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ABSTRACT 

This research investigates the ability to create an undersea bathymetry map and navigate 

relative to the map. This is known as terrain aided navigation (TAN). In our particular 

case, the goal was for an autonomous underwater vehicle (AUV) to reduce positional 

uncertainty through the use of downward-looking swath sonar and employing TAN 

techniques. This is considered important for undersea operations where positioning 

systems such as GPS are either not available or difficult to put in place. There are several 

challenges associated with TAN that are presented: The image processing necessary to 

extract altitude data from the sonar image, the initial building of the bathymetry map, 

incorporating a system and measurement model that takes into consideration AUV 

motion and sensor uncertainty and near-optimal, real-time estimation algorithms. The 

thesis presents a methodology coupled with analysis on datasets collected from joint 

Naval Postgraduate School/National Aeronautical Space Administration experimentation 

conducted at the Aquarius undersea habitat near Key Largo, Florida. 
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I. INTRODUCTION 

A. MOTIVATION FOR THIS WORK 

A fundamental requirement for unmanned systems is the ability to accurately 

estimate position. The ubiquitous Global Position System (GPS) is used for a wide 

variety of aerial, surface and ground vehicles, but it has limitations—the signal can be 

jammed or occluded. What is desired is a robust methodology for position estimation that 

is not dependent upon an external system of navigational beacons.  

One alternative is terrain aided navigation (TAN). It is a technique that uses 

onboard, exteroceptive ranging sensors as a navigational aid. Seminal work developing 

TAN methods was first completed in the terrain contour matching (TERCOM) algorithm 

employed upon cruise missiles in the 1960s, before GPS was available. While the advent 

of GPS alleviated some of the motivation for further TAN work, it remained a viable 

option for undersea localization since GPS signals cannot significantly penetrate the 

water surface.  

Currently, commercial AUV systems rely heavily upon a costly, high-grade 

inertial navigation system (INS) in order to estimate the state of the vehicle. However, 

due to the dead-reckoning nature of INS systems, they are susceptible to drift over time. 

Unless localized by some other means, the vehicle’s positional uncertainty grows without 

bound. Typically, this growing uncertainty is corrected through the aid of either a 

network of acoustic ranging transponders or resurfacing for a GPS fix. Both methods are 

at the least an inconvenience, and at most are unrealistic, costly, and potentially mission 

threatening. TAN presents an appealing alternative method of localization for an 

underwater vessel that can be implemented real-time with sensors already onboard. 

B. ENABLING TECHNOLOGIES 

While TERCOM was first implemented in cruise missiles in the 1960s, the lack of 

necessary sensor accuracy, computational power, and data storage, along with other 

challenges associated with the undersea environment, have greatly delayed TAN 

implementation in the undersea domain [1]. For the last 35 years, the world has seen 
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remarkable improvements in computational power and data storage, as well as sensor 

accuracy. The increased processing power and data storage capabilities have not only 

significantly enhanced the accuracy of past, proven methods of TAN, but have also 

enabled the implementation of newer, more computationally expensive algorithms.  

A comparison of different methods for TAN is covered in Section D as well as in  

Chapter IV. 

C. PROBLEM DESCRIPTION 

TAN, unlike the related field of simultaneous localization and mapping (SLAM), 

requires a prior map of the region. The overarching goal of TAN is to effectively use the 

prior terrain map in conjunction with new sensor information in order to aid in the 

navigation of the vehicle. Therefore, the work presented in this thesis can be separated 

into two main subject areas: Building an accurate bathymetry map and using the built 

map as a navigational aid.   

First, a feature rich bathymetric map must be built. The map building process 

requires sonar image processing, a coordinate transformation between the vehicle’s body-

fixed reference frame and a global frame, and a possible interpolation of the data points 

in the global frame. There are many challenges and considerations that must be made 

within the scope of building an accurate bathymetry map. One of the more significant 

concerns affecting map accuracy is the growing positional uncertainty of the vehicle as a 

function of distance. Other considerations include specific image processing techniques 

and threshold selections. For example, including the sonar response from a large fish in 

the map would not be a useful feature for subsequent localization. Ensuring abrupt 

changes in bottom topography are incorporated to the bathymetry map would be very 

important.  

The second main component of this work is implementing a method of TAN. 

TAN requires an algorithm that can effectively and accurately localize the position of the 

underwater vehicle based upon the previously built bathymetric map. There are several 

methods that can be used to varying degrees of success to accomplish this task. First, a 

kinematics motion model must be determined for the AUV. It is worth noting that the 
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kinematics for AUVs can be nonlinear, though they are often approximately well by a 

linearization [2]. Similarly, a measurement model must be formulated that encapsulates 

both the measurements and measurement noise. The exteroceptive measurements of the 

terrain are often highly non-linear as a result of the multiple peaks and valleys associated 

with the terrain. After appropriately modeling the vehicle and measurements, the TAN 

problem requires a correlation, or similarity measure, of the sensor’s current 

measurements with the prior bathymetry map. Some feasible similarity metrics include 

cross-correlation (XCOR), normalized cross-correlation (NXCOR), mean absolute 

difference (MAD) and minimum square distance (MSD) [1]. Due to the nonlinearity of 

the terrain, it was expected that the probability distribution resultant from the correlation 

would be multi-modal. TAN filtering methods currently being researched include 

Kalman-based filtering methods, multi-modal adaptive estimation techniques, and the use 

sequential Monte Carlo methods, namely point mass and particle filters [1].  

In our application of TAN to an AUV, the vehicle built a bathymetry map of its 

environment using a micro-bathymetry swath sonar sensor. The sonar data was collected 

onboard the AUV vehicle and then post-processed in a MATLAB environment to “build” 

a bathymetry map. When the AUV subsequently traversed the same terrain, the new 

sonar sensor data it was receiving was correlated with the existing bathymetry chart in 

order to update the vehicle position estimate. Using only sonar data correlations (no state 

information from the vehicle), this can be an extremely expensive computational process. 

Therefore, several of the aforementioned methods that effectively fuse the knowledge of 

the previous vehicle state, the current sonar readings, and the existing bathymetry chart 

were explored in the scope of this thesis. These methods include the Kalman filter, the 

extended Kalman filter (EKF), and particle filter. A further glance into the advantages 

and disadvantages of each of these three methods is covered in Section D, and detailed 

more explicitly in Chapter IV. A primary motivation behind the eventual selection of the 

particle filter as a solution to the TAN problem was its ability to accurately estimate the 

probability distribution of the vehicle state, even when the distribution is multi-modal.  

This thesis is the first to address TAN on a small, man-portable AUV. The work 

is novel in the sense that it works with a bathymetry sonar sensor capable of significantly 
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higher resolution than most bathymetry sonar systems utilized for TAN. Along with 

concern to accommodate the higher resolution sensor, initial consideration has been given 

to image processing techniques and base map generation that are critical in an eventual 

real-time TAN implementation. This process was validated through simulation on a 

dataset collected by the AUV. 

