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ABSTRACT

Network science and its many applications provide insight into several genres, including bio-
logical, neural, logistical and technical problems. The study of complex networks extends to
the Internet as well, merging graph theoretical concepts with those of computer science in an
effort to perform Internet topology measurements, ultimately contributing to inferred Internet
mapping. In this research, we examine whether the time of day is a factor when measuring
Internet topology. In doing so, we employ graph measures, statistical measures, and complex
network measures to compare graphs inferred from probes of the Internet via network monitors.
Using comparisons of these measures, we did not find indication that time was a factor for the
seven probing cycles examined in this study.

v



THIS PAGE INTENTIONALLY LEFT BLANK

vi



Table of Contents

1 Introduction 1
1.1 Why Measure the Internet? . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Why Is the Internet Hard To Measure? . . . . . . . . . . . . . . . . . . 2

1.3 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.4 Thesis Contribution . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.5 Organization of Thesis . . . . . . . . . . . . . . . . . . . . . . . . 3

2 The Internet 5
2.1 Overview of the Internet . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Internet Topology . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3 Traceroute . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3 Measures 15
3.1 Set Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.2 Graph Theory. . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.3 Complex Network Measures . . . . . . . . . . . . . . . . . . . . . . 21

3.4 Statistical Measurements . . . . . . . . . . . . . . . . . . . . . . . 24

4 Data and Methodology 29
4.1 Source of Data . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.2 Data Selection and Preparation . . . . . . . . . . . . . . . . . . . . . 31

4.3 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5 Results 35
5.1 Graph Measures. . . . . . . . . . . . . . . . . . . . . . . . . . . 35

vii



5.2 Statistical Measures . . . . . . . . . . . . . . . . . . . . . . . . . 36

5.3 Complex Network Measures . . . . . . . . . . . . . . . . . . . . . . 37

6 Future Work and Conclusion 49
6.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

6.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

List of References 51

Initial Distribution List 53

viii



List of Figures

Figure 2.1 Graphical representation of routers and links on the Internet, circa 1998. 5

Figure 2.2 Open Systems Interconnect Model. . . . . . . . . . . . . . . . . . . . 6

Figure 2.3 Example of an Internet Diagram. . . . . . . . . . . . . . . . . . . . . 7

Figure 2.4 Interface-level representations. . . . . . . . . . . . . . . . . . . . . . 9

(a) Network map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

(b) Graph of interfaces as seen from X. . . . . . . . . . . . . . . . . . . . 9

(c) Graph of interfaces as seen from Y. . . . . . . . . . . . . . . . . . . . 9

(d) Graph of interfaces as seen from Z. . . . . . . . . . . . . . . . . . . . 9

(e) Graph of interfaces as seen from R22. . . . . . . . . . . . . . . . . . . 9

(f) Graph of interfaces as seen from R31. . . . . . . . . . . . . . . . . . . 9

Figure 2.5 Router-level representation. . . . . . . . . . . . . . . . . . . . . . . . 10

(a) Network map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

(b) Graph. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

Figure 2.6 Subnet-level representations of network map. . . . . . . . . . . . . . . 10

(a) Network map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

(b) Graph. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

Figure 2.7 Autonomous System (AS)-level representation of a network. . . . . . . 11

(a) Network map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

(b) Graph. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

ix



Figure 3.1 Union of A and B, or A∪B. . . . . . . . . . . . . . . . . . . . . . . . 16

Figure 3.2 Intersection of A and B, or A∩B. . . . . . . . . . . . . . . . . . . . . 16

Figure 3.3 Symmetric Difference of A and B, or A⊕B. . . . . . . . . . . . . . . . 17

Figure 3.4 Seven Bridges of Königsberg. . . . . . . . . . . . . . . . . . . . . . . 18

(a) Königsberg Bridges. . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

(b) Graphical Representation. . . . . . . . . . . . . . . . . . . . . . . . . 18

Figure 3.5 Graphical representation of the Seven Bridges of Königsberg. . . . . . 20

Figure 3.6 Example to illustrate vsd and esd between two graphs. . . . . . . . . . 23

Figure 3.7 Boxplot of V0 data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

Figure 4.1 Locations of Cooperative Association of Internet Data Analysis (CAIDA)
Monitors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

Figure 4.2 Comparison of traceroutes with same source (203.181.248.60) and des-
tination (209.152.158.18) addresses. . . . . . . . . . . . . . . . . . . 33

Figure 5.1 Mean Vertex and Edge Counts by Hour. . . . . . . . . . . . . . . . . . 36

(a) Mean of Vertex Counts by Hour. . . . . . . . . . . . . . . . . . . . . . 36

(b) Mean of Edge Counts by Hour. . . . . . . . . . . . . . . . . . . . . . 36

Figure 5.2 Distribution of Vertex and Edge Counts for seven probing cycles in 24-
hour partitions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

Figure 5.3 A visualization of the vsd comparison (24 hrs x 24 hrs) for probing cycle
2013_02_15. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

Figure 5.4 A visualization of the esd comparison (24 hrs x 24 hrs) for probing cycle
2013_02_15. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

Figure 5.5 Data of G∗00: vertex count by geographic location. . . . . . . . . . . . 42

Figure 5.6 Data of G∗01: vertex count by geographic location. . . . . . . . . . . . 43

Figure 5.7 A visualization of the vsd comparison (24 hrs x 24 hrs) for probing cycle
2013_02_15. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

x



Figure 5.8 A visualization of the vsd comparison (24 hrs x 24 hrs) for probing cycle
2013_02_17. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

Figure 5.9 A visualization of the vsd comparison (24 hrs x 24 hrs) for probing cycle
2013_12_01. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

Figure 5.10 A visualization of the vsd comparison (24 hrs x 24 hrs) for probing cycle
2013_12_03. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

Figure 5.11 A visualization of the vsd comparison (24 hrs x 24 hrs) for probing cycle
2013_12_05. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

Figure 5.12 A visualization of the vsd comparison (24 hrs x 24 hrs) for probing cycle
2013_12_07. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

Figure 5.13 A visualization of the vsd comparison (24 hrs x 24 hrs) for probing cycle
2013_12_09. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

xi



THIS PAGE INTENTIONALLY LEFT BLANK

xii



List of Tables

Table 5.1 Vertex Counts by Probing Cycle. . . . . . . . . . . . . . . . . . . . . . 36

Table 5.2 Edge Counts by Probing Cycle. . . . . . . . . . . . . . . . . . . . . . . 37

Table 5.3 Data of probing cycle 2013_02_15: vsd comparison by hour. . . . . . . 39

Table 5.4 Data of probing cycle 2013_02_15: esd comparison by hour. . . . . . . 40

Table 5.5 Vertex and Edge Set Differences for Hour 00, probing cycle 2013_02_15. 42

Table 5.6 Vertex and Edge Set Differences for Hour 01, probing cycle 2013_02_15. 42

Table 5.7 Vertex and Edge Set Intersections for Hour 00, probing cycle 2013_02_15. 42

Table 5.8 Vertex and Edge Set Intersections for Hour 01, probing cycle 2013_02_15. 42

Table 5.9 Percentage of IPv4 Allocation Space for G∗00 and G∗01 vertices by Country. 44
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Executive Summary

Network science and its many applications provide insight into several genres, including bio-
logical, neural, logistical and technical problems. The study of complex networks extends to the
Internet as well, merging graph theoretical concepts with those of computer science in an effort
to perform Internet topology measurements, ultimately contributing to inferred Internet map-
ping. In this research, we examine whether the time of day is a factor when measuring Internet
topology. Our study employed graph measures, statistical measures, and complex network mea-
sures to compare graphs inferred from probes of the Internet via network monitors. The graph
measures of vertex and edge count played a significant role in determining our outcome; how-
ever, the use of graph measures alone is not sufficient. While the statistical measures allowed
for quantitative comparisons of each hourly partition, the small sample size of seven probing
cycles was not enough to employ more robust statistical analysis. Complex network measures
revealed small differences between the inferred graphs. Using comparisons of these measures,
we did not find indication that time was a factor for the seven probing cycles examined in this
study.
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CHAPTER 1:
Introduction

Over the last half century, the Internet evolved from an additional form of communication for
government and educational institutions at its inception to an alternative forum for knowledge
and information sharing as well as a major domain of national security, serving as an attack
vector for nation states and international hackers against economic and energy infrastructures.
As the Internet infiltrates further into human culture, it can be the foundation of political and
technological revolutions. With the proliferation of mobile computing across the globe, the
Internet serves as a medium of interaction without geographical bounds. The logical absence
of these physical limitations on the Internet increases the difficulty of "mapping" the Internet,
developing a topology for this continuously growing complex network.

