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ABSTRACT 
 
The High Level Architecture’s Data 
Distribution Management (DDM) (Morse 1997, 
DoD 1998) services are the most recent in a 
succession of systems designed to reduce the 
amount of data received by individual 
simulations in large-scale distributed 
simulations.  A common optimization in these 
interest management systems is the use of 
multicast groups for sending data to a selected 
subset of all potential receivers.  The use of 
multicast has met with considerable success in 
this application.  However, its use to date has 
relied on a priori knowledge of communication 
patterns between simulations and static 
assignment of multicast groups to these 
patterns.  As larger, more complex, and less 
predictable simulations are built, the need has 
arisen for more efficient use of multicast groups 
as they are a restricted resource.  This paper 
describes an implementation of online multicast 
grouping, compares the message delivery time 

of the resulting groupings against an offline 
grouping algorithm, and projects the 
performance impact on a production RTI. 

1 INTRODUCTION 
(Morse 2000b) describes two algorithms for 
performing offline grouping for dynamic DDM 
and analyzes their performance in terms of their 
ability to deliver required updates in a timely 
manner.  In this paper we describe an online 
implementation of one of those algorithms and 
evaluate both the goodness of the groupings it 
produces and the potential impact of 
incorporating the algorithm in a production 
RTI.  In section 2, we analyze the potential 
performance improvements for using multicast 
grouping.  Section 3 describes the offline and 
online versions of the grouping algorithm.  
Section 4 compares the goodness of the results 
generated by both implementations and 
analyzes the potential impact of implementing 
online grouping in a production RTI. Section 
4.2 outlines future work1. 

                                                
1 Initial work on this project was funded under 
DARPA ASTT contract MDA9972-97-C-0023. 



2 MULTICAST GROUPING 
The most promising optimization identified to 
date is the use of multicast groups for routing 
data to a controlled subset of all member 
simulations in a simulation (Abrams, Watsen, 
and Zyda 1998; Calvin et al. 1995; Macedonia 
et al. 1995; Mastaglio and Callahan 1995; Rak 
and Van Hook 1996).  The ultimate measure of 
effectiveness of any interest management 
system is the latency between sending a piece 
of data and an interested receiver getting it.  
Broadcast makes sending fast, but at the 
expense of time spent by the receiver discarding 
irrelevant data.  Point-to-point ensures that 
receivers only get relevant data, but it requires 
determining the destination for the data and 
requires sending  multiple copies of that data, 
slowing transmission.  The use of multicast 
strikes a balance between broadcast and point-
to-point by reducing the time to send and the 
amount of data received.  Broadcast and point-
to-point represent opposite ends of the 
send/receive time spectrum with various 
applications of multicast occupying the area in 
between.  Even though multicast has the 
potential of improving communication time, it 
is not without its own challenges: multicast 
hardware currently supports a limited number 
of multicast groups, on the order of a couple 
thousand; the time to reconfigure multicast 
routers can be of the same order as the total 
allowable latency for message delivery 
(Mastaglio and Callahan 1995).  As a result, 
most implementations using multicast to date 
have used static assignment of multicast groups, 
usually to fixed geographic regions2.  These 
implementations have achieved good results, 
but ultimately they are limited in scale as well 
because they do not account for changing 
connection patterns between senders and 
receivers.  The next step in optimization is 
dynamic multicast grouping that adapts to 
connection patterns. 

                                                
2See (Macedonia et al. 1995) for an exception. 

2.1 Connection Graphs 
By virtue of regions, we know the destination 
of attribute updates before they are sent. Figure 
2-1 illustrates the problem with a connection 
pattern graph.  Federate f1 sends the attribute 
update(s) represented by connection path c1 to 
federates f2 and f3.  Federate f3 sends the 
attribute update(s) represented by connection 
path c2 to federates f2 and f4.  Federate f1 also 
sends c3 to f4.  The connection set, C, 
represented by this graph is {<f1 , c1, (f2, f3)>, 
<f1, c3, (f4)>,{<f3>, c2, (f2, f4)}.  Note that a 
connection path doesn’t represent a single 
message, but all updates of some set of object 
attributes. 
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Figure 2-1.  Example Connection Pattern 
Graph 

 
This problem is similar to the clique-covering 
problem (Papadimitriou 1994)  Intuitively, if a 
clique exists in the connection pattern between 
a set of nodes for a set of connections, assigning 
a multicast group to these nodes for these 
connections results in optimal routing.  In 
general, however, we cannot expect to be 
fortunate enough to have many cliques in the 
connection pattern graph. The algorithm's 
accuracy is augmented by weighting the arcs in 
the graph with the data transfer frequency over 
the arc, known as the connection weight. 
 