D. RELATED WORKS 

The technical landscape of TAN methods is only now beginning to reach 

maturity. Until recently, very few commercial systems employed, or relied significantly 

upon, any terrestrial sensory information as a component of their navigation. As the field 

has developed, the TAN method of choice has shifted slightly. In the mid- to late-1990s, 

TAN methods for AUV’s employing Kalman filtering methods were primarily researched 

and implemented [3]. In particular, due to the aforementioned nonlinearities associated 

with TAN for an AUV, the extended Kalman filter (EKF) was a favorable method of 

sensor fusion among researchers. In the early 2000s, particle filters (PF) and point mass 

filters (PMF) were recognized as approaches well-suited to handle non-linear process and 

measurement models as well as multi-modal, non-parametric noise distributions. These 

techniques were selected, in part, due to the rapid increases in computer processing 

power/capabilities as PF and PMF are computationally expensive algorithms [4]. Several 

papers published throughout the early 2000s provide empirical support for the superiority 

of the PF relative to Kalman-based or batch-oriented methods. These papers include 

Gustafsson [5] in 2001, Nordlund [6] in 2002, and Anonsen and Hallingstad [7] in 2006.  

Carreno et al. [1] provide an excellent survey of AUV-based TAN research. 

Importantly, the survey paper also provides the Bayesian estimation framework relied 

upon throughout the TAN field. Bayesian estimation is a particularly useful approach in 

the underwater domain, since it implicitly accounts for the mean and variance associated 

with the pose of the vehicle. Approaches that use a Bayesian framework include Kalman 

filtering, multi-modal adaptive estimation and sequential Monte Carlo methods.  

The particle filter and point mass filter implementations by Anonsen and 

Hallingstad [7] on a HUGIN AUV provided very promising results demonstrating the 
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suitability of recursive Bayesian, sequential Monte Carlo methods to TAN. One large 

issue that is identified, but not addressed in their approach, is the impact of the terrain 

“usefulness.” Intuitively, flat terrain presents an issue when attempting to correlate the 

current measurements with the prior map. When the AUV was tested in suitable terrain, 

both methods yield positional accuracy comparable to their prior map resolution (10 m). 

However, it was noted that attempts to navigation in poorly suited terrain could often lead 

to filter divergence.  

In 2012, Professors Shane Dektor and Stephen Rock of Stanford completed 

further testing at Monterey Bay Aquarium Research Institute (MBARI) on the TAN of a 

Dorado-class AUV [8]. Similar to Teixeira et al. [9] they sought to improve the 

robustness of the particle filter TAN implementation. Incorrect convergence over time in 

flat terrain was determined to be a product of “overconfidence” of the filter in estimating 

position over the featureless terrain. In order to account for the overconfidence, an 

additional parameter dependent upon terrain suitability was incorporated into the 

correlation stage of the particle filter algorithm. The parameter effectively scales the 

observed correlation based upon the usefulness of the terrain being observed, thereby 

reducing correlation confidence over featureless terrain while maintaining the strong 

correlation and convergence of the filter over feature-rich terrain.  

E. THESIS ORGANIZATION 

The thesis is organized as follows: Chapter II provides a description of the AUV 

and the sonar used for research. After the system/sensor descriptions, the paper delves 

into building the bathymetry map necessary in order to conduct subsequent TAN 

operations. Only after the prior map building methodology is discussed in Chapter III is 

the selection of a TAN method discussed in Chapter IV. Finally, a dataset is collected and 

the methodologies described are implemented. The results and conclusions from the 

testing are presented in Chapter V.  
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II.  SYSTEM DESCRIPTION 

A. REMUS AUV 

All data processing and experimental work was completed through the use of a 

modified REMUS 100 AUV (Figure 1) supplied by the Center for Autonomous Vehicle 

Research (CAVR) at the Naval Postgraduate School (NPS). The REMUS vehicles are 

currently designed and manufactured by Kongsberg Maritime 

(http://www.km.kongsberg.com). 

The REMUS 100 in particular is designed for operation in coastal areas in depths 

of up to 100 meters. This makes the REMUS 100 vehicle versatile in a variety of shallow 

water mission areas including, from [10]: 

�x Hydrographic surveys 

�x Mine counter measure operations  

�x Harbor security operations 

�x Environmental monitoring 

�x Debris field mapping 

�x Search and salvage operations 

�x Scientific sampling and mapping 
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Figure 1.  REMUS 100 AUV onboard CAVR’s SeaFox surface vessel 

The standard REMUS 100 is a lightweight and compact AUV, weighing 

approximately 37 kg and having a diameter of 19 cm. Its light weight and manageable 

size make it easily deployable and recoverable by two-man teams with small boats. The 

vehicle is modular and can be configured to employ a wide variety of sensors and 

systems. This includes:  

�x MSTL side scan sonar 

�x Upward and downward RDI acoustic Doppler current profiler (ADCP) 
Doppler velocity log (DVL) 

�x Undersea acoustic modem 

�x GPS 

�x Fore and aft cross-body tunnel thrusters 

�x YSI-600 Conductivity Temperature and Depth (CTD) sensor 

�x Optical Backscatter Sensor 

�x External Power Data Interface 

When at the surface, the REMUS 100 vehicle can obtain position fixes using 

GPS. When underwater, however, the vehicle relies on a long baseline (LBL), ultrashort 

baseline (USBL) or integrated DVL/GPS/INS Kearfott SeaDeViL navigation solution. 
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The SeaDeViL system has an advertised navigational uncertainty of 0.5 percent distance 

traveled circular error probable rate (CEPR) [12]. Essentially, this means that the actual 

position of the AUV will be within a circle of a radius quantified by 0.5 percent times the 

distance traveled. The LBL system has a navigational accuracy of ±10 meters and range 

of 2000 meters. The USBL system has a navigational accuracy of ±1 meter and range of 

1500 meters [12].  

B. BLUEVIEW MB2250 SONAR  

As mentioned above, the REMUS has a modular external payload configuration. 

The power data interface provides a nominal 30 volts with an Ethernet and serial 

connection within a wet-mateable connector. This permits the REMUS AUV to mount 

forward-looking sensor packages.  

