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ABSTRACT 

Border surveillance is an important concern for most nations wanting to detect and 

intercept intruders that are trying to trespass a border. These intruders can include 

terrorists, drug traffickers, smugglers, illegal immigrants, and others who represent a 

threat to national interests. Unmanned aerial vehicles (UAVs) allow for modernization 

and improvement of border surveillance. There are a number of advantages to using 

UAVs. Many UAVs can be controlled by a single operator, which reduces personnel 

costs; they are very fast and can patrol large regions; and they have wider regions of 

visibility than conventional surveillance methods, which increases the probability of 

detecting intruders. This thesis formulates mathematical models designed to find the best 

way to utilize a given fleet of UAVs by deciding their routes, altitudes, and speeds in 

order to maximize the probability of detecting intruders trying to trespass a given border. 

These models will enable decision makers to effectively acquire and employ a UAV fleet 

for border surveillance. 
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EXECUTIVE SUMMARY  

Border surveillance is an important problem for most nations in order to detect and 

intercept intruders that are trying to trespass a border. These intruders can include 

terrorists, drug traffickers, smugglers, illegal immigrants, and others who represent a 

threat to national interests.  

Unmanned aerial vehicles (UAVs) allow a modernization and improvement to 

border surveillance. There are a number of advantages to using UAVs. Many UAVs can 

be controlled by a single operator, reducing personnel cost. UAVs are fast and thus can 

patrol large regions; and they have wider regions of visibility than conventional 

surveillance methods, which increase the probability of detecting intruders. 

We study the problem of monitoring a straight line border over a flat terrain 

without any line-of-sight issues. In other words, the detection probability only depends on 

the range of the target. The target tries to pass through the border. We assume that the 

target cannot see the searcher and moves at a constant speed without changing direction.  

For simplicity, we assume that the searcher moves in a straight line and can 

change direction instantaneously. We generally assume the searcher carries a “cookie-

cutter” sensor, although we also analyze imperfect sensors. 

First, we study a simple border patrol problem by analytical and Monte Carlo 

simulation methods. We improve the detection probabilities computed in the literature by 

using highly accurate geometrically-based calculations.  

After verifying the models for the simple border patrol problem, we add some 

complexity to it by adding another searcher. We propose two different searcher paths for 

the multiple-searcher problem: the disjoint path and the common path. We develop both 

analytical and Monte Carlo simulation models for the disjoint path problem by building 

upon the single searcher case. We develop a Monte Carlo simulation model for the 

common path problem. 

When we compare the results of the two multiple-searcher cases, we notice the 

importance of allocating the border to the two searchers. Therefore, we study the optimal 
 xi 



allocation, which is the allocation resulting in the maximum detection probability. We 

study two ways to determine the optimal allocation: by analytical methods and by Monte 

Carlo simulation. We conclude that we should choose the disjoint path rather than the 

common path and allocate the border to the searchers optimally to maximize the 

detection probability. 

We analyze the effect of degrading detection performance with increasing 

searcher speed. We perform our analysis for a single searcher and observe that the 

maximum detection probability occurs at a certain searcher speed and hence detection 

radius. We extend this analysis to multiple-searcher problems. Besides analyzing the 

speeds that result in maximum detection probability, we determine the optimal allocation 

to maximize the detection probability. 

We add complexity to the simple border patrol problem by studying geometric 

considerations in which we vary the angles of the border and searcher’s path. We develop 

both analytical and Monte Carlo simulation models for the geometric considerations on 

the searcher’s path. We note that the detection probability is nearly independent of the 

searcher’s path’s angle before introducing d, the distance from the border that a detected 

object can be classified as a target. After introducing d, we note that the detection 

probability decreases considerably after a certain angle, which depends on d.  

After noting a similar behavior when we change the angle of the border without 

varying the searcher’s angle, we vary both angles and observe the maximum detection 

probability when the searcher’s path is aligned with the border. We also note that we still 

have some flexibility in this case, and we have higher flexibility when the angles are 

lower or when d is higher. 

We suggest approximating non-straight borders as straight borders by using the 

result that it is not the border but the region in which we can detect the targets is 

important. If a border cannot be approximated by a single straight border, it can be 

divided into multiple portions, each of which can be approximated as a linear border. We 

can perform separate analyses on these portions. 
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Finally, we introduce the concept of lateral range curves of imperfect sensors. For 

this case, we study the single searcher problem in which the searcher has an imperfect 

sensor. We discuss possible approximations to an imperfect sensor and study their 

performance on a sample imperfect sensor. We find the most appropriate approximation 

for the lateral range curve we choose. For a different sensor model, we can perform a 

similar study and select the best approximation. 
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I. INTRODUCTION 

A. BACKGROUND  

Border surveillance is an important problem for most nations that need to detect 

and intercept intruders trying to trespass a border. These intruders can include terrorists, 

drug traffickers, smugglers, illegal immigrants, and others who represent a threat to 

national interests.  

Unmanned aerial vehicles (UAVs) allow a modernization and improvement to 

border surveillance. There are a number of advantages to using UAVs. Many UAVs can 

be controlled by a single operator, reducing personnel cost. UAVs are fast and thus can 

patrol large regions; and they have wider regions of visibility than conventional 

surveillance methods, which increase the probability of detecting intruders.  

As noted by Haddah and Gertler (2010), there are two types of UAVs: drones and 

remotely piloted vehicles (RPVs). Both types are unmanned, but drones are 

preprogrammed for their flight and mission, whereas RPVs are actively controlled by an 

operator at the ground station.  

RPVs are more appropriate for border surveillance than drones, since the operator 

can actively control the UAV in a dynamic environment. Considering their long loiter 

times, it is highly possible that while a UAV is performing a mission, another mission 

may take precedence and the UAV would need to switch tasks. Also, the operator can 

maneuver through a rough terrain multiple times to increase detection probability. 

B. LITERATURE REVIEW  

Since the introduction of UAVs for border surveillance is a relatively new subject, 

there are not many publications discussing this subject matter. However, Wagner, 

Mylander, and Sanders (1999) and Washburn (2002) study a similar problem with their 

main goals being surveillance problems at sea. They both study complex search and 

detection algorithms. Wagner et al. (1999) use the term “barrier patrol,” and Washburn 
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(2002) uses the term “patrolling a channel” for the case that is similar to our simple 

border patrol problem with a single searcher. 

Ozcan (2013) examines the effectiveness of UAVs using simulation in a 

particular scenario and which parameters are important for this particular scenario. She 

concludes that the UAV’s detection and classification performance, as well as target’s 

counter detection capabilities are the most important factors. 

Soza & Company (1996), Wagner et al. (1999), Washburn (2002), and Haddah & 

Gertler (2010) study lateral range curves and possible approximations to them. In 

addition, Wagner et al. (1999) explains how lateral range curves are determined for a 

particular sensor. They perform preliminary analyses on the approximations, mentioning 

the differences between the actual sensor model and its approximations. 

C. SCOPE, LIMITATIONS, AND ASSUMPTIONS  

This thesis gives guidance to UAV mission planners on how to optimally employ 

their UAVs while conducting surveillance on a border. The research question we answer 

is if a fixed number of heterogeneous UAVs are available, how should they be employed 

in order to maximize the probability of detecting intruders? 

Throughout the thesis, we refer to UAVs as searchers and intruders as targets. We 

do not define specific units of measure; rather, we use generic distance units, speed units, 

etc., so that our results apply to any platform. Thus, our results provide guidelines for any 

moving searcher. 

We use MATLAB 2012b in all our computations. 

We study the problem of monitoring a straight line border over a flat terrain 

without any line-of-sight issues. In other words, the detection probability depends only on 

the range of the target. The target tries to pass through the border. We assume that the 

target cannot see the searcher and moves at a constant speed without changing direction.  

For simplicity, we assume that the searcher moves in a straight line and can 

change direction instantaneously. We generally assume the searcher carries a “cookie-

cutter”  sensor, although we also analyze imperfect sensors. 
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Our measure of performance is the probability of detecting a single target. 

D. CONTRIBUTIONS AND OUTLINE  

In Chapter II , we study the simple border patrol problem by analytical and Monte 

Carlo simulation methods. This problem is also referred to as the barrier patrol problem 

by Wagner et al. (1999) and patrolling a channel by Washburn (2002). We improve the 

detection probabilities computed by Wagner et al. (1999) and Washburn (2002). We also 

study the multiple-searcher problem. 

In Chapter III , we study the optimal allocation problem for multiple searchers. We 

study the change in optimal allocation depending on the differences in the searchers’  

characteristics. We also study the optimal allocation when the performance of the 

searchers’  sensors degrades with increasing searcher speed. We calculate both the 

allocation and speeds required to achieve the maximum detection probability. 

In Chapter IV, we study the border patrol problem by adding some geometric 

considerations. We observe that atypical border geometries do not change the problem 

considerably, unless the searcher leaves the region in which the objects detected can be 

classified as targets. 

In Chapter V, we introduce imperfect sensors and pick a sample sensor model to 

study. We perform analysis on approximating this sensor model to compare possible 

approximations. 

 3 



THIS PAGE INTENTIONALLY LEFT BLANK  

 4 



II.  BORDER PATROL  

This chapter analyzes the border patrol problem. In the border patrol problem, we 

consider a scenario in which an intruder tries to pass through a border bounded by two 

barriers that are perpendicular to the border. Note that these barriers may represent actual 

(physical) barriers or imaginary barriers denoting a region of interest. We have one or 

more searchers available and would like to employ them in such a way as to maximize 

our likelihood of detecting the target. We assume that the target moves with constant 

speed perpendicular to and towards the border, while the searcher patrols the border by 

moving back and forth at constant speed.  

The searcher has a sensor with a finite detection radius, meaning that, if the 

distance between the target and the searcher is greater than the detection radius, detection 

will not occur. In this chapter we only consider a “cookie-cutter”  sensor, meaning that if 

the distance between the target and the searcher is less than the detection radius, detection 

occurs with probability 1. We study non-cookie-cutter sensors in Chapter V. 

A. BORDER PATROL  WITH SINGLE SEARCHER  

In order to obtain useful insights for the general search problem, we start by 

considering the simplest case: the border patrol problem with one target and one searcher. 

Figure 1 illustrates our problem setup, which uses the following notation and 

assumptions: 

1. The length of the border is L units. The searcher moves back and forth 
along the border with constant speed v. When the searcher is at a distance 
of R units away from either edge of the border, it turns and moves in the 
opposite direction. 

2. The target moves with constant speed u towards the border with its 
direction of movement perpendicular to the border.  

3. If the distance between the target and searcher is less than or equal to R, 
the searcher detects the target.  
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Figure 1. Simple border patrol. 

We now analyze the basic border patrol problem both analytically and by Monte 

Carlo simulation. We compare our results from both methods in order to verify our 

Monte Carlo simulation, which will form a basis for the later chapters.  

1. Analytical Model 

In order to calculate the probability of detection we use “target-stationary 

geometry,” which means that we use a coordinate system that moves with the target 

(Eagle, 2013) rather than a stationary coordinate system. To use target-stationary 

geometry, we simply add a vector –u to every speed vector in our problem. That is, we 

add a vector with the same magnitude as the target’s speed vector, but in the opposite 

direction. After performing the reference geometry transformation, the transformed speed 

of the target (u��) is 0, and the transformed speed of the searcher (v��) changes depending 

on the direction of the searcher’s movement. In terms of our problem setup shown in 

Figure 1, if the searcher is moving to the right, its corresponding speed vector will be the 

vector shown in Figure 2(a). Likewise, it will be the vector shown in Figure 2(b) if the 

searcher is moving to the left.  
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Figure 2. Transformed speed of the searcher in target-stationary geometry. 