The multicast grouping algorithm uses 
maximum tolerable latency, tmax, as its cost 
measure.  The goal is to group m connections, 
c1, ... cm, into no more than n multicast groups, 



g1, ... gn, such that no communication arrives at 
its receiver in greater than tmax time, if 
physically possible.  The parameters to the 
algorithm are: 
• Number of available multicast groups (n) 
• Maximum tolerable latency (tmax) 
• Time to send (ts) - We assume that ts is 

roughly the same for all federates. 
• Time to receive (tr) - We assume that the 

time to discard an irrelevant message is the 
same as the time to receive a relevant one; 
also that tr is roughly the same for all 
federates. 

• Time to propagate message through the 
network (tp(fi,fj)) - measured between 
federate fi and fj, the publisher and 
subscriber of the connection, respectively. 

 
The algorithms begin by assuming point-to-
point communication for all messages and falls 
back to this position when the network and 
scenario make multicast grouping impossible, 
i.e. when ts + tp + tr + tq > tmax for some 
connections. 
 
The decision to add a connection, c, to a 
multicast group is based on the expected impact 
on tmax of all connections and federates already 
in the group.  If connection c is sent to k 
receivers point-to-point, t(c), the time from the 
beginning of c’s sending to the end of the last 
receiver’s receipt is bounded by: 
 

k • ts +max(t p (fi ,f j )) +max(t q (fj )) + tr  

Equation 2-1.  Time Bound for k Point-to-
point Communications 

This bound is based on the worst case 
assumption that the kth communication has the 
longest tp and the longest tq. 
 
We assume ts and tr are fixed, uniform, and 
roughly equal.  Time to propagate the update, 

tp(fi,fj), is assumed to be fixed, but different and 
measurable between source and destination, 
federates i and j.  Time in the queue, tq, varies 
depending on the number and frequency of 
messages received. 
 
The use of multicast improves latency for a 
message by reducing the average serial delay 
send time, tds, for the k copies as given in 
Equation 2-2. In fact, tds becomes exactly ts 
when c is put in a multicast group.  
Furthermore, this improvement is achieved each 
time a message is sent for a connection.  

ts ≤ tds(c) ≤ k • ts 

Equation 2-2.  tds for c not in a Group 
However, adding connections to an existing 
multicast group may cause extraneous 
communication at some receivers, increasing tq 
for some valid communications.  For example, 
putting all the connections in Figure 2-1 would 
result in the following extraneous 
communications: 
• c3 to f2 and f3  
• c1 to f4 
• c2 to f1 
This simple observation illuminates a much 
larger point.  We are addressing potential 
performance improvements.  There are some 
circumstances under which we cannot improve 
over the performance of point-to-point. 

3 GROUPING ALGORITHMS 

3.1 The Input-Restricted Largest Outgoing 
Connection (IRLOC) Algorithm 

The input-restricted largest outgoing connection 
(IRLOC) (Morse 2000b) algorithm seeks to 
minimize both tds and tq to produce better 
average results than its predecessor, the largest 
outgoing connection (LOC) algorithm. This 
algorithm recognizes three facts about adding a 
connection to an existing group: 



• Any receivers of the connection who are not 
already in the group will receive additional 
connections equal to the sum of the 
connections already in the group, the group 
weight. 

• Any group members who are not receivers 
of the connection will receive the additional 
weight of the connection. 

• Assuming that ts = tr, improvements in 
average message delivery time created by 
sending a connection via multicast are 
directly offset by the “negative weight” 
created by the first two facts. 

 
The IRLOC performs the following steps: 
1. Calculate the positive cumulative effect of 

each connection, (k - 1) • w. 
2. Add the receivers of the connection with the 

largest cumulative effect; in the event of a 
tie, add the lowest numbered such 
connection. 

3. Add the next largest connection such that a) 
the input weight of the current group 
members does not exceed tmax by the 
addition of the connection weight, b) the 
input weight of the connection’s receivers 
not already in the group does not exceed 
tmax by the addition of the group weight, c) 
the positive cumulative effect is greater than 
the negative weight. Note that the positive 
cumulative effect is only a function of the 
connection, while the negative weight is a 
function of the connection and the current 
state of the group. 

4. Repeat step 3 with the remaining 
connections. Halt when all connections are 
assigned or all multicast groups are used. 

