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[1] Airborne measurements in regions of varying meteo‐
rology and pollution are used to quantify the contribution
of organic acids and a mass spectral marker for oxygenated
aerosols, m/z 44, to the total organic aerosol budget.
Organic acids and m/z 44 separately are shown to exhibit
their highest organic mass fractions in the vicinity of
clouds. The contribution of such oxygenated species is
shown to increase as a function of relative humidity,
aerosol hygroscopicity (and decreasing organic mass
fraction), and is typically greater off the California coast
versus the continental atmospheres studied. Reasons
include more efficient chemistry and partitioning of organic
acid precursors with increasing water in the reaction
medium, and high aqueous‐phase processing times in
boundary layers with higher cloud volume fractions. These
results highlight the importance of secondary organic
aerosol formation in both wet aerosols and cloud droplets.
Citation: Sorooshian, A., S. M. Murphy, S. Hersey, R. Bahreini,
H. Jonsson, R. C. Flagan, and J. H. Seinfeld (2010), Constraining
the contribution of organic acids and AMS m/z 44 to the organic
aerosol budget: On the importance of meteorology, aerosol hygro-
scopicity, and region, Geophys. Res. Lett . , 37 , L21807,
doi:10.1029/2010GL044951.

1. Introduction

[2] The chemical complexity of atmospheric aerosols
poses a challenge for accurate modeling of their interactions
with water vapor, radiation, and clouds. It is now well es-
tablished that the organic fraction of atmospheric aerosols
becomes increasingly oxidized with age, leading to species
that are both less volatile and more hygroscopic [Jimenez
et al., 2009]. Water‐soluble organic species, especially
organic acids, are of interest owing to their hygroscopic
properties [Hallquist et al., 2009]. Oxidized organic com-
pounds can be generated in cloud droplets as well as moist

aerosols [Volkamer et al., 2009; Lim et al., 2010; Ervens and
Volkamer, 2010], and increased partitioning of water‐soluble
organic compounds (WSOC) with increasing sub‐saturated
relative humidity (RH) is observed [Hennigan et al., 2008,
2009]. While the concentrations of organic acids are docu-
mented in different regions [Sorooshian et al., 2007a, and
references therein], the extent to which such water‐soluble
oxygenated acids contribute to total organic aerosol levels is
not well established in a variety of atmospheres [Takegawa
et al., 2007; Kondo et al., 2007].
[3] We present an analysis of datasets from four air-

craft field studies that addresses the following questions:
(1) What is the contribution of organic acids and the mass
spectral peak m/z 44 to total organic aerosol mass in a
variety of clear and cloudy atmospheres?; and (2) How does
the relative abundance depend on meteorology, background
aerosol physicochemical properties, and reaction medium
(i.e., wet aerosols versus dilute droplets)?

2. Measurements

[4] Airborne measurements were carried out with the
Center for Interdisciplinary Remotely‐Piloted Aircraft
Studies (CIRPAS) Twin Otter during the following cam-
paigns: International Consortium for Atmospheric Research
on Transport and Transformation (ICARTT, August 2004;
Ohio River Valley), Marine Stratus/Stratocumulus Experi-
ments (MASE I and II, in July 2005 and 2007, respectively;
off the central California coast), and the Gulf of Mexico
Atmospheric Composition and Climate Study (GoMACCS,
August‐September 2006; Southeastern Texas). Three air-
craft inlets were utilized: (i) a forward‐facing inlet outside of
clouds [Hegg et al., 2005]; (ii) a counterflow virtual
impactor (CVI) inlet in clouds to isolate droplet residual
particles [Sorooshian et al., 2006b]; and (iii) a reverse‐
facing inlet in clouds to isolate interstitial aerosol particles
(used only during MASE II).
[5] Particulate organic acid measurements were carried