Following this coordinate transformation, the border patrol problem shown in 

Figure 1 can be visualized as shown in Figure 3(a). In this figure, the searcher follows the 

green dashed-dotted lines according to the speed vectors shown in Figure 2, and its 

detection radius is indicated by solid black lines. Two targets, depicted as red dots, are 

stationary. The searcher moves in the infinitely long region bounded by the two barriers. 

Thus, when using target-stationary geometry, the border patrol problem is transformed 

into a channel search problem in which the searcher looks for stationary targets in the 

infinitely long channel bounded by the barriers.  

Figure 3(b) shows the detection region in the target-stationary case. If a target is 

in the shaded region, it is detected. Likewise, if it is not in the shaded region, it is not 

detected. In this example, target 2 from Figure 3(a) is detected and target 1 is not. 

Assuming a uniform target density, the probability of detection can be calculated 

as the ratio of the shaded area in the infinitely long channel to the area of the channel 

itself. As Figure 3(b) indicates, the shaded area follows a consistent pattern. In particular, 

between each of the searcher’s turning points, the areas of the shaded regions are equal to 

each other. Moreover, the vertical distance between any two consecutive turning points is 

the same. Thus, we can calculate the detection probability by considering a region like 

that shown in Figure 4(a), which is simply the region between two consecutive turning 

points. We can find the probability of detection by computing the ratio of the shaded area 

to the area of the blue rectangle in Figure 4(a). 
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Figure 3. Border patrol in target-stationary geometry. 

We calculate the area of the shaded region in Figure 4(a) by dividing it into 

separate regions as shown in Figure 4(b). The area of the red shaded region in Figure 4(b) 

can be found by calculating the areas of the two wedge-shaped regions on the ends of the 

region and the inner rectangle (shaded with both red and blue). Adding these two areas 

and subtracting areas of the blue triangular regions give us the area of the red shaded 

region. 

 
Figure 4. Area of coverage between two turning points in target-stationary 

geometry. 
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Washburn (2002) determined an upper bound on this area by calculating the area 

shown in Figure 5(a). Wagner et al. (1999) arrived at a different approximation of this 

area by removing the regions lying outside the rectangle, as shown in Figure 5(b). 

 
Figure 5. Approximations of the area to be calculated. 

Using his approximation, Washburn (2002) obtains the following upper bound on 

the detection probability: 

 
2 22
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Likewise, Wagner et al. (1999) approximate the detection probability as: 

 �� ��
2

2 2
21 1 1             if   2  

( 2 )

1                                                                    otherwise.

d

L v R
R L L R

P R u L L R

�­ � § � ·� § � ·�° � ¨ � ¸� � � � � � � � � d � ��° � ¨ � ¸� � ¨ � ¸���® � © � ¹� © � ¹�°
�°�¯

  (2) 

By calculating the area of the shaded region exactly, we are able to calculate the 

detection probability without any approximations. The width w of the rectangles in 

Figure 4 is the vertical distance the searcher travels between turns in target-stationary 

geometry, or, equivalently, the distance the target travels between the searcher’s turns in 

the original coordinate system. Hence; 

 
2

( 2 ) .
L R u

w u L R
v v

��
� � ��   (3) 

Depending on the width w, we may have different shapes of the areas to be 

calculated. Figure 6(a) shows the geometry for large w, i.e., w > Rcos(��), where �� is the 
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angle whose tangent is the ratio of the target’s speed to the searcher’s speed (Figure 2). 

Figure 6(b) shows the geometry for small w, i.e., w < Rcos(��). For this case, we introduce 

angle �., which is the arcsine of the ratio of the width of the rectangle to the detection 

radius of the searcher; that is, �.=arcsin(w/R). 

 
Figure 6. Geometry used in computations.  

 10 



For large w, we can find the area of rectangle EFGH in Figure 6(a) by multiplying 

its width (EH) by its length (EF, which equals IK). Its width is 2R, and its length is 

2 2( 2 )w L R� � � �; so its area is 2 22 ( 2 )R w L R� � � �.    

The area of the two wedge-shaped regions is 2 22
2 2

2 R R

�S
�T �S

� S � T
�S

� § � ·
� ¨ � ¸
� ¨ � ¸
� ¨ � ¸
� © � ¹

��
� § � ·� ��� ¨ � ¸
� © � ¹

. 

The area of the triangular areas (e.g., triangle HIJ in Figure 6(a)) is 

22 cot( ) cot
2
xR

xR R R R� T � T� § � ·� � � � ¨ � ¸
� © � ¹

. 

By combining these areas, we compute the probability of detection as 

 

2 2 2 22 ( 2 ) cot
2

R w L R R R

wL

�S
� T � T� § � ·� � � � � � � � � �� ¨ � ¸

� © � ¹. (4) 

For the case when w < Rcos(��), it is simplest to compute the areas ADE and BCG 

(which are equal by symmetry) and subtract these areas from the area of the rectangle 

ABCD. The area ADE can be computed by calculating the area of the trapezoid AEFD 

and subtracting the wedge-shaped area DEF from it. 

The area of trapezoid AEFD is 
( cos ) 2 cos

2 2
R R R R R

w w
� D � D� � � � � �

� . 

The area of semicircle DEF is 2 2

2 2
R R

� D � D
�S

�S
� . 

By using these, we calculate the area of region ADE as 22 co
2

s
2
R

R
R

w
� D � D��

�� . 

By combining these areas, we compute the probability of detection as 

 

2
2

2 cos
)

2
(2 co2 2 s

1
R

w R
wL w

R R
wL

R R
L

w
� D � D

� D � D
� § � ·
� ¨ � ¸��� © � ¹��

� ��

��
� � � �

.  (5) 

 11 



Finally, in order to obtain the probability of detection for the simple border patrol 

problem, we combine Equations (4) and (5). Furthermore, we express each of the terms 

w, �., and �� as a function of the border length L, detection radius R, target speed u, and 

searcher speed v as shown in Equation (6). 

2
2 2

2 2

2
2 2 2 2

arctan
22

1                          if 1
( 2R) ( 2 )

( 2 )
arcsin

( 2 )2
1    otherwise.

( 2 )

d

u v
R v

v uR v Rv
L u L uL L R u u vP

L R u
R v

R v L R uRRv
L R uL L Lv

�S�­ � § � ·� § � ·� � � �� ¨ � ¸�° � ¨ � ¸� § � · � © � ¹� © � ¹�° � � � � � �� ¨ � ¸�° ��� © � ¹ � � � �� �®
��� § � ·�°

� ¨ � ¸�° � � � �� © � ¹� � � � � ��°
���¯

 (6) 

Figure 7 compares the detection probabilities given by Equations (1), (2), and (6) 

for various searcher speeds. In this figure, the border length L is 50 distance units, the 

detection radius R is 6 distance units, and the speed of the target u is 5 speed units 

(distance units/time unit). We observe that all three formulas are nearly the same for low 

searcher speeds. The upper bound Washburn (2002) obtained starts to differ slightly 

when the searcher speed is approximately twice the speed of the target. The formula 

Wagner et al. (1999) obtained starts to differ when the searcher’s speed exceeds four 

times the target’s speed. 

 
Figure 7. Comparison of formulas. 
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2. Monte Carlo Simulation 

We now examine the border patrol problem by means of a Monte Carlo 

simulation model. Our simulation setup is as follows: 

1. The searcher’s initial position is distance R from the left edge of the 
border, and its initial direction of movement is to the right. 

2. We use a time-step model for our simulation. In the time-step model, we 
calculate the position of the searcher and the target and make necessary 
computations to see if the target is detected after each time step 
increments. In time-step simulations we have some error if detection does 
not occur at the time steps, but occurs between the time steps. We choose 

the time step as 
2 225

R
t

u v
� ' �  

��
; this time step reduces the error below 

6.7x10-3 percent. We explain how we choose the time-step and the 
calculation for the error in Appendix A. We use the same time step 
throughout the time-step simulations in this thesis. 

3. The simulation is run until the searcher makes a full cycle, i.e., comes 
back to its initial position and initial direction of travel. This simulation 
end time is referred to as tmax. 

4. Targets are generated randomly using a two dimensional uniform 
distribution over a rectangle between the two barriers. Each target’s initial 
vertical position is randomized so as to ensure that it passes through the 
horizontal axis of the searcher’s movement before the end of the 
simulation. Their initial horizontal axis position is between 0 and L. 

5. We replicate the number of targets n times and record the number of 
targets that are detected by the searcher as k. This approach generates the 
same results instead of generating one target and running n different 
simulations, however, the simulation runtime improves considerably. We 
then use MATLAB’s “binofit” function to fit the Monte Carlo 
simulation’s results to a binomial distribution, and we compute the 
estimated probability of detection along with its 95% confidence interval. 

Figure 8 and Figure 9 show the probability of detection versus the speed of the 

searcher when the border length L is 200 distance units, the detection radius is 6 distance 

units, and the speed of the target u is 5 speed units. Figure 8 shows the results of the 

Monte Carlo simulation with 1,000 replications, and Figure 9 shows the results of the 

Monte Carlo simulation with 1 million replications. In both figures, the blue solid line 

shows the probability of detection obtained from Equation (6). The black dashed line 

shows the estimated probability of detection from the Monte Carlo simulation, and the 
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red dashed lines show the upper and lower 95% confidence interval of the estimated 

probability of detection.  

 
Figure 8. Monte Carlo simulation with 1000 replications. 

 

From Figure 9 we can see that the estimated probability of detection obtained 

from the Monte Carlo simulation is very close to the probability of detection obtained 

from Equation (6); hence, we conclude that we have verified the Monte Carlo simulation 

and checked Equation (6) for the simple border patrol problem. We also show that 

Equation (6) is more accurate than Washburn’s (2002) or Wagner et al.’s (1999). The 

Monte Carlo simulations in the following sections are all based on this simple case. 
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Figure 9. Monte Carlo simulation with 1 million replications. 

3. Turning Distance 

Recall that we assume when the searcher is R distance units away from any edge 

of the border, it turns in the opposite direction. In this section we study the effect of 

changing this turning distance. 

We consider ten different scenarios defined by the border length. We begin with a 

border length of 100 units and incrementally increase our border length by 100 units until 

we reach a length of 1000 units. In doing so, we are able to see the effect of the turning 

distance for several values of probability of detection. 

In all ten scenarios, we fixed the detection radius R at 6 units, the target’s speed u 

at 5 speed units, and the searcher’s speed v at 100 speed units. We varied the turning 

distance from 0 to 12 units in 0.06 unit increments. We performed the analysis by 

running Monte Carlo simulations with one billion replications for each scenario. 

