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Robust ground peak extraction with range error
estimation using full-waveform LiDAR

André Jalobeanu and Gil Gongalves

Abstract—Topographic mapping is one of the main applica-
tions of airborne LiDAR. Waveform digitization and processing
allow for both an improved accuracy and a higher ground
detection rate compared to discrete return systems. Neverthe-
less, the quality of the ground peak estimation, based on last
return extraction, strongly depends on the algorithm used. Best-
performing methods are too computationally intensive to be used
on large datasets. We used Bayesian inference to develop a new
ground extraction method whose most original feature is predic-
tive uncertainty computation. It is also fast, and robust to ringing
and peak overlaps. Obtaining consistent ranging uncertainties is
essential for determining the spatial distribution of error on the
final product, point cloud or DEM. The robustness is achieved by
a partial deconvolution followed by a Bayesian Gaussian function
regression on optimally truncated data, which helps reduce the
impact of overlapping peaks from low vegetation. Results from
real data are presented, and the gain with respect to classical
Gaussian peak fitting is assessed and illustrated.

I. INTRODUCTION

Topographic mapping using laser ranging is rapidly ex-
panding, as it provides dense and accurate measurements at
a competitive cost [2]. Recently, full-waveform data have
become more easily available, as most LiDAR systems now
offer waveform digitization capabilities. This offers substantial
benefits over discrete return systems, provided that one is able
to process the large volumes of recorded data [3], [4]. In this
paper, we focus on topographic mapping in vegetated areas.
The main problem consists of recovering the last peak within
each waveform. This peak corresponds to the ground return,
when the vegetation allows for enough penetration and when
there are no buildings. Here, we do not consider the filtering
that might be necessary when the ground is not reached. In this
paper we address a signal processing problem, treating each
waveform independently. We mainly aim at the recovery of the
peak position (or timing) and its error, and provide amplitude
and other attributes as by-products. Range computation and
georeferencing are out of the scope of this paper, despite being
necessary to derive results from real data (see Sec. V).

We adopt a probabilistic approach [5] to peak detection and
extraction, based on Bayesian inference [6]. In this framework,
all parameters are random variables, and we are interested
in inferring their probability density function (pdf). Models
are defined using available knowledge, which helps greatly to
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simplify the procedure; e.g. the peak shape and the noise prop-
erties are either known or derived from calibration. Inference
consists of automatically estimating the pdf of the quantity
of interest, which can be summarized by an optimal value
and an uncertainty. We have reduced user-supplied parameters
to a minimum, as only the false alarm rate has to be chosen.
The predictive error estimate enables us to objectively quantify
the expected quality of the result from available data only,
and allows for rigorous error propagation through to the end
product. It is therefore a product of remarkable added-value,
not provided by existing methods.

The algorithm presented here is original, as it provides an
error estimate while existing methods do not. Also, the detec-
tion technique uses as much data samples as possible, unlike
second-derivative zero-crossing or leading edge thresholding
[2], whether applied to the original signal or a spline or wavelet
representation. Differences with other methods that make use
of all the data are explained in Sec. II through IV.

The proposed method consists of two steps, and is presented
as follows: step 1, seeking to reduce system response artifacts,
is detailed in Sec. II. We introduce a robust estimator based
on data truncation in Sec. III, then give the details of step
2, the automatic Bayesian detection and inference for a single
Gaussian peak, in Sec. IV. To support our claims and illustrate
our contributions, we show results from real data in Sec. V.

II. PARTIAL DECONVOLUTION

The first step of the processing is a partial deconvolution.
It is partial as it does not try to fully invert the effect of
the system impulse response (IR). Instead, it is designed to
only correct the ringing artifacts and remove the trailing edge,
thus aiming at a more convenient Gaussian IR. This reduces
the number of false alarms (typically underground returns)
by avoiding false detections arising from these artifacts [7].
Indeed, in this step we aim at the recovery of a waveform as
a back-scatter cross-section convolved with a simple Gaussian
IR function, so that the data can be further processed by
assuming that the peak of interest is a Gaussian function. An
alternative approach would have been to model this peak as
the system IR in the Bayesian inference procedure (see Sec.
III) but it would have resulted in an increased complexity,
compared to the two-step approach we adopted.