The forward-looking sensor package mounted on the NPS REMUS AUV for the 

data collected in this thesis is equipped with a BlueView 900 KHz forward-looking sonar 

and a BlueView 2250 KHz downward-looking, ultra-high resolution sonar. Both systems 

are blazed array sonars. A blazed array sonar system employs methods similar to 

echelette diffraction gratings in optics in order to turn a single sonar acoustic signal into a 

swath of sound beams [13]. Each beam is diffracted at a different frequency and therefore 

at a different angle relative to the source. The size and shape of each beam is dependent 

upon the frequency band of the original sound source as well as the shape of the stave 

diffracting the sound. Figure 2 shows the magnitude and direction of each beam of a 

composite blazed array sonar along with the frequency range.  
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Figure 2.  Composite blazed array sonar beam magnitude and direction for 

frequencies between 300 kHz and 600 kHz, from [13]  

As can be seen, the lower frequencies create larger beams and as the frequency 

increases, the beam size decreases. The frequency to spatial angle relationship remains 

consistent throughout the process. Therefore, once the sound from each beam reflects 

back towards the sonar system, the process is reversed and the individual beams are 

merged back into a single signal [13]. Due to the directionality of the individual beams, a 

wide swath of coverage can be attained with a high level of accuracy. For these reasons, 

most bathymetry mapping missions utilize a form of a blazed array sonar system. 

Table 1 provides the specifications of the 2250 KHz downward-looking, ultra-

high resolution sonar used as the primary sensor in this thesis. 
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Table 1.   BlueView MB2250 sonar specifications, after [14] 

Attribute Value 
Field of View 45º x 1º 
Minimum Range 0.5 meters 
Maximum Range 10 meters 
Beam Width 1º x 1º 
Number of Beams 256 
Beam Spacing 0.18º 
Time Resolution 0.39 inches (0.01 m)  
Max Update Rate 40 Hz 
Frequency 2.25 MHz 
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III.  MAP BUILDING  

The first step in the TAN process is the development of a base reference map. It is 

this map that is compared with bathymetry sensor measurements to determine the best 

correlation to determine the best position estimate for the AUV. This chapter describes 

the challenges and necessary steps for building the base bathymetry map.  

A. BATHYMETRY MAP BUILDING 

Constructing an accurate bathymetry map involves the following considerations.  

�x AUV kinematics and dynamics and environmental impact 

�x Limited sonar range 

�x Low and asymmetrical frequency of sonar pings  

�x Computational power constraints 

�x Data storage constraints 

�x Inherent inaccuracies associated with uncertain INS pose estimations 

One of the most challenging aspects of accurate map building is accounting for 

the positional uncertainty of the vehicle collecting the micro-bathymetry sonar images. 

Any navigational aid that can be utilized in order to constrain or reduce the uncertainty of 

the AUV is desired. This includes GPS, LBL and USBL systems.  

The growing, unconstrained uncertainty associated with the INS is by no means 

nominal. A conventional navigation pattern for complete sensor coverage is often called a 

“navigate by rows,” or “lawnmower,” mission. In the case of the REMUS vehicle, a 

typical survey area may be approximately 400 meters by 400 meters. Through setting the 

desired altitude of the vehicle at 9 meters, and given that the beam from the micro-

bathymetry sonar is 45 degrees wide, the sonar swath will be 10.04 meters wide by the 

time it reaches the seafloor. Therefore, through using a spacing of 10 meters between 

each row, complete sensor coverage can be attained in ideal circumstances. In total, the 

AUV will travel approximately 16,800 meters. Given that the positional uncertainty is 

equal to 0.5 percent of the distance traveled without the use of any external navigational 

aids, the accumulated uncertainty by the end of the mission is 84 meters CEPR. 
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Figure 3 provides a visual representation of the accumulation of uncertainty as a 

mission progresses. The blue dots represent the mean estimate of the filter and the red 

ellipses represent the positional uncertainty associated with the INS navigation solution. 

Note that the positional uncertainty is drawn such that there is a 50 percent chance that 

the true position of the AUV is somewhere within the boundary.  

Mission parameters such as vehicle altitude, speed, and tightness of turns should 

also be given due diligence. A higher altitude off the seafloor inherently provides 

increased coverage area and thus lessens the needed distance traveled by the AUV in 

order to survey a specified area. The altitude is limited by the range of the sonar sensor 

(10 meters) plus a slight buffer of one to two meters in order to ensure abrupt changes in 

the topography do not cause a loss of bottom coverage. Similarly, given that the sonar 

system pings at roughly 1 Hz, additional coverage can be gained by decreasing the speed 

of the vehicle. Lastly, the dynamics and kinematics of the vehicle should be kept in mind 

in order to appropriately set realistic mission paths (i.e., turns wide enough that the 

vehicle is capable of making, or to set the minimum speed at which the vehicle should 

operate in order to maintain its depth and overall controllability).  
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Figure 3.  REMUS AUV mission route with uncertainty—first navigate rows 

objective 

Figure 4 clearly quantifies the accumulation of navigational uncertainty 

throughout the course of the mission. The REMUS vehicle embarks on the mission with a 

GPS fix providing accuracy to within three meters. Approximately midway through the 

mission, the REMUS vehicle surfaces again in order to obtain another GPS fix. The GPS 

improves the INS solution and again confines the estimated position to a three-meter 

radius area. 
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Figure 4.  Accumulation of REMUS positional uncertainty with GPS update 

Upon the completion of the mission, a final GPS fix is obtained and the positional 

uncertainty is constrained once again. It is clear from Figures 3 and 4 above that the 

vehicle must either surface periodically for a GPS fix or navigate its track with the aid of 

an acoustic navigation system in order to maintain a reasonable position estimate. 

Alternatively, the micro-bathymetry surveying may be completed using a surface vessel. 

This way, the vessel would have persistent GPS coverage. However, this method has its 

own limitations. For example, the high resolution BlueView MBE2250 sonar used in our 

experiments would severely constrain the operating area and coverage of the surface 

vessel due to its limited range. Typically, a sonar operating at a much lower frequency 

would be used in order to increase the sonar range. Using a lower frequency, however, 

negatively impacts the sonar image resolution. 

B. SONAR IMAGE PROCESSING 

Over the course of a mission, the AUV collects sonar images from its onboard 

sonar sensor. In a real-time implementation, image-processing techniques are applied 

onboard the AUV to provide a series of altitude measurements. For this thesis, the 
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analysis was conducted via post-mission processing. Upon completion of the mission, the 

raw images are then imported from the vehicle into a MATLAB environment in order to 

be post-processed. The goal of the sonar image processing step is to identify and extract 

information regarding the topology of the seafloor surveyed. 

A typical raw sonar image from the BlueView MB2250 micro-bathymetry sonar 

is shown in Figure 5. 

 
Figure 5.  Sample micro-bathymetry sonar image 

The intensity values of the image vary from 0 to 10000. A threshold of 125 was 

determined empirically to be a suitable threshold for separating noise from actual bottom 

returns. Thresholding attempts to minimize false acceptances of noise as actual bottom 

returns while also minimizing false rejections, where valuable bottom information may 

be discarded as noise. It should be noted here that the thresholding value of 125 is the 

result of an empirical evaluation of a particular data set. It would be useful to include an 
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autonomous methodology for determining a filtering threshold regardless of the 

operational environment (i.e., sandy or muddy ocean floor). An adaptive thresholding 

method is a consideration for future work. For the dataset collected for this thesis, a max 

return of every eleventh column can be located in the image and compared with a 

threshold value of 125. If the maximum pixel value of the column is above 125, it is 

regarded as the bottom location in the image. Based upon sampling every eleventh 

column, a bottom return can be provided approximately every 0.25 meters. A map 

resolution of 0.25 meters was determined appropriate in seeking to accomplish the 

objectives set in this thesis. In future work, if determined desirable, the resolution could 

be increased to the fundamental 0.023052 meters/pixel associated with the sonar images 

produced. An example of finding the max return of each eleventh column in the sonar 

image is depicted in Figure 6.  