In order to run the simulations with one billion replications, we need to generate 

two billion random numbers; half of them are used for generating the targets’ random 

vertical position and the remaining half are used for their horizontal position. To ensure 
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that we did not obtain misleading results from the outcome of the simulations, we need to 

make sure that these two billion random numbers do not start repeating themselves after a 

certain point. Although we noted that MATLAB’s documentation states the random 

numbers have an approximate period of 219937, which is much larger than two billion, we 

also compared the two billion random numbers and found that among these two billion 

random numbers, no two of them were equal to each other. We also faced memory errors 

in MATLAB due to the high dimension of the random numbers generated; however, we 

solved the memory problem easily by requesting 128 GB of memory from the High 

Performance Computing (HPC) network at the Naval Postgraduate School for each 

simulation.  

Figure 10 shows the results of the turning point analysis. Each subfigure shows 

one of the scenarios, with the corresponding barrier length stated on each subfigure. In 

each subfigure, the horizontal axis shows the turning distance and the vertical axis shows 

the estimated probability of detection �l
dP  in the blue straight line, along with its 95% 

confidence interval in red dotted lines. 

In the case of low border length (i.e., when �l
dP is high) in Figure 10(a) through 

Figure 10(c), the maximum value of �ldP  occurs when the turning distance is less than the 

detection radius. This occurs because the searcher covers the area in regions ADE and 

BCG in Figure 6(b). But in other cases, either the maximum �l
dP  is observed when the 

turning distance is very close to the detection radius (e.g., Figure 10(d) through Figure 

10(h)), or �ldP  increases with increasing turning distance up to detection radius, and then it 

stays nearly constant (e.g., Figure 10(i) and Figure 10(j)).  

In all ten scenarios, the estimated detection probability �l
dP  is either insensitive to 

the turning distance, or it is maximized or nearly maximized at the detection radius R. 

Based on these results, we fix the turning distance to R for the remainder of our 

simulations. 
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Figure 10. Analysis on turning distance. 
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B. BORDER PATROL  WITH MULTIPLE SEARCHERS  

When multiple heterogeneous searchers are available to patrol a border, an 

operator must decide how best to employ them. For the case of two searchers, the 

operator may either employ both searchers to patrol the entire border, or the operator may 

divide the border into two disjoint segments and assign each searcher to patrol one 

segment. We refer to the first option as the “common path” allocation and the second 

option as the “disjoint path” allocation.  

We examine both the disjoint and common path cases in the following 

subsections. For simplicity, we consider only two searchers in both cases, but similar 

logic applies to cases with more than two searchers. 

1. Disjoint Path 

Figure 11 shows the border patrol problem with two searchers and one target. The 

searchers allocate the border into two disjoint regions with lengths L1 and L2= L - L1. 

 
Figure 11.  Disjoint path. 
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a. Analytical Solution 

We can divide the disjoint path problem in Figure 11 into two separate border 

patrol problems of the type considered in Section A. Based on this simplification, we can 

then compute the probability of detecting the single searcher for this disjoint path case by 

the law of total probability: 

 1 1 2 2d ds tr ds trP P P P P� ��   (7) 

 

where Pdsi is the conditional probability that searcher i detects the target, given the target 

is in its region, and Ptri  is the probability that the target is in the region of searcher i. 

We can compute Pdsi by substituting the appropriate values for searcher i into 

Equation (6): 

  

 ( , , , )dsi d i i iP P L R u v� . (8) 

Since we assume that the horizontal position of the target is uniformly distributed 

along the border, we have i
tri

L
P

L
� . Thus, we have 

 1 2 1 2
1 2 1 1 1 2 2 2( , , , ) ( , , , )d ds ds d d

L L L L
P P P P L R u v P L R u v

L L L L
�  � � �  � �. (9) 

 

In general, with n searchers and one target, we have 

 
1 1

1
( , , , )

n n
i

d dsi d i i i i
i i

L
P P P L R u v L

L L� � 

� � � ¦ � ¦. (10) 
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b. Monte Carlo Simulation 

We also evaluate the disjoint path problem by means of a Monte Carlo simulation. 

The following setup applies to our simulation: 

1. The searchers’ initial positions depend on their detection radii and their 
allocated regions. The initial position of the ith searcher is distance Ri 
away from the edge of its allocated region. Its direction of movement is 
towards the opposite edge, and its turning distance is Ri distance units 

from the end of its allocated region. If 
2

i
i

L
R �t  for any searcher, the 

searcher remains stationary at the midpoint of its allocated region. 

2. Recall that our simulations in Section A.2 were run until the searcher 
arrived at its initial starting position. Depending on the allocated regions 
and characteristics of the searchers, in the disjoint path case such a policy 
may result in a very long runtime. Thus, we limited our simulation end 
time to 25 times the maximum time required for any searcher to make a 
full cycle in its allocated region. Appendix B explains the process behind 
this choice of multiplier. 

3. Targets are generated and estimated probabilities of detection are 
calculated as in Section A.2. 

Figure 12 shows the probability of detection Pd as calculated analytically using 

Equation (9) and the estimated value for the probability of detection �ldP , determined via 

Monte Carlo simulation with one million replications, as a function of the ratio of the 

border length allocated to the first searcher, L1, to the total border length L. This ratio is 

varied from 0 to 1 with 0.01 increments. In this specific case L is 200 distance units, 

detection radii R1 and R2 are 12 and 6 distance units, respectively; the target speed u is 5 

speed units, and the speeds of the searchers, v1 and v2, are each 20 speed units. 
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Figure 12. Disjoint path. 

Comparing the analytical solution to the Monte Carlo simulation, we see that they 

are nearly the same except at very high or low values of L1/L. When L1/L is very large or 

very small, this means that the region allocated to one of the searchers is very small. 

Figure 13 shows the case when the region allocated to the first searcher is very small. In 

this case we have 1
1 2

L
R �! , so the first searcher remains in the middle of its allocated 

region and covers some portion of the area allocated to the second searcher. This extra 

region is shaded with red stripes in Figure 13 and is not accounted for in the analytical 

solution. Because of this extra region, the Monte Carlo simulations produce higher 

estimates than the analytical solution when the allocation to any searcher is less than two 

times the detection radius of that searcher. In this case, the Monte Carlo simulation 

provides a better estimate since it takes into account the region that the analytical solution 

does not. 
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In Figure 12 we see that the analytical solution and the Monte Carlo simulation 

results differ when L1/L is less than 0.12. Note that L1=24 at this point, and that 2R1=24. 

The results also differ when L1/L is greater than 0.94; L2=12 at this point, and 2R2=12. 

 
Figure 13. Disjoint path extreme case. 

2. Common Path 

Figure 14 shows the border patrol problem with two searchers sharing the same 

path and attempting to detect a single target. Although the searchers share the same path, 

their turning points may differ due to their differing detection radii. For clarity, we 

introduced a slight vertical displacement in the paths that the searchers follow, although 

in reality we assume that there is no vertical displacement. Each searcher moves over the 

border. 
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Figure 14.  Common path. 

We did not perform any analytical computations on the common path problem; 

rather, we performed Monte Carlo simulations based on the Monte Carlo simulation for 

the disjoint path case with some minor changes. The only differences are the searchers’  

initial positions and their turning points. 

The initial starting point of the searchers could be chosen to be the same point, 

i.e., they could initially start their movement from exactly the same location. However, if 

their detection radii and speeds were identical, then they would move together as one 

searcher (assuming a “cookie cutter” sensor model). For this reason, we choose to 

initialize searcher i’s location as 
�� ��1

i

L i
R

n

��
�� , where n is the number of searchers. The 

searchers’ initial direction of movement is towards the right. As before, each searcher’s 

turning distance is simply its detection radius. Figure 15 shows our initial setup for the 

common path simulations; dashed lines show the turning points of the searchers.  
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The simulation is run until all searchers come back to their initial starting point. In 

order to reduce the runtime, the simulation end time is limited to 100 times the maximum 

time it takes for any searcher to make a full cycle. 

 
Figure 15. Searchers’ initial positions and movement in the common path 

simulations. 

We perform one million Monte Carlo simulations for the common path case with 

the same searcher and target variable settings we considered in the disjoint path problem 

(Figure 12). We obtain an estimate and 95% confidence interval for the probability of 

detection, shown in Figure 16, along with the results previously obtained for the disjoint 

path case. (Due to the large number of replications, the confidence interval is difficult to 

detect in the figure.) 

Since there is no allocation of borders in the common path problem, the estimated 

probability of detection is constant. It is plotted over the results from Figure 12 in order 

to be able to make a comparison between the disjoint and common path problems. 
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Figure 16. Common path Monte Carlo simulation results. 

Figure 16 shows that the common path detection probability is higher than the 

disjoint path probability for nearly half of the L1/L range. This means that if we do not 

allocate the border to the two searchers properly for the disjoint path case, we may end up 

with a worse probability of detection than we would obtain without allocating the region 

at all and simply setting the searchers free to search the entire border. However, by 

intelligently allocating the border, we are able to obtain a higher detection probability 

than is possible with the common path model. Thus, we now consider the problem of 

allocating the border to the searchers optimally so as to maximize detection probability in 

Chapter III . 
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III.  OPTIM AL  ALLOCATION OF REGION S 

In this chapter we study the problem of optimally allocating a border among two 

searchers in order to maximize detection probability. We utilize both analytical and 

Monte Carlo simulation methods. Although we consider only two searchers, our 

approach can be extended to scenarios with n > 2 searchers. 

A. ANALYTICAL METHOD  

In order to find the optimal allocation of regions for two searchers we can use the 

function for the probability of detection shown in Equation (9).  

In the optimal allocation problem, our goal is to determine L1 and L2 such that the 

overall probability of detection is maximized. That is, given values for L, R1, R2, u, v1, 

and v2, we wish to determine L1 and L2 such that L2 = L - L1 and the probability of 

detection is maximized: 

 
1 1

1 1 1 1 2 2
1

1

max    ( , , , ) (L , , , )

              0

d d
L

L L L
P L R u v P L R u v

L L
st L L

��
� � � �

� d � d
  (11) 

This is a constrained optimization problem with one decision variable and a 

convex feasible region. Thus, if the objective function is concave, we can find a globally 

optimal solution by finding a stationary point of the objective function, i.e., a value of 

such L1 that 

  

 

1 1
1 1 1 1 2 2

1

( , , , ) ( , , , )
0.

d d

L L L
P L R u v P L L R u v

L L
L

��� § � ·� w � � � �� ¨ � ¸
� © � ¹� 

�w
  (12) 

If the solution to Equation (12) is less than 0 or greater than L, the maximum 

probability of detection occurs either at L1 = 0 or L1 = L. 
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The concavity of the function in Equation (9) is difficult to evaluate analytically. 

However, we performed an extensive computational evaluation and were unable to find a 

counterexample showing that the function in Equation (9) is non-concave. Our 

computational evaluation is described in Appendix C. 

B. MONTE CARLO SIMULATI ON 

For our Monte Carlo simulation analysis, we generated several scenarios by 

varying the detection radii and speeds of the searchers while fixing the length of the 

border and the speed of the target to 200 and 5 units, respectively. In each scenario we 

varied the allocation of border to the first searcher in 1% increments, each with one 

million replications, in order to observe the change in the probability of detection. 

Figure 17 illustrates the outcome of six representative setups. Each subfigure in 

Figure 17 is generated with the same logic as Figure 16, where the subfigures show the 

probability of detection versus the fraction of the border allocation to the first searcher. 