Mathematically, the topology of the complex network known as the Internet relates to graph the-
ory concepts introduced by Leonhard Euler in 1735. Using these concepts, we study topology
by modeling the Internet’s logical connections as a graph, G(V,E), where V (G) is the vertex set
and E(G) is the edge set. The vertices contained in the vertex set V (G) represent the interfaces
on routers that logically connect the Internet, while the edges contained in the edge set E(G)

represent the logical interconnections of those interfaces.

1.1 Why Measure the Internet?
In its initial stages, the design of the Internet involved the use of the existing telephone infras-
tructure to route packets of data through a decentralized network [1]. The growth of the Internet
from these intended purposes as introduced by the Advanced Research Projects Agency Net-
work (ARPANet) to its current expansion did not occur without challenges and innovation.
Internet Service Providers (ISPs) deliver the Internet and World Wide Web (WWW) to resi-
dential homes and businesses across the globe. Larger Internet Exchange Points (IXPs) like
AT&T and Verizon act as the interconnect between ISPs, Autonomous Systems (ASes), and
content providers like Netflix and Amazon. Efficiency is also a key goal in the design of the
Internet, one that led to Content Delivery Networks (CDNs) which improve the performance
and reliability of Internet interactions [2].

Given the relationship between customer satisfaction and efficiency, Internet measurements can
influence economic decisions including those to establish relationships between ASes and IXP

1



that will maximize customer satisfaction and growth. From an information technology perspec-
tive, topology measurements can facilitate planning decisions on the location of resources for
network optimization. With information security in mind, topology measurements could reflect
the potential impact of vulnerability exploits and responses to mitigate their impact.

1.2 Why Is the Internet Hard To Measure?
Some of the Internet’s properties that improve its efficiency and proliferation also present chal-
lenges when attempting measurements, including its scale, vastness, and its continuous changes
over time [3].

Network operators with a focus on security may design networks with defense in depth to limit
information available through network scans and reconnaissance. As the Internet serves as an
interconnect for these networks, the implementation of security policies can limit the number
of interfaces discovered during topology measurements. The Internet’s large size can multiply
those limitations as security policies vary. As the number of devices increases, the consistent
growth of the Internet compounds these challenges. There are also economic and intellectual
factors that contribute as well. Commercial enterprises maximize network security in order to
secure intellectual property, customers’ Personal Identifiable Information (PII), and financial
information.

1.3 Research Questions
In [4], Lee sought to measure the extent of changes in interconnectivity for a large and complex
network, the Internet. Our study expands on his efforts by researching the following questions:

• Given the Internet’s continuous changes, is time of the day a factor when probing the
Internet for measurement?
• Are there existing measurements to depict the significance of the time of day when prob-

ing the Internet for measurement?

1.4 Thesis Contribution
Primitive graph measures provide a basis for determining similarity between graphs with min-
imal granularity. In an effort to refine this basis, we consider statistical measures including
summary statistics, confidence intervals, and boxplots to determine if Internet measurements
taken at various times of the day are similar. Furthermore, by comparing vertex counts, edge
counts, vertex symmetric difference, and edge symmetric difference of various graphs, we can

2



improve the certainty with which we say inferred graphs of Internet topology are similar. We
will model and measure the Internet as inferred by the results of traceroutes contained in the
CAIDA data. Our methods include analysis of graph theoretical measures as well as complex
network and statistical measures that will quantify the similarity of the inferred graphical rep-
resentations of the Internet.

1.5 Organization of Thesis
We organize our investigation of the research questions as follows:

• Chapter 1 introduces the motivation for this research.
• Chapter 2 provides an overview of the Internet.
• Chapter 3 introduces the theoretical background for the research.
• Chapter 4 details the data and methodology used in this research.
• Chapter 5 contains the results of graph measures, statistical measures, and complex net-

work measures.
• Chapter 6 summarizes the results and discusses possible areas of expansion, including

future work.

3
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CHAPTER 2:

The Internet

The data analyzed in this work are a result of measurements collected on the Internet. Here, we

provide the reader a familiarization with Internet topology. In Figure 2.1, we show a graphical

representation of routers and links between routers on the Internet circa 1998 [5].

Figure 2.1: Graphical Representation of routers and links on the Internet, circa 1998, from [5].

5



2.1 Overview of the Internet
The study of complex networks has several applications in applied science, including biologi-

cal and neural networks or transportation and utility networks. In our research, we consider yet

another application, communication networks, particularly the Internet, which is a vast and con-

stantly evolving complex network. The nodes comprising the physical and logical construction

of the Internet typically follow the Open Systems Interconnection (OSI) model, which stan-

dardizes and models the function of communication networks through the use of seven layers,

each with several protocols. The network layer, the third layer, plays a key role in the routing

of traffic between two nodes within or through a communications network. This routing occurs

through Internet Protocol (IP) addresses assigned to each device on the network. A diagram of

the OSI model is in Figure 2.2.

Figure 2.2: Open Systems Interconnect Model, from [6].

The complexity of the Internet is a consequence of the interconnections between several Au-

tonomous Systems (ASes), consisting of a set of devices under a single technical and admin-

6



istrative control [7]. Examples of ASes include large corporations, university campuses, and

Internet Service Providers (ISPs). Examples of ISPs include AT&T, Verizon, Sprint, and Cen-

tury Link. Each AS receives a unique 32-bit Autonomous System Number (ASN), assigned by

the Internet Assigned Numbers Authority (IANA). ASes connect to one another either through

a shared ISP or through an IXP, which connects larger ASes and ISPs. Routers, which route

traffic across or between networks, do so via routing tables. Using routing protocols, routers at

the boundaries of an AS (e.g., R11, R12, R21 and R31 in Figure 2.3) may use protocols that

facilitate the sharing of routing tables containing routes to destination IP addresses. In addition

to routing traffic between networks, routers can also facilitate internal subnetting, creating mul-

tiple networks within some AS, which could allow for more efficient use of network resources

by separating network traffic within and outside the AS. An example of an Internet diagram

is shown in Figure 2.3 [4]. Here, the routers at the boundary, referred to earlier, serve as the

backbone of the Internet, connecting the three ASes (denoted by their ASNs).

Figure 2.3: Example of an Internet Diagram, from [4].

7



2.2 Internet Topology
Internet topology involves efforts to map the topological structure of the Internet. The difficulty

in mapping the Internet lies not only in its size and complexity, but also the continuous changes

in its size and structure over time. With these challenges in mind, attempts to map Internet

topology may occur at several levels of the Internet.

2.2.1 Internet Topology Levels

The study of Internet topology can occur at any of the seven layers of the OSI model as depicted

in Figure 2.2, with each layer inferring a different graphical representation of the Internet. In

this section, we provide examples of Internet topology at the IP layer. At the IP layer, we depict

four granularity levels commonly used in network science: subnet-level, interface-level, router-

level, subnet-level, and AS level. In our research, we focus on the interface level as the method

used in data collection; the interface level can be reduced to router, subnet or AS level. This

occurs at the IP layer of the OSI model, providing representations of each device through its

network interface (or possible multiple interfaces).

Interface-Level Topology. Internet topology at the interface level depicts connections between

interfaces. Each interface is represented by a vertex or node, with the direct physical or wireless

link represented by an edge. While a single router can contain several interfaces, each connec-

tion represents a separate edge. Figure 2.4 [4] illustrates the detail provided by interface-level

topology as seen from various vantage points. Note that a router with multiple interfaces would

be represented by multiple vertices.

Router-level topology. A router-level mapping involves the use of IP Alias Resolution 1 to rep-

resent a router and all of its interfaces as one node in a graph. Edges between vertices represent

established connections between routers; however, the accuracy of IP Alias Resolution limits

1This is a process which resolves IP addresses to host routers.