 
Figure 6.  Sample sonar image with max returns 
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In the example of Figure 6, the four red pluses to the right of the visible bottom 

returns would be removed by the threshold from the collection of useful bottom data. The 

final set of data points collected would be those represented by the red pluses in Figure 7. 

Using the pixel location of each point greater than the threshold along with the associated 

conversion of 0.023052 meters per pixel, the distance in meters to each max return can be 

computed in the vehicle’s local frame. 

 
Figure 7.  Sonar image with max returns after thresholding 

C. TRANSFORMATION TO GLOBAL FRAME 

Since the BlueView MB2250 sonar is rigidly attached to the underside of the 

REMUS 100 AUV, each sonar image is captured relative to the body’s pose. In order for 

the information to be useful, the bottom returns must all be represented in the same global 

map. The rotation transformation converts the identified bottom locations in the body 

frame to bottom locations in the local tangent plane (LTP) and converted into the global 
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frame. First, the vehicle’s pose is taken into account. The location of the bottom returns is 

affected by both the vehicle’s roll, pitch and yaw, represented by , , and  

respectively. The Euler angle rotation matrix that rotates the information from the body to 

LTP frame is shown in equations (1) and (2). 

  (1) 

  

  (2)  

 

All bottom returns from the micro-bathymetry sonar are collected in the AUV’s x, 

y, and z directions, using the conventional body-fixed coordinate system abiding by the 

right hand rule. In order to express all data points as relative to the ocean surface, the 

depth of the AUV must be added to the new z direction of the data points. The origin of 

the LTP is defined as a point on the surface of the ocean, and therefore a transformation 

between the vehicle’s body-fixed frame and the LTP necessitates both a rotation and 

translation of the reference frame. The rotation is determined by the vehicle Euler angles 

while the translation is determined by vehicle depth and an arbitrary x, y origin. An 

example of an AUV on a bathymetry mapping mission is shown in Figure 8.   
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Figure 8.  AUV with visible bathymetry sonar overlay, after [15] 

In practice, the body-fixed coordinate frame would originate at the vehicles center 

of gravity. The positioning of the coordinate frame in Figure 8 serves solely as a visual 

guide for the reader. Figure 9 depicts the very same image as Figure 8, but with red 

crosses symbolizing the maximum sonar returns associated with the seafloor.  

 
Figure 9.  AUV with visible bathymetry sonar overlay and maximum bottom 

returns, after [15]  
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The coordinates of each red cross is first expressed relative to the vehicles body 

frame. After rotation and translation to the LTP, the same sonar returns seen in Figure 9 

would look approximately like the data points plotted in Figure 10. 

 
Figure 10.  Example sonar bottom returns expressed in LTP 

Since the AUV mission conducted for this project typically did not transverse 

more than several hundred meters across the seafloor in any direction, the LTP reference 

frame supports an acceptable representation of the data. Nonetheless, the points are also 

available represented in the global frame through latitude and longitude. The 

transformation from the LTP frame to the global frame was completed using MATLAB’s 

Map Toolbox. 

D. CONSTRUCTING THE BATHYMETRY MAP 

Once the entire set of data for the mission was transformed into the global 

reference frame in latitude and longitude, all of the points can be displayed coherently as 

a point cloud in 3D space. An example of several successive data points being displayed 

simultaneously in the LTP frame is shown in Figure 11. 
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Figure 11.  Several successive sonar pings displayed together in the LTP frame 

During the correlation steps a sonar ping is rotated and translated into the LTP 

and compared with the base bathymetry map. The base map will likely not have complete 

coverage due to limited sonar resolution, AUV path planning and following constraints, 

and/or a slow sonar ping frequency among other reasons. A lack of complete coverage 

may result in an inability to make a comparison between the sonar ping and the base map 

as the sonar ping may ensonify an empty region in the base map. There are a number of 

possible approaches for handling the sparse data; however, this thesis provides complete 

coverage to a desired resolution using linear interpolation.  The linear interpolation was 

performed in the MATLAB environment with the built in TriScatteredInterp function. 

The resultant surface passes through every data point in the set and linearly interpolates 

between neighboring data points. A basic linear interpolation may not best represent the  
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underlying topography and further research may be done in this area to identify a better-

suited method of data interpolation. The linear interpolation of the sonar pings displayed 

in Figure 11 is exhibited in Figure 12.  

 
Figure 12.  The linear interpolation of the sonar pings from Figure 11 

The same linear interpolation is applied to all data points collected within the 

survey area of the REMUS AUV. As one would assume, the linear interpolation better 

approximates the underlying topography in regions with a higher density of data points 

and is less accurate the sparser the data is.  
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IV.  TERRAIN AIDED NAVIGATION 

This chapter addresses an optimal estimation approach to TAN. The goal is to use 

the prior bathymetry map from Chapter III as an aid to vehicle navigation.  Therefore, the 

chapter starts with identifying a process and measurement model for the vehicle. The 

process and measurement model will be vital in the latter steps of filtering the positional 

estimation of the vehicle. Next, the correlation methods that quantify the similarity 

between the prior map and each new sonar ping are discussed and a method is selected. 

The correlation method coincides with the measurement model. Finally, the prior three 

components work together within the domain of a recursive Bayesian filtering method in 

order to estimate the vehicle state. Both Kalman-based filters and particle filters are 

discussed, and advantages / disadvantages for each are noted. Consistent with recent 

literature, and taking into consideration the nonlinearities and multi-modalities inherent 

to the TAN problem, a particle filter was chosen to be implemented.   

A. PROBLEM STATEMENT 

1. Process Model  

A generalized process model for an AUV is shown in equation 3, first proposed 

by [8]. 

 �G�� ��INS
k+1 k k kx = x x r   (3) 

where kx  is the vehicle’s x, y, z position in the LTP and kr  is representative of INS 

noise. The INS noise is assumed to be a zero-mean, white noise. 

2. Measurement Model 

The sonar and map models are shown in Equations 4 and 5 respectively [8]. The 

map and sonar errors, ,i ke  and �Xmap  are treated separately. Therefore, the sensor model 

uses the difference between the true terrain for the thi  ping at time k and the measured 

altitude for the thi  ping at time k along with a range dependent error, ,i ke , in order to 
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determine the range ,i ky . The map model essentially states that the true terrain range 

� � � �i
h kx  differs from the expected range �� ��ˆ

i
h kx  by an error . 