The blue dashed line shows the analytical disjoint path detection probability (Equation 

(9)), the purple line shows the estimated probability of detection for the disjoint path case 

obtained from the Monte Carlo simulation, and the light blue line shows the estimated 

probability of detection for the common path case obtained from the Monte Carlo 

simulation. We also plotted 95% confidence intervals for the estimated probabilities of 

the common path and disjoint path cases, but due to the large number of replications, they 

are difficult to detect in the figures.  

In Figure 17(a) we see that in the optimal allocation, the allocation to the first 

searcher is very low since its detection radius is inferior to that of the second searcher, 

while their speeds are equal to each other. It is also interesting to note that the optimal 

detection probability is very close to the common path probability of detection. In this 

case, the optimal allocation to the second searcher is nearly the whole border. In other 

words, if we just allocate the whole border to the second searcher and let the first 

searcher move freely along the same border, we do not lose much in terms of probability 

of detection compared to the optimal allocation.  
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In Figure 17(b), the first searcher’s capabilities are still inferior to those of the 

second searcher, but not as much so as in Figure 17(a). Thus, more of the border is 

allocated to the first searcher in Figure 17(b) than in Figure 17(a). The difference 

between the common path probability and optimal allocation probability has also 

increased. Increasing the speed of the first searcher (Figure 17(c)), results in a further 

increase in the allocation to the first searcher, and the gap between the common path and 

optimal allocation probability widens.  

When we increase the speed of the first searcher such that the properties of both 

searchers become equal, we expect to have the same border allocation to both searchers 

since neither of the searchers is superior to the other. We might also expect to see a larger 

gap between the common path and optimal allocation probabilities compared to the 

previous cases (Figure 17(a) through Figure 17(c)) since decreasing the superiority of the 

superior searcher resulted in an increase in the gap in the previous cases. In Figure 17(d) 

we see that we are right about our first expectation, but not about the second one. This 

occurs because, in the common path case when the two searchers have the same 

characteristics, they operate in a cyclical fashion. Specifically, the two searchers cross 

each other at the same places every time they transit the border. These crossings occur 

when they are moving in opposite directions (since they have the same speed, neither 

searcher can pass the other), causing them to have short crossing times. Shorter crossing 

times means less coincident area covered by the searchers, resulting in a smaller gap 

between the common path and optimal allocation probabilities.  

In Figure 17(e) and Figure 17(f) the second searcher is inferior, but not as much 

as the cases in Figure 17(a) though Figure 17(c) when the first searcher was inferior, 

which causes a considerable amount of the border to be allocated to the second searcher 

in the optimal allocation. The differences between the common path and optimal 

allocation probabilities are higher than the other four scenarios. 

In general, we observe that if one of the searchers is superior to the other, the 

allocation of the border to the inferior searcher is low, and the difference between the 

common path and optimum allocation probabilities is low. Decreasing the difference in 

the capabilities of the searchers results in a higher allocation to the inferior searcher and 
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can widen the gap between the common path and optimal allocation probabilities. 

However, due to the perfect coordination between the searchers when the searchers have 

the same characteristics, the gap between the common path and optimal allocation 

probabilities can be low. 

We also observe that if we do not allocate the border properly to the searchers, we 

may lose a good proportion of the probability of detection.  

Based on our results, we conclude that, in order to maximize the detection 

probability, we should choose the disjoint path approach, rather than the common path 

and allocate the border to the searchers optimally. 

However, if a user cannot determine the optimal allocation, he or she can choose 

the common path approach, since poorly allocating the border in disjoint path may result 

in a worse detection probability than choosing the common path. If this option is selected, 

the UAVs should be employed in such a way as to reduce the time when they pass or 

cross each other to further increase the detection probability. 
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Figure 17. Monte Carlo simulation on several cases. 
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C. ANALYSIS  ON DETECTION RADIUS WHEN IT VARIES AS A 
FUNCTION OF SPEED 

In practice, it is likely that the detection capability of a searcher depends on its 

speed. For example, if the searcher is a UAV and if its sensor is a camera, the quality of 

the video would be reduced if the UAV were to travel at a faster speed. In this section, we 

model this degradation in sensor quality as a reduction in detection radius. We will study 

other sensor models in Chapter V. We now examine the effect of the detection radius, 

which is a function of each searcher’s speed, on the optimal allocation and probability of 

detection. 

1. Effect on the Single Searcher Problem 

We first study the effect of the detection radius being a function of searcher speed 

on the simple border patrol problem. In order to make a comparison with the constant 

detection radius case (Figure 9), we utilize the same parameters as before, with the 

exception of the detection radius. We model the detection radius, as a monotonically 

decreasing function of the searcher speed; in particular, we arbitrarily choose 606
v

R e
��

� . 

The same analysis can also be performed for a different sensor model. We choose an 

arbitrary function because our goal is simply to gain insight about the effect of the 

detection radius depending on the searcher speed. 

Figure 18 shows the detection radius as a function of speed (left) and the 

corresponding probability of detection (right). The probability of detection first increases 

with increasing speed; then it starts to decrease after reaching the maximum. 
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Figure 18. Detection radius as a function of speed. 

In general, the probability of detection increases with both increasing speed and 

increasing detection radius. However, in this case the increase in speed causes a decrease 

in detection radius. For lower speeds, the probability of detection increases with 

increasing searcher speed. After the maximum probability of detection point, detection 

radius dominates the effect of higher speeds.  

In all instances we considered, the detection probability curve took on the form 

shown in Figure 18(b). Thus, we can find the maximum probability of detection by 

modifying Equation (6) to accommodate detection radius as a function of searcher speed, 

then taking derivative of the detection probability function with respect to the speed of 

the searcher, and solving for the searcher speed that causes the derivative to equal zero.  
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Solving Equation (13) using MATLAB’s symbolic toolbox with the values stated 

in this section resulted in a speed of 59.06 speed units. This value matches well with the 

peak of the speed versus probability of detection curve in Figure 18(b). 

If the function Pd(L,R(v),u,v) is concave, solving Equation (13) would give us the 

unique solution. We were not able to show analytically the concavity of the function 

Pd(L,R(v),u,v). If the function is not concave, solving Equation (13) may give us multiple 

points, and we need to pick the one which is appropriate for our problem. 

2. Effect on the Multiple Searcher Problem 

Next, we study the effect of the detection radius being a function of the searcher 

speed in the two-searcher problem. We have the same border length and target speed as 

in the previous case; in particular, we have L=200 and u=5 units. For simplicity, we hold 

one searcher’s detection radius constant at 6 units while allowing the other searcher’s 

detection radius to vary as a function of its speed. In particular, we let 
1
60

1 6
v

R e
��

�  and set 

the speed of the second searcher to 100 speed units. Then, we vary the speed of the first 

searcher and observe the optimal allocation and the probability of detection at the optimal 

allocation. 

We can see in Figure 19(a) that the allocation to the first searcher starts with 0.06 

when its speed is 0; in other words, when it is stationary. An allocation of 0.06 means that 

0.06 x 200 = 12 units are allocated to the first searcher, which is double its detection 

radius when it is stationary. In this case, the probability of detection of the first searcher 

in its region is 1. 
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Figure 19. Detection radius as a function of speed for two searchers. 

Although increasing v1 decreases R1, the optimal allocation to the first searcher 

nevertheless increases as v1 increases from zero. After some point (v1=57.2 in  

Figure 19(a)) allocation to the first searcher starts to decrease.  

We have a similar relationship for the probability of detection as a function of the 

speed of the first searcher. When we start with the first searcher being stationary and 

increase v1 infinitesimally, we notice a reduction in the probability of detection. Further 

increasing v1 results in an increase. This behavior shows that the probability of detection 

for this problem is non-concave. Further increasing v1 causes a reduction in probability of 

detection after some point (v1=57.8 in Figure 19(b)).  

Note that the peaks of two curves in Figure 19(a) and Figure 19(b) do not have to 

occur at the same v1. 
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3. Multiple Searchers with Varying Detection Radius Depending on 
Speed 

After studying the effect of the detection radius being a function of speed only for 

the first searcher, we now study the case in which the detection radii of both searchers are 

functions of their corresponding speeds. We use the same function for the detection 

radius of the first searcher that we used in the previous section, 
1
60

1 6
v

R e
��

� , and use a 

slightly different function for the second searcher in order to observe the difference in the 

results. We use 
2

90
2 6

v

R e
��

� . We can see the difference between the two detection radii 

functions in Figure 20. 

 
Figure 20. Detection radii of the two searchers. 

We observe the optimal allocation to the first searcher with searcher speeds 

varying from 0 to 100 speed units in Figure 21(a). These allocations result in the 

probability of detection shown in Figure 21(b). The speed increment in Figure 21(a) and 

Figure 21(b) is 0.1 speed units. 
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Figure 21. Varying both detection radii. 

When one of the searchers is stationary, there is very little allocation to it. The 

allocation to a stationary searcher is twice its detection radius as in the previous cases in 

Figure 18 and Figure 19. 

In the region where both searchers have moderate speeds, increasing v1 up to 

around 60 speed units while keeping v2 constant results in an increase in the optimal 

allocation to the first searcher and in the probability of detection. After that value, both 

the allocation to the first searcher and the detection probability start to decrease. This is 

not the case for v2. When v1 is kept constant and v2 is increased up to around 70 speed 

units, the allocation to the first searcher decreases, which means that the allocation to the 

second searcher increases. After that value, the allocation stays the same. In the case of 

the probability of detection, it always increases. This can be explained by their detection 
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radius functions; note that the detection radius of the second searcher does not decrease 

as much as that of the first searcher. The positive effect of increasing speed always 

dominates the negative effect of the reduction in the detection radius for speeds up to 100 

speed units for the second searcher. 

The maximum probability of detection is observed at a value of 0.56 when v1 is 

58.3 speed units and v2 is 88.4 speed units. At these speed values, the optimal allocation 

to the first searcher is 40% of the border length. 
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IV.  GEOMETRIC CONSIDERAT IONS 

In this chapter we study the effect of making some changes in the geometry of the 

border patrol problem. We introduce two angles for studying the geometry, �. which is the 

angle between the border and the horizontal axis, and �� which is the angle between the 

searcher’s path and the horizontal axis. The horizontal axis is perpendicular to the two 

barriers. The two angles �.  and �� can be seen in Figure 22, where the horizontal axis is 

the black dotted line, the border is the red dashed line, and the searcher’s path is the blue 

dashed-dotted line. The target moves perpendicular to the horizontal axis while trying to 

pass through the border. 

In this study we made the border and searcher’s path symmetric to the horizontal 

axis in such a way that the searcher’s path intercepts the border in the middle of the 

border as shown in Figure 22. 

In this chapter we only study the single searcher case since our goal is to get 

insight about the geometry. 

  
Figure 22. Geometry. 
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A. ANALYTICAL SOLUTION 

In this subsection we only analyze the effect of changing the angle of the 

searcher’s path (��) by keeping the angle of border (�.) constant at 0. The speed vector of 

the searcher is shown in Figure 23(a). Figure 23(b) and Figure 23(c) show the speed of 

the searcher in the target stationary geometry when the searcher is moving to the right 

and left, respectively.  

 
Figure 23. Speed vector of the searcher. 

All the angles in Figure 23 can have negative values depending on the magnitudes 

and directions of the speed vectors. Figure 24 shows the detection region (coverage area) 

of the searcher in target stationary geometry. Although Figure 24 refers to the case when 

�� is between 0 and 90 degrees, the area covered will be the same for other �� values. 

