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ABSTRACT

The Internet is an evolving, robust system with built in redundancy to ensure the �ow of infor-

mation regardless of any act of nature or man-made event. This makes mapping the Internet a

daunting task, but important because understanding its structure helps identifying vulnerabilities

and possibly optimizing traf�c through the network. We explore CAIDA's and NPS's probing

methodologies to verify the assentation that NPS's probing methodology discovers comparable

Internet topologies in less time. We compare these by modeling union of traceroute outputs

as graphs, and using standard graph theoretical measurements as well as a recently introduced

measurement. Ultimately, the researchers veri�ed the NPS's probing methodology was com-

parable to the CAIDA's probing methodology. We also propose additional avenues for further

exploration from our initial discoveries. We also introduced a technique that can possibility

identify stable core existence among the whole Internet and explore case studies of two country

sub-graphs.
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Executive Summary

The Internet is an evolving, robust system with built in redundancy to ensure the �ow of infor-

mation regardless of any act of nature or man-made event. This makes mapping the Internet a

daunting task, but important because understanding its structure helps identifying vulnerabilities

and possibly optimizing traf�c through the network. We explore CAIDA's and NPS' probing

methodologies to verify the assentation that NPS' probing methodology discovers comparable

Internet topologies in less time. We compare these by modeling union of traceroute outputs as

graphs, and study the graphs by using vertex and edge count, average vertex degree, clustering

coef�cient and the Pearson coef�cient. The results from these measures show CAIDA's and

NPS's probing methdologies are compromable. However, using a recently introduced measure-

ment, the probing methodologies actual discover up to 40 percent different sets of vertices and

edges captured during almost simulanteous probing. Ultimately, the researchers veri�ed that the

NPS's probing methodology was comparable to the CAIDA's probing methodology. We also

proposed additional avenues for further exploration from our initial discoveries. We introduced

a technique that can possibily identify stable core existence. We conducted preliminary analy-

sis on the interesection of six inferred topologies with promising results. We believe additional

probing samples might display the stable core of the Internet. Additionally, we identi�ed South

Korea and China as skewed for the NPS probing methodology and conducted a case study of

each. We analyzed using the standard graph comparision measures and the intersection to iden-

tify a possible stable core. We observed only �ve percent of stable vertices in China but 40

percent in South Korea.
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CHAPTER 1:
Introduction

1.1 Communications Evolution
Throughout time societies have constantly explored ways to communicate, despite vast dis-

tances, either for control, correspondence, commerce or spread of knowledge. We build vast

networks to ef�ciently and rapidly broadcast the information with the newest technology at the

time, (e.g., smoke signals, pony express, and telegraph systems). Recently, the computer age

has increased the available amount of information which has consumed the inferior methods of

distribution before it. This led the United States government to commission a more robust and

fault tolerant communications system during the 1960s making way for the Advanced Research

Projects Agency Network (ARPANet) which eventually became the Internet.

Unfortunately, with the decommission of the ARPANet, the Internet structure became decentral-

ized, thus harder to map. The physical structure of the Internet became proprietary technology

to different business organizations making it dif�cult to understand how truly information is

shared. This has made it increasingly dif�cult for people to effectively and successfully map

the topology of the Internet. Thus a common interest in understanding exactly how links/edges

are assigned among routers/nodes has emerged, with the main goal of developing algorithms to

track the topology. The current thesis will address this with the goal of measuring and compar-

ing outputs of two such algorithms.

1.2 Why Measure the Internet?
Developing an approximate Internet map is important because having an understanding about

how routers connect and interact with each other can lead to better security, or increased ef-

�ciency of traf�c �ow. The algorithms developed to discover the topology of the Internet are

useful in understanding how an adversary can limit the exchange of information or completely

disable the accessibility of a local network. This is just one type of attack that is commonly re-

ferred to as a denial of service (DoS) or similarly a distributed denial of service (DDoS) which

targets a system by typically overloading it either through bandwidth or memory. This is a

very effective method of disruption which countries and companies spend billions of dollars

to prevent. With an understanding of the Internet topology, we can help to mitigate some of

the bandwidth bottlenecking that DoS attacks target. Additionally, it could help us understand

1



where to create better redundancy in the network that will prevent accidental DoS by an organi-

zation similar to DigitalGlobe's recent request for users help to scour through vast amounts of

satellite imagery to �nd the missing Malaysian Air �ight 370 [1].

1.3 Research Question
We began our research wanting to know the following questions.

� What are the substantiative differences between the NPS probing methodology and the

CAIDA probing methodology?

� Is there any bias in the algorithms?

� Does one algorithm geographically, by country, discover more of a network?

We were limited on our research by the number of probing cycles available for analysis. We

investigated the available probing cycles and made some educated inferences to how NPS and

CAIDA algorithms compare to each other.

1.4 Thesis Contribution
We use existing graphical analysis to compare large graphs at a very course granularity. We

did this to check similarity of the multiple probing cycles using the existing analysis tools,

(i.e., average degree, vertice count, edge count and clustering coef�cient). We then used a

recently introduced concept of VSD and ESD to compare vertex to vertex and edge to edge how

similar two probing cycles are to discovering the same topology. Next we found the intersection

between cycles to identify the amount of the Internet that we call the Stable Core found by each

probing methodology. We then compared CAIDA and NPS probing methodology's Stable Core

to discover similarities. We then compare sub-graphs (data divided by country) to �nd which

probing methodology more accurately represents the Internet. We compared the number of

vertices within each country and check if it represents the reported Internet users in [2] and

country allocated IP space.

1.5 Organization of Thesis
In investigating the research question, this thesis is organized as follows:

� Chapter 1 discusses the motivation of the research.

� Chapter 2 discusses prior and related work in the �elds of measuring the Internet.

2



� Chapter 3 introduces the machinery used in the analysis conducted in the course of the

research.

� Chapter 4 details the data used and the methodology that was developed.

� Chapter 5 contains the results of case studies conducted using our measures.

� Chapter 6 contains the summary and discusses possible areas for future work.

3
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CHAPTER 2:
Background

In this chapter, we establish a base knowledge of the Internet and some key terminology. This

will allow a common language for understanding how the Internet is formed, controlled and

how it evolved in time.

2.1 Overview of the Internet
The Internet is a global system of connected routers which follow an agreed-upon standard of

protocol suites. These protocols are established through the Internet Engineering Task Forces

(IETFs) and published in Request for Comments (RFCs)1 that serve billions of users worldwide.

The protocols are known as IPs, which are similar to a mailing address. Information is �rst

packeted with the destination addresses and are routed by routers within Autonomous Systems

(ASes) where information is then transmitted. The ASes are a group of IP pre�xes, under central

control of one or more network operators that presents a common, clearly de�ned routing policy

to the Internet [4]. The routes are nothing more then a path connecting vertices (users) through

ASes to each other.

We view the Internet as a group of many symbiotic communities that operate as collective

ASes. These ASes work together by connecting to each other forming larger networks. The

AS is typically an Internet service provider (ISP) or other large organization with connections

to multiple other ASes (e.g., Comcast, Verizon and universities). Each AS has an of�cially

registered Autonomous System Number (ASN) and adheres to the RFCs to properly route the

information. When multiple routers establish connections/edges with other routers, they build a

routing table and share their table among all the connected routers. The routers distribute these

tables in order to compute the most ef�cient paths that adhere to the businesses constraints of

the providers. This occurs because the routers identify preferred routes between themselves to

other routers/vertices. However, there exists a delineation between internal and external routers

within an AS. Internal routers will only handle the traf�c within their ASes and will refer to all

ingress facing or transit routers for any connection outside their organic ASes. The internal AS

routers can save IP space by allowing large companies to subdivide the company's network to

enable more users without affecting the ingress router, an expression called "piggybacking" or

1Document series containing technical and organizational notes about the Internet [3].
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"subnetting." Likewise, all ingress/external routers will ignore any subnetting groups of large

networks, namely their own AS and outside AS. The design of internal and ingress/external

routers help to reduce the number of entries in the ingress/external transit routing tables. The

router accomplishes this by delegating some roles to the internal routers within the ASes and

other responsibilities to the ingress/external routers.

In Figure 2.1 [5], the boundary routers (e.g., R11, R12, R21 and R31 in Figure 2.1) are ingress

routers that bridge the ASes. These routers are commonly referred to as ingress, while internal

routers such as R13, and R14 in Figure 2.1 handle the traf�c inside their AS. Physically, the

routers are connected, via their interfaces, and wired or wireless connections between interfaces

on other routers/devices. A trivialized representation of the Internet is shown in Figure 2.1

where the ASes are identi�ed by their respective ASNs. In this illustration, the transit2 edges

connect ASN 1 to ASN 2 and ASN 1 to ASN3.

Figure 2.1: The Internet simpli�ed from [5].

2Edge between two external routers.
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2.2 Internet Topology
The true Internet topology is a dif�cult problem to truly represent due to the ever changing

structure of the Internet, sheer size and evolution. When we map the Internet we are looking

at a "snap shot" in time of what the Internet looked like. The research community hopes that

taking multiple "snap shots" throughout time will allow the researcher to map and gain some

insight to the Internet's structure. For our research, what is more arduous is what these "snap

shots" mean and how we compare them, before being able to predict how the Internet will act.

2.2.1 Levels of Internet Topology
There are numerous granularity levels we can study within the Internet, (e.g., �ber, IP address,

router, and ASes). For each level, we represent a �ctitious network with a corresponding graph-

ical representation(s). We are particularly interested in interface-level mapping because it offers

the most clarity of connectivity and if we have the IP level graph, then the others could be in-

ferred. We limit our research to this interface-level and the connectivity of the segments of the

Internet. Below we discuss the different levels for completeness.