8



(a) Network map.

(b) Graph of interfaces as seen
from X.

(c) Graph of interfaces as seen
from Y.

(d) Graph of interfaces as seen
from Z.

(e) Graph of interfaces as seen
from R22.

(f) Graph of interfaces as seen from
R31.

Figure 2.4: Interface-level representations, from [4].

the granularity available when considering logical connections or links. Figure 2.5a illustrates

a router-level representation of a network [4].

Subnet-level topology. Internet topology viewed at the subnet-level includes IP addresses

9



(a) Network map. (b) Graph.

Figure 2.5: Router-level representation, from [4].

hosted within the same subnet [8]. Network operators create subnets through connections es-

tablished between interfaces. In this case, a graphical representation of a subnet-level mapping

depicts subnets as vertices, and the links between subnets as edges. These links typically repre-

sent the logical connection between the subnets within a router configuration. An example of a

subnet-level topology is Figure 2.6a, and its graph representation in Figure 2.6b [4].

(a) Network map. (b) Graph.

Figure 2.6: Subnet-level representations of network map, from [4].

AS-level topology. An AS level representation of Internet topology portrays the physical and

logical components of the network, routers and their corresponding subnets, as one node. This

high level representation characterizes relationships between customers and their providers or

10



peering relations between ASes [9]. The relations depicted in an AS level topology include

commercial and contractual agreements between ISPs and their customers, both influenced by

economic factors. The economic impact reflects in the routing policies across domains such as

bandwidth utilization and prioritizing data in queues. Figure 2.7a is an example of an AS level

representation of a network, modeled by the graph in Figure 2.7b [4].

(a) Network map. (b) Graph.

Figure 2.7: AS-level representation of a network, from [4].

2.2.2 Obtaining Network Topology

The current state of network security vulnerabilities and the impact of exploits encourage the

exploration of the use of network science as a network defense tool. While well-known exploits

expose user accounts and financial information from large customer ASes, the ability to control

and understand the evolution of complex networks like the Internet could minimize the impact

of malicious software and organizational insiders seeking retaliation. One challenge to control-

ling a complex network as large as the Internet is the development of algorithms that quickly and

efficiently capture a representative sample of the ground truth, or the actual network topology,

via Network Topology Capture (NTC) algorithms. The implementation of defense-in-depth us-

ing firewalls, access control lists, and other hardening techniques, limit the granularity of the
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results of the algorithm when compared to ground truth. Ground truth is very difficult to obtain

since the availability of the topological maps of an AS to outsiders would be a vulnerability;

hackers could use the information contained in such a map in exploits or use them to infer

the physical layout of an organizational campus. Thus, it is indeed challenging to compare to

true topology, unless a virtual network would be created for this purpose. Reference [10] con-

tains examples of network data developed from information made public by network operators,

which is the closest we have to ground truth.

Many of the current NTC algorithms are time consuming, a limiting factor to capturing a net-

work’s topology attributed to the size and scale of the Internet. In [11], active measuring

techniques employing previous data and knowledge of subnets, improve the runtime for the

Interface Set Cover (ISC) algorithm. The efficient use of discovery probes also minimizes the

possibility that algorithm’s traces will appear as a denial of service (DoS) attack, where the

number of traces overwhelm the network, appearing to degrade or deny authorized access to

networked resources. Bourgeau’s paper also uses accelerated probing, which employs infor-

mation from previous traceroutes, to capture network dynamics, maintaining network coverage

in the process [12]. The data from CAIDA, the data used in our research, employs (1) active

measurements, which introduces traffic on the probed network, and (2) passive measurements,

which passively observe existing traffic without modification, in the collection of datasets. Our

research uses only the active traceroute data.

2.3 Traceroute
Traceroute [13] is a diagnostic tool for computer networks that shows the time delays and for-

ward router interface path of an IP packet. The tool uses the packet’s Time To Live (TTL) to

create a route history that details the list of nodes traversed during delivery and return. TTL

limits the life of data in transit; when the TTL reaches zero, the router sends a response back to
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the sender, allowing the reconstruction of the route history. For our research, we only use the

list of IPs from the traceroute, discarding the TTL.
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CHAPTER 3:

Measures

In this chapter, we review mathematical concepts that facilitate a view of complex networks

through a mathematical lens. Specifically, we will measure the Internet by applying different

measurements to the Internet, an example of a complex network. These measures in conjunction

with descriptive statistics will allow us to draw conclusion about the topology of the Internet.

The purpose of employing these concepts is their relation to the underlying structure of the

Internet and the ability to generate statistics that serve as indicators to the behaviors we study. In

this chapter, we describe existing network measures that can be used on the graph representing

the Internet.

We will measure the Internet by translating the interconnections between nodes into graphs.

Some translations require the incorporation of set theory on the vertex V(G) or edge E(G) sets

of the graph. The main measures used in this thesis indicate a percentage of change between

two graphs, G1 and G2, each representing a snapshot of the Internet at a given time. Because of

the large scale of the Internet, it can be difficult to infer changes in the vertex or edge set based

solely on these two measures. Therefore, we incorporate statistical measures to discover any

discernible changes to the graph, thereby indicating a change over time.

3.1 Set Theory
The definitions and concepts described in this section are from [14].

The difference between two sets A and B, A \B, is the set of elements of A not in B, denoted

by the following:

A\B = {x ∈ A|x /∈ B}
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The union of sets A and B, A∪B, is the set that contains elements either in A or B, or both. The

following denotes A∪B:

A∪B = {x|x ∈ A∨ x ∈ B}

A

B

Figure 3.1: Union of A and B, or A∪B, from [15].

The intersection of sets A and B, A∩B, is the set containing the elements in both A and B. The

following denotes A∩B:

A∩B = {x|x ∈ A∧ x ∈ B}

A

B

Figure 3.2: Intersection of A and B, or A∩B, from [15].

The symmetric difference of A and B, A⊕B, is the set containing elements in either A or B,

but not in both A and B. Similarly, it is the set which contains the elements in exactly one of A
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or B, or the union of A and B without the intersection.The following denotes A⊕B:

A⊕B = {x|(x ∈ A∧ x /∈ B)∨ (x /∈ A∧ x ∈ B)}

A

B

A

B

Figure 3.3: Symmetric Difference of A and B, or A⊕B, from [15].

The cardinality of a set A is the number of elements in the set, denoted by |A|. All of these

definitions generalize to more than two sets.

3.2 Graph Theory
One can trace the origins of graph theory to a problem posed by Leonhard Euler in 1735,

The Seven Bridges of Königsberg [16]. In this problem, citizens sought a route that crosses

each bridge in Königsberg exactly once and returns to the starting point. Figure 3.4 illustrates

Euler’s problem [4]. Earlier studies in graph theory focused on small, simple graphs that were

static, allowing researchers to have complete information in the form of exact values for the

characteristics of the graphs under study. We highlight some of these characteristics below

from [17].

A graph G = (V,E) consists of a set of vertices V(G) and a set of edges E(G). The vertex set
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(a) Königsberg Bridges. (b) Graphical Representation.

Figure 3.4: Seven Bridges of Königsberg, from [18].

V(G) is the set of vertices of graph G. The edge set E(G) is a set of 2-element subsets of V,

such as the edge {v1,v2} = e ∈ E(G) . The 2-element subsets indicate the endpoints of the

edge. Multiple edges are edges that share the same two endpoints. A loop is an edge with

matching endpoints, or an edge between a node and itself. A simple graph is a graph that does

not include loops or multiple edges.

In our research, we only consider simple graphs, as logically, a loop would indicate the connec-

tion of an interface to itself, which may be useful for troubleshooting, but not for the purposes

of this research. We also decided not to include multiple edges in this research.

One can characterize a simple graph by its vertex set and edge set, with the edge set consisting

of a set of unordered pairs of vertices such as the edge e = uv = vu, where u and v are endpoints.

The uv notation means "u is adjacent to v." Our analysis involves data collected from bidirec-

tional probes; as a result, our graphs contain undirected edges. Below we list the main classes

of graphs in Graph Theory.