Figure 24(a) refers to the case when ��2 is greater than 0, and Figure 24(b) refers to the 

case when ��2 is less than 0. Due to the geometry ��2 will always be less than ��1 in 

magnitude. 

We can calculate ��1 and ��2 as: 
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Figure 24. Geometric considerations in target stationary geometry. 

In Figure 24(a) and Figure 24(b) we see that the coverage area of the searcher 

follows a pattern after the first cycle. Depending on the angles, it may take more cycles to 

follow a pattern. Since the coverage area follows a pattern, we can find the probability of 

detection by finding the coverage area between two points that mark the beginning and 

end of the pattern and dividing it to the total area (shaded and unshaded) of that pattern. 

Possible patterns for Figure 24(a) and Figure 24(b) are shown in Figure 25(a) and  

Figure 25(b). The patterns are selected between two points when the searcher is distance 

R away from the left edge of the border. 
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Figure 25. Patterns to be used for computations. 

We see that there is a big difference in the geometry of the shaded areas in  

Figure 25(a) and Figure 25(b). Our goal is to find an equation for the probability of 

detection that will be valid for all angles ��, and hence ��1 and ��2. 

It is difficult to find the areas in Figure 25. In order to make it easy to find the 

areas, we generated Figure 26 in which we moved some portions of the shaded areas. The 

shaded areas in Figure 26 seem to be easier to compute than Figure 25, although they are 

exactly the same. 

 
Figure 26. Modification of the areas covered. 
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We also see that the shaded areas in Figure 26(a) and Figure 26(b) have the same 

logic, which enables us to obtain a common formula for both cases. Hence, we focus on 

finding the shaded area in Figure 26(a). Figure 27(a) shows the shaded area to be 

computed in Figure 26(a). Note that it is simpler to compute the whole area in  

Figure 27(a) and subtract the unshaded regions than to compute only the area of the 

shaded region. Figure 27(b) shows the whole area. 

 
 

Figure 27. Simplifications in the areas. 

We can find the area of the shaded region in Figure 27(b) by finding the areas 

ABCD, EFGH, and the four semicircular regions. The four semicircular areas are all 

equal, and their total area is 

 
2

24 2 .
2
R

R
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The area of the rectangle ABCD is 
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The area of rectangle EFGH is 
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2
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EF FG R
�T

��
� u �    (17) 

The total shaded area in Figure 27(b) can then be computed by using Equations 

(15), (16), and (17) as: 

 2

2 1

2 2
2 2 2

cos cos
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R R R�S
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� � � �
� � � �.  (18) 

The areas of the unshaded regions in Figure 27(a) can be computed by using the 

geometry in Figure 28. Figure 28(a) shows the angles that can be used to compute the 

total area in Figure 28(b), which equals one of the unshaded regions in Figure 27(a). We 

can find the total area in Figure 28(b) by finding the area ABE and adding the circular 

area. We can find the area ABE by finding the triangular area ABC, subtracting the red 

shaded area CBD, and multiplying the result by 2. 

 
Figure 28. Unshaded areas. 

The triangular area ABC is: 
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The area CBD is: 
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The total area in Figure 28(b) can be computed by using Equations(19), (20), and 

adding the circular area as: 
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 (21) 

The total area in Figure 27(a) can then be computed by using Equations (18) and 

(21) as: 
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  (22) 

where ��1 and ��2 are as previously shown in Equation (14). 

Figure 29 shows the probability of detection with respect to the angle of the 

searcher’s path (��) while the angle of the border (�.) is kept constant at 0. We vary �� from 

-89 to 89 degrees since �� =90° and �� =-90° makes ��1 and ��2 undefined (Equation (14)). 

We choose border length to be 200 distance units, detection radius to be 6 distance units, 

target speed to be 5 speed units, and searcher speed to be 20 speed units. We observe the 

maximum probability of detection (Pd) when �� =0°, i.e., when the searcher patrols over 

the border. We notice a decrease in Pd when �� increases or decreases. 
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Figure 29. Analytical results for geometric considerations. 

B. MONTE CARLO SIMULATI ON 

We generate the Monte Carlo simulation model for the analysis of varying �� by 

using the same principles of the single searcher problem, except the searcher travels on a 

linear path with angle �� between its path and border as in Figure 22. The border is aligned 

with horizontal axis. We use ten million replications in the simulation and varied �� from -

89 to 89 degrees with 0.1 degree increments. We do not include -90 and 90 degrees, 

because it makes the horizontal axis component of the searcher speed to be 0, causing 

only vertical movement, which violates the problem assumptions. We use the same 

parameters that we used to analyze the analytical solution in Figure 29. 

Figure 30 shows the analysis of the Monte Carlo simulation results. The red 

dashed line shows the analytical solution obtained in Figure 29. The blue line shows the 

estimated probability of detection (�ldP ) along with its 95% confidence interval shown 

with green dotted lines. 
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Figure 30. Simulation results of geometric considerations. 

We observe that the analytical solution and Monte Carlo simulation results are 

very close to each other. 

We also notice that the absolute difference between the maximum and minimum 

probability of detection in Figure 30 is only about 1%, and hence we can say that the 

probability of detection is nearly independent of the angle of the searcher. This may 

cause some problems in practice since the searcher also detects some targets which are 

very far away from the border for large ��, which may result in very large number of false 

positives. For this reason we need to set a limit on the maximum distance from the border 

that an object detected to be classified as a target. 

We introduce a new parameter d, which is the maximum distance from the border 

in order for an object detected to be classified as a target. In this case, if we look at  

Figure 31, in order for the searcher to classify an object it sees as a target, the target has 

to be between the two green dashed lines, both of which are distance d away from the 

border. If the object is outside this region, the searcher will not classify it as a target; in 

other words, the searcher will not detect it.  
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Figure 31. Introducing d. 

Figure 32 shows the results of the same Monte Carlo simulation after the 

introduction of d. In Figure 32(a), d is 50 distance units, and in Figure 32(b) it is 20 

distance units. In both cases we see that �ldP  stays nearly constant up to some ��, and then 

it starts to decrease. Smaller d causes us to observe this transition at smaller �� values. 

Specifically, we observe the transition when the searcher starts to move out of the region 

in which it is capable of detecting targets. 

 
Figure 32. Varying �� with the introduction of d. 
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Figure 33 shows the Monte Carlo simulation results when �� is kept constant at 0 

and �. is varied from -89 degrees to 89 degrees with 0.1-degree increments. We observe a 

similar behavior as in Figure 32. The estimated probability of detection stays nearly the 

same for small �., then it starts to decrease. 

 
Figure 33. Varying �.. 

Figure 34(a) and Figure 34(b) show the Monte Carlo simulation results as a heat 

map when both �. and �� are varied from -89 to 89 degrees with 0.1 degree increments for 

d=20 and d=50 distance units, respectively. We observe that the estimated probability of 

detection is maximized when �. and �� have the same value, i.e., when the searcher patrols 

over the border. We also see that there is some flexibility in this sense; that is, the 

searcher’s path may differ slightly from the border. For example, in Figure 34(a) when �. 

is 0, �� may be between -10 and 10 degrees and we still observe a probability of detection 

close to the maximum. This flexibility decreases with increasing border angles. 

When we increase d to 50 units, we notice that the flexibility increases. For 

instance, when �. = 0, �� may now be between -30 and 30 degrees, and we are still close to 

the maximum detection probability. 
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Figure 34. Detection probability as a function of both �. and ��. 
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C. ANALYSIS  

Up to now we worked on straight borders and straight searcher paths in order to 

obtain insights about the optimal deployment of UAVs. However, most borders are not 

straight lines. For example, assume the straight blue line in Figure 35(a) shows the border 

that we are trying to conduct surveillance. The dashed lines, that are separated d distance 

away from the border, mark the region that a detected object can be classified as a target. 

 
Figure 35. A sample non-straight border 

By using the results just obtained, we reason that a reasonable approach might 

involve approximating the region as in Figure 35(b). The dashed red lines mark our new 

region in which we can detect the targets; note that it is a subset of the region in  

Figure 35(a). The dashed dotted line shows the approximate border, which is distance d�c 

away from both dashed lines. This approximate border and detection region are simpler 

to analyze than the original border, and because the approximate detection region is 

contained within the original region, the detection probability we estimate will be a 

conservative estimate of the actual detection probability. 

If a border cannot be approximated as a single straight line, we can divide the 

border into several segments and generate multiple approximations. In this way we can 

analyze each segment separately. A sample border that cannot be divided into a single 

approximation is shown in Figure 36(a), and its possible approximation is shown in 

Figure 36(b). The red lines show one segment and the green lines show the other. 
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Figure 36. A sample complex border 
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V. IMPERFECT SENSOR 

In the previous chapters, we only considered cookie-cutter sensors. Cookie-cutter 

sensors are perfect sensors; that is, if a target is within the detection range, it is detected 

with probability 1. In reality, no sensor is perfect, which means there is a probability that 

even if a target is within the detection range of a sensor, it may not be detected.  

For example, assume the circle in Figure 37 shows the detection range of an 

imperfect sensor (the searcher is stationary at point A carrying an imperfect sensor) with 

detection radius R. The detection range marks its detection region, where the sensor is 

capable of detecting the target. If a target does not get into the detection region, it is not 

detected. Assuming that the target is not initially within the sensor’s detection region, in 

order for detection to occur, the target should enter the detection region at some point, 

which is the point B in Figure 37. Without being detected, the target may exit the 

detection region at some other point, which is the point D in Figure 37. On its way from 

B to D, the target passes through the point C, which is its “closest point of approach”. 

The distance between the searcher and the target at this closest point is defined as the 

lateral range (x) (Wagner et al., 1999). 

 
Figure 37. Lateral range (x). 
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Suppose a target is moving along a line with respect to a searcher which has an 

imperfect sensor. We can regard this as a searcher stationary geometry. Also suppose that 

the target enters and exits the detection region of the sensor at points B and D, 

respectively, as in Figure 37. At point B, the probability of detection is 0. After the target 

passes point B, the cumulative probability of detection starts to increase and keeps 

increasing as long as the target stays within the detection region. This results in the peak 

of the cumulative probability of detection to be observed at point D, when the target exits 

the detection region. This cumulative probability is denoted by P(x), and its graphical 

representation for all values of x is known as a “lateral range curve”, where x is the 

minimum distance observed between the target and the sensor while the target travels 

within the detection region of the sensor (Wagner et al., 1999). 

A sample lateral range curve can be of the form 

2x
ke

� § � ·��� ¨ � ¸
� © � ¹ (Soza & Company, Ltd., 

1996) like the solid line in Figure 38(a), or 1

ba
xe

��

��  like the dashed line in Figure 38(a). 

Figure 38(b) shows a family of lateral range curves of the form 

2x
ke

� § � ·��� ¨ � ¸
� © � ¹for various k. 

Increasing k results in an increase in the width of the lateral range curve. Figure 38(c) and 

Figure 38(d) show a family of lateral range curves of the form1

ba
xe

��

��  for various a and 

b, respectively. From the figures we see that a controls the witdth of the curve and b 

controls the steepness.  
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Figure 38. Lateral range curves. 

