTI component at that federate
triggers grouping. This required writing
auxiliary Messengers which locate existing
multicast groups and add new receivers to the
group when they subscribe for a connection
which has already been assigned to the group in
question.

3 Hoare and Fujimoto (Hoare and Fujimoto
1998) measured these values for RTI 1.3.

Even with degraded information about the input
weights of the federates, the online grouping
algorithm compared quite favorably to the
offline IRLOC algorithm. In over half the cases,
seventeen cases, the online algorithm generated
the same solution as IRLOC. In six of the cases,
it generated a better average message delivery
time. In one case, the degraded information
about input weights caused the online algorithm
to generate too conservative a solution. In two
cases, the order in which connections were
discovered affected the order in which they
were added to groups, i.e. early addition of a
connection prevented later addition of a
different connection which would have
produced a better result. In one case, the fact
that the grouping Messenger was restricted to
only looking one hop from the multicast server
prevented it from putting a potential connection
into an existing group. In three cases, the
grouping was affected by both of the previous
two factors, ordering and restricted hops.

4.2 Runtime Performance Results
The experiments described in Table 4-2 are
designed to test the potential impact of
integrating online grouping with a production
RTI using relative measures between the online
grouping algorithm, the baseline prototype, and
an actual RTI implementation with DDM, RTI
1.3 v4. The experiments use the benchmark
algorithm described in (Morse 1999b). When
interpreting the results, it’s critical to remember
that the baseline prototype and the online
grouping algorithm implement the barest
minimum of HLA functionality necessary to
test the hypothesis with almost no error
checking. RTI 1.3 is a robust, fully-compliant
HLA 1.3 implementation with all the specified

service groups and error checking, and the
overhead implied by that.

Table 4-2. Runtime Experiments
(federates,

regions)
Δr

/min.
i Δ i

/min.
1 (2,50), (5, 200),

(10,1000)
0 r/25, r/10 0

2 (2,50), (5, 200),
(10,1000)

r r/25, r/10 0

3 (2,50), (5, 200),
(10,1000)

r r/50, r/25 i

Experiment 1 tests the impact of intersection
calculations on initialization time. It establishes
a basis for projection of performance of the
online grouping algorithm in an actual
implementation. The baseline prototype and
RTI 1.3 are used because the online grouping
algorithm is built on top of the baseline
prototype, while the baseline prototype has an
architecture for DDM which closely models
the architecture of RTI 1.3.

The average per federate initialization times for
each of the federates in the RTI 1.3 tests are
listed in Table 4-3. Separate tests verified that
the growth in initialization times is due
primarily to a larger number of federates, not to
a larger number of regions. The change in
initialization time for grouping was calculated
as the difference in initialization time between
the online grouping algorithm and the baseline
prototype. Given that average per federate
initialization time increase is more than three
orders of magnitude smaller than the
initialization time without grouping, using
grouping has no appreciable impact on
initialization.

Table 4-3. Initialization Times
f r Δr/ min i Δ i/ min RTI 1.3 (sec.) Change for Grouping

2 50 0 2 0 13.190171 .012
2 50 0 5 0 13.103029 .008881
5 200 0 8 0 24.895595 .015031
5 200 0 20 0 24.134336 .010996

10 1000 0 40 0 132.050392 .009019
10 1000 0 100 0 129.133358 .005554
Averages 56.251147 .010247

Experiment 2 tests the impact of region changes
without any intersection changes. As discussed
in Section 3.2, this should impact CPU usage,
but not severely since the system should
recognize that connectivity hasn’t changed.
Since regions are uniformly assigned to
federates, Δr per federate = r/f which ranges
from 25 to to 100. Here the methodology is to
determine if the RTI can do its job without
robbing the federates of the CPU cycles they
need to do their job. Although the Sun Sparc 5s
used in the experiment are slightly
underpowered compared to platforms typically
used for HLA-based simulations, the RTI
performed fairly well. Each experiment is run
for 7 minutes with 10 loops per second for a
total of 4200 loops. During each loop, the
federate code performs all the calculations it
requires and the remainder of the time in the
loop allocated for the RTI to perform its
functions. A “bad” loop is one in which the RTI
fails to complete all its processing in the
remaining loop time allocated to it. Across all
six tests in experiment 2, the RTI only suffered
an average of 2.6% bad loops. Running the
benchmark algorithm with the online grouping
algorithm and the baseline grouping algorithm
only resulted in an average of 2173 msec more
time taken by the RTI across a 7 minute period;
approximately .5 msec per .1 sec loop. That’s
less time than it takes to receive a single
extraneous message that would have been
delivered without multicast!