out with a particle‐into‐liquid sampler (PILS; Brechtel Mfg
Inc.) coupled to an ion chromatograph [Sorooshian et al.,
2006a]. Data are presented for a suite of organic acids
ions (saturated dicarboxylic acids C2–C9, acetic, formic,
pyruvic, glyoxylic, maleic, malic, and methanesulfonic
acids). Independent measurements of inorganic mass (sul-
fate, nitrate, ammonium) and total non‐refractory organic
mass were obtained with a quadropole Aerosol Mass
Spectrometer (Aerodyne AMS) [Jayne et al., 2000; Bahreini
et al., 2003] during the first experiment (ICARTT) and with
a compact Time of Flight Aerosol Mass Spectrometer
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(Aerodyne C‐ToF‐AMS) [Drewnick et al., 2005; Murphy
et al., 2009] during MASE I, MASE II, and GoMACCS.
Other AMS data discussed include the organic mass
represented by m/z 44 (higher fractions relative to total
organic mass suggest more oxidation) and 57 (higher frac-
tions suggest more hydrocarbon‐like organics) [Zhang et al.,
2005; Aiken et al., 2008]. As an example of the measurement
agreement between the AMS and PILS, the sulfate con-
centrations for the data set in this study exhibit an overall
correlation of r2 = 0.90 (n = 970) and an AMS:PILS ratio of
0.98. No significant relationship was observed between the
AMS:PILS sulfate ratio and variables of interest in this study
including ambient RH and organic mass fraction.
[6] Sub‐saturated aerosol hygroscopicity measurements

were provided by a differential aerosol sizing and hygro-
scopicity spectrometer probe (DASH‐SP; Brechtel Mfg
Inc.) [Sorooshian et al., 2008]. DASH‐SP data are only
reported for the MASE II campaign, corresponding to par-
ticles with dry diameters of either 150, 175, or 200 nm, and
humidified to RHs of either 74%, 85%, or 92%.

3. Cumulative Results

[7] Cumulative statistics associated with ratios of various
oxygenated organic markers relative to the total organic
mass are given in Table 1, with the data categorized into
“Pacific Coast” (MASE I and MASE II) and “Continental”
conditions (ICARTT and GoMACCS). Note that back-
ground marine conditions often do not exist off the central
coast of California owing to aged ship and continental
emissions [Murphy et al., 2009]. Conversely, air masses
during GoMACCS (southeastern Texas) may have been
marine‐influenced. The term “organic acids” will henceforth
refer to the sum of the species quantified by the PILS as
listed above. Particular attention is placed on oxalate as it
was the dominant organic acid in these field studies and has
been shown to be produced in clouds [Sorooshian et al.,
2006b, 2007a/2007b].
[8] Total organic mass and the organic mass associated

with m/z 44 are highly correlated (r2 = 0.77–0.92), sug-
gesting that organic aerosol production in the studied re-
gions was linked to the formation of oxidized organic
aerosol species. The average mass ratios of oxalate:organic,
organic acid:organic, oxalate:m/z 44, organic acid:m/z 44,
and m/z 44:organic are highest in the Pacific Coast atmo-
sphere, indicative of a more oxidized average organic
component. This is thought to be partly a result of the
greater fraction of the marine boundary layer volume
occupied by clouds relative to the continental atmospheres
studied, allowing for longer aqueous‐phase processing times

[Feingold et al., 1998]. Oxalate and the cumulative organic
acids accounted for a maximum of 21% and 44% of the
marine organic mass, respectively. The organic acids are
weakly correlated with m/z 57, suggesting that there is not a
strong non‐oxidized emissions source of organic acids (such
as emissions from ships [Murphy et al., 2009]). The corre-
lations are higher for the organic acids versus m/z 44 as
compared to organic acids versus total organics, demon-
strating that m/z 44 is more closely linked to oxygenated
organic acid species. As a basis for comparison, Takegawa
et al. [2007] observed higher correlations between selected
carboxylic acids and m/z 44 (r2 = 0.85–0.94), and showed
that the acids contributed 14 ± 5% to the m/z 44 mass
concentration. The differences in those values may be linked
to the varying measurement methods and region (those
organic acid measurements involved ground‐based filters in
Tokyo).
[9] The relatively large standard deviations in Table 1