Since our goal is to have an insight into imperfect sensors, we only study the 

simple border patrol problem with a single target and a single searcher that has an 

imperfect sensor. We denote this problem as the simple imperfect sensor problem. The 

difference between this problem and the problem in Chapter II.A , is only the sensor’s 

imperfectness. For our studies, we choose an imperfect sensor which has the lateral range 

curve as 
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The lateral range curve we choose is shown in Figure 39. We decide not to choose 

the maximum cumulative detection probability as 1; rather, we choose 0.95, in order to 

always give the target a chance to escape, which is mostly the case in real life 

applications. We also set a limit to the maximum detection range as 6 distance units. 

 
Figure 39. Chosen lateral range curve. 

In Figure 39 we see that the lateral range (x) also takes negative values. The 

positive lateral range values refer to a target passing through one semicircle of the 

detection region. Likewise, negative values refer to a target passing through the other 

semicircle. This may be useful for some kinds of sensors (radars, etc.). Since we decided 

to work on a symmetric lateral range curve, we do not take into account which side the 

closest point of approach is observed.  

In order to make an analysis on the simple imperfect sensor problem, instead of 

building upon our model in Chapter II.A.2, we generated an event-driven model, in 

which we calculate the minimum distance that is going to be observed between the target 

and the searcher in the simulation and decide whether a detection occurs. Calculation of 

this distance is provided in Appendix D. We verified our new model by comparing it to 

our time-step simulation in Chapter II.A.2, with the same parameters as used in Figure 9. 

Figure 40 shows the comparison of the time-step simulation and the event-driven 
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simulation. As we can see from the figure, the results are nearly the same, and hence, we 

have verified our event-driven model. 

 
Figure 40. Comparison between the time-step and event-driven simulations. 

 

In some complex problems (with geometric considerations, dynamic target 

motion, line-of-sight (LOS) obstacles, etc.), it may not be appropriate, may be very hard, 

or even may be impossible to use an event-driven model, which forces us to use a time-

step simulation model.  

In the cookie-cutter sensor cases that we studied in the previous chapters, we used 

time-step simulations and quit the simulation if the target gets within the detection region 

of the searcher; otherwise, we ran the simulation until the simulation end time, or until 

the target goes to a point where it cannot be detected anymore, whichever is smaller. In 

the case of an imperfect sensor, we cannot end the simulation, we need to log the distance 

between the searcher and the target, and make the necessary computations at the end of 
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the simulation to decide if the target is detected or not. Keeping track of this distance 

requires a new vector, which may have a very large size depending on the length of the 

simulation, leading to memory problems. Increasing the number of targets and/or 

searchers requires new vectors which multiplies the memory problem. 

Instead of generating a vector to keep track of the distance, we may implement an 

algorithm that keeps track of the distance by storing it to a variable, and updates the 

variable if the distance is reduced further. But this approach requires new computations 

and new if-else statements to execute, which increases the runtime. We also cannot stop 

the simulation before the simulation end time, in case the target gets closer to the 

searcher. Alternatively, to end the simulation before the simulation end time, we can 

implement another algorithm which further increases computation in the simulation. The 

effect of the increase in computations is infinitesimal in the simple imperfect sensor 

problem, but the problem gets huge when there are multiple searchers, when the 

simulation end time is long, and when we perform a large number of replications. 

For these reasons, it would be nice to decide, without any extra computations, if 

the target is detected or not at the first instance the target enters the detection region of 

the searcher. This is only possible, if the lateral range curve of the sensor is a step-like 

function; that is, it has a constant cumulative probability of detection for some range of x, 

and it has 0 cumulative detection probability for the remaining range of x. If P(x) is 

constant within the detection region, we can decide whether or not the target is detected 

at the first instance the target gets into the detection region and quit the simulation. 

As a matter of fact, Soza & Company, Ltd. (1996) suggest approximating lateral 

range curves as cookie-cutter sensors or M-Beta sensors in such a way that the areas 

under the lateral range curves of both the actual sensor and its approximation are equal. 

In the M-Beta sensor model, the cumulative detection probability is kept constant at some 

value M, which is between 0 and 1. The width of this approximate lateral range curve is 

adjusted to �� in order to set the areas under the lateral range curves of the actual sensor 

and its approximation equal. The cookie-cutter sensor model is a specific case of M-Beta 

sensor model when M is chosen to be 1. Figure 41 shows the cookie-cutter approximation 

and M-Beta range approximation when M is set to 0.5, along with our original sensor 
 58 



model. We calculate the area under the curve to be 7.2 units, so the cookie-cutter sensor 

approximation has 2R=7.2, which makes its detection radius to be 3.6 units. For the M-

Beta approximation, we use M=0.5, so we have �0��=7.2, which results in ��=14.4, and 

hence, the detection radius is 7.2
2

R
�E

� �  distance units. 

 
Figure 41. Sample lateral range curve approximations. 

We performed three different simulations for the original sensor model and its 

two approximations, all of which are shown in Figure 41. For all models, the searcher 

patrols the border with its turning points being equal to its maximum detection range 

according to Figure 41. We calculate the closest distance observed between the target and 

the searcher, and decide whether the target is detected. 

Figure 42 shows the comparison of the three models. In the three subfigures, we 

vary all the variables in the border search problem one by one, while keeping the others 

constant, and observe the probability of detection. We performed one million replications 

in all simulations, and only plotted the mean value of the estimated detection probability 

in all cases. In Figure 42(a) we vary the searcher speed from 0.1 to 300 speed units in 0.1 

unit increments, while keeping the target speed and border length constant at 5 speed 

units and 200 distance units, respectively. In Figure 42(b) we vary the target speed from 

0.1 to 15 speed units in 0.1 unit increments, while keeping the searcher speed and border 

length constant at 150 speed units and 200 distance units, respectively. Similarly, in 
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Figure 42(c), we vary the border length from 20 to 200 distance units in 10 unit 

increments, while keeping the target speed and searcher speed constant at 5 and 150 

speed units, respectively. 

When we vary the speed of the searcher and the target (Figure 42(a) and  

Figure 42(b)), we see that all three models are similar when the actual detection 

probability (probability of detection obtained from the original sensor model) is low, and 

they differ when the actual probability of detection increases. We get higher estimates 

with the cookie-cutter sensor approximation and lower estimates with the M-Beta sensor 

approximation. 

 
Figure 42. Comparison of the actual sensor and the approximations. 

In Figure 42(c), we see that the actual probability of detection with varying border 

length has a concave shape, it first increases with increasing speed and then it starts to 

decrease. We would normally expect to see a non-increasing function since the border 

length negatively impacts the probability of detection. We consider the extreme case in 

order to see the reason for the concave shape. In the extreme case, the border length is 
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equal to two times the maximum detection range (2x6=12 distance units). The searcher 

stays stationary in the middle of the border at this border length. 

When the searcher is stationary, due to the lateral range curve of its sensor which 

is shown in Figure 39, most of the targets that are close to the edges of the border will not 

be detected. This dramatically decreases the detection probability. For this reason, we 

conclude that the turning distance has an important impact on detection probability. We 

conduct an analysis on the turning distance for the actual sensor model, similar to our 

analysis in Chapter II.A.3, and present it in Appendix E.  

With this analysis we conclude that the optimal turning distance depends on 

border length. We also expect a difference depending on the lateral range curve of the 

sensor. For this reason, the turning distance should be determined depending on the 

length of the border, since border length is constant for a particular problem. If a user 

cannot determine the turning distance, he or she can take the turning distance as 0; in 

other words, the searcher should go all the way to the end of the border before turning the 

other way, since the effect in the detection probability is negligible compared to choosing 

the optimal turning distance. On the contrary, choosing a bigger turning distance can 

yield worse results, especially when the border length is small. 

Figure 43 shows the comparison of the actual sensor model with its two 

approximations, as in Figure 42, with the only difference being the turning distance in the 

simulations. We reduce the turning distance to zero in the original sensor model. 

We see that changing the turning distance does not affect the detection probability 

considerably when we vary only the searcher and target speed. Because we set the border 

length to be 200 distance units, and at this border length, the difference in the detection 

probability was ignorable when we varied the turning distance from 0 to 6 distance units 

(see Appendix E).  
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Figure 43. Comparison of the actual sensor and the approximations. 

In Figure 43(c), we now see a non-increasing estimated detection probability in 

the actual sensor performance with increasing border length. The cookie-cutter sensor 

approximation has higher estimates than the actual sensor, and the M-Beta approximation 

has lower estimates. We also note that the estimated detection probability of the M-Beta 

sensor model stays nearly constant at 0.5 throughout the range of the border length we 

studied. This is reasonable since the maximum detection probability should be 0.5, even 

when the searcher covers the entire border. We would expect it to start to decrease after a 

high border length. 

Due to the fact that in a particular problem we would know the border length, and 

it stays constant, we decide not to study various border lengths. Instead, we study the 

lateral range curve approximations only for the case when the border length is 200 

distance units. In a different problem, the actual border length that is observed can be 

used. Since we chose the border length to be 200 distance units, we choose the turning 
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distance as 2.64 distance units, which results in the maximum estimated detection 

probability (Appendix E). 

We study the cookie-cutter sensor and M-Beta sensor approximations separately 

in the following sections. 

A. COOKIE -CUTTER SENSOR APPROXIMATION  

In Figure 43(a), we study the estimated detection probability when varying the 

speed of the searcher and keeping other problem parameters constant. We note that the 

cookie-cutter sensor model approximation yields results close to the actual sensor model 

for searcher speeds nearly up to 100 speed units, and then it starts to differ. For high 

speed values, the cookie-cutter sensor approximation provides highly optimistic results. 

Similarly, in Figure 43(b), we see the estimated detection probability by varying 

the speed of the target and keeping the other problem variables constant. In this case we 

note that the cookie-cutter approximation always yields higher estimates. The gap 

between the detection probabilities of the actual model and the cookie-cutter 

approximation is especially wide when the target speed is small. 

In general, we note from Figure 43(a) and Figure 43(b) that the cookie-cutter 

sensor approximation results in highly optimistic estimates, especially in the regions 

where the actual sensor model also yields high detection probabilities. In this case, we 

would want to generate a better approximation. In the cookie-cutter sensor 

approximation, we first calculate the area under the lateral range curve, which is shown in 

Figure 39, as 7.2 area units. We calculate the detection radius of the cookie-cutter 

approximation by setting the area under its lateral range curve equal to that of the original 

sensor model, which is 7.2 area units. By this method we calculate the detection radius of 

the approximate model as 3.6 distance units. 

Since the cookie-cutter sensor model is an optimistic model, we can make it a 

better approximation by somehow reducing its performance. In an approximate model, 

we can only change the cumulative detection probability and the detection radius from 

the actual sensor model. In a cookie-cutter model, the cumulative detection probability 
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should be 1 within the detection region, which leaves us with the only variable we can 

adjust in the cookie-cutter approximate model, the detection radius.  

We can reduce the detection radius of the approximate sensor model in order to 

reduce its performance. We can do this by setting the area under the lateral range curve of 

the approximate cookie-cutter sensor model to some proportion of the area under the 

curve of the actual sensor model. For example, setting this proportion to 90% reduces the 

detection radius of the approximate model to 3.24 distance units. 