AS-level topology. At the AS level, the ASes are vertices and communication paths between

them form edges between the vertices. This is seen more prominently as provider-customer and

peer relations [6]. With this system, a customer pays a provider to connect to the Internet outside

of its administrative domain. Then these providers contractually agree to exchange information

traf�c between each other's customers mostly free of charge. Thus, the Intranets and their

connections that the ISPs provide to its customers form the Internet between the administrative

domains. This means that the AS level captures more of an economic relationship between ISPs

rather than the physical connections between routers of the Internet.

The AS-level graph representation of Figure 2.2a is shown in Figure 2.2b from [5].

Subnet-level topology. Subnet-level mapping [7] involves discovering the IP addresses that are

hosted on the same subnet. These subnets are de�ned by the interfaces that they connect to. The

subnet level topology has the subnets as the vertices and the routers as the edges connecting the

various subnets. This methodology is shown in Figure 2.3 from [5].

Interface-level topology. Interface-level or IP level routing works similarly as subnet-level

mapping because router interfaces and end hosts are captured. The connections between two

router interfaces form an edge, while the interfaces themselves are the vertices. It is important to

note how routers can have multiple interfaces, which could require multiple graphs to ensure the

7



(a) Network map. (b) Graph.

Figure 2.2: Autonomous System-level representations from [5].

(a) Network map. (b) Graph.

Figure 2.3: Subnet-level representations from [5].

discovery of all connections/edges between the routers. Figure 2.4 [5] displays some variations

of graphs depicting various perspectives to different end points.

Router-level topology. Routers have multiple interfaces, each with a different IP address,

and by IP Alias Resolution3 they are combined to represent one vertex in the Router-level

graph. These vertices are then connected by edges, which represent a possible physical link

between the routers. These vertices and edges form the graph used to represent the Internet.

3A process to identify IPs which belong to the same router.
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(a) Network map.

(b) Graph of interfaces as seen
from X.

(c) Graph of interfaces as seen
from Y.

(d) Graph of interfaces as seen
from Z.

(e) Graph of interfaces as seen
from R22.

(f) Graph of interfaces as seen from
R31.

Figure 2.4: Interface-level representations from [5].

The topology of these graphs formed from this method are more useful because the vertices

represent the physical routers and the edges the physical links/edges of the actual physical

network layout. However, IP Alias Resolution is not precise, although current research shows

promise in solving this problem [8–10]. Thus, having an understanding at the IP level will help
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generate an understanding of the Internet at the router level.

(a) Network map. (b) Graph.

Figure 2.5: Router-level representations from [5].

2.2.2 Acquiring Active Network Topology
There are numerous Network Topology Capture (NTC) algorithms to acquire network topolo-

gies including, DIMES, IPlane, Ark IPv4 All Pre�x /24 and recently NPS probing methodol-

ogy. NPS probing methodology is different from the others because it includes adaptive probing

techniques which leverage ingress knowledge and data from previous cycles(s) to choose the

best probe destination and assignment of vantage point to destination [11]. The idea is by ex-

ploiting previous knowledge of the data, one can reduce the cost, mainly time and additional

traf�c load on the Internet. NTC's goal is to reduce the discovery costs (i.e., probes sent and

time discovery time), while ensuring maximum coverage of the network [12]. However, there

are limitations of NTCs from of�ine systems, �rewalls or overloaded edges during the time of

probing. In [13], the authors investigated if the time of day for a probing cycle matters. They

did not �nd evidence that the time of the day matters, but they caution that their sampling size

was small and additional research should be done.

Ideally, we want to use ground-truth4 to compare the effectiveness of NTC algorithms. Unfor-

tunately, it is impossible to obtain ground-truth because many organizations will not share the

information for security reasons. An organization's network graph can expose security �aws

and allow the possibility of sabotage. Organizations like CAIDA provide datasets [14] from

both active and passive measurement of the Internet that are readily available to the research

community. We will use some of CAIDA's datasets throughout our research, which of course

is not ground-truth, but it provides us data to compare NPS's probing methodology.

4Actual existing graph of a real network.
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2.2.3 Traceroute
Traceroute is a network diagnostic tool that allows a user to identify how a network sends

information between devices/vertices. The use of traceroute allows a user to assess a network to

help identify and �x connection issues. Typically most traceroutes use Internet control message

protocol (ICMP) and a Time to live (TTL) that increment at every point of routing. This is

useful because after the completion of each trace, a history of the forward interface-level path

and time to send and acknowledge are available to analyze. However, traceroute may not return

all router path information because some routers are formated to reply anomalously.

Paris traceroute improved traceroute by accommodating load balancing routers [15, 16]. The

improvement provides more accurate information to paths along a network because the load

balancing routers have the ability to direct information or probes along different paths and hide

the reality of the path. An example of Paris traceroute is provided in Figure 2.6 from [5].

L

A B

C

E

Destination

Source

Real Topology
Classic traceroute
(possible outcome) Paris traceroute

D

L

A

E

Destination

Source

D

L

A B

C

E

Destination

Source

D

Figure 2.6: Classic versus Paris traceroute adapted from [5,15].

Figure 2.6 illustrates how the Paris traceroute is preferred over the classic traceroute. The

left diagram in Figure 2.6 provides the ground-truth of the network where router L provides

load balancing across two paths. The middle diagram shows the representation of traceroute
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result, while the one of the right is the Paris traceroute. The Paris traceroute captures a better

representation of the real topology of the network.

2.3 Existing Internet Topology Views
There are many different views to the exact structure of the Internet and how to graphically

represent the Internet. In Figure 2.7, the Internet has a core of �ber-optic cables connecting

ISPs to the end users, (i.e., home and business users).

Figure 2.7: Visualization of USA Internet from [17].

Another view many researchers share is that the Internet is a heuristically optimal topology

where the core is sparse with low degree routers which connect to high degree edge providers

then to hosts/end users. An example of this structure is found in Figure 2.8a.

Both of the views on the Internet structure are currently accepted by researchers. We also

wanted to show some previous graphical representation of the Internet from actual traceroutes.

Cheswick has done considerable research in developing an algorithm to display traceroute in-

formation obtained primarily from CAIDA. An example of some of his visualizations of the

Internet are found in Figure 2.9. Cheswick has named the Internet images as a "Peacock on a

Windshield." Another Internet visualization example is found in Figure 2.10. This visual only
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(a) Network map. (b) Router-level topology of Abilene.

Figure 2.8: Router-level representations from [18].

displays the backbone of the Internet, but shows that even smaller subsets of the Internet are

overwhelming to visually analyze.

Figure 2.9: Cheswick map of Internet from [19].

We will model snapshots of the Internet by graphs to facilitate its measurement. We will use
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Figure 2.10: CAIDA IP map of Internet from [20].

python coding (particularly NetworkX) to analyze existing data comparison algorithms. Addi-

tionally, we will refer to CAIDA's measuring tools to compare large networks and we append

additional tools. As previously mentioned, we will model the Internet at the interface-level

using multiple "snap shots," with the a vertex representing an interface or IP and an edge repre-

senting a connection between two interfaces obtained from a traceroute.
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CHAPTER 3:
Mathematical Background

In this chapter, we introduce some mathematical theory that will create a common language

as we refer to the Internet as a graph. We focus on set theory, graph theory and established

complex graph comparison tools. These tools are helpful to compare large graphs because of

ease of calculation and mathematically proven characteristics. Additionally, we will introduce

a technique we believe will lead into understanding the stable core of the Internet.

3.1 Set Theory Terminology and Terms
A basic understanding in set theory will allow the reader to follow the results obtained from the

measures of similarities and differences between graphs. We also use graph theory to understand

the characteristics that large data sets exhibit, allowing further insight into the information's

meaning. We accomplish this by taking the large data sets and turning them into graphs. We

then run existing measures in NetworkX5 to aid in understanding the data behind the graphs.

The following de�nitions for Set Theory are found in [21]. The terminology and theory are a

base knowledge and reference to understand our methodology and results.

A setG is an unordered collection of objects, called elements or members of the set. A set is

said to contain its elements. We writea 2 A to denote thata is an element of the set A. The

notationa 62A denotes thata is not an element of the set A.

Theunion, A[ B, of the setsA andB, denoted byA[ B, is the set that contains those elements

that are either in A or in B, or in both, see Figure 3.1.

The intersection, A \ B, of the sets A and B, denoted byA\ B, is the set containing those

elements in both A and B, see Figure 3.1.

The generalized unions of a collection of sets is the set that contains those elements that are

members of at least one set in the collection (e.g., Figure 3.2).

While the generalized intersections of a collection of sets is the set that contains those elements

that are members of all the sets in the collection also as seen in Figure 3.2.

5Python based software package for creation, manipulation, and study of the structure, dynamics and functions
of complex networks.
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(a) Union of A and B. (b) Intersection of A and B.

Figure 3.1: Union and intersection from [21].

(a) Union of A, B, and C. (b) Intersection of A, B and C.

Figure 3.2: Generalized Union and intersection from [21].

TheSymmetric Difference of A and B, A� B, is the set containing those elements in exactly

one of A and B, see Figure 3.3.

Figure 3.3: Symmetric DifferenceA� B.