3.2.1 Graph Classes

Complete Graph A graph G is complete if every two distinct vertices of G are adjacent. We

denote an unlabeled complete graph with n vertices as Kn.
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Bipartite Graph A graph G is a bipartite graph if V (G) can be partitioned into two subsets A

and B such that every edge of G joins a vertex of A and a vertex of B.

Complete Bipartite Graph A complete bipartite graph is a bipartite graph with partite sets A

and B such that every vertex of A is adjacent to every vertex of B. This is denoted by Ka,b, where

a and b are the sizes of sets A and B respectively.

Path A path Pn is a simple graph whose vertices can be ordered so that two vertices are adjacent

if and only if they are consecutive on the list. For example, the edge set of P5 is E(P5) =

{v1v2,v2v3,v3v4,v4v5}.

Cycle A cycle is a graph that consists of a sequence of different vertices (except the starting

and ending vertex which must be the same), with each two consecutive vertices in the same

sequence adjacent to each other in the graph.

Erdős Rényi (ER) Random Graph Paul Erdős and Alfréd Rényi introduced a model for gener-

ating random graphs. In their model, a graph G(n, p) is a simple graph with n possible vertices.

Each edge between those vertices occurs with equal probability p. Their model and its prob-

abilistic properties are used as the default type of graph to determine if a property holds for

arbitrary graphs. In our research, there seems to be some randomness to the appearance of

nodes or edges at any given hour of the day.

There are two models of the ER random graph [19].

• G(n,M) model. From a class of all graphs with n nodes and M edges, one graph is chosen

uniformly at random.

• G(n, p) model. Construct a graph by randomly connecting nodes via edges with an in-

dependent probability p. All graphs with n nodes and M edges have equal probability of

pM(1− p)(
n
2)−M.
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Symmetric Difference Graph If G and H are graphs with vertex set V , then the symmetric

difference G4H is the graph with vertex set V that contains the set of vertices in either G or H

and not in the intersection G∩H. This is not the symmetric difference used in this paper.

3.2.2 Graph Measures

The parameters below illustrate measurements typically employed in graph theory to study a

graph and its properties. There are two types of measures on graphs - Type I and Type II. Type

I measures are about the graph, including diameter, vertex count, and average degree. Type II

measures are about the vertices of the graph, including degree, neighborhood degree, or cluster-

ing coefficient per vertex. Since our graphs are so large, and our goal is to study the big picture,

we use almost exclusively, Type I measure. We are particularly interested in comparing graphs,

so we use graph properties (rather than vertex properties) to do so. While these parameters de-

scribe the graph, they are not sufficient to compare two graphs. Our research involves data com-

parisons through statistical measures and graphical representations of the Internet to determine

similarities and differences at various periods of time. The terminology below is from [20], and

the examples consider the graphical representation of the Seven Bridges of Königsberg from

Figure 3.4b, reproduced below.

Figure 3.5: Graphical Representation of the Seven Bridges of Königsberg, from [18].

Degree. The degree of a vertex v, denoted deg(v), is the number of edges incident to v. Sim-

ilarly, it is the number of vertices adjacent to v. Given the Konigsberg example in Figure 3.5,
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the degree of vertex w is 5, or deg(w) = 5.

Average Degree. The average degree of a graph is the number of edges in the graph per vertex,

or:

avedegree =

n
∑

i=1
deg

n
=

2m
n
,

where m is the number of edges and n is the number of vertices. In Figure 3.5, the average

degree is 14
4 = 7

2 .

Distance. The distance from u to v, d(u,v), is the least number of edges in a uv path in G. lf G

has no such path, then d(u,v) = ∞. In Figure 3.5, d(x,z) = 2.

Diameter. The diameter of a graph G, diam G, is the maximum distance between any two

vertices in graph G. Equivalently, it is the longest, shortest path between two vertices, i.e.,

diam G = maxu,v∈V (G)d(u,v). In Figure 3.5, diamG = 2.

Eccentricity. The eccentricity of a vertex u, ε(u), is the maximum distance from u to all vertices

in the graph, denoted as ε(u) = maxv∈V (G)d(u,v). It is also the largest distance between u and

any other vertex in the graph. The eccentricity of the vertex x in the Konigsberg graph is

ε(x) = 2, while ε(y) = 1.

Radius. The radius of a graph G, rad(G), is the smallest eccentricity among all eccentricities in

the graph, i.e., rad(G) = minu∈V (G)ε(u). In the Konigsberg example in Figure 3.4, rad(G) = 1.

3.3 Complex Network Measures
Interests in representing various networks as graphs expanded tremendously over the past two

decades. Some of the current networks explored through research include transportation, utili-

ties, biological, and neural networks. The increased proliferation of the Internet spawned addi-

tional areas of interest including online social networks (Facebook, LinkedIn), email networks,
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and the World Wide Web graph. One characteristic that is common to all of these types is

these networks evolve over time, unlike the simple networks studied in the earlier days of graph

theory. In contrast to simpler graphs, complex networks have a larger number of components

which may not have well-defined roles, present self-emergent properties, and exhibit organiza-

tional behaviors not necessarily influenced by well established principles. An example of a trait

common to many complex networks is the small world phenomenon, pioneered by Watts and

Strogatz [21]. They found that some self-organizing networks like the Internet tend to be highly

clustered with small path lengths. Researchers hypothesize that for the Internet, the lack of cen-

tral control suggests it may follow some random structure. This would also suggest a Gaussian

degree distribution, which we believe is not the case based on experiments [19]. Data about

the Internet shows that the degree distribution follows a power law asymptotically xk, where the

bounds on k are typically, but not limited to 2 < k < 3. Barabasi suggested that the preferential

attachment in complex networks can be achieved through preferential attachment growth [22].

Websites on the WWW link to each other in a method consistent with preferential attachment.

We present some complex network measures that we employ in this research.

3.3.1 Vertex Symmetric Difference (VSD)

In this section we describe a way to compare the vertex and edge sets of two graphs. Lee, in [4],

introduced the concept and the paper contains additional information beyond the scope covered

herein.

Considering only the vertices, we compare two graphs G and H having two vertex sets, V(G)

and V(H), respectively.

Definition 3.3.1. [4] Given graphs G and H, the vertex symmetric difference, vsd(G, H), is

vsd(G,H) =
|V (G)−V (H)|+ |V (H)−V (G)|

|V (G)|+ |V (H)|
.
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Generally, the vertex symmetric difference counts the vertices that are in one graph and not

the other and then it normalizes the count for interpretation as a percent. Given graphs G and

H, if V (G) = V (H), then vsd(G,H) = 0. If G∩H = /0, then vsd(G,H) = 1. The upper and

lower bounds allow us to determine if the difference between the vertex sets of two graphs is

significant.

a d

c

b

g

e

G:

a d

c

b

f

e

H:

Figure 3.6: Example to illustrate vsd and esd between two graphs, from [4].

Comparing the two graphs in Figure 3.6 [4], g ∈V (G), but g /∈V (H); likewise, f /∈V (H), but

f ∈V (G). Therefore, for graphs G and H,

vsd(G,H) =
|V (G)−V (H)|+ |V (H)−V (G)|

|V (G)|+ |V (H)|
=

1+1
6+6

=
2
12

= 16.7%

3.3.2 Edge Symmetric Difference

The same concept can apply to the edge set of a graph, referred to as the edge symmetric

difference [4]. In our study of Internet topology, it applies to links established between vertices

during a snapshot of a traceroute in a given hour. As each graph contains the IP address as a

vertex label, those labels help to compose the distinct edges in the edge set, where an edge is an

established connection between two interfaces.

Definition 3.3.2. [4] Given two graphs, G and H, the edge symmetric difference esd(G,H) is
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defined as

esd(G,H) =
|E(G)−E(H)|+ |E(H)−E(G)|

|E(G)|+ |E(H)|
.

Generally, the edge symmetric difference counts the vertices that are in one graph and not the

other and then it normalizes the count for interpretation as a percent. Given graphs G and H,

if E(G) = E(H), then esd(G,H) = 0. If G∩H = /0, then esd(G,H) = 1. The upper and lower

bounds allow us to determine if the difference between the edge sets of two graphs is significant.