Figure 44 shows the estimated detection probability for the actual sensor model in 

red dashed line and for various cookie-cutter approximations in solid lines with different 

colors. We change the proportion of the cookie-cutter approximations as mentioned in the 

previous paragraph to obtain several cases. We call each approximation with their 

percentage values. For example, in the case when we set the area under the lateral range 

curve of the cookie-cutter approximation to 80% of the area under the lateral range curve 

of the original sensor model, we call it the 80% cookie-cutter model. 

Figure 44 shows 65% to 100% cookie-cutter sensor models with 5% increments. 

The upper and lower curves in Figure 44(a) and Figure 44(b) show 100% and 65% 

cookie-cutter approximations, respectively. The curves in between them show other 

percentages in decreasing order from top to bottom. 

Figure 44(a) shows the estimated detection probability with respect to searcher 

speeds between 1 and 300 speed units when we keep the target speed at 5 speed units and 

border length at 200 distance units. Each approximation seems to be good for some range 

of searcher speed. For instance, the 100% cookie-cutter sensor model is good when the 

searcher speed is less than 40 speed units, the 95% model is good between 40 and 110 

speed units, and the 90% model is good between 110 and 150 speed units, etc. Since the 

searcher speed is a variable that a searcher can control, the percentage model that fits well 

with the speed range of the searcher can be used. 
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Figure 44. Various cookie-cutter approximations. 
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Figure 44(b) shows the estimated detection probability with respect to target 

speeds between 1 and 15 speed units, while keeping the border length and searcher speed 

constant at 200 distance units and 150 speed units, respectively. We observe similar 

results as we observed in Figure 44(a). Each percentage model has a target speed range 

for which its estimate is close to the original sensor model’s estimate. For example, the 

90% cookie cutter model is good when the target speed is between 5 and 7 units, and the 

95% model is good when the target speed is greater than 7 speed units, etc. 

We can use the results from Figure 44(a) when we are certain that the target speed 

is 5 speed units. We can choose the best approximation depending on the speed range of 

the searcher. For example, if the maximum speed of the searcher is 150 speed units, we 

can use the 95% cookie-cutter approximation. If we would not want to have higher 

estimates than the original sensor model, we can use the 90% cookie-cutter 

approximation. If we want to be more accurate, we can use different approximations 

depending on the speed of the searcher. 

Similarly, we can use the results from Figure 44(b) when we are certain that the 

searcher speed is 150 speed units. This makes sense if we have a sensor whose 

performance deteriorates with increasing speed like the case we studied in Chapter III.C. 

In this case we may observe the best detection performance at a certain searcher speed. 

We can choose the best approximation depending on the speed range of the target. 

Although we mostly know and can control the searcher speed, we cannot control 

and may not be able to know the target speed. In this case, it is more important to use the 

results from Figure 44(b) and use these results for a range of target speed. It makes more 

sense to set an upper bound on target speed and try to obtain a good approximation to the 

actual sensor model. If we assume that the maximum target speed is 5 speed units and try 

to find the best approximation, we may say that none of the approximations in  

Figure 44(b) seems to be good. 
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B. M-BETA SENSOR APPROXIMATION 

We now study M-Beta approximations to the original sensor model. In Figure 43 

we study the M-Beta approximation when M=0.5, and observe that the approximation 

generally result in very low estimates compared to the original sensor model. 

In M-Beta sensor approximations, we can adjust M, which is the cumulative 

detection probability, to any value between 0 and 1. After choosing M, we can compute 

��=2R by setting the areas under the lateral range curves of the actual sensor model and 

M-Beta approximation equal. We can then do simulations with the obtained detection 

radius. 

Figure 45 shows the estimated detection probability of the actual sensor model in 

red dashed lines and various M-Beta approximations in solid lines when we vary M from 

0.8 to 0.95 in 0.5 increments. We did not simulate the M=1 case, since it is actually the 

cookie-cutter approximation. The upper curves in Figure 45 show the detection 

probability when M=0.95 and we can see the curves for other M values in decreasing 

order, from top to bottom. 

Figure 45(a) shows the estimated detection probability for the M-Beta 

approximation when we vary the searcher speed up to 300 speed units while keeping the 

target speed and border length constant at 5 speed units and 200 distance units, 

respectively. In general, the results seem to be better than in Figure 44(a). This time, the 

M=0.8 approximation seems to be good for searcher speeds up to 170 speed units. 

Similarly, Figure 45(b) shows the estimated detection probabilities for the M-Beta 

approximation when we vary target speed up to 15 speed units while keeping the searcher 

speed and border length constant at 150 speed units and 200 distance units, respectively. 

The results seem to be better than in Figure 44(b). For example, the M=0.8 approximation 

seems to be good for target speeds greater than 4 speed units. Furthermore, the M=0.85 

approximation seems to be acceptable for target speeds lower than 4 speed units. 

Although there is a larger gap in the estimated detection probabilities for low target 

speeds when M=0.85, this model is conservative when target speeds are low and 

relatively accurate for higher target speeds. 
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Figure 45. Various M-Beta approximations. 
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From Figure 45(a) and Figure 45(b) we can say that the M-Beta approximation 

with M=0.85 is an acceptable approximation. But in an M-Beta approximation there are 

two variables, M and ��. We can determine the value of M and calculate �� by setting the 

areas under the lateral range curves of the original sensor and M-Beta approximation 

equal. We now analyze whether we can improve our results by setting the areas under the 

lateral range curve of the M-Beta approximation to some proportion of the area under the 

lateral range curve of the original sensor, instead of setting these areas equal. We call 

each approximation by their percentage and M values, such as, “80% M=0.9 

approximation.” In the analysis, our goal is to obtain an appropriate approximation which 

is not highly optimistic over the range of the target speed. We assume that the target 

speed is less than 5 speed units. We also do not vary the searcher speed as we assume that 

it can be controlled and optimal detection performance is observed at a particular speed; 

we assume it is 150 units in our case, and hence, the searcher tries to keep its speed 

constant at this value. 

Figure 46 shows the estimated detection probability with respect to target speed 

for several percentage M-Beta scenarios. We vary the target speed from 0.1 to 5 speed 

units in 0.1 speed unit increments in order to study the case when we do not exactly know 

the target speed but know its maximum speed. 

Figure 46(a) shows the percentage scenario when M=0.95. The 60% M=0.95 

approximation seems to be the best approximation since it seems to be not highly 

optimistic over the entire target speed range. It does yield, however, much lower 

estimates for higher target speeds. 

Figure 46(b) shows the percentage scenario when M=0.9. The 85% M=0.9 

approximation seems to be the best approximation. Figure 46(c) shows the percentage 

scenario when M=0.85. The 95% M=0.85 approximation seems to be the best 

approximation. 

Figure 46(d) shows comparison of the best approximations obtained from  

Figure 46(a) through Figure 46(c). We choose 85% M=0.9 among the three best cases, 
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since it is not highly optimistic and does not yield very low estimates over the range of 

target speed. 

 
Figure 46. Percentage M-Beta approximations. 

In our analysis we note that M-Beta sensor approximations provide better results 

since these approximations have two parameters that can be controlled. In the analysis, 

the resolution of the parameters can be reduced to obtain better results. Additionally, the 

best M and its percentage can be chosen by some other means instead of choosing the 

best by eye. 

Although we perform our analysis on a particular sensor, the sensor with its 

lateral range curve shown in Figure 39, the same procedure may be applied to any sensor. 

Depending on the sensor model, different approximations may be more appropriate. 
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VI.  CONCLUSION AND FUTURE WORK  

We develop both analytical and Monte Carlo simulation models for the simple 

border patrol problem in which we have a single searcher having a cookie cutter sensor 

and patrolling over a straight border to detect a single target.  

After verifying the models for the simple border patrol problem, we add some 

complexity to it by adding another searcher. We propose two different searcher paths for 

the multiple-searcher problem: the disjoint path and the common path. We develop both 

analytical and Monte Carlo simulation models for the disjoint path problem by building 

upon the single searcher case. We develop a Monte Carlo simulation model for the 

common path problem. 

When we compare the results of the two multiple-searcher cases, we notice the 

importance of allocating the border to the two searchers. Therefore we study the optimal 

allocation, which is the allocation resulting in the maximum detection probability. We 

study two ways to determine the optimal allocation: by analytical methods and by Monte 

Carlo simulation. We conclude that we should choose the disjoint path rather than the 

common path and allocate the border to the searchers optimally to maximize the 

detection probability. 

We analyze the effect of degrading detection performance with increasing 

searcher speed. We perform our analysis for a single searcher and observe that the 

maximum detection probability occurs at a certain searcher speed and hence detection 

radius. We extend this analysis to multiple-searcher problems. Besides analyzing the 

speeds that result in maximum detection probability, we determine the optimal allocation 

to maximize the detection probability. 

We add complexity to the simple border patrol problem by studying geometric 

considerations, in which we vary the angles of the border and searcher’s path. We 

develop both analytical and Monte Carlo simulation models for the geometric 

considerations on the searcher’s path. We note that the detection probability is nearly 

independent of the searcher’s path’s angle before introducing d, the distance from the 
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border that a detected object can be classified as a target. After introducing d, we note 

that the detection probability decreases considerably after a certain angle, which depends 

on d.  

After noting a similar behavior when we change the angle of the border without 

varying the searcher’s angle, we vary both angles and observe the maximum detection 

probability when the searcher’s path is aligned with the border. We also note that we still 

have some flexibility in this case, and we have higher flexibility when the angles are 

lower or when d is higher. 

We introduce the concept of lateral range curves of imperfect sensors. For this 

case, we study the single searcher problem in which the searcher has an imperfect sensor. 

We discuss possible approximations to an imperfect sensor and study their performance 

on a sample imperfect sensor. 

The following can be studied as an immediate future work to this study: 

�x Study nonlinear searcher paths, as well as searcher paths obtained by 
combining two separate linear border segments. 

�x Model line-of-sight (LOS) restrictions or, more generally, model detection 
probabilities that depend on the target’s location. 

�x Control (and optimize) the speed of the searcher; for example, consider 
increasing its speed in the regions where it cannot detect targets. 

�x Instead of single independent targets, model target groups that act 
together. 

�x Explore intelligent targets that can observe and react to searcher actions. 
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APPENDIX A. DETERMINING THE TIME STEP 

When we compute the detection probability of the simple border patrol problem 

in Chapter II.A.1, we calculate the area of coverage of the searcher in target stationary 

geometry as shown in Figure 4(a). When we perform a time-step simulation, we would 

like to cover the same area to obtain accurate results. However, due to the nature of time-

step simulations, there may be some errors in the simulation. 

For example, assume the dotted yellow lines in Figure 47(a) mark the edges of the 

coverage area of the searcher in target stationary geometry. Any target between these two 

lines is detected. Assume the position of the searcher at time t=t0 is point A and its 

position at time t=t0���ût is point B, as shown in Figure 47���D�������Z�K�H�U�H���ût is the time step. In 

this case, the target, which is shown as a red dot in the figure, will not be detected, even 

though it is actually within the coverage area of the searcher. 

 
Figure 47. Error in time-step simulations. 

In general, the targets that fall in the regions CDE and HIJ, which are shown in 

Figure 47(b), will not be detected in the time-step simulation, causing errors in the 

simulation results. We can compute the percentage error caused by the time-step 
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simulation by dividing the area of region CDE to the area of rectangle ABCD by 

symmetry. 