3.2 Graph Theory Terminology and Concepts
The below de�nitions and concepts are found in [22]. Any additional terminology we will

individually reference.
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A graph G consists of a �nite nonempty setV of objects calledverticesand a setE of 2-element

subsets ofV callededges, see Figure 3.4. The setsV andE are thevertex setand theedge set

of G, respectively. Vertices are also calledpoints or nodesand edges are sometimes calledlines

or arcs. For Figure 3.4, the vertex set is

V(G) = f c1;c2;c3;c4;c5;c6;c7g

and the edge set is

E(G) =
n

f c1;c2g; f c1;c3g; f c1;c5g; f c1;c7g; f c2;c3g; f c2;c4g; f c2;c7g;

f c3;c4g; f c3;c5g; f c4;c5g; f c4;c6g; f c4;c7g; f c6;c7g
o

:

Figure 3.4: Example graph.

Node or vertex CountThe vertex count of a graphG, commonly denotedjV(G)j or jGj, is the

number of vertices inG. In other words, it is the cardinality of the vertex set.

The edge Countof a graphG, commonly denotedM(G) or E(G) and sometimes also called

the edge number, is the number of edges inG. In other words, it is the cardinality of the edge

set.

A path is used to describe both a manner of traversing certain vertices and edges ofG and a

subgraph consisting of the sequence of those vertices and edges. Apath is a u� v walk in a
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graph in which no vertices are repeated. An example of a path in Figure 3.4, fromc1 to c4 is

P = ( c1;c3;c4)

and it is not unique since there also exist another path.

P = ( c1;c2;c3;c4)

There are actually multiple paths fromc1 to c4.

A graphG is connectedif every two vertices ofG are connected, that is, ifG contains a path

u� v for every pairu;v of vertices ofG. A graphG that is notconnectedis calleddisconnected.

A trail is terminology borrowed from the Old West and de�ned as au� v trail in a graphG to be

a u� v walk in which no edge is traversed more than once. An example of a trail in Figure 3.4,

from c5 to c2 is

T = ( c5;c4;c6;c7;c4;c2)

and can repeat vertices as we did withc4. A circuit in a graphG is a closed trail of length 3 or

more. Our previous example of a trail can be a circuit,c5; :::;c5, but another example is a circuit

from c1 to c6 is

C1 = ( c1;c7;c4;c2;c7;c6;c1)

but also

C2 = ( c1;c2;c3;c4;c7;c6;c1)

this shows a circuit is not unique between two vertices. Acycle is a circuit that repeats no

vertex, except for the �rst and last. Ak � cycle is a cycle of lengthk, (i.e., k vertices), for

example a 3� cycleis commonly referred to as a triangle. From Figure 3.4 an example of a

3� cycleis

C3 = ( c1;c5;c3;c1)

while an example of a 5� cycleis

C4 = ( c1;c2;c3;c4;c7;c1)

Thedegree of a vertexv in a graphG is the number of edges incident withv. For example in
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Figure 3.4 the degree ofc7.

degc7 = 4

For two verticesu andv in a graphG, thedistanced(u;v) from u to v is the length of a shortest

u� v path in G. Au� v path of lengthd(u;v) is called au� v geodesic. The pathc1;c5;c4 is a

geodesic fromc1 to c4.

For a vertexv in a connected graphG, the eccentricity e(v) of v is the distance betweenv

and a vertex farthest fromv in G. The minimum eccentricity among the vertices ofG is its

radius and the maximum eccentricity is itsdiameter, with are denoted byrad(G) anddiam(G),

respectively. For example,e(c1) = 2 , rad(G) = 2 anddiam(G) = 2.

Symmetric difference [23] Conventionally, if G and H are graphs with vertex setV, then the

symmetric differenceG4 H is the graph with vertex setV whose edges are all those edges

appearing in exactly one ofG and H. Note that theG4 H the set operation of symmetric

difference is done on the edges of the graph, and it is not what we use in this research.

In this paper, we model Internet connections as an undirected graph. We do this because the

nature of bi-directional information exchanged on the Internet between endpoints. Therefore,

we will not use directed graphs, pseudo graphs or multi-graphs to represent the Internet from

our data.

3.3 Complex Network Measures
In our analysis we use some measures that CAIDA has used in previous research papers [24,25]

and have provided the de�nitions below. We later augment with other measures.

Average vertex degree(k), is the ratio of edges to vertices, wheren is thenumber of vertices

in the graph andm is thenumber of edgesin the graph:

k =
2m
n

:

This is the average degree of all the degrees in the graph, and is derived from the �rst theorem of

graph theory.6 This is considered one of the coarsest measurements for graph comparison, but

serves as an easy reference when comparing two large graphs. Additionally, a topology whose

graph has a larger average vertex degree is likely to be more ef�cient and robust than those of

6The sum of degrees is twice the number of edges in the graph.
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lower average vertex degree. We usev for vertices andk for the degree of the vertex.

Average clustering coef�cient for a graphG is the average,

C =
1
n å

v 2 G
cv

wheren is the number of vertices inG [26].

Additionally, we will examine a few other measures: thetransitivity [27], degree Pearson

correlation coef�cient [28], VSD andESD [5].

Similar to clustering,transitivity [27] computes the fraction of all possible triangles present in

G. This is accomplished by identifying the total number of triangles out of all possible triads.

T = 3
# triangles

# triads

A triad is a path (see Section 3.2) on three vertices that has the possibility of being a triangle or

a path of length three.

We use thedegree Pearson correlation coef�cientto compute the degree assortativity of a

graph. the pearson correlation coef�cient is de�ned as

r =
M� 1å i j iki � [M� 1å i

1
2

( j i + k2
i )]

M� 1å i
1
2

( j2i + k2
i ) � [M� 1å i( j i + ki)]2

wherej i , ki are the degrees of the vertices at the ends of theith edge, withi = 1; :::;M [29]. This

is used to measure the similarity of connections in the graph with respect to the vertex degree

of the hubs. An example of each is displayed in Figure 3.5. The assortative graphs, 3.5a, show

a preference of hubs to link to each other. While a disassortative graph, 3.5c, the hubs seem to

avoid each other.

A recently introduced comparison [5], is theVSD andESD, which measure the percentage of

change between two graphs either in terms of the vertices or the edges. The below de�nitions

and examples forVSD andESDwere taken from [5].

De�nition 3.3.1. For two graphs G and H, thevertex symmetric differencevsd(G;H) is de�ned
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(a) Assortative (b) Neutral (c) Disassortative

Figure 3.5: Example graphs for degree Pearson correlation coef�cient from [30].

to be:

vsd(G;H) =
jV(G) nV(H)j + jV(H) nV(G)j

jV(G)j + jV(H)j
:

As example, consider the two graphs in Figure 3.6, for which we have:

Figure 3.6: Example to illustratevsdandesdbetween two graphs from [5].

vsd(G;H) =
jV(G) nV(H)j + jV(H) nV(G)j

jV(G)j + jV(H)j
=

1+ 1
6+ 6

=
2
12

= 16:7%

De�nition 3.3.2. For two graphs G and H, theedge symmetric differenceesd(G;H) is de�ned

as

esd(G;H) =
jE(G) nE(H)j + jE(H) nE(G)j

jE(G)j + jE(H)j
:

Informally, we �rst count the edges present in one graph and not the other and then reversed.
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This is then normalized over the total number of edges in both the graphs, so that it is relative

to the size of the graphs.

In the case where graphsG andH have exactly the same edges,esd(G;H) = 0. If graphsG and

H are disjoint, or have totally different edges,esd(G;H) = 1.

Thus, we see that theesdof any two graphs,G andH, lies in the closed interval[0;1] (i.e.,

0 � esd(G;H) � 1).

On this scale, we are able to say, intuitively, if the difference between the two graphs (edge-

wise) is signi�cant.

For example, consider the two graphs in Figure 3.6 [5]

We have

esd(G;H) =
jE(G) nE(H)j + jE(H) nE(G)j

jE(G)j + jE(H)j
=

3+ 2
8+ 7

=
5
15

= 33:3%

In this thesis, we introduce the idea of a possiblestable core. We hypothesis that the stable core

can be found by taking the generalized intersections of multiple "snapshots" of the Internet in

time. We notice the stable core measurement of the network is the part that has limited change

per many cycles, in our case six cycles. This part might represent more of the backbone of the

ever changing Internet.
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CHAPTER 4:
Data and Methodology

In this chapter, we outline our data collection procedures and explain some known limitations

of our data usage. The application to the mathematical concepts will follow in Chapter 5.

4.1 Source of Data
We used data from two topology collection methodologies, NPS and CAIDA, to accrue our two

sets of topology probing cycles and ran the NPS algorithm two additional probing cycles to

identify trends we observed in the previous probing cycles. We ran each collection technique

simultaneously7 to negate any interference with time or network load and also used the same

set of vantage points. The �rst set of probing cycles was run on 4 September 2013 followed by

two additional pair of probing cycles on 13 December 2013. After initial results from the two

sets of NPS and CAIDA probing cycles, we ran two additional NPS probing probing cycles to

identify if we continued to observe certain trends that we will expand upon in Chapter 5. The

dates for the probing cycles are shown in Table 4.1.

Probing Cycle Date
NPS 1 8/31/13
CAIDA 1 9/4/13
CAIDA 2 12/13/13
NPS 2 12/15/13
NPS 3 4/4/14
NPS 4 4/9/14

Table 4.1: The dates of the corresponding probing cycles.

4.1.1 CAIDA data
CAIDA uses an active probing methodology called Archipelago (Ark), which we will also call

"CAIDA probing methodology" throughout the paper. CAIDA developed Ark to:

� reduce the effort needed to develop and deploy sophisticated large-scale measurements

7Runs were conducted back to back switching which probing method was conducted �rst.
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� provide a step toward a community-oriented measurement infrastructure by allowing col-

laborators to run their vetted measurement tasks on a security-hardened distributed plat-

form [31].