Recalling the two graphs in Figure 3.6,

esd(G,H) =
|E(G)−E(H)|+ |E(H)−E(G)|

|E(G)|+ |E(H)|
=

3+2
8+7

=
5

15
= 33.3%

In the context of our analysis, we consider graphs G and H with different vertex and edge

sets. We use the "Vertex Symmetric Difference" and "Edge Symmetric Difference" on hourly

snapshots of the Internet, comparing one hour to all other hours in a probing cycle.

3.4 Statistical Measurements
As mentioned before, the inferred network topology will be modeled by a network (or graph)

in order to facilitate measuring the Internet. That is, the interface-level maps from traceroutes

will be represented by graphs, with vertices denoting the interfaces and undirected edges de-

noting the pair-wise connection between the interfaces. Given the large number of vertices

and edges collected in a CAIDA probing cycle as described in Section 4.1.1, the traditional

graph theory measurements, which lend themselves to a graphical view of the network, can be

complemented. Additionally, some traditional graph metrics are infeasible to compute given

the size of the graphs considered in this research. Thus, we use the statistical measures below
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to determine similarity in graphs. These definitions from [23] consider the data collected by

CAIDA as samples taken from the Internet.

Mean. The mean, x̄, refers to the average or center of the distribution of the data and is given

by the following equation:

x̄ =
n
∑

i=1

xi
n ,

where xi is the ith element of the data set and n is the cardinality of the data set. Given a data set

V0 = {154769,158565,196052,199607,219048,234695,247291}, the mean of V0 would equal:

x̄v0 =
199607+219048+247291+196052+234695+158565+154769

7 = 201432.40.

Median. The median, x̃ , is the middle value when data is ordered from smallest to largest and

is found by:

x̃ = (n+1
2 )th ordered value if n is odd, or

x̃ = average of (n
2)

th and (n
2 +1)th values if n is even.

After ordering the data set v0 from smallest to largest, x̃v0 = 199607.

Standard Deviation [24]. The standard deviation, s, is the standard measure of spread or the

average distance of the data from the mean, found by:

s =
√

1
n−1

n
∑

i=1
(x− x̄)2.

For V0, sv0 = 35513.12.

Boxplot. A boxplot is a picture summary used to describe a data set’s prominent features

which include its median, spread, symmetry, and outliers. The outliers are observations that
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are unusually far from the main body of data. An example of a boxplot for the v0 dataset is

Figure 3.7.

Figure 3.7: Boxplot of V0 data.

In Figure 3.7, the bold horizontal line is the median, x̃v0 , and the black circle is the mean, x̄v0 .

The horizontal limits of the box, denoted by gray circles, indicate the Interquartile Range (IQR),

everything between them representing the middle half of the data. The lower quartile of the IQR

is the median of the lower half of data, while the upper quartile of the IQR is the median of the

upper half of the data. The dashed lines represent the whiskers of the boxplot. The range of the

whiskers is 1.5 times the IQR, measured from the median. The solid horizontal lines at the ends

of the whiskers indicate the end of their range. Any values outside of these limits are referred to

as outliers. In this example, there are no outliers; if so, they would appear outside the whiskers

of the boxplot.

Confidence Interval. The confidence interval (CI) is an estimate for the interval containing a

parameter. The confidence level, α , indicates how frequently the interval contains the param-

eter. Given a small sample size n, where n < 20, and a sample standard deviation s, the small

sample confidence interval for the mean x̄v0 is denoted by
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x̄v0± t α

2 ,n−1
s√
n ,

where t α

2 ,n−1 is the interval width. Because our research examines the data from 7 cycles, we use

a t-distribution with n−1 degrees of freedom. In our research, the confidence level is α = 0.05,

or (1−α) = 95%. Given x̄v0 , the Confidence Interval (CI) for the mean of the data set V0 would

be:

201432.40±2.44735513.12√
7

= 201432.40±32845.34.

We can also express the CI as [168587.06,234277.74].
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CHAPTER 4:

Data and Methodology

In this chapter, we discuss how the aforementioned mathematical concepts apply to our study

of the Internet. In doing so, we consider the collection and subsequent analysis of the data.

4.1 Source of Data
The source of data for our research and analysis is CAIDA, which employs active and passive

measurements to capture the topology of the Internet at a given time through the use of probes

from over 90 vantage points across the world, spanning all continents with the exception of

Antarctica [25]. These Archipelago (Ark) monitors, which are small form-factor computers,

are the source of active measurements contained in CAIDA data. The locations of the monitors

are in Figure 4.1.

4.1.1 CAIDA data

In order to collect data from the Internet, CAIDA employs scamper, an active measurement

tool that probes the Internet for topology analysis and performance [26]. Scamper uses network

diagnostic tools, such as traceroute and ping, to probe networks supporting Internet Protocol

version 4 (IPv4) and Internet Protocol version 6 (IPv6). The scamper tool is part of the Ark

infrastructure of active measurement monitors located at each vantage point across the world,

serving as a collection station for probes sent using scamper. The intent of the Ark infrastructure

is to increase the efficiency of large-scale measurements and facilitate collaboration with others

who perform measurement tasks [25]. The data used in this research is the IPv4 Routed /24

Topology Dataset 2 [27]. In an effort to improve efficiency and speed of the collection process,

2 An IPv4 address is a 32-bit integer value arranged in four octets or bytes. /24, which refers to the first three
octets, is the prefix of the IPv4 network starting at a given address. The remaining 8 bits are for device addressing.
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Figure 4.1: Locations of CAIDA Monitors, from [25].

Ark groups the monitors into three teams (each team gets a complete probing cycle indepen-

dent of the other teams), facilitating traceroute measurements of the probed /24 networks. The

probing and measurement period typically lasts 2-3 days for each team, which we refer to as

a probing cycle. One probing cycle represents probing an address in each /24 network in the

entire Internet.

The data is a result of probes sent from randomly selected vantage points to destination ad-

dresses in an IPv4 /24 prefix. Given the number of vantage points and possible destinations

in the /24 prefix, the data collected, which includes start and stop markers as well as metadata
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for one CAIDA cycle, can exceed three GB and is in a warts file format. File parsing tools

such as sc_analysis_dump convert the data into a textual format readable by additional scripts

that output the results of each trace within the probing cycle [4]. This output contains tracer-

oute information including the interfaces traversed and the delay of its response, as well as the

metadata mentioned earlier.

4.2 Data Selection and Preparation
In this section, we detail the data content collected by CAIDA. We parse the initial CAIDA

data for each probing cycle into 24 1-hour partitions. That is, we partition the contents of a

probing cycle into hours of the day in Greenwich Mean Time (GMT). The amount of data

contained in one cycle for one team averages over 900,000 vertices and over 2 million edges,

where the vertices represent interfaces and edges represent established connections between

those interfaces. The data used in our research is from probing cycles that occurred in February

and December 2013.

4.2.1 Preparation

The output from the sc_analysis_dump tool described by Lee in [4] contains a list of partial

data from a traceroute, listing transit delay measurements and a record of the packet’s route

history and a Round-trip time (RTT) from each router encountered along the path. As our focus

is only on the interfaces traversed, not the time elapsed during the traversal, we remove the RTT

measurements, resulting in a sequence of interfaces in a fixed order. This sequence contains

the path from a source IP address, with interfaces encountered along the path to a destination

IP address. We remove the last hop or destination as our interests lie in routers and links;

removing the last hop also minimizes variance resulting from probes to devices that may not

sustain a continuous connection to the network.

When converting this data into a graph, we represent each interface as a vertex. The order of
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the IP sequence represents connections established between interfaces; thus, we represent the

sequence order as edges. Identifying the common IPs as a single IP within the same probing

cycle results in a graph, which is a representation of the interfaces probed during that cycle as

well as the connections between them. The graph also gives a network map of the Internet as

depicted by the probes in that team’s cycle. The vsd and esd are metrics for the comparison of

two of these graphs.