In Figure 47(b) we have: 
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The area of the rectangle ABCD is: 
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We can compute the percentage error by using Equations (25) and (26) as: 
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which is a function solely of ��. 

Figure 48 shows the percentage error with respect to ��. From the figure we can 

say that �� smaller than 3 degrees produces satisfactory results. 
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In order to obtain a relationship between the percentage error and the time step, 

we first need to find the relationship between �� and the time step. For this case we can use 

the fact that in a time step, the searcher travels 2 2v u t� � � u � ' units in target stationary 

geometry, which is equal to the line segment DC in Figure 47(b). By using this we can 

find the relationship between �� and the time step as: 
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Figure 48. Percentage error with respect to ��. 

By choosing the time step as a function of R, u, and v we can make the percentage 

error independent of them. For this reason, assume we select the time step as 

2 2

R
t k

v u
� ' �  

��
, where k is a constant to be determined to obtain low enough percentage 

error. In this case we have: 
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If ��=3 degrees, we have k=9.6. So if we select k>9.6 we would expect to have 

satisfactory results. But since we want to compare our time-step simulation results with 

other methods in the thesis, we selected k=25. In this way we reduced the percentage 

error down to 6.7x10-3 percent. 

Increasing the time step reduces the runtime but increases the percentage error; 

likewise, decreasing it reduces the percentage error but increases the runtime. The time 

step should be selected in order to balance accuracy and runtime. 
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APPENDIX B. CALCULATING THE MULTIPLIER TO SET A 
LIMIT IN THE SIMULATION END TIME IN DISJ OINT PATH 

PROBLEM  

In the Monte Carlo simulation of the single searcher problem, it is easy to set a 

simulation end time (tmax) since we know the time it takes for the searcher to make a 

complete cycle, i.e., max

( 2 )L R
t

v
��

� . The problem gets complicated when there are two 

searchers. For example, in the disjoint path problem the searchers complete their cycles 

mostly in different durations. We can take the lowest common multiple of these two 

cycle times and set it as the simulation end time; however, depending on the cycle times, 

this lowest common multiple may be a very large number, resulting in an unnecessary 

increase in the simulation end time. 

Initially, we made the simulation end time the maximum of the cycle times in the 

disjoint path problem. Figure 49(a) shows the probability of detection with respect to the 

allocation to the first searcher when the number of replications is one million, the border 

length is 200 distance units, and the other parameters are as stated on the figure. The 

purple line shows the estimated value of the probability of detection (�l
dP ) along with its 

95% confidence interval. Due to the large number of replications, the confidence interval 

is so narrow that it cannot be seen in the figure. The dashed blue line shows the 

probability of detection (Pd) obtained from the analytical solution in Equation (9). We 

see that the Monte Carlo simulation results differ from the analytical results at some 

regions. Since the confidence interval is very narrow, the differences are not random; it 

follows a pattern caused probably by a flaw in the simulation runtime. 

In order to obtain satisfactory results, we decided to introduce a simulation end 

time multiplier, k, and use it to determine the simulation end time by multiplying it with 

the maximum cycle time, i.e., tmax = kmax(tcycle1, tcycle2). We use the largest gap in  

Figure 49(a), when the allocation to the first searcher is 49%, and varied k in order to 

obtain Figure 49(b). Figure 49(b) shows the probability of detection with respect to the 

simulation end time multiplier in the disjoint path problem when the allocation to the first 
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searcher is 49% percent and all other variables are the same as the ones used to obtain 

Figure 49(a). The thin green line shows the probability of detection obtained analytically, 

and the solid thick blue line shows the �l
dP  obtained from the Monte Carlo simulation, 

with its 95% confidence interval shown in dotted red lines. We use one million 

replications for the Monte Carlo simulation. 

 
Figure 49. Study on simulation end time multiplier. 

In Figure 49(b) we see that the Monte Carlo simulation results improve 

considerably, even when the multiplier is only 2. We also see that having a multiplier of 4 

is good enough, but we decided to have a multiplier of 25 since after that multiplier the 

Monte Carlo simulation and analytical solutions are very close, and we may need to have 

higher multiplier for different problems. 

Figure 12 shows the results of Figure 49(a) when we choose k to be 25. We can 

easily see the improvement and say that choosing k to be 25 provides satisfactory results. 
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APPENDIX C. CONCAVITY  

The aim of this appendix is to present experimental evidence that the function to 

be maximized in  
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is concave. 

 

A function f (x) is concave if it satisfies the following condition (Boyd & 

Vandenberghe, 2004): 

 ( (1 ) ) ( ) (1 ) ( )          , ,   [0,1].f x f f xx x Xxx� O � O � O � O� O� � � � � t � � � � � ��• �•� c � c���c   (31) 

What this condition briefly implies is shown in Figure 50. First we pick two 

values for x and x�c that x can take, and for all [0,1]�O�•  Equation (31) should be satisfied. 

This condition should hold for all values x and x�c can take. 

 

 
Figure 50. Concavity. 
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In our problem shown in Equation (30) we have f (L1) instead of f (x), �Z�K�H�U�H�������”��

L1 �”��L. We try to show that the function f (L1) is concave by showing: 

1 1 1 1 1 1( (1 ) ) ( ) (1 ) ( )          0 , ,   [0,1]f L fL L f L L LL� O � O � O � O� O� � � � � t � � � � � � � d � � � •� c � c � c � d   (32) 

while keeping L, R1, R2, u, v1, and v2 constant. Moreover, we want to show that the 

function in Equation (30) is concave over a wide range of L, R1, R2, u, v1, and v2. For this 

reason we vary L from 10 to 1000 distance units with 10 unit increments, R1, and R2, 

from 0.2 to 5 distance units with 0.2 unit increments, u from 0.2 to 10 speed units with 

0.2 unit increments, and finally, v1, and v2 from 3 to 150 speed units with 3 unit 

increments. 

For each combination of L, R1, R2, u, v1, and v2 as described, we check if 

Equation (32) holds by choosing 1L (from 0 to L with L/20 increments) and 1L �c (from 1L

+ L/20 to L with L/20 increments) and varying alpha from 0.05 to 0.95 in 0.05 

increments. 

In our experiment, we omit the cases when R2 is less than R1, since we also have 

similar combinations when R2 is greater than R1. We also omit the cases when 1 1L L� �c, 

�.=0, and �.=1 since these result in equality of both sides in Equation (32), which does not 

violate the conditions. In this way, we reduce the runtime of the experiment considerably. 

After all iterations, we were unable to find a counterexample showing that the 

function in Equation (30) is non-concave, although such a counterexample may exist. 

In the experiments, we use the High Performance Computing (HPC) network at 

the Naval Postgraduate School. If we used a home computer, this experiment would have 

taken around 10 years. By using the HPC network, we manage to do it in seven days. 
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APPENDIX D. CALCULATING CLOSEST POINT OF APPROACH  

In this appendix we briefly describe how we calculate the closest point of 

approach for the single searcher, single target problem. The closest point of approach is 

the minimum distance to be observed between the target and the searcher in a particular 

problem. In order to determine this quantity, we use target stationary geometry as 

described in Chapter II.A.1. 

Figure 51 shows target stationary geometry in a particular problem. The target, 

the big red dot at point T, stays stationary and the searcher follows the green dashed 

dotted lines to detect the target. The turning points of the searcher are marked with red 

dotted lines. These lines divide the problem into sections with length w. By symmetry, 

we can say that the closest point of approach is observed in the section where the target 

stays. For this reason, we only need to study the region in which the target is observed. 

In a particular problem, we can have two different sections depending on whether 

the searcher is moving to the right or to the left in that section. In order to determine 

which section the target is in, we take the mod of the target’s vertical position with 

respect to the width of the sections, w. If the result is an even number, the target is in the 

section where the searcher is moving to the right and vice versa. 

After determining which kind of section the target is in, we only work on this 

section. Here we only show the procedure on one type of section, but we can easily 

perform a similar procedure on the other section by the same logic. 

Figure 51(b) shows the section in which the target in Figure 51(a) is observed. In 

this case we calculate the closest point of approach by finding the distance between the 

target’s position (T) and the line passing through the searcher’s path (AB). This may not 

be accurate if the target is close to the edges. We may obtain a lower value for the closest 

point of approach in this case. In order to obtain accurate results, we need to find the 

distance between the target and the line segment AB, not the line passing through AB. 
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Figure 51. Target stationary geometry in calculating closest point of approach. 

For this reason we divide the section into three regions as shown in Figure 51(b). 

The dotted lines are perpendicular to the searcher’s path. These lines divide the section 

into three regions. After determining which region the target is in, if the target is in region 

1 or 3, we calculate the distance between the target and the point B or A, respectively. 

Moreover, if the target is in region 2, we calculate the distance between the target and the 

line passing through AB. By this way we obtain the closest point of approach. 
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APPENDIX E. TURNING DISTANCE CALCULATION 

In Chapter II.A.3, we study the turning distance for the simple border patrol 

problem. In this problem we have a single searcher with a cookie-cutter sensor. In this 

appendix, we study the turning distance when the same searcher has the lateral range 

curve as shown in Figure 39. 

Like the analysis in Chapter II.A.3, we consider ten different scenarios defined by 

the border length. We begin with a border length of 100 units and incrementally increase 

our border length by 100 units until we reach a length of 1000 units. In doing so, we are 

able to see the effect of the turning distance for several values of probability of detection. 

In all ten scenarios, we fix the detection radius R at 6 units, the target’s speed u at 

5 speed units, and the searcher’s speed v at 100 speed units. We vary the turning distance 

from 0 to 12 units in 0.06 unit increments. We perform the analysis by running Monte 

Carlo simulations with one billion replications for each scenario. 

Figure 52 shows the results of the turning point analysis. Each subfigure shows 

one of the scenarios, with the corresponding barrier length stated on each subfigure. In 

each subfigure, the horizontal axis shows the turning distance, and the vertical axis shows 

the estimated probability of detection �l
dP  in blue straight line, along with its 95% 

confidence interval in red dotted line. 

We notice that when border length is low, i.e., when the max �ldP  observed is high 

(Figure 52(a) through Figure 52(f)), �ldP  stays constant up to some turning distance and 

then it starts to decrease considerably. For example, when the border length is 20 distance 

units, and if we set the turning distance to R=6 distance units, we lose around 22% (from 

0.95 to 0.74) of maximum �ldP  that can be observed. 
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Figure 52. Turning distance analysis on imperfect sensors. 
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In Figure 52(g) through Figure 52(j), we note that the optimal turning distance 

that results in the maximum �ldP  to be observed occurs between 0 and R. This optimal 

point changes depending on the problem. Furthermore, in these cases, we do not lose 

much of the maximum Figure 52�ldP  if we do not adjust the turning distance properly. For 

example in Figure 52(g), we lose about 4% of the maximum �ldP  if we incorrectly set the 

turning distance to R units. In Figure 52(j), we lose nearly 5% of the maximum �ldP  when 

we incorrectly set the turning distance to 0 or R. 

We observe the maximum �ldP  at different turning distances depending on the 

problem. In all the scenarios studied, we can lose much of the detection probability by 

incorrectly setting the turning point higher than the optimal. However, we either  

observe the maximum �ldP  or �ldP  that is close to the maximum when we set the turning 

distance to 0.   
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