Ark uses coordinated large-scale traceroute-based topology measurements from a process called

team probing to gather measurement to all routed /24's8 [31]. The team probing dynamically

divides the IP space among three teams to provide a parallelization of all /24's destinations,

and collects data for in about two to three days per team of 17-18 monitors. The teams operate

independently to prove the entire IP address space. Currently, CAIDA has 86 active monitors,

seen in Figure 4.1, to provide data collected in parallel, with at least one in every continent

except Antarctica [32]. The Ark measurement usesscamper, a powerful and �exible active

measurement tool which supports Internet protocol version 4 (IPv4), Internet protocol version

6 (IPv6), traceroute and ping [31]. CAIDA uses scamper because it supports transmission

control protocol (TCP), user datagram protocol (UDP), and ICMP based measurements and

Paris Traceroute variations [31].

Ark collects the data by sending probes continuously from random monitor vantage points,

within a team, to destination IP addresses. The destinations IP address pre�xes are randomly

selected among the /24 space to ensure the data has representation across /24 space. Using

a tool, like sc_analysis_dump tool9 included in the scamper distribution package [33] we can

extract the information needed for this research from the probing cycles. This will be analyzed

in Chapter 5.

4.1.2 NPS Data
The NPS probing methodology is a Python script program with the goal of minimizing the time

required to gather the network information while maximizing the number of vertices and edges

discovered. The authors of the program call the technique of adaptive network mapping ingress

point spreading (IPS). IPS aims to increase probing ef�ciency by �rst inferring the number of

ingress points for a given network, then for each new probe, selecting the vantage point with

the highest likelihood to traverse an ingress point that has not been covered before [34]. The

probing methodology uses data from a prior probing cycle to infer potential ingress points at

different network boundaries for each target pre�x. The process is designed to

� Discover the degree of subnetting within edge networks through and iterative interroga-

8Approx 9.5 million addresses.
9Tool that produces output in textual format of each summary trace. It is included in Appendix A.
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Figure 4.1: The map of all CAIDA monitor locations from [32].

tion process [34].

� Discover sources of path diversity into networks by �nding and exploiting the target's

ingress points [34].

In [34], the authors state that by spreading probing across ingresses it will prevent early termi-

nation and therefore discover more diverse paths. An example of IPS is illustrated in Figure 4.2.

In Figure 4.2a, six previous vantage points are displayed to various destinations, (in red). The

desired /16 is shaded in red in Figure 4.2a and has three destination IPs and encompasses two

ingresses into the /8 that lead to paths into the /16 pre�x. In Figure 4.2b, vantage points 1 and

2 are chosen as �rst priority in rank order list. Vantage points 1 and 2 are ranked �rst because

each traversed a diverse ingress in Figure 4.2a.
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However, IPS wants to discover a total rank order over all vantage points, typically larger than

these six example vantage points to discover more. Therefore, IPS expands from /16 to /15

pre�xes (green shaded box in Figure 4.2b), which includes a new ingress point from point 4.

This new ingress point rank prioritizes point 4 third because vantage point 3 shared the same

/8 ingress point as point 2 in Figure 4.2a. The IPS probing methodology continues this ranking

through /14, /13, etc. until all vantage points are rank ordered.

(a) Target /16 pre�x with two ingresses. (b) Expansion to �nd notational ingresses.

Figure 4.2: IPS example of six vantage points from [34].

4.2 Data Selection and Preparation
In Section 4.1, we described the two different probing methodologies and how each discovers

the Internet. We explained the algorithms to help the reader understand the difference in the

probing methodologies. We now explain to the reader the preparation of each probing cycle, the

approximate collection time and the time it takes to allow a computer to analyze the information

via our measures.

4.2.1 Preparation
The output from sc_analysis_dump tool10 is a list of traceroute like data. Speci�cally, the

data provides the information that resembles a classic IP trace as well as a round-trip time

(RTT) of packets sent and received between routers along the way. We take the data from

the sc_analysis_dump, strip the RTT information and keep the interface data. This provides a

list of interfaces and the links between them (given by the sequence of IPs as in Figure 4.3).

10A tool used to provide a list of traceroute data in a readable script. Each line contains information about the
each single trace to include interfaces visited and time between transmission. Details of the output are seen in
Appendix A.
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We then use the router interface as the vertex and identify two consecutive IPs which will be

represented by an edge. This is easily done allowing us to string the interfaces together in

order, from the �rst vertex to the second via an edge and the second to third via another edge in

sequence to represent the path taken for each trace. We continue this process through each trace

in the probing cycle to obtain several paths forming a union and discarding edge and vertex

multiplicity. From the union of the paths we build a graph representing a "snapshot" of the

Internet as discovered by each probing methodology. This technique allows us to compare the

graphs by the various methods described in Chapter 3. It is important to note that all interfaces

respond with their address, due to security settings, and we discard all "q" responses. We have

suggested additional future work to identify the amount discarded and possible way of assigning

the unknown routers to a geographical set, in Section 6.2

4.2.2 Resources "Time"
We previously discussed the three or more days needed to obtain a complete CAIDA cycle that

we call a "snapshot" of the Internet. We also brie�y explained how one of the main goals of

the NPS probing methodology was to discover more of the Internet's topology in less time. In

order for us to best compare CAIDA's and NPS's probing methodologies, we �rst compared

two probing cycles of each methodology collected as near simultaneously as possible using the

same monitors, (in order to negate any difference due to the time collected or traf�c load on

the Internet). This allowed us to better compare the two probing cycles to each other. Each set

of probing cycles took a day to two days to collect, then another day to two to analyze. We

were able to accomplish this by using a dedicated server to run the compiling, parsing and test

continuously over the four to �ve day period. We also ran a few additional tests, speci�cally

diameter and radius testing per country, which took nearly two weeks of dedicated time on the

server per cycle.

4.2.3 Probing Data Challenges
The Internet is ever changing, making it dif�cult to predict and accurately map. Additionally,

not all the routers probed respond, making it dif�cult to know exactly which routers are cap-

tured. During both CAIDA and NPS probing methodologies, we would receive a "q" for each

unresponsive router, as seen in Figure 4.3. This meant our probe would identify a router's ex-

istence but not its IP address. Unresponsive routers occur because many companies and users

increase the security settings on their routers to block ICMP traf�c. This makes obtaining accu-

rate information increasingly dif�cult since in our research, we discard the routers with a "q."
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Since we discard the unresponsive routers and therefore their interfaces, some of the Internets

subsets appear disconnected, when they really are connected.
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Figure 4.3: Comparison of traceroutes with same source and destination addresses with "q"
response from [5].

Additionally, we used MaxMind geoIP lite database11 for geographic reference data base for IP

addresses. This is problematic because there is not a method for us to con�rm the exact location

assigned to each IP address.

4.3 Methodology
In the current thesis, data from two probing methodologies (CAIDA vs. NPS) was obtained

with the goal of using graph comparisons to differentiate their outcomes. We ran general stan-

dard statistics on multiple cycles of each of the two probing methodologies, as well as the two

recently introduced metrics of VSD and ESD.

Additionally, we partitioned the data (from the probing cycles) into geographical countries to

identify the locations of the additional vertices and edges discovered by NPS probing method-

ology and not discovered by CAIDA probing methodology. We also analyzed the possibility of

11The exact method of how the database is populated is proprietary, but is known to do worse on router interfaces
than client addresses.
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any bias between the probing cycles to identify if monitor location caused the increase in found

vertices and edges in some countries.

This data was then analyzed by reapplying the same statistics per country, as well as a graphical

analysis in Gephi12, VSD and ESD, and stable core intersection since these graphs were much

smaller.

12A visual interactive graph modeler and analyzer.
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CHAPTER 5:
Results

In this chapter, we explain our �ndings of the two topology probing methods using the pre-

de�ned comparison methods from [24]. We �rst examine each probing method's data as a

comprehensive graph, then sub-divide the graph into geographic countries to identify if there is

bias towards a country. We also explore some possible pitfalls when using certain methods to

ensure awareness when comparing the graphs.

5.1 General Topological Comparison Between NPS Probing

Method and CAIDA Probing Method
We analyzed our data holistically using the existing measures we explained in 3.2 and 3.3 whose

validity was addressed in [25]. In Table 5.1, we identify that the NPS probing method discov-

ers more vertices and edges compared to the CAIDA probing method. We also observe that

the average vertex degree, for the �rst two probing cycle sets, are slightly less for the NPS

probing method, but not signi�cantly. We believe this was attributed to the discovery of 12

percent more vertices and only 10 percent more edges, which will decrease the average de-

gree. However, after two additional NPS probing cycles, the average vertex degree increases

and is greater than the �rst two CAIDA probing cycles meaning additional probing cycles are

needed. We then compared the average clustering coef�cient to identify if it implies difference

in the structure of the data obtained from the two probing methods. Our data, in Table 5.2, does

not support a signi�cant difference, meaning that the structure discovered by the two probing

methods are comparable to each other. We explored the Pearson coef�cient to identify any dif-

ference between how the two probing methods relate degree correlations, because the clustering

coef�cients were similar. We discovered that the Pearson coef�cient for NPS's probing method

was negative, but small, which means the graph is slightly disassortative. CAIDA's probing

method had a positive Pearson coef�cient, but also very small, which would mean a slightly

assortative graph. However, we cannot draw any statistically signi�cant conclusions from our

data to the meaning of these results, rather conjecture that NPS probing methodology is slightly

disassortative while CAIDA probing method remains slightly assortative. As future work, we

recommend the study of additional probing cycles and their comparisons in order to be able to

draw signi�cant conclusions.
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Number Vertices Number Edges Average Node Degree
NPS 1 524,366 1,360,855 5.190
CAIDA 1 466,072 1,236,530 5.306
NPS 2 520,906 1,333,079 5.118
CAIDA 2 464,553 1,202,778 5.178
NPS 3 543,073 1,441,963 5.310
NPS 4 554,753 1,470,550 5.302

Table 5.1: The basic statistics for each probing cycle.