4.2.2 Challenges

While the traceroute tool mentioned in 2.3 serves as a useful utility for network operators, it also

serves as an attack vector for hackers who seek to employ DoS attacks on an AS or an interface

within an AS. As a network hardening technique, some network operators configure interfaces

on their routers to respond to traceroutes in various ways. In the event a trace reports back

all intermediate interfaces between the source and destination that respond, we refer to these

traces as complete. Some interfaces, which we refer to as non-responding, may not respond to

requests but forward the packets; while others may drop the packet completely without sending

a reply, which we refer to as probe-dropping [4]. The value ′q′ denotes "anonymous" interfaces,

or no response at that particular hop in the trace. While we obtain incomplete traces in either

case, each of the two options yields a different output. An example of these different interface

behaviors is in Figure 4.2.

In Figure 4.2, there are three traceroute results for the same source and destination at three

different times. The varying outputs illustrate the unreliability of traceroute probes, though one

can infer the route based on the combined results of the three traces. For example, there is a

non-response on the second intermediate interface in one trace, that actually responded (at a

different time) in the other two traces.

2These outputs are extracted from fields 14 and onwards of recorded traceroutes. Refer to [4] for details.

32



203.181.248.60

203.181.249.21

203.181.102.129

118.155.197.1

203.181.100.126

59.128.2.210

65.19.143.9

72.52.92.37

72.52.92.233

216.66.77.102

209.152.158.18

q

q

q

209.152.158.18

203.181.248.60

203.181.249.21

203.181.102.129

118.155.197.1

203.181.100.126

59.128.2.210

65.19.143.9

72.52.92.37

72.52.92.233

216.66.77.102

209.152.158.18

209.152.158.18

203.181.248.60

q

203.181.102.129

118.155.197.1

203.181.100.126

59.128.2.210

65.19.143.9

72.52.92.37

72.52.92.233

216.66.77.102

209.152.158.18

Figure 4.2: Comparison of traceroutes with same source (203.181.248.60) and destination
(209.152.158.18) addresses, from [4].

4.3 Analysis
Recall from Section 4.1.1 that CAIDA selects probing destinations randomly from each /24 pre-

fix. To mitigate the effects of random destinations, we exclude the IP address of the destination

interface from our analysis.

4.3.1 Temporal

In our analysis of network snapshots over time, we parse the data contained in one CAIDA

cycle into 24 time periods, ranging from 0000 hours to 2359 hours GMT, with each period
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containing one hour. Each graph contains a union of the data corresponding to that graph from

each vantage point used during the cycle. The resulting periods contain all of the IPs within that

given hour from any of the vantage points that probed during that hour.

For our analysis, we parse the data in the same fashion for seven cycles. We then consider

the network and statistical measures presented in Chapter 3. We compare the vertex and edge

counts for each hourly graph as well as the esd and vsd to contrast the data collected during

each time period.

4.3.2 Spatial

To account for abnormalities in network behavior, we can consider the geographic location of

the AS by obtaining the country code for the AS from the Regional Internet Registry (RIR),

which manages the allocation and registration of IP addresses and ASes within a country or

region. In our research, we consider the interfaces encountered during a traceroute probe that

pertain to a specific AS as internal interfaces, and refer to the interfaces encountered outside of

the AS during the probe as external interfaces [4]. In Chapter 5, we consider the number of IP

addresses traversed by country in various sets of data. For example, in instances where the vsd

or esd are inconsistent, we explore the causes for inconsistency by constructing vertex and edge

set containing the IP addresses that occur in the hourly partitions with higher vsd or esd. We

also use the MaxMind GeoIP database [28] to identify the geographic location of IP addresses

unique to an hourly partition. The MaxMind database improves upon the data contained in a

typical whois or reference information lookup of an IP address’s organization, AS, or ASN.
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CHAPTER 5:

Results

In this chapter, we analyze the results obtained by applying the measures described in Chapter 3

to the inferred graphs that resulted from traceroute probes as described in Chapter 4. We began

by observing the results of various graph measures for seven probing cycles from February

and December 2013. To gain a deeper understanding of the behaviors reflected in the graph

measures, we considered complex network measures as well as statistical measures in an effort

to compare data parsed by the hours, to analyze the correlation between the time of day and the

probing data obtained.

5.1 Graph Measures
To determine if the time of day is an influence factor in probing data, we considered the number

of vertices and edges encountered during each probe over a 24-hour period, with each day’s

worth of data parsed into 24 segments representing each hour. In Table 5.1, we observed the

mean for the vertex and edge counts by probing cycle varied for most of the hourly values

for each probing cycle. In Table 5.1, the vertex count for hours 00 and 01 in probing cycle-

20130215 were noticeably lower than the other 22 hours in the cycle. The results were similar

in Table 5.2, which represents edge counts.

The same pair of hours in the other six probing cycles revealed a similar disparity. As a result,

we considered the mean of the vertex counts of each hour by probing cycle. In Figure 5.1a, the

low counts in hours 00 and 01 relative to subsequent hours give cause for further exploration. As

expected, when we considered the edge counts, the trends continued, as indicated in Figure 5.1b.
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Hour cycle-20130215 cycle-20130217 cycle-20131201 cycle-20131203 cycle-20131205 cycle-20131207 cycle-20131209 Mean
0 199607 219048 247291 196052 234695 158565 154769 201432
1 207639 236611 247034 194990 235292 155963 154103 204519
2 237394 237065 247780 195697 236171 155456 219705 218467
3 238532 238663 247496 195749 235975 156096 235001 221073
4 238949 238360 248322 196124 233770 156163 235391 221011
5 238539 238133 248387 196406 220714 181902 235179 222751
6 238595 239112 248451 196633 176592 236223 236189 224542
7 239122 236613 247677 196861 177338 235427 236272 224187
8 238758 236223 247807 196243 177093 235310 235195 223804
9 239529 235636 248842 176481 230392 235757 236321 228994

10 238426 236073 247591 174914 248573 236529 237107 231316
11 238579 237688 247684 177375 249650 235769 235468 231745
12 239241 237447 241617 188347 249401 236973 236232 232751
13 239692 235925 177062 249792 249533 236414 236330 232107
14 238847 235962 176694 248505 249829 235629 235968 231633
15 237569 235948 177244 248742 248474 234936 235293 231172
16 237495 233782 217745 246693 244263 234488 234079 235506
17 236963 233238 246399 247092 245469 234535 236248 239992
18 234905 233215 246139 246645 246566 233069 236586 239589
19 235772 233923 246241 246465 245384 233670 236459 239702
20 235574 233815 246991 246417 246040 232257 225253 238050
21 235870 233037 246763 246761 245997 232754 179380 231509
22 235527 232807 246650 246084 245900 234428 178641 231434
23 234878 233279 247021 245540 247583 232943 177947 231313

Mean 234833 235067 237122 216692 234196 216302 220797

Table 5.1: Vertex Counts by Probing Cycle.

(a) Mean of Vertex Counts by Hour. (b) Mean of Edge Counts by Hour.

Figure 5.1: Mean Vertex and Edge Counts by Hour.

5.2 Statistical Measures
We examined the distribution of the vertex and edge counts by hour through the use of boxplots

to determine if the traceroute results in each cycle were similar. In Figure 5.2, we see the data in

hours 00 and 01 spreads over a much larger range than the subsequent hours, indicating higher
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Hour cycle-20130215 cycle-20130217 cycle-20131201 cycle-20131203 cycle-20131205 cycle-20131207 cycle-20131209 Mean
0 412194 457556 511713 387405 481539 296406 286700 404788
1 431961 501915 510625 384798 481400 289343 284998 412149
2 504682 502153 512973 387904 483691 288387 444710 446357
3 506705 504798 513469 386369 482849 289965 481603 452251
4 505450 504721 514495 386436 477627 289951 481432 451445
5 505861 502573 514454 387002 444417 349801 481690 455114
6 505088 503912 514524 386488 340942 480161 482902 459145
7 505465 498524 514248 388671 342496 478869 483140 458773
8 505577 496990 513729 387058 342490 478953 480731 457933
9 506645 496880 516163 339865 471133 481586 483650 470846

10 505080 497322 515864 336736 515665 481999 484721 476770
11 505735 499907 515532 342627 516307 480084 481793 477426
12 506867 499104 497015 368153 517238 482690 483563 479233
13 507205 497217 342131 517152 517133 479754 483713 477758
14 505182 498853 341320 514270 515231 478897 481841 476513
15 504510 498564 341998 516159 513719 478520 483288 476680
16 503843 494575 440217 512552 503700 477414 480483 487541
17 502744 493703 511568 512909 506984 478019 484414 498620
18 499383 493277 510642 510736 509458 474791 487600 497984
19 500616 494993 511244 511480 506967 477354 487132 498541
20 501525 495347 512363 510116 509094 474709 457019 494310
21 502139 493785 511016 511290 509330 474666 346845 478439
22 502222 492314 510643 510719 509432 477320 345224 478268
23 500777 493022 512145 509203 512228 473801 344044 477889

Mean 497394 496334 487920 437754 479628 433893 446802

Table 5.2: Edge Counts by Probing Cycle.

variance. The location of the median is close to the mean in hours 00 and 01, whereas the

difference in the two summary statistics tends to increase in hours 02 through 14, indicating the

outliers have a significant impact on the mean vertex and edge counts mentioned in Figure 5.1.