indicate that the ratios exhibit dependence on conditions
other than region. Figure 1 summarizes the variation of
chemical ratios in Table 1 as a function of location below
altitudes of 5 km (“clear air” away from clouds, “below
cloud”, “droplet residual particles” in cloud, “interstitial
aerosol” in cloud, and “above cloud”). The various ratios
usually exhibit the lowest values in “clear air” and the
highest values and correlation coefficients (between ratio
components) in cloud droplet residual particles, owing to the
effectiveness of in‐cloud formation [Sorooshian et al.,
2006b, 2007a/2007b]. As higher values are observed in
cloud droplet residual particles versus interstitial aerosols,
this likely reflects some combination of more efficient
chemistry and partitioning of WSOC precursors as a func-
tion of increasing volume of liquid water. This result is
consistent with prior measurements of enhanced partitioning
of water‐soluble organic species in cloud and fog droplets
relative to interstitial aerosols [Facchini et al., 1999; Blando
and Turpin, 2000; Limbeck and Puxbaum, 2000; Collett
et al., 2008].

4. Relative Humidity Effect

[10] Figure 2 shows the relationship between RH and the
same organic ratios examined in Figure 1. The ratios remain
relatively constant until an RH near 70%, above which the
ratios increase, behavior that is remarkably similar to mea-
surements that showed maximum partitioning of WSOC to
the particle phase for RH > 70% in the Atlanta atmosphere
during the summertime [Hennigan et al., 2008]. There is a
much wider dynamic range in the organic acid:m/z 44 ratios
(Figure 2a: 0.10–0.63 from 0 to 100% RH) as compared to

Table 1. Statistical Summary of Various Ratios Between Organic Aerosol Markers in Different Regions

Pacific Coasta Continentalb

Average STD Slope r2 Average STD Slope r2

Oxalate: Organic 0.04 0.04 0.02 0.34 0.03 0.02 0.02 0.42
Organic Acid: Organic 0.06 0.06 0.02 0.32 0.04 0.04 0.02 0.45
Oxalate: m/z 44 0.27 0.23 0.17 0.45 0.18 0.15 0.16 0.47
Organic Acid: m/z 44 0.39 0.33 0.19 0.43 0.23 0.22 0.18 0.50
m/z 44: Organic 0.18 0.10 0.11 0.77 0.15 0.05 0.14 0.92
Oxalate: m/z 57 2.47 2.96 0.09 0.12 2.82 2.34 1.90 0.25
Organic Acid: m/z 57 2.72 3.37 0.10 0.08 3.17 2.64 2.00 0.24

a“Pacific Coast” corresponds to MASE I/II data (n = 586).
b“Continental” represents ICARTT/GoMACCS data (n = 384).
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organic acid:organic ratios (Figure 2b: 0.02–0.08 from 0 to
100% RH), pointing to the more vigorous enrichment of
organic acids relative to the oxygenated aerosol fraction
represented by m/z 44. Although not shown, the organic
ratios in Figure 2 exhibit the same RH‐dependent qualitative
behavior in each region examined, and are typically higher
for the Pacific Coast across the entire RH range.

5. Aerosol Hygroscopicity Effect

[11] To further examine the role of liquid water in influ-
encing the ratios of organic acids and oxygenated organics
to the total organic mass, the relationship between aerosol
hygroscopicity and these ratios is investigated in bins of
ambient RH. This analysis can most directly be performed
for the MASE II mission when hygroscopicity was mea-
sured. To control for the effect of ambient RH and to still do
the analysis with a sufficient amount of data, the m/z 44:
organic ratio is examined for measurements between RHs
of 60–95%. Figure 3d shows that this ratio tends to increase
as a function of the hygroscopic growth factor (GF =
Dp,wet/Dp,dry) at the three pre‐selected DASH‐SP RHs
(74%, 85%, 92%). This indicates that for the RH range
examined, particles with a greater tendency to take up water
will have an organic component that is more enriched with
oxygenated species.
[12] Since hygroscopicity was not directly quantified in the

other three field studies (ICARTT, GoMACCS, MASE I),
the organic mass fraction of aerosols (= AMS organic mass/
AMS total mass = 1–inorganic fraction) will be used as a

Figure 1. Relationship between ratios of organic aerosol markers and location with respect to clouds. Numbers next to
markers indicate the correlation (r2) between the two components of the ratios examined.