Average Cluster Coef�cient Pearson Coef�cient
NPS 1 0.017 -0.034
CAIDA 1 0.017 0.021
NPS 2 0.016 -0.033
CAIDA 2 0.017 0.039
NPS 3 0.020 -0.032
NPS 4 0.019 -0.035

Table 5.2: The connectivity table for each probing cycle.

5.1.1 Dissimilarity Measures
We compared VSD and ESD to evaluate each edge and vertex per graph to determine how

similar the graphs are per probing cycle between NPS and CAIDA probing methods. In Table

5.3, we present the VSD between all probing cycles of NPS and CAIDA probing methods. We

identify around 40 percent different interfaces/vertices between the �rst two NPS and CAIDA

probing cycles, which were collected nearly simultaneously, see Table 4.1. This con�rms the

two probing methods discover different sets of IP of the Internet, independent of time collected.

Table 5.3 also displays the difference between NPS 3 and NPS 4 probing cycles, which were

taken nearly four months apart, see Table 4.1. This seems to con�rm the ever changing Internet.

Interestingly, the VSD between NPS 1 versus NPS 2 is nearly seven percent less then CAIDA

1 versus CAIDA 2, (recall NPS 1 and CAIDA 1 at the same time, as was NPS 2 and CAIDA

2). We attribute the small difference to the randomness in target selection within /24's for

CAIDA versus the NPS directed strategy. Furthermore, the difference between all pairwise

NPS' probing cycles are smaller than they are to CAIDA's probing cycles. This could mean that

NPS' probing method discovers more stable interfaces/vertices than CAIDA's probing method.

We will address additional possible stable core results in Section 5.1.2.

The ESD between the probing cycles displays the edges/paths that the interfaces/vertices used

to transmit the packet information between routers. Interestingly, there is nearly a 50 percent
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NPS1 NPS 2 NPS 3 NPS 4 CAIDA 1 CAIDA2
NPS 1 0.00 0.25 0.34 0.34 0.37 0.43
NPS 2 0.25 0.00 0.26 0.26 0.43 0.37
NPS 3 0.34 0.26 0.00 0.10 0.48 0.43
NPS 4 0.34 0.26 0.10 0.00 0.48 0.44
CAIDA 1 0.37 0.43 0.48 0.48 0.00 0.32
CAIDA 2 0.43 0.37 0.43 0.44 0.32 0.00

Table 5.3: The values of VSD per probing cycle.

difference in the edges the packets took between the probing cycles comparing the two probing

methodologies, shown in Table 5.4. The difference appears to hold regardless of the probing

method. There is a slight outlier between NPS 3 and NPS 4 probing cycles which only differ by

24 percent. We attribute this to the small time frame between the same probing methodology

(four days between NPS 3 and NPS 4 probing methods versus the nearly four months between

NPS 1, NPS 2, NPS 3/4, CAIDA 1 and CAIDA 2 probing cycles).

NPS 1 NPS 2 NPS 3 NPS 4 CAIDA 1 CAIDA 2
NPS 1 0.00 0.43 0.54 0.54 0.41 0.54
NPS 2 0.43 0.00 0.44 0.44 0.54 0.42
NPS 3 0.54 0.44 0.00 0.24 0.62 0.54
NPS 4 0.54 0.44 0.24 0.00 0.62 0.55
CAIDA 1 0.41 0.54 0.62 0.62 0.00 0.46
CAIDA 2 0.54 0.42 0.54 0.55 0.46 0.00

Table 5.4: The values of ESD per probing cycle.

5.1.2 Commonality Measures
This subsection introduces the idea of measuring a stable core, by which we mean the part of

the Internet that is discovered by the majority of the probing cycles, see Section 3.3. We used

intersections of probing cycles to discover the graph (vertices and edges) that all probing cycles

discovered. The basic statistics of the possible stable core are found in Table 5.5. We predicted

that the number of vertices and edges would decrease to a smaller subset during every iteration,

which our analysis supports. Interestingly, the vertex and edge counts still remain relatively

large, about 40 percent of the original graphs. This shows promising evidence that there exist a

relatively stable core, but we need to compare additional probing cycles before we can con�rm.

We believe that with this knowledge we could possibly identify the preferred crucial Internet

infrastructure that is important to the speed of the Internet we currently enjoy and identify those

paths that are critical for vulnerability assessments.
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Node Count Edge Count Avg Degree Clustering Pearson
Both CAIDA Graphs 316,422 659,788 4.170 0.011 0.084
First Two NPS 392,791 761,599 3.878 0.008 -0.025
Intersection of NPS 1-2
and CAIDA 1-2

233,607 432,412 3.702 0.007 0.083

Intersection NPS 1-2,
CAIDA 1-2 with NPS 3

204,860 334,689 3.267 0.005 0.092

Intersection NPS 1-2,
CAIDA 1-2 withNPS 4

204,508 333,928 3.266 0.005 0.094

Table 5.5: The graph statistics for the intersection of graphs.

We tested our conjecture of the existance of a stable core using the intersection of the �rst

four graphs, (NPS 1, NPS 2 and CAIDA 1 and CAIDA 2) and tested them on the last two

probing cycles, (NPS 3 and NPS 4). In Table 5.5, the test on both NPS 3 and NPS 4 both have

a vertex count difference of only 352 vertices/IPs with only an edge count difference of only

761. This is signi�cant since there are over 500,000 vertices and over 1,200,000 edges for each

cycle. This shows that the intersections of the graphs over time might lead to the discovery of

a stable core. The researchers recommend additional future probing cycles to test to identify

the rate of change and determine the number of probing cycles to have statistical data to ensure

validity to our �ndings. We will also test the stable core conjecture on smaller country graphs

in Section 5.2.3.

5.2 Per Country Topological Comparison Between NPS and

CAIDA Probing Methods
From our �ndings in Section 5, we parsed the cycles to identify the countries each traversed

to determine if bias existed. In Figure 5.113, both NPS and CAIDA probing methods discover

the same top 10 countries for vertex and edge count, but NPS' probing method found signi�-

cantly more IPs in the United States, China and South Korea than CAIDA's probing method.

In Figure 5.2, NPS probing method also did better at discovering more edges in the United

States, China and signi�cantly better in South Korea. It makes sense for a probing method to

probabilistically �nd more vertices and edges in China and the United States because both have

more users than any other country [2]; see Table 5.8 and discussion in Section 5.2.1 we will

further discuss. It is worth mentioning that there are not any monitors in China. That is, we

analyzed the vantage point monitors, seen in Figure 5.3, to see if there was any discovery bias

13The x-axis is by country aligned per probing iteration.
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from monitor vantage point. Our data, from the monitor vantage point, does not support any

monitor bias because they used nearly the same monitor vantage points with little effect on IP

discovery per probing cycle.

Figure 5.1: The vertex count per country.

We compared the clustering coef�cient to test connectivity of the different cycles at the country

level. In Figure 5.4, each probing method follows generally the same slope. The graph is

skewed a little for NPS probing method because it does not �nd as many countries as CAIDA

probing. Notice, however that NPS probing method still �nds the same amount of connected

countries. In fact, NPS found 23 percent of countries with a clustering coef�cient of zero, while

CAIDA �nds 27 percent of countries with a clustering coef�cient of zero. This means NPS

probing method may actually be better at �nding connectivity than CAIDA probing method.

Next, we compared highest and lowest country clustering coef�cient to determine which coun-

tries were more strongly connected. We conjectured the clustering coef�cient might identify

if there was any trend to security or censorship. We �rst hypothesized that a country with a

high clustering coef�cient would show less censored countries, while a country with a low clus-

tering coef�cient would mean more censorship. We conjectured this because a country with a
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CAIDA 1 CAIDA 2 NPS 1 NPS 2 NPS 3 NPS 4
United States 129,161 125,379 138,127 133,330 136,636 139,258
China 57,099 57,528 70,892 71,687 72,889 74,013
Japan 40,211 39,653 41,177 40,273 41,514 42,364
South Korea 30,889 30,377 38,283 37,704 39,547 40,371
Germany 24,571 23,679 28,423 28,437 29,320 29,843
Great Britain 23,781 22,776 24,475 23,416 24,962 24,950
Brazil 22,904 21,997 24,377 22,927 24,491 25,032
Canada 22,044 21,156 21,815 20,298 22,097 22,672
Russian Federation 19,103 18,023 16,772 15,142 16,756 17,031
Italy 16,108 15,293 16,621 15,267 15,769 16,710
Netherlands 12,336 11,644 16,350 16,216 17,678 18,591

Table 5.6: Sample of the top vertex count by country.