Complete deconvolution [8], [9], aiming at the correction
of the full effect of the IR, is generally motivated by the
determination of a physical target cross-section. However, it is
inappropriate in our case, as we are only interested in the last
scatterer. This is an ill-posed inverse problem as explained in



[8], especially since the waveform sampling rate exceeds twice
the Nyquist rate [10] in most scanners. Therefore it requires
strong prior knowledge, effective regularization and a good
model in order to avoid reconstruction artifacts (even more
ringing and noise amplification). Solving it is computationally
intensive and the solution is sensitive to noise, parameter
values and convergence issues as reported in [9]. There is
a severe information loss due to the band-limiting (or low-
pass) effect of the IR affecting the highest frequencies [10],
which can only be addressed with proper prior modeling and
complex optimization methods. Such effort would be mostly
wasted as we are only interested in the last peak.

In [11] the regularization issue is circumvented thanks to
redundancy, as the parameter spacing is twice the sampling
interval and the bandlimiting effects of the IR is taken
into account through the use of B-Splines; the technique is
reasonably fast. Due to this spacing, the technique has a
behavior similar to the partial deconvolution that we advocate.
Nevertheless, our method is simpler to implement and has a
lower computational complexity.

We model the system IR denoted by h as a mixture of
Gaussians denoted by G, of full width at half maximum w
(as an approximation, we assume that the secondary peaks
have the same width as the main peak; it is justified by their
small relative amplitude, less than 5% of the main).

h(t) = KiGu(t — ) with Gy (t) = e~ (H1sD /0" ()

The peaks have discrete locations to simplify the problem.
This way, the waveform deconvolution is done with a discrete
kernel H, which is sparse, and whose non-zero coefficients are
k; at time 7; (see Fig. 1 right). This only inverts the effect of
the mixture, and not that of the Gaussian G; nothing is done
if only the first coefficient is non-zero. The sparsity of the
kernel and relative small amplitude of secondary coefficients
enable us to implement a fast, efficient deconvolution that is
well-posed, therefore it does not need any regularization or
tuning of the related parameters. The deconvolution amounts
to the inversion of the linear equation y = H %Y where y is the
recorded data and Y the deconvolved waveform. For the seven
coefficients x; we only need two iterations using a conjugate
gradient algorithm, so the overhead introduced by this step is
negligible. However, the benefits are considerable, especially
for high-amplitude peaks where the ringing is significant.

In this study, the IR was calibrated from the raw data
acquired with a Riegl LMS-Q680i airborne scanner [12],
assuming that it is not amplitude-dependent (linear system).
This calibration needs to be done regularly for each sensor. The
received peaks having the highest amplitudes were selected
in order to maximize the quality. No outgoing pulses were
used as they are not digitized by the same channel. In this
study we only considered the low-power channel [13], as high
power returns were extremely rare due to the flight parameters
(see Sec. V). The calibration was done for amplitudes at
which it matters most, so any amplitude-dependence would
only affect weak returns, for which deconvolution is not as
crucial. The faintest returns are not corrected, when secondary
peak amplitude is less than one quantization unit. Fig. 1 (left)
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shows 100 waveforms of amplitude above 70, normalized to
a maximum amplitude of one and stacked, before and after
deconvolution: notice both ringing and trailing edge reduction.
We have w = 4 with 1 ns sampling interval.
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Fig. 1. Left: received high amplitude waveforms (Riegl LMS-Q680i low

channel), centered and normalized; original (red) and after partial deconvolu-
tion (blue). Right: discrete convolution kernel H, calibrated from the data.

IIT. ROBUST ESTIMATION OF PEAK TIMING

We only use the deconvolved waveform data Y from now
on. We choose to use a single Gaussian peak to model Y,
rather than a mixture. To derive a method that is robust to
overlaps (when the left side of the ground peak is contaminated
by nearby peaks from low vegetation, animals or objects,
received just before the ground return), it seems natural to
perform a Gaussian decomposition, using techniques from [14]
or [15], then keep the last peak. Unfortunately, not only are
these methods complex, as they rely on nonlinear optimization,
they are also unstable and lack robustness. Indeed, the number
of estimated peaks, their width and location are sensitive
to noise, and the decomposition suffers from inherent non-
uniqueness even for high quality signals. Constraints are intro-
duced to tackle these issues. Fully Bayesian techniques provide
a mathematically optimal treatment, allowing for Bayesian
model selection [16] and determination of the number of
peaks. Usually a stochastic optimization is required, as in [17],
which is time consuming, and significantly slower than the
deterministic non-linear fitting methods mentioned above.

Bayesian inference usually requires rigorous modeling of
all the data; one cannot specify only the last peak (of interest)
without explicitly modeling the left side of the signal, e.g.
via a Gaussian mixture, with the issues mentioned above. To
avoid that, we chose to truncate the data Y, assuming a single
peak within a discrete time interval [¢;,n—1] where n is the
data size, regardless of the samples before ¢;. Although this
approach may not be strictly Bayesian, it limits the number
of unknown parameters and allows for deterministic and fast
processing.