3.2 The Online Grouping Algorithm 
The online, distributed IRLOC algorithm is 
built on top of a baseline prototype (Morse 
2000b)  implemented in the MESSENGERS 
mobile agents system (Bic 1996).  The baseline 
prototype implements a minimal subset of RTI 
necessary to test DDM. The online IRLOC 
algorithm integrates the baseline prototype with 

the basic structure of the IRLOC algorithm. The 
distributed algorithm operates with degraded 
information for several reasons. First, the 
information about connections and incoming 
weights is distributed among the federates, and 
collecting it would be prohibitive in a very large 
scale distributed simulation. If the simulation 
were small enough to be able to collect all this 
data at a central point and still make timely 
grouping decisions, it wouldn’t need multicast 
grouping. Second, this same information is 
changing in real time. Regions and region 
intersections are changing while the grouping 
decisions are being made. Even if the algorithm 
had access to global information when it started 
grouping, there is a non-zero probability that 
the information would be out of date by the 
time the grouping completed. Finally, the 
MESSENGERS system doesn’t provide a 
straightforward, timely mechanism for passing 
dynamic data structures to Messengers. Some 
simplifying assumptions have been made which 
account for this. In a production system this 
final constraint could be relaxed. 
 
The online grouping algorithm is triggered by 
the discovery of a connection or connections. A 
grouping Messenger is injected which begins 
searching for a potential group. The grouping 
Messenger searches three places in the 
following order: 
1. on the init node on the local machine; 
2. at the multicast server where it may find an 

unused group; 
3. at most one hop from the multicast server at 

another machine. 
 
If the grouping Messenger finds an unused 
group at the multicast server, it marks the group 
as taken to the requesting federate’s machine 
and “carries” the group home. This is how 
groups migrate away from the multicast server. 
If the group is unused, there’s no need to check 
for overflow and the group can be used 
immediately. Before a partially used group can 
be taken from another federate, it must be 



checked for overflow. The grouping 
Messengers carries the connection weight and 
connection receivers with it. The current group 
weight and members is always stored with the 
group at its current init node. All of this 
information is consistent with the IRLOC 
algorithm and is always up to date. However, 
the IRLOC algorithm also makes use of the 
current incoming connection weights of both 
the current group members and the connection’s 
receivers. Here is where slightly degraded 
information is used. Instead of having the 
current incoming weights of all the 
connection’s receivers, the grouping Messenger 
carries the last known, largest incoming weight 
of all the receivers. The incoming weights of 
receivers are piggybacked on subscription 
regions, so they may be out of date due to 
subsequent subscriptions. Instead of the current 
incoming weights of all the group’s members, 
the group is stored with the last known, largest 
incoming weight of any of all the group’s 
members. 
 
If the grouping succeeds, the group’s weight 
and member list is updated. The grouping is 
reported to the requesting federate which 
changes its connectivity and adjusts its outgoing 
connection weight down. It also injects “join” 
Messengers for all the connection receivers who 
were not previously members of the group. In 
this system, this Messenger only informs the 
receiver to adjust its incoming weight upward 
to account for other traffic from the group and 
to add to a reference count for this group. If 
multicast hardware were available, this 
Messenger would also be the trigger for the 
receiver to issue the appropriate system calls to 
join the multicast group. 

4 RESULTS 
There are two measures of merit for a DDM 
implementation, latency and overhead.  As 
described in Section 2, we wish to minimize the 
average message delivery time while not 
incurring too much overhead cost. 

4.1 Grouping Results 
The first experiments performed were to 
determine the goodness of the groupings 
generated by the online grouping algorithm 
relative to the offline version.  These 
experiments were conducted with random 
connection sets.  For each desired random 
connection set we generated 10 sets of the given 
size, using different random seeds, and 
averaged the 10 results.  This is to minimize the 
impact on the results of randomly pathological 
connection sets.  Table 4-1 lists the parameters 
of the random connection sets generated. 
 

Table 4-1.  Random Connection Set Tests 

f 10 
tr = ts 10 milliseconds3 
tp 10 milliseconds between 

all federates 
tmax 1000 milliseconds 
(n, m) (5, 2), (5, 3), (6, 2) 

 
Since the online grouping algorithm can only be 
run in real time with the MESSENGERS system 
underneath, this comparison test required 
manually generating regions and DDM API 
calls whose resulting region intersections 
produce the connection sets listed in Table 4-1. 
The groupings produced in this way were 
manually edited into connection set files and 
run through the offline simulator.  In the online 
configuration there is no way to create the 
entire connection set statically. As soon as a 
connection or connections are detected at any 
federate, the RTI component at that federate 
triggers grouping. This required writing 
auxiliary Messengers which locate existing 
multicast groups and add new receivers to the 
group when they subscribe for a connection 
which has already been assigned to the group in 
question. 
 