Figure 2. (a) Dependence of numerous organic ratios on
RH. Data are grouped in RH bins (10% increments). (b, c)
The right y‐axes correspond to the slopes of “oxalate:m/z
44 vs organic mass fraction” and “oxalate:organic vs organic
mass fraction” in each RH bin, where the organic mass frac-
tion is used as a proxy for aerosol hygroscopicity. Only sta-
tistically significant slopes at 95% confidence are shown.
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hygroscopicity proxy. At least for the MASE II region,
hygroscopicity expectedly increases with decreasing organic
mass fraction, as shown by Hersey et al. [2009], with the
effect more pronounced at higher RHs. It is shown in
Figures 2b and 2c that in the highest RH bins (> 50%), the
enrichment of organic acids and oxalate is most pronounced
at lower organic mass fractions. This is more clearly illus-
trated in Figures 3a and 3b where it is shown that the con-
tribution of organic acids and m/z 44 to the total organic
mass typically increases as a function of decreasing organic
mass fraction for in‐cloud droplet residual particles and for
wet aerosols between ambient RHs of 60 to 95%. These
results agree with those of MASE II in that higher aerosol
hygroscopicity will result in more aerosol‐laden water, and
therefore the enrichment of organic acids and other oxy-
genated organics relative to the total organic mass.
[13] Since the amount of liquid water in particles increases

as a function of higher hygroscopic aerosol mass con-
centrations, the effect of aerosol mass on the various ratios of
organic acid and oxygenated organics to total organic mass is
also examined. Out‐of‐cloud data are examined in Figures 3a
and 3b in bins of “low” and “high” aerosol mass con-
centrations. It is difficult to see any enhancement in the
organic acids or m/z 44 at the higher mass concentrations,
except in conditions of very low organic mass fractions
(< 0.2). When binning the field data by m/z 44 mass con-
centration, the ratios in Figures 3a and 3b still were not
greater at the higher m/z 44 levels. These measurements do
not exhibit as clear a signal as recent studies showing a linear
relationship between SOA production and aerosol seed
concentration (and water mass) [Ervens and Volkamer,
2010], and greater WSOC aerosol/gas partitioning ratios as
a function of increasing particulate WSOC concentration

[Hennigan et al., 2009]. This may be owing to the enrichment
of species other than organic acids in the regions studied.

6. Conclusions

[14] From several airborne field missions, a highly water‐
soluble class of organics, specifically organic acids, and also
a larger body of oxygenated species indicated by the m/z 44
mass spectral peak, are found to contribute to the total
organic aerosol fraction, with the absolute contribution
increasing as a function of RH and aerosol hygroscopicity
(and decreasing organic mass fraction). The contribution of
organic acids is highest in cloud droplet residuals and is
larger for the Pacific Coast (up to more than 44% of the
organic mass) relative to the continental atmospheres
examined. The high fraction of such species in the former
region is thought to be at least partly due to longer aerosol
residence times in the aqueous phase owing to higher cloud
volume fractions in the boundary layer. These results
highlight the important dual role of both ambient RH and
hygroscopicity in leading to an enrichment of oxygenated
organics, especially organic acids, in ambient aerosols.
More liquid water associated with aerosol particles facil-
itates the dissolution of organic acid precursors, such as
glyoxal, and also conversion of such species to the eventual
organic acids [Blando and Turpin, 2000].
[15] This work shows that the relative amount of organic

acids (especially oxalate) to other aerosol components (e.g.,
organic mass, m/z 44) can be used as tracers for air parcels
that have undergone aqueous‐phase processing. This work
strengthens a growing consensus among modeling, labora-
tory chamber, and ground‐based field studies that liquid
water content plays a key role in organic aerosol formation.

Figure 3. (a–c) Dependence of numerous organic ratios on organic mass fraction for ambient RHs between 60–95%. Data
are grouped in organic mass fraction bins (0.2 increments). Open markers in Figures 3a and 3b correspond to low total
aerosol mass concentrations (1–5 mg m−3) and filled markers correspond to higher total aerosol mass concentrations
(5–50 mg m−3). (d) m/z 44:organic ratio as a function of hygroscopic growth factor at three pre‐selected DASH‐SP
RHs (74%, 85%, 92%) for a dry diameter of 200 nm during MASE II for ambient RHs between 60–95%.
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