 �� ��-
i

h�  � �i,k k k i,ky z x e   (4) 

  
 �� �� �� ��ˆ

i i
h h�  � �k k mapx x �#   (5) 

 
�x kz  is the vector of the measured altitudes at each sonar ping.  

�x ,i ky  
designates the ranges associated with the thi  ping at time step k  

�x � � � �i
h kx  is the true terrain range for the thi  ping at time k 

�x � � � �ˆ
i

h kx  range from a priori map 

�x ,i ke  range dependent error  �� ��2
, ,~ 0, i k sensorN �Vi,ke   

�x �Xmap  
map error  �� ��2~ 0, mapN �Vmap�#   

Since the position of the AUV is not known precisely and the map has inherent 

errors, � � � �i
h kx  is not known. Therefore, effectively our goal with TAN is to minimize the 

argument ,i ky  by varying � � � �ˆ
i

h kx  throughout the search area.  

3. Correlation Method 

At each time step in the recursive algorithm, the altitude data from the micro-

bathymetry sensor is compared to the prior bathymetry map at several locations. A 

correlation technique is necessary between the sensor data and the bathymetry map to 

quantify the similarity between each such that the best correlation is selected as the most 

probable location of the AUV.  The correlation method should be robust across varying 

levels of depth as well as to sensor noise. Overall, the difficulties associated with map 

correlation are largely consistent with those of building the map originally. One of the 

significant difficulties associated with TAN is the low and asymmetric frequency of ping 

information.  

 

map�X
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Several different methods of correlation were tested including cross-correlation 

(XCOR) [16], normalized cross-correlation (NXCOR) [16], mean absolute difference 

(MAD) [1], a normalized minimum absolute difference, and a mean square difference 

(MSD) [1].  

 � � � � � � � �� � � �,
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In comparison testing with each method, NXCOR, MAD, and MSD all performed 

similarly well. XCOR was determined to be ill-suited to the problem as the correlation 

performed is not scale invariant, meaning the actual depth values from the prior map 

influence the result of the correlation. This is dangerous, as the correlation value between 

a sonar ping and itself may actually be poorer than a correlation between the same ping 

and an arbitrarily high valued set of sonar data. NXCOR successfully addresses this 

undesired dependence upon scale. The main downfall of NXCOR, however, was that the 

implementation only recovers Cartesian shifts in data. The MAD and MSD 

implementations, on the other hand, can recover rotation shifts as well as translational 

shifts. Both MAD and MSD performed similarly well, but due to the nature of squaring 

the differences, MSD exaggerates the peaks and valleys of the correlation matching. 

Therefore, MAD was chosen in order to avoid this sort of “overconfidence” in the 

correlation result. 

The output of the correlation step is a matrix equivalent to the size of the area of 

uncertainty searched. In the case of the MAD and MSD implementations, each cell’s 

value is the result of the correlation between the new ping and the prior map at that 

location. Through performing an element-wise inversion of each cell and then 

normalizing the whole matrix so that the sum of the matrix is equal to 1, a probability 

density function describing the probability of sensing the current ping information given 
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the AUV position in the map is calculated. This probability density function is key to the 

measurement update steps in the subsequent sections. 

4. Bayesian Methods 

As previously stated, given the dead reckoning nature of navigating by INS, there 

is a growing uncertainty associated with the vehicle’s pose over time. Clearly then, the 

TAN problem is best expressed through a stochastic process. Thus, the kx  used in the 

process model of part 1 is not a single, precise x, y, z location, but a stochastic variable 

representing the estimate of the position. The well-known Bayesian filter represents a 

broad framework for which to estimate the a posteriori probability distribution of the 

vehicle’s state given a process model, measurement model, and the a priori probability 

distribution of the state. The Bayesian filter is represented in equations 10 and 11 as 

consisting of a prediction and correction step. The prediction determines the probability 

of the vehicle being at state kx  given all of the previous measurements. This is done 

using the state transition model, represented by �� ��,p k k-1 kx | x u , and the a priori 

probability distribution � � � �|p k-1 k-1x D . The correction step then uses the result of the 

prediction step, along with the current measurement probability given the current state, 

represented by � � � �p k ky | x , and the probability of the measurement  given all the previous 

measurements, represented by �� ��|p k k-1y D .  

 � � � ��� �� �� ��: | |PREDICTION p p p� �³k k -1 k k -1 k k -1 k -1x D x | x ,u x D   (10) 

 � � � ��� �� �� ��
� � � �

|
: |

p p
CORRECTION p

p
� k k k k -1

k k
k k -1

y | x x D
x D

y | D
  (11) 

  

 � � � �p k-1x        Probability of robot at certain state (pose) at time step k-1 

 �� ��,p k k-1 kx | x u    State transition probability (motion model) 

 � � � �p k ky | x       Measurement probability - Probability of observing ky   when at  

   state kx  
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�^ �`: 1,...,i k�  �  k iD y
 �^ �`: 1,...,k iD y i k�  �   Set of all measurements up until time k 

The Bayesian filter above provides the general framework for which state 

estimation occurs. The Bayesian filter cannot be used directly; however, as there is not an 

analytical solution to the equations. Instead, recursive solutions to the Bayesian filter, 

such as the Kalman filter and particle filter, are potential methods for solving the 

Bayesian estimation problem. 

B. EVALUATION OF RECURSIVE BAYESIAN ESTIMATION METHODS 

The recursive Bayesian estimation methods that were evaluated in the context of 

this thesis were the Kalman-based methods as well as particle filtering. First, a brief 

summarization of the Kalman filter is provided.   

The Kalman filter relies upon a linear system of differential equations, typically 

expressed in state-space format as in equations 12 and 13, from [17].  

 A B� � � � �k k -1 k -1 k -1x x u w   (12) 

 H� ��k k ky x v   (13) 
Time update (prediction) 
 ˆ ˆA B�  � �-

k k -1 k -1x x u   (14) 

 1
T

k kP AP A Q��
��� ��   (15) 

Measurement Update (correction) 

 �� �� 1T T
k k kK P H HP H R

��� � � ��  � �  (16) 

 �� ��ˆ ˆ ˆkK H�  � � � �- -
k k k kx x y x   (17) 

 �� ��k k kP I K H P���  � �
  (18) 

where: 
  kP —A posteriori error covariance matrix 

  kP�� —A priori error covariance matrix  
  Q—Process noise covariance matrix  
  R—Measurement noise covariance matrix 
  K —Kalman gain 
  1kw �� —Zero mean, white process noise �� ��~ 0,N Q  

  kv —Zero mean, white measurement noise �� ��~ 0,N R  

As partially evidenced by its formulation, the Kalman filter requires linear and 

Gaussian assumptions. The EKF has a largely similar representation; however, it is able 
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to complete the prediction step of the filter using a nonlinear set of differential equations. 