                                                
3 Hoare and Fujimoto (Hoare and Fujimoto 
1998) measured these values for RTI 1.3. 



Even with degraded information about the input 
weights of the federates, the online grouping 
algorithm compared quite favorably to the 
offline IRLOC algorithm. In over half the cases, 
seventeen cases, the online algorithm generated 
the same solution as IRLOC. In six of the cases, 
it generated a better average message delivery 
time. In one case, the degraded information 
about input weights caused the online algorithm 
to generate too conservative a solution. In two 
cases, the order in which connections were 
discovered affected the order in which they 
were added to groups, i.e. early addition of a 
connection prevented later addition of a 
different connection which would have 
produced a better result. In one case, the fact 
that the grouping Messenger was restricted to 
only looking one hop from the multicast server 
prevented it from putting a potential connection 
into an existing group. In three cases, the 
grouping was affected by both of the previous 
two factors, ordering and restricted hops. 

4.2 Runtime Performance Results 
The experiments described in Table 4-2 are 
designed to test the potential impact of 
integrating online grouping with a production 
RTI using relative measures between the online 
grouping algorithm, the baseline prototype, and 
an actual RTI implementation with DDM, RTI 
1.3 v4. The experiments use the benchmark 
algorithm described in (Morse 1999b). When 
interpreting the results, it’s critical to remember 
that the baseline prototype and the online 
grouping algorithm implement the barest 
minimum of HLA functionality necessary to 
test the hypothesis with almost no error 
checking. RTI 1.3 is a robust, fully-compliant 
HLA 1.3 implementation with all the specified 

service groups and error checking, and the 
overhead implied by that. 

Table 4-2.  Runtime Experiments 
# (federates, 

regions) 
Δr 

/min. 
i Δ i 

/min. 
1 (2,50), (5, 200), 

(10,1000) 
0 r/25, r/10 0 

2 (2,50), (5, 200), 
(10,1000) 

r r/25, r/10 0 

3 (2,50), (5, 200), 
(10,1000) 

r r/50, r/25 i 

 
Experiment 1 tests the impact of intersection 
calculations on initialization time. It establishes 
a basis for projection of performance of the 
online grouping algorithm in an actual 
implementation. The baseline prototype and 
RTI 1.3 are used because the online grouping 
algorithm is built on top of the baseline 
prototype, while the baseline prototype has an 
architecture for DDM which  closely models 
the architecture of RTI 1.3. 
 
The average per federate initialization times for 
each of the federates in the RTI 1.3 tests are 
listed in Table 4-3. Separate tests verified that 
the growth in initialization times is due 
primarily to a larger number of federates, not to 
a larger number of regions. The change in 
initialization time for grouping was calculated 
as the difference in initialization time between 
the online grouping algorithm and the baseline 
prototype. Given that average per federate 
initialization time increase is more than three 
orders of magnitude smaller than the 
initialization time without grouping, using 
grouping has no appreciable impact on 
initialization.

 

Table 4-3.  Initialization Times 
f r Δr/ min i Δ i/ min RTI 1.3 (sec.) Change for Grouping 

2 50 0 2 0 13.190171 .012 
2 50 0 5 0 13.103029 .008881 
5 200 0 8 0 24.895595 .015031 
5 200 0 20 0 24.134336 .010996 



10 1000 0 40 0 132.050392 .009019 
10 1000 0 100 0 129.133358 .005554 
Averages     56.251147 .010247 
 
Experiment 2 tests the impact of region changes 
without any intersection changes. As discussed 
in Section 3.2, this should impact CPU usage, 
but not severely since the system should 
recognize that connectivity hasn’t changed. 
Since regions are uniformly assigned to 
federates, Δr per federate = r/f which ranges 
from 25 to to 100. Here the methodology is to 
determine if the RTI can do its job without 
robbing the federates of the CPU cycles they 
need to do their job. Although the Sun Sparc 5s 
used in the experiment are slightly 
underpowered compared to platforms typically 
used for HLA-based simulations, the RTI 
performed fairly well. Each experiment is run 
for 7 minutes with 10 loops per second for a 
total of 4200 loops. During each loop, the 
federate code performs all the calculations it 
requires and the remainder of the time in the 
loop allocated for the RTI to perform its 
functions. A “bad” loop is one in which the RTI 
fails to complete all its processing in the 
remaining loop time allocated to it. Across all 
six tests in experiment 2, the RTI only suffered 
an average of 2.6% bad loops. Running the 
benchmark algorithm with the online grouping 
algorithm and the baseline grouping algorithm 
only resulted in an average of 2173 msec more 
time taken by the RTI across a 7 minute period; 
approximately .5 msec per .1 sec loop. That’s 
less time than it takes to receive a single 
extraneous message that would have been 
delivered without multicast! 
 