We propose to extend the three-point estimator, consisting
of using the last discrete maximum and its two neighbors;
for Gaussian peaks, quadratic interpolation of the log of the
data (after background subtraction) provides location, width
and amplitude, as shown in [18]. The advantage is that it is
insensitive to all the samples before the three used ones, which
makes it more robust to overlapping peaks than a full Gaussian
fit, however it yields lower performance for clean peaks as it
only uses a small fraction of the data. We use all the following
samples as well, and apply Bayesian inference to the truncated
dataset defined by D; = {Y}}+,<t<n, achieving the robustness



of the three-point method and an accuracy closer to a full
Gaussian fit, with the ability to compute the uncertainty.

Fig. 2 displays the robustness improvement from full to
truncated estimators, showing how systematic errors on timing
and peak width depend on the amount and type of overlap.
These plots are obtained via noise-free simulations: a fixed
ground peak is contaminated by adding a second peak on the
left side (above ground), of varying amplitude, and separated
by At. Peaks become indistinguishable when the separation is
too narrow, or when ones amplitude is negligible with respect
to the others. The gain is obvious for At > %w and compa-
rable amplitudes, wich includes many realistic scenarios.
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Fig. 2. Behavior of full and truncated Gaussian peak estimators, in various
configurations of peak overlap, no noise. A: time bias (estimated —true peak
location); B: widening factor (estimated vs. true peak width ratio).

IV. BAYESIAN INFERENCE FOR A GAUSSIAN PEAK

Bayesian inference [6] helps us obtain the pdf of the quan-
tity of interest (peak time tj) given the data D, integrating
with respect to unwanted parameters (width w, amplitude A)
in a process called marginalization. First it requires a data
formation model (or likelihood) which is the pdf of the data,
given the parameters. Then it makes use of available informa-
tion via prior pdfs, which might encode either ignorance (e.g.
via uniform pdfs when only an interval is given, denoted by I,,
and I4) or perfect knowledge (formally using Dirac pdfs, or
by using fixed values of the parameters as their marginalization
is trivial). Finally, Bayes’ rule helps combine likelihood and
priors to form the joint posterior as a product:

P(to, A,w|Dy) oc P(Dy [ to, A, w)P(to) P(A) P(w) (2)

Then we compute the posterior marginal, by integrating the
posterior (2). Using uniform priors we have:

P(t0|Dl)o</ / P(Di|to, A, w)dAdw  (3)
Ty JIa

A. Gaussian peak location estimation

Let us assume that the noise is Gaussian, independent
(uncorrelated), of variance afl and mean p (i.e. DC level).
We also assume that quantization noise does not change the
shape of the noise distribution. Both parameters are known

(for our data set, calibration gave o, = 0.9 and p = 2.3),

Lok oboL oL
o b

n

and for convenience p is subtracted from the raw waveforms
before processing. Thanks to the independence assumption,
the likelihood writes as a product over samples indexed by ¢:

2
P(Dl|t0,A,w)o( H e—(Yt—AG’w(t_to)) /202 @

t1<t<n

First we marginalize out A in (3) by replacing it with the
value fl(w, to) that maximizes (4) (Dirac approximation [16]).
If A ¢ 1,4 the integral is 0, which means rejecting the couple
(w, to). Otherwise, considering that log P of (4) is quadratic
in A, there is a closed-form solution given by A(w,ty) =
Say (w, to)/Sgg(w, to) with Sgy(w, to) = Zt Gy (t—to) Y:
and Sga(w,to) =Y., Gu(t — to)?. We get the marginal:

P(to ‘ Dl,lU) x eScy(w,t0)2/(SGG(w,t0)20’2)

(&)

Then we integrate with respect to w, and using the same
approach we substitute the value w(¢p) that maximizes (5).
There is no closed-form solution. We use a non-linear op-
timization technique on the interval I,, based on a discrete
search followed by a Newton step, requiring at least three
evaluations of the function log P(tq | D;, w). We finally have:

(6)

Maximizing this expression, or the cross-correlation [2], [7]
between Y and a Gaussian template, may seem equivalent.
However, we use a truncated dataset D; and an optimal peak
width is sought for each ty. Despite the apparent elimination
of the unwanted w and A, their optimal value is easily
recovered. Moreover, all variables play a symmetric role in
the marginalization and the estimation method presented above
can also provide P(A|D;) and P(w | D;) if needed.