Therefore, the EKF is typically a better estimator than the Kalman filter for problems 

governed by a nonlinear process and/or measurement model. Nonetheless, the EKF still 

linearizes about the current mean and covariance at each time instance and requires the 

same Gaussian assumptions as the ordinary Kalman filter [17].  

The particle filter is a different form of recursive Bayesian filtering. The particle 

filter discretizes the continuous probability density functions associated with Bayesian 

filter through a large set of particles [1], [18]. Each particle represents a potential state. 

The particles are distributed roughly according to the a priori and a posteriori probability 

density functions. As each particle represents a potential state of the vehicle, each particle 

is passed through a recursion of propagation (according to the process model) and 

measurement updates. The algorithm for a commonly used particle filtering method 

called a sequential importance resampling (SIR) particle filter, is shown in Figure 13. 

 
Figure 13.  SIR particle filter algorithm, after [19] 

The initialization of the particle filter is essentially a discretization of the 

probability density function at that time. In the case of the REMUS vehicle, an 
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initialization of the particle filter would be performed upon diving and would be based 

upon the uncertainty associated with the GPS fix just prior to diving. The next main step 

in the algorithm is related to the measurement update. The measurement update is 

performed by collecting the new measurement and weighting each particle according to 

the probability of being at that particular state given the new measurement. The weights 

for all particles are then normalized. Next is the resampling step. The same number of 

particles are drawn from the weighted particles, but are once again equally weighted. 

Once the particles have been resampled, the process model is used to propagate the 

particles forward to the next time instance. The filter then continues on to collect another 

measurement, weight the particles accordingly, resample, and propagate the particles for 

each time step. These steps can be done in real-time as the measurements/observations 

are being received. If there are no measurements at a given time instance, the particles are 

still propagated with the process model until a new measurement is available.   

One of the most advantageous aspects of particle filtering, especially with 

consideration to TAN for an AUV, is that it does not make any assumptions on the 

system model. While even the EKF makes certain linear and Gaussian assumptions, 

particle filter implementations do not. With a sufficient number of particles, nonlinear 

and multi-modal systems models can still be well-approximated. The main disadvantage 

of particle filters in comparison with Kalman-based filters is the significant increase in 

required computational processing power. Increased processing power is needed for 

particle filtering as typically 1,000–10,000 particles are required for an accurate 

approximation to the state probability density function [1]. Each particle must be 

propagated and updated at each time instance, and therefore computational demand can 

be significant. 

C. SELECTION AND APPLICATION OF METHOD 

Both Kalman-based methods and particle filters rely partially on measurement 

updates. In terms of AUV TAN, the measurements are the depth of multiple points on the 

seafloor beneath the vehicle. As terrain in general can vary greatly, with various 

mountains, valleys, peaks and dips, the measurements collected are highly nonlinear. 
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With such nonlinearity associated with the measurements, it is typically unclear exactly 

where within a region of terrain any single measurement may have come from. In other 

words, when correlating the measurements collected from a single ping with a prior map, 

especially given sensor and map error, there are likely multiple areas within the region 

that seem to correlate well. Over time, however, one such positional estimate will 

continue to correlate well while the others will not. It is due to the nonlinearity associated 

with terrain measurements and the resultant multinomial probability distributions that 

particle filtering was implemented vice a Kalman-based method. An example of the 

probability density function output from the correlation, or measurement update step, has 

been taken from a dataset described in the Chapter V results and is shown in Figure 14. 

Clearly, the distribution in the example of Figure 14 is binomial. With the potential for 

such multinomial distributions in mind, the particle filter was the preferential choice for 

filtering.  

 

Figure 14.  Probability of measurement given state—�� ��p k ky | x  
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The sequential importance sampling (SIS) particle filter formed the foundation for 

most particle filters developed since [18]. The SIR particle filter is a later derivative of 

the SIS particle filter that differs in one key aspect; the resampling step. Through 

resampling, the particle filter can avoid a documented degeneracy phenomenon, where 

after a few iterations all particles have negligible weights except for one. Resampling 

essentially eradicates particles with small weights and instead concentrates on particles 

with larger weights. Additionally, the SIR particle filter requires minimal assumptions 

beyond the knowledge of the state dynamics and measurement functions [18]. The 

simplicity, popularity [1], and avoidance of the degeneracy phenomenon were key 

influencing factors in the decision implement the SIR particle filter as a TAN filtering 

method. 
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V. EXPERIMENTATION 

A. DATA SET COLLECTION—SEATEST II 

The primary source of data used for this thesis originates from cooperative 

experimentation entitled “SEATEST II.” The mission was conducted as a part of a joint 

experiment between CAVR at NPS and the NASA Johnson Space Center (JSC). The 

overarching goal of the collaboration with the JSC was to quantify the effects of 

autonomy on mission effectiveness, efficiency, and safety for joint robot-human 

operations [20]. 

The platform from which the cooperative experimentation took place is the 

Aquarius Underwater Research Station located in Islamorada, Florida. The Aquarius 

underwater research habitat is the only operational underwater habitat in the world and is 

operated by Florida International University (FIU). SEATEST II is similar to a series of 

exercises collectively known as NASA Extreme Environment Mission Operations 

(NEEMO) where astronauts train in the undersea habitat as an analogue to space 

operations. These “aquanauts” may be station at Aquarius for as long as a month at a 

time. The area of operations is visually represented by the Google Earth screenshot in 

Figure 15. 
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Figure 15.  Aquarius Research Station—Coast of the Florida Keys, from [21] 

CAVR contributed to the research effort with two REMUS 100 AUVs and a 

SeaBotix vLBV300 Tethered, Hovering AUV (THAUS) alongside personnel with 

advanced technical backgrounds and aligned research objectives headed by Dr. Doug 

Horner and Dr. Noel Du Toit. The REMUS AUV is pictured in Figure 16 along with 

Aquanauts stationed at the Aquarius habitat (seen in background).  
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Figure 16.  Aquanauts with the NPS REMUS AUV at the Aquarius Habitat, 

from [20] 

A research emphasis was placed on expanding unmanned system autonomy. 

Autonomy enables the vehicle, through exteroceptive sensing, to make intelligent 

navigational decisions such as obstacle avoidance and navigation in cluttered, dynamic 

environments.  Underwater operations are of particular interest to NASA and CAVR 

research since these operations require unmanned system autonomy. The underwater 

domain not only necessitates the use of alternate means of positioning and navigation, as 

it is void of a ubiquitous positioning signal such as GPS, but also necessitates an alternate 

means of sensing and communication. Overall, the underwater domain presents a 

particularly unique and challenging environment for the operation of unmanned systems 

and as such,  

The missions conducted during SEATEST II combined autonomous mapping and 

navigation, multi-vehicle (heterogeneous) collaboration and information sharing, joint 

robot-diver operations, and persistent robotic operations. The role of the NPS REMUS 

vehicles was to survey a nearby area with a BlueView MBE 2250 micro-bathymetry 

sensor. From the surveyed sonar data, an accurate bathymetry map could be built. The 
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bathymetry map could then be used to identify an area of interest for subsampling by the 

REMUS or an aquanaut, or as a navigation aid to another AUV, such as CAVR’s 

SeaBotix vehicle.  