As a result, we determined the mean did not indicate similarity among the hourly partitions.

Considering subsets of hours, we see hours 02 through 08 are similar, as are hours 09 through

15 and hours 16 through 23; however, these subsets are not similar to hours 00 and 01. The

larger variance in hours 00 and 01 as indicated in Figure 5.2 also encourages further study

to determine if there are events of note occurring in those hours that are different from the

subsequent hours. We will do so in the next section.

5.3 Complex Network Measures
The visible differences in hours 00 and 01 are consistent throughout each method used to study

the data. By using complex network measures, we seek to determine if the hour makes a dif-

ference in the data captured, through the study of the vertex set and edge set for an arbitrary
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Figure 5.2: Distribution of Vertex and Edge Counts for seven probing cycles in 24-hour parti-
tions.

probing cycle. For the following analysis, we chose probing cycle-2013_02_15.

First, we considered the pairwise inter-hour vsd for cycle-2013_02_15. In this representation,

we see zeros along the diagonal, which we expect, as a comparison of a graph to itself. In

Table 5.3, we see the vsd between hour 00 and the other hours (and similarly for hour 01)

suggests greater changes in the captured data during hours 00 and 01 as compared to subsequent

hours. Next, we considered esd measurements to determine if there were similar behaviors with

the edge sets. In Table 5.4, the esd between hour 00 and the other hours (and similarly for hour

01) again exhibit a difference from subsequent sets as encountered earlier with the vsd values

contained in Table 5.3.
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2013_02_15 hour00 hour01 hour02 hour03 hour04 hour05 hour06 hour07 hour08 hour09 hour10 hour11 hour12 hour13 hour14 hour15 hour16 hour17 hour18 hour19 hour20 hour21 hour22 hour23
hour00 0 0.387 0.388 0.388 0.39 0.389 0.388 0.389 0.389 0.389 0.388 0.389 0.388 0.389 0.388 0.388 0.389 0.388 0.388 0.387 0.387 0.387 0.387 0.387
hour01 0.387 0 0.384 0.384 0.384 0.384 0.385 0.386 0.385 0.386 0.385 0.385 0.385 0.386 0.385 0.385 0.385 0.385 0.385 0.385 0.385 0.385 0.385 0.384
hour02 0.388 0.384 0 0.376 0.376 0.377 0.377 0.377 0.378 0.377 0.377 0.377 0.377 0.378 0.377 0.378 0.378 0.377 0.379 0.378 0.378 0.379 0.378 0.378
hour03 0.388 0.384 0.376 0 0.376 0.376 0.376 0.376 0.376 0.378 0.375 0.377 0.376 0.376 0.377 0.376 0.379 0.378 0.378 0.378 0.377 0.378 0.379 0.378
hour04 0.39 0.384 0.376 0.376 0 0.376 0.376 0.377 0.377 0.376 0.376 0.378 0.377 0.377 0.377 0.378 0.379 0.377 0.379 0.379 0.378 0.378 0.379 0.379
hour05 0.389 0.384 0.377 0.376 0.376 0 0.377 0.377 0.377 0.377 0.378 0.378 0.376 0.377 0.377 0.377 0.378 0.378 0.38 0.378 0.378 0.378 0.378 0.379
hour06 0.388 0.385 0.377 0.376 0.376 0.377 0 0.377 0.377 0.377 0.376 0.377 0.377 0.379 0.377 0.378 0.378 0.378 0.379 0.378 0.379 0.378 0.378 0.379
hour07 0.389 0.386 0.377 0.376 0.377 0.377 0.377 0 0.377 0.377 0.377 0.376 0.376 0.378 0.379 0.378 0.378 0.378 0.379 0.378 0.378 0.379 0.379 0.378
hour08 0.389 0.385 0.378 0.376 0.377 0.377 0.377 0.377 0 0.376 0.376 0.376 0.376 0.376 0.378 0.378 0.378 0.378 0.379 0.379 0.378 0.379 0.378 0.38
hour09 0.389 0.386 0.377 0.378 0.376 0.377 0.377 0.377 0.376 0 0.376 0.376 0.376 0.377 0.377 0.378 0.377 0.378 0.379 0.378 0.378 0.379 0.379 0.379
hour10 0.388 0.385 0.377 0.375 0.376 0.378 0.376 0.377 0.376 0.376 0 0.376 0.375 0.377 0.375 0.376 0.378 0.376 0.377 0.377 0.377 0.378 0.378 0.377
hour11 0.389 0.385 0.377 0.377 0.378 0.378 0.377 0.376 0.376 0.376 0.376 0 0.376 0.376 0.377 0.378 0.378 0.377 0.378 0.378 0.378 0.379 0.378 0.379
hour12 0.388 0.385 0.377 0.376 0.377 0.376 0.377 0.376 0.376 0.376 0.375 0.376 0 0.375 0.375 0.376 0.376 0.377 0.378 0.378 0.377 0.378 0.378 0.378
hour13 0.389 0.386 0.378 0.376 0.377 0.377 0.379 0.378 0.376 0.377 0.377 0.376 0.375 0 0.377 0.377 0.376 0.377 0.378 0.378 0.376 0.379 0.378 0.378
hour14 0.388 0.385 0.377 0.377 0.377 0.377 0.377 0.379 0.378 0.377 0.375 0.377 0.375 0.377 0 0.376 0.377 0.378 0.378 0.378 0.379 0.378 0.378 0.378
hour15 0.388 0.385 0.378 0.376 0.378 0.377 0.378 0.378 0.378 0.378 0.376 0.378 0.376 0.377 0.376 0 0.377 0.376 0.379 0.377 0.377 0.379 0.378 0.378
hour16 0.389 0.385 0.378 0.379 0.379 0.378 0.378 0.378 0.378 0.377 0.378 0.378 0.376 0.376 0.377 0.377 0 0.376 0.377 0.377 0.376 0.378 0.378 0.377
hour17 0.388 0.385 0.377 0.378 0.377 0.378 0.378 0.378 0.378 0.378 0.376 0.377 0.377 0.377 0.378 0.376 0.376 0 0.376 0.377 0.377 0.376 0.378 0.377
hour18 0.388 0.385 0.379 0.378 0.379 0.38 0.379 0.379 0.379 0.379 0.377 0.378 0.378 0.378 0.378 0.379 0.377 0.376 0 0.377 0.376 0.378 0.377 0.378
hour19 0.387 0.385 0.378 0.378 0.379 0.378 0.378 0.378 0.379 0.378 0.377 0.378 0.378 0.378 0.378 0.377 0.377 0.377 0.377 0 0.376 0.377 0.376 0.377
hour20 0.387 0.385 0.378 0.377 0.378 0.378 0.379 0.378 0.378 0.378 0.377 0.378 0.377 0.376 0.379 0.377 0.376 0.377 0.376 0.376 0 0.376 0.375 0.376
hour21 0.387 0.385 0.379 0.378 0.378 0.378 0.378 0.379 0.379 0.379 0.378 0.379 0.378 0.379 0.378 0.379 0.378 0.376 0.378 0.377 0.376 0 0.376 0.377
hour22 0.387 0.385 0.378 0.379 0.379 0.378 0.378 0.379 0.378 0.379 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.377 0.376 0.375 0.376 0 0.377
hour23 0.387 0.384 0.378 0.378 0.379 0.379 0.379 0.378 0.38 0.379 0.377 0.379 0.378 0.378 0.378 0.378 0.377 0.377 0.378 0.377 0.376 0.377 0.377 0

Table 5.3: Data of probing cycle 2013_02_15: vsd comparison by hour.