Figure 5.2: The edge count per country.

low clustering coef�cient will show less of the observed Internet or only the external routers

leading to paths. Unfortunately, our data did not support our hypothesis because our data did

not recognize known heavily censored countries. Additionally, we observed often low cluster-

ing coef�cient countries were small island countries, that happen to have few vertices and few

edges, hence the presence of a few triangles (3-cycles) made the clustering coef�cient large.
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CAIDA 1 CAIDA 2 NPS 1 NPS 2 NPS 3 NPS 4
United States 325,872 306,171 314,434 292,848 306,988 314,289
China 174,641 179,043 239,681 253,089 273,374 280,173
South Korea 75,106 73,005 133,237 131,953 141,314 144,373
Japan 86,226 87,284 87,437 89,684 93,395 95,700
Brazil 68,526 64,707 74,115 69,335 76,316 76,224
Germany 63,569 58,029 68,667 64,492 67,361 69,180
Great Britain 60,580 56,948 64,253 59,939 61,600 61,430
Canada 64,805 56,432 59,141 50,198 55,732 56,580
Italy 47,068 43,011 42,475 38,837 40,879 42,502
Spain 44,646 37,571 39,064 32,272 34,504 35,738
Russian Federation 48,455 42,525 38,778 32,849 37,705 38,176
Sweden 30,414 25,742 33,919 32,295 33,119 35,144
France 38,623 35,852 31,458 26,864 26,643 27,285
Netherlands 31,746 26,974 31,308 27,757 30,494 31,418

Table 5.7: Sample of the top edge count by country.

Figure 5.3: The unique monitor location per probing cycle.
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Figure 5.4: The clustering coef�cient distributions by country.

5.2.1 Country IP Allocation per Graph
We previously noted the signi�cantly larger number of vertex and edge counts of the NPS

probing method for discovering IP addresses within China and South Korea, but still have not

identi�ed the reason. We already tested the monitor location in Section 5.2 without any results.

This led us to analyze known allocated IP space to identify any trends. Table 5.8 displays the

assigned sorted IP space percentage per country to what we discovered during each probing

cycle.14 We normalized each country's probing cycle discovery by the number of total vertices

to have a method of comparison. We did this because the assigned IP space percentages are

done in a similar fashion by dividing the total assigned IP space for each country by the total

possible IP space. In Table 5.8, we see the NPS and CAIDA probing methodologies match the

known percentages of a country's allocated IP space. Interestingly, none of the probing cycles

discover the 35 percent that the United States has assigned. However, in all seven cycles the

United States had the largest discovered IP space. A possible reason for this is the number

of unresponsive routers, "q" as discussed in Section 4.2.3, that were possibly returned within

14List of all countries found Appendix B.
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the United States. We would suggest additional research in this area to identify probabilistic

IP/vertex location from the returned "q" for better representation.

Assigned

IP Space

CAIDA 1 CAIDA 2 NPS 1 NPS 2 NPS 3 NPS 4

United States 35.90% 14.41% 14.72% 16.18% 16.58% 16.07% 16.00%

China 7.70% 6.37% 6.75% 8.30% 8.91% 8.57% 8.50%

Japan 4.70% 4.49% 4.65% 4.82% 5.01% 4.88% 4.87%

Great Britain 2.90% 2.65% 2.67% 2.87% 2.91% 2.94% 2.87%

Germany 2.80% 2.74% 2.78% 3.33% 3.54% 3.45% 3.43%

South Korea 2.60% 3.45% 3.57% 4.48% 4.69% 4.65% 4.64%

France 2.20% 1.66% 1.71% 1.69% 1.68% 1.55% 1.55%

Canada 1.90% 2.46% 2.48% 2.56% 2.52% 2.60% 2.60%

Italy 1.20% 1.80% 1.79% 1.95% 1.90% 1.85% 1.92%

Brazil 1.10% 2.56% 2.58% 2.86% 2.85% 2.88% 2.88%

Australia 1.10% 1.28% 1.33% 1.18% 1.17% 1.17% 1.14%

Netherlands 1.10% 1.38% 1.37% 1.91% 2.02% 2.08% 2.14%

Russian Fed-

eration

1.00% 2.13% 2.12% 1.96% 1.88% 1.97% 1.96%

Taiwan 0.80% 1.39% 1.40% 1.12% 1.11% 1.16% 1.15%

India 0.80% 1.15% 1.10% 1.10% 1.01% 1.03% 1.02%

Table 5.8: The top 15 countries of IP space allocation.

5.2.2 Some results on the diameter and radius for the country graphs
We analyzed the data to identify if one probing method was better at discovering depth versus

breadth, previously discussed in Section 3.2. We did this by subtracting the radius from the

diameter for each graph. Recall from 3.2, the diameter was the longest shortest path, while the

radius was the smallest eccentricity. Therefore, the higher difference between the diameter and

the radius, would indicate better breadth into a network, while a smaller number would indicate

better depth. Unfortunately, to compute the radius and diameter each graph must be connected.

This was a problem when we parsed our data to the country level, because nearly a third of the

countries were not connected due to unresponsive routers or other reasons. In Figure 5.5, we

can see that there is a fairly even distribution with the mean diameter minus radius,m= :37
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and most of the countries falling within two standard deviations, (the dashed lines). We also

annotated the third standard deviation with a solid line and identi�ed the outliers by name.

Interestingly, the outliers were all island nations. However, we were still able to compare the

remaining data and we observed that NPS discovered eight percent more breadth than CAIDA.

Figure 5.5: The diameter minus the radius (depth versus breadth).

5.2.3 Case Studies for some Countries
From our results in Section 5.2, we chose to further analyze China, and South Korea. We also

will display an issue we discovered when comparing the clustering coef�cients per country,

speci�cally with Wallis and Futuna.

Case Study: China

The NPS probing methodology discovered signi�cantly more vertices and edges than the CAIDA

probing methodology, as seen in Table 5.6 and Table 5.7. We further explored the data to deter-

mine if the monitor vantage point impacted the results. In Figure 5.6, we notice that the probing

algorithms used nearly the same monitor vantage points for each probing cycle. We determine

from this data that the monitor vantage point has little effect on the discovery since nearly the

same monitor vantage points were used. It is important to note that generally vantage point does

have a major impact on discovered topology, but our data did not.
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Figure 5.6: The probing monitors for China.

Table 5.9 displays the results of the VSD. We identi�ed an average change in vertices of 30-50

percent appear between CAIDA 1 and the NPS probing methods. Interestingly the difference

between NPS 1 and CAIDA 1 are 30-52 percent different even though they were probed nearly

simultaneously. This further shows how different the probing methods are at discovering the

Internet. In Table 5.10, the ESD is highest between CAIDA 1 and the last two NPS probing

methods. These results show how the different probing methodologies discover different sets of

IPs even in smaller subgraphs. It also con�rms the ever changing presence of the Internet.

NPS 1 NPS 2 NPS 3 NPS 4 CAIDA 1 CAIDA 2
NPS 1 0.00 0.25 0.42 0.42 0.30 0.52
NPS 2 0.25 0.00 0.34 0.34 0.36 0.29
NPS 3 0.42 0.34 0.00 0.10 0.57 0.50
NPS 4 0.42 0.34 0.10 0.00 0.57 0.50
CAIDA 1 0.30 0.36 0.57 0.57 0.00 0.30
CAIDA 2 0.52 0.29 0.50 0.50 0.30 0.00

Table 5.9: The VSD per graph for China.

We also tried to discover the existence of a stable core within China. In Table 5.11, we con-

ducted analysis on the �rst four graphs (�rst two NPS and �rst two CAIDA) as learning and

41



NPS 1 NPS 2 NPS 3 NPS 4 CAIDA 1 CAIDA 2
NPS 1 0.00 0.51 0.61 0.61 0.41 0.63
NPS 2 0.51 0.00 0.50 0.50 0.53 0.42
NPS 3 0.61 0.50 0.00 0.20 0.69 0.59
NPS 4 0.61 0.50 0.20 0.00 0.70 0.60
CAIDA 1 0.41 0.53 0.69 0.70 0.00 0.49
CAIDA 2 0.63 0.42 0.59 0.60 0.49 0.00

Table 5.10: The ESD per graph for China.

comparing on the remaining two NPS probing cycles (NPS 3 and NPS 4). We identi�ed that

the intersection of the �rst four graphs might have identi�ed a possible stable core because

when we compared to NPS 3 and NPS 4 graphs, the difference was only ten vertices and less

than a thousand edges. An additional interesting insight is how quickly China went from an

average vertex count of approx 60,000 (in Table 5.6) to only 5,000 then 2,500 (in Table 5.11).

This could show how volatile China's Internet topology is, especially when one compares the

results to those of South Korea in Section 5.2.3. We hypothesis this may be caused by Chinas

restrictive Internet, but further work is needed to con�rm.

Graphs Node Count Edge Count Avg Degree Clustering Pearson
Both CAIDA Graphs 5,083 7,704 3.031 0.011 0.027
First Two NPS 4,722 6,091 2.580 0.015 -0.086
2 CAIDA vs 2 NPS 3,158 4,175 2.644 0.012 0.020
Intersection NPS 1-2, CAIDA 1-2 with NPS 3 2,564 3,013 2.350 0.011 0.044
Intersection NPS 1-2, CAIDA 1-2 with NPS 4 2,554 2,987 2.339 0.012 0.053

Table 5.11: The basic stats of China's stable core.

South Korea

As well, South Korea was interesting because of the difference in discovered vertices and edges

from the NPS and CAIDA probing methodologies. Table 5.12 displays the VSD results from the

probing cycles. The trend continues in the difference between the greatest change between the

CAIDA and the NPS probing methodologies. In Table 5.13, the ESD shows a large difference in

those edges that are detected per probing cycle, but not as much as China. Again, the large VSD

and ESD between cycles con�rms the ever changing inferred topology. When we conducted the

stable core testing against the probing cycles for South Korea, the vertex and edge counts of the

intersection graphs only decrease by approx 40 percent, from average of 37,000 vertices (in

Table 5.6) to approximately 15,000 vertices (in Table 5.14). This is intriguing because we

observed a large decrease in the graph to stable core graphs (compared that found in Table 5.6
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and Table 5.7) of China but not in South Korea. The results might show that South Korea has a

more stable Internet.