B. EXPERIMENTAL RESULTS WITH REMUS AUV 

1. Bathymetry Map Building 

Over the course of a particular REMUS mission collected during SEATEST II, a 

total of 3,046 sonar images were captured along with the estimated vehicle state at each 

instance. Of the 3,046 sonar images, 2,767 of them were within range of the seafloor and 

thus contained usable bathymetry information. From those 2,767 images, a total of 

56,491 data points were captured. The total distance traveled during the mission was 

approximately 6,250 meters. Figure 17 provides a perspective on the location of the 

SEATEST II mission relative to the Aquarius underwater habitat in Islamorada, FL. The 

figure was composed using the data collected during the mission and importing into 

Google Earth as a KML file. Each yellow dot represents the position of the REMUS 

vehicle when a measurement is taken. 

 
Figure 17.  Bathymetry data points overlaid in Google Earth, from [21] 
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A GoPro camera was mounted underneath the REMUS vehicle just behind the 

BlueView micro-bathymetry sonar. Figure 18 is a snapshot from the video collected 

during the mission. The black cylindrical object at the top of the image is the forward-

looking sonar / micro-bathymetry sonar attachment on the REMUS vehicle.  

 
Figure 18.  GoPro image from SEATEST II mission 

Overall, the terrain was composed of rock and corral formations with intermittent 

sandy bottomed regions. The rock and corral provided noticeable variability in seafloor 

depth. Depth changes were not only apparent in each individual sonar image, but also for 

the dataset as a whole. All 56,491 data points collected within the survey area are 

expressed in the LTP as a 3-D point cloud in Figure 19.  
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Figure 19.  3-D bathymetry point cloud 

Figure 20 is also included in order to provide a different perspective of the data 

points collected. In Figure 20, the REMUS’s entrance and exit points from the survey 

area can be seen, but more importantly so can the density of the points collected. In 

particular, associated with each turning point is a gap of no coverage. It is important to 

note the density of the data points throughout the surveyed area since the linear 

interpolation better approximates the regions that have more data points. In regions where 

data is sparse, the linear approximation will likely be a poor representation of the 

underlying topography. Passes by the AUV over the areas interpolated by data points 

distant from one another can expect a poorer correlation between the sonar information 

being seen and what the interpolated prior map shows. This will negatively impact the 

overall performance of the TAN solution.  

For additional perspective on the dataset, the distance between each ping line is 

approximately two meters and the approximate size of the main survey area is 20,000 
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square meters. The distance between pings is due to the bathymetry sonar functioning at 

approximately ~ 0.5 Hz throughout the mission and the REMUS having a mission 

defined speed of 2 knots.  

 
Figure 20.  An overhead perspective of the bathymetry point cloud 

In order to provide complete coverage of the area surveyed, the bathymetry points 

were linearly interpolated to produce the results seen in Figure 21.  
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Figure 21.  Interpolated bathymetry surface 

2. Terrain Aided Navigation 

Once the prior map of the surveyed area was constructed, it could be used as a 

navigational aid. Using the process and measurement models as a part of the particle 

filter, along with the output probability density function from the correlation step, an 

estimate of the vehicle state using the prior bathymetry map was calculated. Specifically, 

after the REMUS vehicle’s first pass in its survey area it has already accumulated a 

significant amount of positional uncertainty with regard to the INS positional estimate. 

An example of the magnitude of the uncertainty difference between the vehicles first and 

second passes through the survey area is depicted in Figure 22. The amount of 

uncertainty accumulated through the first pass of the region was approximately 0.670 

meters CEPR. By the time the vehicle passed through the area again, the positional 

uncertainty was approximately 8.068 meters CEPR. 
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Figure 22.  Difference in uncertainty of INS positional estimation between 

subsequent passes of the same region 

Figure 23 is an example of the two-dimensional array represented as an intensity 

image using MATLAB’s colormap. Figure 24 includes red plus sign overlays on the 

image that represent the altitude measurements used for each sonar ping (after 

thresholding). 
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Figure 23.  Sonar image collected during SEATEST II 
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Figure 24.  SEATEST II sonar image after thresholding data points 

In Figure 24, it can be seen that 23 data points were extracted. The represents a 

swath width of approximately 5.75 meters orthogonal to the longitudinal direction of the 

AUV. All 23 points then went through a coordinate transformation based upon the Euler 

angles and depth of the vehicle in order to be expressed in the same global frame as the 

prior bathymetry map. Figure 25 shows an example correlation between the 23 data 

points expressed in the global frame and the region of the prior map encompassing the 

vehicles current level of uncertainty. 
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Figure 25.  Correlation probability distribution for a new sonar ping—� � � �|p k ky x  

Figure 26 shows a sequence of four correlation plots. This provides a snapshot of 

the multi-modality that typically is associated with sequential pings throughout the 

dataset. Each plot represents a probability distribution �� ��|p k ky x  that is output from the 

correlation step and used in the recursive Bayesian filter. 
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Figure 26.  Correlation probability distributions for four different sonar images 
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The processing of each sonar image, transformation of the data to the LTP 

reference frame, and the computation of a probability distribution based on the 

correlation for the ping are all done in order to provide the measurement update for the 

particle filter. The measurement update and the process model for the propagation of the 

particles are the two main components of the particle filter. The results of several particle 

filtering simulations are shown below.  

The particle filter was first tested using 100 particles over the course of 54 micro-

bathymetry sonar pings. Figure 27 is the result of this preliminary test of the particle filter 

algorithm.  

 
Figure 27.  Particle filter results on first leg of second pass of the survey area 

Figure 27 is indicative of the rapid convergence of the particles from an initial 

distribution with a larger standard deviation, to a much more tightly grouped set of 

particles. The initial standard deviation of the particles is 3.994 meters, while eight pings 
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later the standard deviation is approximately 0.5 meters. While the particles at any state 

other than the initial state do not approximate Gaussian distributions, the standard 

deviation is still used here in order to provide a metric as to the spread of the particles.  

With the support of preliminary results, subsequent particle filter testing was 

completed using 1,000 particles. Figure 28 shows the results using 1,000 particles over an 

entire “navigate rows” mission objective through the survey area.  

 
Figure 28.  Particle filter with 1,000 particles compared to INS estimation 

Again, the filter can be seen to relatively quickly constrain the positional 

uncertainty of the AUV based upon the measurement and process updates. A GPS fix 

was taken at the end of the run and compared to the INS and particle filter estimations. 