Experiment 3 tests the impact of region changes 
with intersection changes. This should impact 
CPU usage more severely than experiment 2 
since connectivity changes must be made. 
Predictably, the RTI produced more bad loops 
for experiment 3 than for experiment 2, 5.7% 
vs. 2.6%. However, the grouping algorithm 
only resulted in an average of 384 msec more 
time. The fact that this is lower than the time 

for experiment 2 are initially surprising, but the 
numbers are so small compared to the 
measurable resolution that even small 
perturbations in the CPU load or network load 
on these non-dedicated machines can result in 
proportionally large differences. 
 
For the sake of completeness, the additional 
time for all the experiments with the online 
grouping algorithm and the baseline algorithm 
were recorded and averaged. The average 
additional time was 2596 msec or .62 msec per 
loop. 
 
All of this is overshadowed by the time it takes 
to reconfigure multicast groups in routers. 
According to (IETF 1997) and (Cisco 1999), 
joining a multicast group across a LAN can take 
no time at all, while leaving a multicast group 
across a WAN may take on the order of 260 
seconds. In summary, it is not the time it takes 
to calculate the multicast groups which is the 
impediment to dynamic multicast grouping as 
has been asserted in the past, but the time it 
takes to change the groups in the routers. 

5 FUTURE WORK 

5.1 Maintaining Incoming Weight 
Information 

The offline grouping algorithms always have 
perfect global knowledge of the incoming 
weights of all federates. And the algorithms 
update this information as they build groups. 
The distributed online grouping algorithm has a 
much less consistent view of this information. 
A receiver could form many new connections 
and be added to other groups in between the 
time when it sends its incoming weight to a 
sender with its subscription region and the time 
when the sender begins to form a group. The 
accuracy of the offline grouping algorithm 
could be improved by periodically updating 



incoming weight information to receivers. One 
possibility is to keep track of the incoming 
weight sent with each subscription region as 
well as the lowest reported such weight. When 
the difference between the lowest reported 
weight and the current incoming weight reaches 
a threshold, an auxiliary Messenger with a new 
incoming weight would be dispatched to update 
all senders holding the subscription region. The 
threshold would have to be determined 
experimentally, trading off the cost of the 
additional overhead of tracking reported 
incoming weights against the cost of the 
extraneous messages resulting from inaccurate 
incoming weight information. 

5.2 Ungrouping 
The focus of this research has been on 
developing groups. Connections are dropped 
from groups and groups are dissolved when all 
the receivers have dropped out. However, the 
departure of only one or two receivers may 
adversely affect the effectiveness of the 
grouping. In the extreme case the cost function 
could be recalculated every time a receiver 
drops out. Doing so would require keeping 
complete information about the connections in 
the set, including the identities of all the 
required receivers of each connection. The 
recalculation would be very expensive. Like the 
grouping algorithms, ungrouping could almost 
certainly benefit from heuristic approaches. 

5.3 The Real World 
Finally, the true test of this research would be to 
implement the distributed IRLOC algorithm in 
a production RTI and test it in a very large 
scale, dynamic virtual environment. 

6 CONCLUSIONS 
As the size of distributed simulations grow, 
unwanted data received by member simulations 
will continue to grow as a limiting factor.  
Multicast has been identified as a highly 
effective and efficient tool for controlling the 
delivery of unwanted data, but multicast groups 

are a limited resource.  Static assignment of 
multicast groups to particular geographic 
regions and data types have yielded positive 
results, but may not be extensible to very large 
simulations or simulations which exhibit a large 
degree of chaotic clustering.  We have taken 
major steps toward dynamic assignment of 
multicast groups in the context of the HLA’s 
DDM services.  We have demonstrated that it is 
feasible to implement dynamic multicast 
grouping in a production RTI, but use of 
dynamic grouping rests on the ability to quickly 
reconfigure multicast hardware. 
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