P(ty | D;) BSGY(@(tO)’tO)Q/(SGG(ID(tO)’tO)203)

B. Peak detection methodology

We use two types of peak detection procedures:

1) A discrete local maximum backward search to find a
last peak candidate time t4, and the left bound of the
interval for the truncated estimator ¢, = t4—1; all 3
values Y;,, Y;,+1 are above a threshold denoted by 7.
A subsample-accurate local maximum search for ty =
arg maxy, P(to| D;) such that the optimal amplitude
A = argmaxy P(A| D)) satisfies A > T. It is also
implemented as a discrete search, but in the log space
as log P is nearly quadratic near the optimum. We use
a step 0.5 (half the sampling interval). Finally a Newton
refinement iteration (using numerical derivatives) allows
us to achieve a subsample accuracy.

2)

The algorithm consists of an outer loop defined by procedure
I, and two inner loops with ¢; equal to ¢;, and ¢y for the
truncated and full estimators, respectively. The value of t
should be t;, — wpax, allowing us to ignore peaks separated
from the last by at least the maximum width. Regarding the
definition of ¢y , just setting t; = 0 is equivalent, although
slightly slower as more data samples might be used. The
search within procedure 1 continues until a valid optimum
has been found by procedure 2. All constraints, including
minimum peak width and maximum timing uncertainty (see



Sec. IV-C), are far more stringent than the condition on the
discrete search. The optimal estimator is selected automatically
(see Sec. IV-E). False alarm rates for procedure 1 are fixed by
the user through the value of 7" and can be determined using
simulations. For white noise for instance, ' = 2.50,, ensures a
rate lower than 10~ (see Sec. IV-D for more practical details).

Faint return recovery is possible if neighborhood informa-
tion is available: we used a scanline-based predictive filtering
to get the expected peak timing for ground returns hidden un-
der vegetation. Relaxing the search conditions while using this
prior knowledge allowed us to recover half of the waveforms
otherwise rejected by the filtering algorithm [1].

C. Uncertainty estimation and proxies

The predictive uncertainty is given by the width of the
posterior marginal pdf of the parameters of interest [16], and
can be approximated by assuming a Gaussian posterior and
estimating its standard deviation. This is done by calculating
second derivatives around the optimum 7,. The sought uncer-
tainty is denoted by o;:

2

or = ([(%0 —logP(t0|Dl)L

Due to the limitations of the assumed noise model, and to
the randomness of the data that impacts the computation of
derivatives, we choose to define proxy functions f in order
to provide a simpler, and especially more robust, uncertainty
estimation procedure. In practice o; should only depend on
the noise properties, the peak shape, and the type of estimator
denoted by m, with m € {h, f}. When noise correlation is
significant, this allows us to update the uncertainty without
changing the estimator. The following proxy (8) is derived
from simulations with various peak shapes and noise levels. p
is the correlation coefficient, K and p are constants, calibrated
using simulations. A is the raw amplitude, A € [0, 255].

7}))—1/2 (7)

o=t

Ot = fm,D(Aao'naw) - Km —ZPme (8)

For instance, for a low amplitude A = 5, with 0,, = 1, p =
0.75 and 1.5 widening (w = 6) and the truncated estimator,
we have g; = 1 ns, or 15 cm error (+30 cm accuracy [2]).

D. Departure from simple noise assumptions

We modeled neither noise correlation, nor its dependence
upon amplitude. In practice, we found a high correlation
p=0.75 on the Riegl LMS-Q680i. This is due to the hardware
digitizer and not to our deconvolution step. No significant
changes were observed before and after this step. As a
consequence, the actual uncertainties might be higher than the
ones predicted using the white noise assumption. Simulations
confirmed this fact. Updating the estimators to take that into
account is possible but the added complexity is not justified by
the gain in variance or robustness, hence the use of the proxy
(8). To achieve a false alarm rate of 10~% we set T' = 4o,,.

The dependence of o, on Y;, due to the photon noise
component, is not obvious from direct observations or fit
residuals. The instrument is operated in a high photon-count
regime and this effect might be negligible. If not, we have
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0n X /1 + €Y; and the constant ¢ is small enough so that o,,
is the same order of magnitude over the admissible amplitude
range. The relative increase in uncertainty is significant only
for high amplitudes, but then o, becomes very low from (8) —
so low that other factors have to be taken into account, such
as GPS errors (0.5 cm at best), therefore the contribution of

the ranging error, and the value of €, become irrelevant.