The total positional uncertainty at the end of the run was 15.627 meters. The GPS fix was 

acquired using seven satellites with a horizontal error of approximately two meters. The 

INS solution as compared to the GPS fix was 14.272 meters away. The particle filter 

estimation as compared to the GPS fix was 8.863 meters away.  
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There are several error sources that can be attributed in varying degrees to the 

eventual particle filter estimation error of over 8 meters. GPS error, both from the 

initialization of the vehicle at the start of the mission and from the concluding GPS fix, 

could certainly account for a significant portion of the error. Additional error sources 

include the unaccounted for positional uncertainty in creating the prior bathymetry map, 

the linear interpolation of the prior map, and the particle filtering method. Within particle 

filtering, there can be a couple sources of error ranging from the selection of too few 

particles to properly approximate the probability density to the impact of various particle 

resampling techniques. Further literature research unveiled a detrimental effect of 

implementing a SIR particle filter on a vehicle with a high precision INS called “sample 

impoverishment” [2], [22], and [23]. A process model with small process noise, like that 

of the REMUS INS system, can be susceptible to a convergence on a false estimate. The 

particles are then propagated with small process noise and thus remain tightly clustered 

around a false estimate with little chance of recovery. This issue can be the result of a 

terrain change or artifacts in the prior map generation [22], or from premature 

convergence on a false estimate [23]. 

 In order to address the concerns of sample impoverishment due to the small 

process noise associated with the REMUS INS, the particle filter was re-initialized 

shortly prior to surfacing for a GPS fix. Figure 29 is the result from this simulation. 
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Figure 29.  Particle filter with 1,000 particles prior to GPS fix 

It can be seen in Figure 29 how the particle filter did not immediately converge to 

a single, tightly group position estimate but instead supported multiple hypotheses as to 

the location of the vehicle based upon the correlations being performed. Figure 30 is 

provided in order to clearly visualize the GPS positional update along with the final 

iteration of the particle filter using 1000 particles. While there clearly are multiple 

hypothesis as to the position of the AUV, the red “x” indicates the position of the best 

correlated particle. The best correlated particle is approximately 2.846 meters away from 

the GPS updated navigation estimate.  
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Figure 30.  Final iteration of particle filter using 1000 particles 

The results from this simulation indicate that the relatively poor results from the 

testing of the particle filter on the full mission were substantially due to a false or 

premature convergence upon an estimate. Initializing the particle filter closer to the GPS 

fix produced significantly more accurate results. Further discussions on techniques that 

mitigate the chance of false convergence and sample impoverishment are discussed in the 

section on future work. 
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VI.  CONCLUSIONS 

A. PERFORMANCE ASSESSMENT 

This thesis is the first to address terrain-aided navigation for a small, man-

portable AUV. It included the entirety of the TAN process from building the prior 

bathymetry map as a navigational aid to the implementation and analysis of a particle 

filter for AUV position estimation. The combination of the ultra-high-resolution 

downward-looking sonar, INS and particle filter approach showed great promise for 

accurate underwater navigation. 

That said there are many areas for improvement. They can be categorized as 

follows: 

1. Map building 

a. Data interpolation 

2. Image processing 

3. Particle filter implementation 

4. Real-time implementation 

1. Map Building 

One of the most significant challenges in building an accurate bathymetry map is 

accounting for the inherent, growing uncertainty associated with the INS of the AUV. 

The problem poses quite a conundrum. Through TAN methods, one wishes to localize 

the position of the vehicle through the use of a prior map due to accumulating uncertainty 

with regards to position. However, the prior map is built using the INS solution, with its 

growing uncertainty, in the first place. Therefore, additional research is recommended 

into building a more accurate prior bathymetry map. A relatively simplistic fix to the bulk 

of this issue would be to survey an area using an LBL system. Although this would not 

eliminate the uncertainty with regards to the vehicle and thus the map, it would constrain 

it. Other potential methods of building a more accurate map could be the use of a quad-

tree data structure that stores data different resolution grids based upon the certainty of 

the estimate or through ensuring consistency of the map by feature based correction 
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methods. This would entail a similar correlation technique as proposed above, but this 

correlation would be utilized in ensuring consistency with regards to the locations of 

features in the map. Overall, the vehicular positional uncertainty while building a 

bathymetry map should be taken into account, and methods for doing so are currently 

being researched. The fact that this was not taken into account in building the prior 

bathymetry map is a primary suspect for the poorer than expected accuracy of the particle 

filter.  

a. Data Interpolation 

As mentioned in the data interpolation paragraph, the TriScatteredInterp 

MATLAB function was used in order to perform a simple linear interpolation through all 

of the data points. A potentially more sophisticated method of interpolation (e.g., 

Kriging, Gaussian random fields or compressive sampling) takes into consideration the 

two-dimensional signal and the variance of the data may lead to a more accurate 

underlying map. 

2. Image Processing 

The sonar image processing algorithm utilized on this particular dataset worked 

efficiently and effectively. However, the algorithm is not robust to any significant 

changes in the environment. Poor performance could be expected in more dynamic, 

cluttered environments. In particular, testing in a harbor or kelp field would necessitate a 

more advanced and robust image processing algorithm. As a start, an adaptive threshold 

for identifying returns associated with the sea floor in various different environments 

with different bottom compositions would be useful. Additional work may be done to 

mitigate the effects of any noise that may appear in a dataset (noise was not a significant 

issue in the dataset collected). Nonetheless, the resolution of the data extracted from the 

image is only constrained by the fundamental pixel to meter ratio of 0.023052 and 

therefore the resolution could be increased at any point if it would be deemed worth the 

extra computational burden. More importantly, some changes on the image processing 

algorithm itself may be advised.  
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3. Particle Filter Resampling Technique 

As mentioned, the SIR particle filter implementation suffers from sample 

impoverishment. The sample impoverishment is largely attributed to the small process 

noise associated with the high-grade INS of the REMUS vehicle. A few methods that 

help counteract or negate this effect are discussed in [2], [22], and [23]. In particular, the 

Rao-Blackwellization of the particle filter as described in [2] is the recommended course 

of action for future work. Not only will Rao-Blackwellization help combat the effects of 

small process noise on the particle filter solution, but it will also reduce computational 

complexity and should improve accuracy [2], [5]. Other potential solutions include re-

initializing the particle filter with a much large covariance when an error in estimation 

has been detected [22], using a genetic algorithm [23], or through the use of a different 

particle filter resampling technique such as the resample-move algorithm described in 

[24] or the regularization method described in [25].  

4. Real-time Implementation on REMUS 100 AUV 

Perhaps most importantly, the end goal of this line of research is to implement a 

real-time system on CAVR’s REMUS 100 AUV. Concerns as to the long-term accuracy 

of the particle filtering solution should be addressed prior to fully trusting the navigation 

solution provided by the particle filter. Notwithstanding these concerns, the work 

provided thus far is suited to experimental testing on the REMUS vehicle. Real-time 

implementation would be the next major step in advancing TAN for an AUV.  
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