Experiment 3 tests the impact of region changes
with intersection changes. This should impact
CPU usage more severely than experiment 2
since connectivity changes must be made.
Predictably, the RTI produced more bad loops
for experiment 3 than for experiment 2, 5.7%
vs. 2.6%. However, the grouping algorithm
only resulted in an average of 384 msec more
time. The fact that this is lower than the time

for experiment 2 are initially surprising, but the
numbers are so small compared to the
measurable resolution that even small
perturbations in the CPU load or network load
on these non-dedicated machines can result in
proportionally large differences.

For the sake of completeness, the additional
time for all the experiments with the online
grouping algorithm and the baseline algorithm
were recorded and averaged. The average
additional time was 2596 msec or .62 msec per
loop.

All of this is overshadowed by the time it takes
to reconfigure multicast groups in routers.
According to (IETF 1997) and (Cisco 1999),
joining a multicast group across a LAN can take
no time at all, while leaving a multicast group
across a WAN may take on the order of 260
seconds. In summary, it is not the time it takes
to calculate the multicast groups which is the
impediment to dynamic multicast grouping as
has been asserted in the past, but the time it
takes to change the groups in the routers.

5 FUTURE WORK

5.1 Maintaining Incoming Weight
Information

The offline grouping algorithms always have
perfect global knowledge of the incoming
weights of all federates. And the algorithms
update this information as they build groups.
The distributed online grouping algorithm has a
much less consistent view of this information.
A receiver could form many new connections
and be added to other groups in between the
time when it sends its incoming weight to a
sender with its subscription region and the time
when the sender begins to form a group. The
accuracy of the offline grouping algorithm
could be improved by periodically updating

incoming weight information to receivers. One
possibility is to keep track of the incoming
weight sent with each subscription region as
well as the lowest reported such weight. When
the difference between the lowest reported
weight and the current incoming weight reaches
a threshold, an auxiliary Messenger with a new
incoming weight would be dispatched to update
all senders holding the subscription region. The
threshold would have to be determined
experimentally, trading off the cost of the
additional overhead of tracking reported
incoming weights against the cost of the
extraneous messages resulting from inaccurate
incoming weight information.

5.2 Ungrouping
The focus of this research has been on
developing groups. Connections are dropped
from groups and groups are dissolved when all
the receivers have dropped out. However, the
departure of only one or two receivers may
adversely affect the effectiveness of the
grouping. In the extreme case the cost function
could be recalculated every time a receiver
drops out. Doing so would require keeping
complete information about the connections in
the set, including the identities of all the
required receivers of each connection. The
recalculation would be very expensive. Like the
grouping algorithms, ungrouping could almost
certainly benefit from heuristic approaches.

5.3 The Real World
Finally, the true test of this research would be to
implement the distributed IRLOC algorithm in
a production RTI and test it in a very large
scale, dynamic virtual environment.

6 CONCLUSIONS
As the size of distributed simulations grow,
unwanted data received by member simulations
will continue to grow as a limiting factor.
Multicast has been identified as a highly
effective and efficient tool for controlling the
delivery of unwanted data, but multicast groups

are a limited resource. Static assignment of
multicast groups to particular geographic
regions and data types have yielded positive
results, but may not be extensible to very large
simulations or simulations which exhibit a large
degree of chaotic clustering. We have taken
major steps toward dynamic assignment of
multicast groups in the context of the HLA’s
DDM services. We have demonstrated that it is
feasible to implement dynamic multicast
grouping in a production RTI, but use of
dynamic grouping rests on the ability to quickly
reconfigure multicast hardware.

7 REFERENCES
Abrams, H.; K. Watsen; and M. Zyda. 1998.
“Three-Tiered Interest Management for Large-Scale
Virtual Environments.” In Proceedings of 1998
ACM Symposium on Virtual Reality Software and
Technology (VRST'98, (Taipei, Taiwan).

Bic, L.; M. Fukuda; and M. Dillencourt. 1996.
Distributed Computing using Autonomous Objects.
IEEE Computer, 29(8), August 1996.

Calvin, J.; D.P. Cebula; C.J. Chiang; S.J. Rak; and
D.J. Van Hook. 1995. “Data Subscription in Support
of Multicast Group Allocation.” In 13th Workshop
on Standards for the Interoperability of Distributed
Simulations (Orlando, FL, September) 367-369.

Cisco IOS 12.0 Solutions for Network Protocols
Volume 1: IP. Cisco Press. 1999.

Department of Defense High Level Architecture
Interface Specification, Version 1.3, DMSO, April
1998, available at http://hla.dmso.mil.