NPS 1 NPS 2 NPS 3 NPS 4 CAIDA 1 CAIDA 2

NPS 1 0.00 0.22 0.30 0.31 0.31 0.38

NPS 2 0.22 0.00 0.24 0.24 0.36 0.30

NPS 3 0.30 0.24 0.00 0.10 0.41 0.37

NPS 4 0.31 0.24 0.10 0.00 0.41 0.37

CAIDA 1 0.31 0.36 0.41 0.41 0.00 0.31

CAIDA 2 0.38 0.30 0.37 0.37 0.31 0.00

Table 5.12: The VSD per graph for South Korea.

NPS 1 NPS 2 NPS 3 NPS 4 CAIDA 1 CAIDA 2

NPS 1 0.00 0.37 0.46 0.47 0.47 0.57

NPS 2 0.37 0.00 0.39 0.39 0.56 0.48

NPS 3 0.46 0.39 0.00 0.22 0.62 0.58

NPS 4 0.47 0.39 0.22 0.00 0.63 0.58

CAIDA 1 0.47 0.56 0.62 0.63 0.00 0.50

CAIDA 2 0.57 0.48 0.58 0.58 0.50 0.00

Table 5.13: The ESD per graph for South Korea.

Graphs Node Count Edge Count Avg Degree Clustering Pearson
Both CAIDA Graphs 29,706 83,838 5.645 0.006 0.151
First Two NPS 21,080 37,087 3.519 0.009 0.083
2 CAIDA vs 2 NPS 17,164 29,556 3.444 0.006 0.085
Intersection NPS 1-2, CAIDA 1-2 with NPS 3 15,436 24,387 3.160 0.005 0.126
Intersection NPS 1-2, CAIDA 1-2 with NPS 4 15,443 24,296 3.147 0.005 0.126

Table 5.14: The basic stats of South Korea's stable core.

Wallis and Futuna

In Section 5.2 we discussed how the clustering coef�cient could easily skew results if con-

sidered in isolation. We identi�ed Wallis and Futuna, after sorting the data to identify those

countries with the highest clustering coef�cients. We originally conjectured the possibility of

high clustering coef�cient with countries that restrict control of the Internet, however our data

did not support this conjecture. We found countries, (e.g., Wallis and Futuna in Figure 5.7), that
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Figure 5.7: Graph of Wallis and Futuna with high clustering coef�cient.

had high clustering coef�cient, but were not on any lists of known Internet restricted countries.

Wallis and Futuna is a relatively small nation but it had one of the highest clustering coef�cients

in one of our cycles because of the relatively small number of vertices connected to each other,

almost a tree, so a few triangles (3-cycles) made a big impact, circled in Figure 5.7. This outlier

was easy to visualize due to the small number of overall vertices, but larger graphs may not

easily show this result. We caution the use of clustering coef�cient when comparing graphs

unless you can easily visualize your graph or other measures are used in combination with the

clustering coef�cient (such as density of edges in a graph).
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CHAPTER 6:
Future Work and Conclusion

In this chapter, we present our �ndings and provide insights into areas that might require further

research.

6.1 Summary
Our goal was to provide an in-depth comparison of the NPS probing methodology and CAIDA

probing methodology using existing graphical measurements. We also applied the same anal-

ysis to country speci�c sub-sets to see how the measurements behave with some surprising

results. There is still an abundance of research that is needed to understand how the Internet is

connected and its properties.

6.2 Future Work
We have barely scraped the surface for using these measurements, and there remains much to

be explored. The following are some areas for possible future research.

(1) Perform more statistical analysis on additional runs

We were limited on the amount of probing cycles we could accomplish during the du-

ration of our research. Making speci�c claims, such as the Pearson coef�cient, about

how the Internet or algorithms behaves as a result of this study is not statistically sup-

ported. We also only used a limited number of monitor vantage points and suggest a

more methodical study of how the probing cycles discover topology differ by vantage

point. Speci�cally, do certain monitors discover more depending on geographic region,

or does the geographic distance even affect the return of trace information per destination

IP.

(2) Does the stable core of the Internet exist or does a stable core exist in a sub-set of the In-

ternet? Does the existence of a stable core give us any additional information, speci�cally

threat vulnerability and assessment?
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In Chapter 5, we conjectured that the intersections of intersections would produce a stable

core of vertices that we could use to conduct threat analysis and other network security

studies. We introduced the intersection of intersections to discover the stable core, but

did not prove how many graph intersections it would take to con�rm the existence of a

stable core. Additionally, it would be interesting to know if the number of probing cycles

needed to discover a stable core differ per country or other subset. Speci�cally, does a

small set of intersection vertices compared to the total vertex found indicate a censored

or heavily restricted Internet region, similar to our results for China in Section 5.2.3.

(3) How many unions of graphs does it take to represent the known IP allocation per country?

We studied the distribution of vertices discovered per country by the known alloted IP

space assigned in Section 5.2.1 and noted the disparity of those discovered versus the

amount allocated. It would be interesting to identify how many probing cycles it would

take to gather enough data to provide an accurate distribution.

(4) Identify the number of "q" returns per country and group them with the number of dis-

covered IP vertices.

We recommend further study of this to identify if the percentage of discovered IPs more

closely represents that of the known IP allocation by country and further work from [35].

The actual location of the "q" is dif�cult if not impossible to know, but you can infer the

location of the router that returns the "q" by the preceding and following router locations.

The researchers propose a possible use of bins for those "q" returned. For example, if a

trace returned US, US, "q", US, CH, then it would fall into a con�dent bin for US. Al-

ternatively, if a trace returned (US, US, "q", "q", CH), then the "q"s could be apart of the

United States or China, therefore a second bin per country for possible "q"s that belong

to the country. Obviously there would be a lot of inferring to the location in this process,

and we only suggest this method, while other methods could also work.

6.3 Conclusion
We performed numerous known standard graph comparisons in Section 5. Some of the results

led to additional questions instead of answering our original questions, but we have made some

headway. The CAIDA and NPS probing methodologies both accomplish the same task of giving
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an inferred map of the Internet topology, though NPS seems to discover more IPs in less time,

as suggested in [36], from one probing cycle. In our research, we provided a concise study for

a better understanding about the inferred representation of each of the probing methodologies.

The researchers also offer additional directions to provide better insight into the inferred topol-

ogy. Speci�cally, we hope our conjecture of a stable core, (see Section 5.2.3 and Section 5.2.3)

could prove impactful.

One of the greatest challenges to this study was (1) the sheer size of the data sets15 that we

had to �rst strip into usable forms, and (2) needing a dedicated server to run the analytical

analysis. Internet topology is not a topic that will have a simple solution from a single paper, but

continued work to understand how components link and share the information on the Internet

can prove insightful.

We also believe some of the metrics we used could be useful in other complex networks, such as

biological and social networks. It could prove insightful to understand the most logical next step

or underlying structure or the existence of a stable core or backbone for information distribution.

15Typical size of graph comparisons used six to ten Gigabyte (GB) of RAM per test for upwards of 14 days.
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APPENDIX A:
SC Analysis Dump Format