E. Choosing the optimal estimator to achieve robustness

We seek to minimize both bias and variance by choosing
the best estimator [5] depending on the data, so a full peak
model can be used when no overlap is detected. We propose to
use a chi-squared test [5], checking the statistical significance
of the residual error. The data interval is provided by the full
estimator. The peak model is obtained from the truncated data
D; (so that the left side of the peak will exhibit residuals larger
than o, in case of overlap). Noise correlation is accounted
for by correcting the residual threshold. We also test the
significance of the bias reduction, so the full estimator is
selected when the difference between timing estimators falls
within a predefined confidence interval (e.g. 95%) given by
the predictive uncertainty (7).

Finally, the proposed approach is tested using simulations
in the same configuration as in Fig. 2 but with noise added,
and two ground peak amplitudes. Fig. 3 illustrates these tests.
Predictive (A) and actual (B) uncertainties are compared,
showing a good agreement except in a narrow region where
At ~ w, and peaks have comparable amplitude (uncertainty
underestimation by a factor 2 at worst). Both timing accuracy
and uncertainty prediction improve with higher peak ampli-
tudes, as the SNR increases. As expected, full peak estimates
tend to be selected when there is little overlap. This also occurs
in narrow separation cases, as peaks become indistinguishable.
The robustness of the overall approach clearly outperforms that
of classical Gaussian fitting, as shown in Fig. 3 (we did not
include bias and widening plots as they are very similar to
Fig. 2). We also provide a comparison online [1] from real
data, as a separate layer named “range bias”, defined by the
range difference between the two methods.
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Fig. 3. Quality assessment of the robust estimator uncertainty Ot in various
configurations of peak overlap (same as in Fig. 2), 500 simulated waveforms
per point, white Gaussian noise of variance 1. A: computed mean predictive
time uncertainty; B: empirical time uncertainty.
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V. RESULTS

The AutoProbaDTM project focused on the development
of new data processing methods for automated and large-
scale topographic mapping, using large full-waveform LiDAR
datasets (see website [1] for more information, final results and
DEM distribution). The data used to test the new algorithms
were acquired in June 2011, over a 200 km? area chosen for
its geomorphological interest, NW of Arraiolos (Portugal). A
Riegl LMS-Q680i was flown at 1500 m AGL. A return density
between 3 and 4 pts/m? was obtained and 5.60x10% waveforms
were recorded. The processing required 3.5 hours (4 threads,
Intel Core 17 2.67 MHz) including file decoding, emitted pulse
timing and sorting, outlier rejection, geometric computations
and gridding. Half of this time was spent on the original
procedures required by our new method, indicating that it is
only two times slower than single Gaussian fitting. Finally
5.30x10® points were obtained — with elevation uncertainty,
intensity and pulse width attributes. The results were gridded
at 1 m GSD and 1km? GeoTIFF tiles were distributed.

Fig. 4 shows six waveforms after deconvolution, the inferred
ground peaks using both full and truncated estimators, and
the selected robust result, which is satisfactory even at low
amplitudes. Correlated noise is visible as small oscillations or
peaks after the ground peaks. Inspection of the final results
showed no evidence of false alarms underground. However,
there are significant false detections above ground that are
mostly due to vegetation opacity, and for which independent
waveform processing fails, thus requiring a filtering procedure.
A preliminary consistency check of the uncertainties was done
on water bodies, assumed flat. Therefore over a short interval
the extracted points should lie on a straight line even without
georeferencing. We found that the error bars are consistent

with line fitting: see Fig. 5 for an illustration.
140 .

Deconvolved wave

Robust last peak extraction

Truncated Gaussian peak estimator
Full Gaussian peak estimator

100

e —

40 gy e,

20 ;VAAQ—&G—A——WA”
N time (ns)

o | |

0 10 20 30 40 50 60 70
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Fig. 5. Range as a function of time, collected over a water body during a
short interval. Extracted points with error bars (red) and line fitting (blue).

VI. CONCLUSION

The main contribution of this work is to provide the ability
of extracting point clouds (and also derived products such as
DEM) with spatially variable predictive uncertainties or error
maps. As opposed to validation procedures [2] which only
compute global error statistics, we provide one error estimate
with each point. These spatial errors are required for the
rigorous, quantitative analysis of topographic data [19], and are
crucial for applications such as hydrology or change detection.
This was made possible by applying Bayesian inference to
waveform data processing, thus deriving a novel ground peak
estimation algorithm that is both fast and robust to noise,
sensor artifacts and overlaps from low vegetation.
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