Hoare, P.; and R. Fujimoto. 1998. “HLA RTI
Performance in High Speed LAN Environments.”
In Proceedings of the 1998 Fall Simulation
Interoperability Workshop. (Orlando, FL,
September). 501-510.

IETF Network Working Group. Internet Group
Management Protocol, Version 2, RFC 2236.
Available at http://rfc.fh-
koeln.de/rfc/html/rfc2236.html, November 1997.

Macedonia, M.; M. Zyda; D. Pratt; and P. Barham.
1995. “Exploiting Reality with Multicast Groups: a
Network Architecture for Large Scale Virtual

Environments.” In Virtual Reality Annual
International Symposium ’95. 2-10.

Mastaglio, T.W.; and R. Callahan. 1995. “A Large-
Scale Complex Virtual Environment for Team
Training.” IEEE Computer 28, no. 7 (July): 49-56.

Morse, K.L.; and J.S. Steinman. 1997. “Data
Distribution Management in the HLA:
Multidimensional Regions and Physically Correct
Filtering.” In Proceedings of the 1997 Spring
Simulation Interoperability Workshop (Orlando, FL,
March). 343-352.

Morse, K.L.; L. Bic; M. Dillencourt; and K. Tsai.
1999. “Multicast Grouping for Dynamic Data
Distribution Management.” In Proceedings of the
1999 Society for Computer Simulation Conference.
(Chicago, IL, July).

Morse, K.L; L. Bic; and M. Dillencourt. 1999b.
“Characterizing Scenarios for DDM Performance
and Benchmarking RTIs.” In Proceedings of the
1999 Spring Simulation Interoperability Workshop,
March 1999.

Morse, K.L; L. Bic; and M. Dillencourt. 2000.
“Interest Management in Large Scale Virtual
Environments.” MIT Presence, March 2000.

Morse, K.L. 2000b. “An Adaptive, Distributed
Algorithm for Interest Management.” Ph.D.
Dissertation, University of California, Irvine, May
2000.

Morse, K.L.; M. Zyda. 2000b. “Multicast Grouping
for Dynamic Data Distribution Management.” In
Proceedings of the 2000 Distributed Simulation -
Real Time Workshop. (San Francisco, CA, August).

Papadimitriou, C.H. 1994. Computational
Complexity. Addison-Wesley, New York. Pg. 190.

Rak, S.J.; and D.J. Van Hook. 1996. “Evaluation of
Grid-Based Relevance Filtering for Multicast Group
Assignment.” In 14th Workshop on Standards for
the Interoperability of Distributed Simulations
(Orlando, FL, September) 739-747.

AUTHOR BIOGRAPHIES

KATHERINE L. MORSE is a Senior
Computer Scientist with SAIC. She received
her B.S. in mathematics (1982), B.A. in Russian

(1983), M.S. in computer science (1986) from
the University of Arizona, and M.S. (1995) and
Ph.D. (2000) in information & computer
science from the University of California,
Irvine. Dr. Morse has worked in industry for
over 20 years in the areas of simulation,
computer security, compilers, operating
systems, neural networks, speech recognition,
image processing, and engineering process
development. Her Ph.D. dissertation is on
dynamic multicast grouping for Data
Distribution Management, a field in which she
is widely recognized as a foremost expert.

MICHAEL ZYDA is a Professor in the
Department of Computer Science at the Naval
Postgraduate School, Monterey, California.
Professor Zyda is also the Chair of the NPS
Modeling, Virtual Environments and
Simulation Academic Group. Since 1986, he
has been the Director of the NPSNET Research
Group. Professor Zyda's research interests
include computer graphics, large-scale,
networked 3D virtual environments, computer-
generated characters, video production,
entertainment/defense collaboration, and
modeling and simulation. He is known for his
work on software architectures for networked
virtual environments.
Professor Zyda was a member of the National
Research Council's Committee on "Virtual
Reality Research and Development". Professor
Zyda was the chair of the National Research
Council's Computer Science and
Telecommunications Board Committee on
"Modeling and Simulation: Linking
Entertainment & Defense". From that report, for
the Deputy Assistant Secretary of the Army for
Research and Technology, Professor Zyda
drafted the operating plan and research agenda
for the USC Institute for Creative Technologies
(ICT).

Professor Zyda is a member of the National
Research Council Committee on Advanced
Engineering Environments. Professor Zyda is

also a Senior Editor for Virtual Environments
for the MIT Press quarterly PRESENCE, the
journal of teleoperation and virtual
environments. He is a member of the Editorial
Advisory Board of the journal Computers &
Graphics. Professor Zyda is a member of the
Technical Advisory Board of the Fraunhofer
Center for Research in Computer Graphics,
Providence, Rhode Island.