# =======================================================================

# This file contains an ASCII representation of the IPv4 paths stored in

# the binary skitter arts++ and scamper warts file formats.

#

# This ASCII file format is in the sk_analysis_dump text output

# format: imdc.datcat.org/format/1-003W-7

#

# =======================================================================

# There is one trace per line, with the following tab-separated fields:

#

#

# 1. Key -- Indicates the type of line and determines the meaning of the

# remaining fields. This will always be 'T' for an IP trace.

#

# -------------------- Header Fields ------------------

#

# 2. Source -- Source IP of skitter/scamper monitor performing the trace.

#

# 3. Destination -- Destination IP being traced.

#

# 4. ListId -- ID of the destination list containing this destination

# address.

#

# This value will be zero if no list ID was provided. (uint32_t)

#

# 5. CycleId -- ID of current probing cycle (a cycle is a single run

# through a given list). For skitter traces, cycle IDs

# will be equal to or slightly earlier than the timestamp

# of the first trace in each cycle. There is no standard

# interpretation for scamper cycle IDs.
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#

# This value will be zero if no cycle ID was provided. (uint32_t)

#

# 6. Timestamp -- Timestamp when trace began to this destination.

#

# -------------------- Reply Fields ------------------

#

# 7. DestReplied -- Whether a response from the destination was received.

#

# R - Replied, reply was received

# N - Not-replied, no reply was received;

# Since skitter sends a packet with a TTL of 255 when it halts

# probing, it is still possible for the final destination to

# send a reply and for the HaltReasonData (see below) to not

# equal no_halt. Note: scamper does not perform this last-ditch

# probing at TTL 255.

#

# 8. DestRTT -- RTT (ms) of first response packet from destination.

# 0 if DestReplied is N.

#

# 9. RequestTTL -- TTL set in request packet which elicited a response

# (echo reply) from the destination.

# 0 if DestReplied is N.

#

# 10. ReplyTTL -- TTL found in reply packet from destination;

# 0 if DestReplied is N.

#

# -------------------- Halt Fields ------------------

#

# 11. HaltReason -- The reason, if any, why incremental probing stopped.

#

# 12. HaltReasonData -- Extra data about why probing halted.

#

# HaltReason HaltReasonData
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# ------------------------------------

# S (success/no_halt) 0

# U (icmp_unreachable) icmp_code

# L (loop_detected) loop_length

# G (gap_detected) gap_limit

#

# -------------------- Path Fields ------------------

#

# 13. PathComplete -- Whether all hops to destination were found.

#

# C - Complete, all hops found

# I - Incomplete, at least one hop is missing (i.e., did not

# respond)

#

# 14. PerHopData -- Response data for the first hop.

#

# If multiple IP addresses respond at the same hop, response data

# for each IP address are separated by semicolons:

#

# IP,RTT,numTries (for only one responding IP)

# IP,RTT,numTries;IP,RTT,numTries;... (for multiple responding IPs)

#

# where

#

# IP -- IP address which sent a TTL expired packet

# RTT -- RTT of the TTL expired packet

# num_tries -- num tries before response received from TTL.

#

# This field will have the value 'q' if there was no response at

# this hop.

#

# 15. PerHopData -- Response data for the second hop in the same format

# as field 14.

#
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# ...

#

# N. PerHopData -- Response data for the destination

# (if destination replied).

#
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APPENDIX B:
IP Space by Country

COUNTRY CAIDA 1 CAIDA 2 NPS1 NPS2 NPS 3 NPS 4

Afghanistan 0.074% 0.081% 0.042% 0.026% 0.028% 0.026%

Albania 0.082% 0.083% 0.037% 0.042% 0.053% 0.053%

Algeria 0.292% 0.262% 0.147% 0.067% 0.080% 0.083%

American Samoa 0.009% 0.010% 0.013% 0.006% 0.016% 0.013%

Andorra 0.022% 0.024% 0.003% 0.007% 0.006% 0.006%

Angola 0.129% 0.116% 0.074% 0.090% 0.095% 0.095%

Anguilla 0.006% 0.008% 0.002% #N/A 0.007% 0.003%

Antarctica 0.030% 0.035% 0.002% 0.003% 0.004% 0.004%

Antigua and Barbuda 0.024% 0.024% 0.005% 0.012% 0.008% 0.007%

Argentina 0.669% 0.660% 0.707% 0.661% 0.650% 0.640%

Armenia 0.157% 0.159% 0.103% 0.098% 0.129% 0.122%

Aruba 0.030% 0.028% 0.004% 0.005% 0.002% 0.002%

Australia 1.282% 1.331% 1.180% 1.168% 1.170% 1.135%

Austria 0.756% 0.769% 0.697% 0.701% 0.699% 0.722%

Azerbaidjan 0.132% 0.123% 0.058% 0.054% 0.069% 0.069%

Bahamas 0.129% 0.133% 0.056% 0.055% 0.064% 0.062%

Bahrain 0.171% 0.181% 0.146% 0.140% 0.154% 0.150%

Bangladesh 0.232% 0.231% 0.219% 0.193% 0.213% 0.209%

Barbados 0.066% 0.065% 0.080% 0.062% 0.077% 0.076%

Belarus 0.141% 0.170% 0.126% 0.118% 0.135% 0.132%

Belgium 0.643% 0.637% 0.500% 0.461% 0.533% 0.536%

Belize 0.169% 0.172% 0.069% 0.033% 0.040% 0.032%

Benin 0.011% 0.011% 0.005% 0.007% 0.004% 0.004%

Bermuda 0.124% 0.130% 0.108% 0.118% 0.120% 0.113%

Bhutan 0.047% 0.050% 0.094% 0.080% 0.090% 0.087%

Bolivia 0.191% 0.180% 0.261% 0.230% 0.212% 0.211%

Bosnia-Herzegovina 0.264% 0.256% 0.309% 0.314% 0.303% 0.305%

Botswana 0.053% 0.051% 0.042% 0.048% 0.039% 0.038%
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Brazil 2.555% 2.582% 2.855% 2.851% 2.880% 2.876%

British Indian Ocean Territory 0.004% 0.004% #N/A #N/A #N/A #N/A

Brunei Darussalam 0.074% 0.075% 0.037% 0.035% 0.035% 0.036%

Bulgaria 0.547% 0.530% 0.566% 0.511% 0.521% 0.515%

Burkina Faso 0.042% 0.051% 0.097% 0.075% 0.090% 0.089%

Burundi 0.008% 0.006% #N/A #N/A 0.001% 0.001%

Cambodia 0.084% 0.086% 0.061% 0.076% 0.109% 0.112%

Cameroon 0.075% 0.075% 0.080% 0.054% 0.060% 0.064%

Canada 2.459% 2.483% 2.555% 2.524% 2.598% 2.605%

Cape Verde 0.010% 0.011% 0.013% 0.010% 0.020% 0.018%

Cayman Islands 0.043% 0.043% 0.029% 0.029% 0.034% 0.030%

Central African Republic 0.003% 0.003% #N/A #N/A #N/A #N/A

Chad 0.004% 0.002% 0.002% #N/A 0.001% 0.002%

Chile 0.539% 0.540% 0.399% 0.382% 0.383% 0.390%

China 6.370% 6.752% 8.303% 8.915% 8.571% 8.504%

Christmas Island 0.002% 0.002% #N/A #N/A #N/A #N/A

Cocos (Keeling) Islands 0.003% 0.004% #N/A #N/A #N/A #N/A

Colombia 0.607% 0.575% 0.600% 0.587% 0.552% 0.557%

Comoros 0.016% 0.013% 0.005% 0.007% 0.008% 0.018%

Congo 0.023% 0.020% 0.024% 0.017% 0.011% 0.016%

Cook Islands 0.026% 0.025% 0.028% 0.033% 0.049% 0.047%

Costa Rica 0.376% 0.321% 0.204% 0.193% 0.165% 0.161%

Croatia 0.400% 0.340% 0.335% 0.294% 0.283% 0.284%

Cuba 0.099% 0.108% 0.063% 0.035% 0.037% 0.036%

Cyprus 0.212% 0.196% 0.233% 0.191% 0.167% 0.168%

Czech Republic 1.046% 1.033% 1.197% 1.177% 1.178% 1.211%

Denmark 0.804% 0.773% 0.899% 0.908% 0.940% 0.941%

Djibouti 0.041% 0.075% 0.013% 0.013% 0.013% 0.013%

Dominica 0.023% 0.029% 0.017% 0.010% 0.015% 0.015%

Dominican Republic 0.263% 0.252% 0.121% 0.104% 0.115% 0.109%

Ecuador 0.294% 0.301% 0.354% 0.335% 0.324% 0.312%

Egypt 0.773% 0.709% 0.372% 0.379% 0.349% 0.345%
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El Salvador 0.231% 0.220% 0.105% 0.121% 0.119% 0.114%

Equatorial Guinea 0.030% 0.028% 0.010% 0.026% 0.025% 0.029%

Eritrea 0.003% 0.005% #N/A #N/A #N/A #N/A

Estonia 0.332% 0.309% 0.509% 0.484% 0.486% 0.486%

Ethiopia 0.089% 0.087% 0.050% 0.032% 0.044% 0.043%

Falkland Islands 0.006% 0.009% 0.005% 0.006% 0.031% 0.029%

Faroe Islands 0.071% 0.069% 0.053% 0.048% 0.044% 0.044%

Fiji 0.129% 0.122% 0.049% 0.051% 0.053% 0.046%

Finland 0.722% 0.704% 0.574% 0.547% 0.546% 0.543%

France 1.662% 1.713% 1.687% 1.680% 1.548% 1.546%

France (European Territory) 0.003% 0.002% 0.002% #N/A 0.001% 0.001%

French Guyana 0.077% 0.076% 0.019% 0.020% 0.022% 0.021%

French Southern Territories 0.004% 0.002% #N/A #N/A #N/A #N/A

Gabon 0.152% 0.158% 0.050% 0.062% 0.070% 0.069%

Gambia 0.002% 0.004% #N/A #N/A #N/A #N/A

Georgia 0.249% 0.252% 0.339% 0.308% 0.318% 0.331%

Germany 2.741% 2.779% 3.329% 3.536% 3.448% 3.429%

Ghana 0.142% 0.166% 0.065% 0.047% 0.116% 0.115%

Gibraltar 0.017% 0.014% 0.013% 0.016% 0.014% 0.013%

Great Britain 2.653% 2.673% 2.867% 2.912% 2.935% 2.867%

Greece 0.623% 0.556% 0.517% 0.504% 0.488% 0.495%

Greenland 0.035% 0.035% 0.026% 0.060% 0.027% 0.043%

Grenada 0.028% 0.030% 0.031% 0.017% 0.030% 0.025%

Guadeloupe (French) 0.132% 0.143% 0.089% 0.092% 0.089% 0.088%

Guam (USA) 0.144% 0.133% 0.104% 0.099% 0.100% 0.093%

Guatemala 0.155% 0.152% 0.168% 0.095% 0.172% 0.182%

Guinea 0.045% 0.040% 0.023% 0.024% 0.032% 0.020%

Guinea Bissau 0.003% 0.002% #N/A #N/A 0.001% 0.001%

Guyana 0.017% 0.019% 0.048% 0.022% 0.023% 0.023%

Haiti 0.106% 0.079% 0.041% 0.048% 0.043% 0.044%

Honduras 0.176% 0.170% 0.095% 0.103% 0.102% 0.100%

Hong Kong 0.854% 0.872% 1.071% 1.056% 1.040% 1.043%
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Hungary 0.706% 0.680% 0.643% 0.679% 0.652% 0.656%

Iceland 0.294% 0.260% 0.194% 0.195% 0.189% 0.189%

India 1.147% 1.096% 1.101% 1.011% 1.031% 1.022%

Indonesia 0.515% 0.489% 0.508% 0.493% 0.532% 0.541%

Iran 0.679% 0.684% 0.498% 0.500% 0.480% 0.503%

Iraq 0.226% 0.243% 0.123% 0.104% 0.131% 0.129%

Ireland 0.606% 0.609% 0.594% 0.559% 0.583% 0.563%

Israel 0.631% 0.608% 0.613% 0.580% 0.582% 0.591%
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