Figure 5.3: A visualization of the vsd comparison (24 hrs x 24 hrs) for probing cycle
2013_02_15.
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2013_02_15 hour00 hour01 hour02 hour03 hour04 hour05 hour06 hour07 hour08 hour09 hour10 hour11 hour12 hour13 hour14 hour15 hour16 hour17 hour18 hour19 hour20 hour21 hour22 hour23
hour00 0.000 0.463 0.462 0.462 0.464 0.463 0.463 0.463 0.463 0.463 0.463 0.463 0.462 0.463 0.462 0.462 0.462 0.461 0.461 0.459 0.459 0.459 0.458 0.459
hour01 0.463 0.000 0.455 0.457 0.457 0.458 0.458 0.459 0.459 0.459 0.459 0.459 0.459 0.459 0.458 0.459 0.458 0.458 0.457 0.456 0.457 0.457 0.458 0.457
hour02 0.462 0.455 0.000 0.443 0.445 0.446 0.446 0.447 0.448 0.447 0.446 0.447 0.447 0.448 0.447 0.447 0.447 0.447 0.447 0.447 0.446 0.447 0.446 0.447
hour03 0.462 0.457 0.443 0.000 0.443 0.444 0.445 0.446 0.446 0.446 0.446 0.445 0.445 0.446 0.446 0.447 0.448 0.446 0.446 0.446 0.446 0.446 0.447 0.447
hour04 0.464 0.457 0.445 0.443 0.000 0.444 0.445 0.446 0.447 0.447 0.447 0.447 0.447 0.448 0.447 0.448 0.448 0.447 0.448 0.448 0.448 0.447 0.448 0.448
hour05 0.463 0.458 0.446 0.444 0.444 0.000 0.445 0.446 0.446 0.446 0.447 0.446 0.446 0.447 0.447 0.448 0.447 0.447 0.448 0.447 0.447 0.447 0.447 0.448
hour06 0.463 0.458 0.446 0.445 0.445 0.445 0.000 0.445 0.446 0.446 0.446 0.447 0.447 0.448 0.447 0.447 0.447 0.447 0.448 0.446 0.447 0.446 0.448 0.448
hour07 0.463 0.459 0.447 0.446 0.446 0.446 0.445 0.000 0.445 0.445 0.447 0.445 0.446 0.448 0.448 0.448 0.448 0.447 0.447 0.447 0.447 0.447 0.448 0.448
hour08 0.463 0.459 0.448 0.446 0.447 0.446 0.446 0.445 0.000 0.445 0.447 0.446 0.447 0.447 0.448 0.448 0.448 0.447 0.447 0.448 0.448 0.448 0.448 0.449
hour09 0.463 0.459 0.447 0.446 0.447 0.446 0.446 0.445 0.445 0.000 0.444 0.444 0.445 0.446 0.446 0.447 0.446 0.447 0.447 0.447 0.447 0.447 0.447 0.448
hour10 0.463 0.459 0.446 0.446 0.447 0.447 0.446 0.447 0.447 0.444 0.000 0.443 0.444 0.446 0.446 0.447 0.447 0.446 0.446 0.446 0.447 0.447 0.447 0.447
hour11 0.463 0.459 0.447 0.445 0.447 0.446 0.447 0.445 0.446 0.444 0.443 0.000 0.444 0.444 0.445 0.446 0.446 0.446 0.446 0.446 0.447 0.447 0.446 0.447
hour12 0.462 0.459 0.447 0.445 0.447 0.446 0.447 0.446 0.447 0.445 0.444 0.444 0.000 0.444 0.444 0.446 0.446 0.446 0.446 0.445 0.446 0.446 0.447 0.448
hour13 0.463 0.459 0.448 0.446 0.448 0.447 0.448 0.448 0.447 0.446 0.446 0.444 0.444 0.000 0.445 0.445 0.446 0.446 0.446 0.446 0.445 0.447 0.447 0.448
hour14 0.462 0.458 0.447 0.446 0.447 0.447 0.447 0.448 0.448 0.446 0.446 0.445 0.444 0.445 0.000 0.444 0.445 0.445 0.445 0.445 0.446 0.446 0.446 0.447
hour15 0.462 0.459 0.447 0.447 0.448 0.448 0.447 0.448 0.448 0.447 0.447 0.446 0.446 0.445 0.444 0.000 0.444 0.444 0.445 0.444 0.445 0.445 0.445 0.447
hour16 0.462 0.458 0.447 0.448 0.448 0.447 0.447 0.448 0.448 0.446 0.447 0.446 0.446 0.446 0.445 0.444 0.000 0.442 0.443 0.444 0.444 0.444 0.445 0.445
hour17 0.461 0.458 0.447 0.446 0.447 0.447 0.447 0.447 0.447 0.447 0.446 0.446 0.446 0.446 0.445 0.444 0.442 0.000 0.442 0.443 0.443 0.443 0.445 0.445
hour18 0.461 0.457 0.447 0.446 0.448 0.448 0.448 0.447 0.447 0.447 0.446 0.446 0.446 0.446 0.445 0.445 0.443 0.442 0.000 0.442 0.443 0.443 0.444 0.444
hour19 0.459 0.456 0.447 0.446 0.448 0.447 0.446 0.447 0.448 0.447 0.446 0.446 0.445 0.446 0.445 0.444 0.444 0.443 0.442 0.000 0.442 0.442 0.443 0.444
hour20 0.459 0.457 0.446 0.446 0.448 0.447 0.447 0.447 0.448 0.447 0.447 0.447 0.446 0.445 0.446 0.445 0.444 0.443 0.443 0.442 0.000 0.442 0.442 0.443
hour21 0.459 0.457 0.447 0.446 0.447 0.447 0.446 0.447 0.448 0.447 0.447 0.447 0.446 0.447 0.446 0.445 0.444 0.443 0.443 0.442 0.442 0.000 0.442 0.443
hour22 0.458 0.458 0.446 0.447 0.448 0.447 0.448 0.448 0.448 0.447 0.447 0.446 0.447 0.447 0.446 0.445 0.445 0.445 0.444 0.443 0.442 0.442 0.000 0.441
hour23 0.459 0.457 0.447 0.447 0.448 0.448 0.448 0.448 0.449 0.448 0.447 0.447 0.448 0.448 0.447 0.447 0.445 0.445 0.444 0.444 0.443 0.443 0.441 0.000

Table 5.4: Data of probing cycle 2013_02_15: esd comparison by hour.

Figure 5.4: A visualization of the esd comparison (24 hrs x 24 hrs) for probing cycle
2013_02_15.
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In Figure 5.4, we see the esd between hour 00 and the other hours (and similarly for hour

01) behaves similarly to the vsd values for the same probing cycle-2013_02_15, revealing the

percentage of elements in the edge set for hours 00 and 01 that are not present in subsequent

hours. We included a more detailed illustration of the esd values in Figure 5.4 to emphasize the

difference, while small, between the first two hours and the subsequent hours.

As all the measurements to this point indicated a difference in the vertex and edge sets for hours

00 and 01 when compared to subsequent hours, we investigated the elements of the vertex and

edge sets of these two hours and compare them to the vertex and edge sets for the subsequent

hours as a whole. We did so by determining the union of the vertex and edge sets for three dif-

ferent sets: all 24 hours including hours 00 and 01, denoted as G∪all , all 23 hours: 01,02,...,23

(excluding hour 00), denoted as G∪00 , and all 23 hours: 00,02,03,04,...,23 (excluding hour 01),

denoted as G∪01 . We then performed a difference among these three sets; the results are indi-

cated in Table 5.5. Let G00 and G01 be the graphs representing hours 00 and 01 respectively.

In Table 5.7, G∩all is the graph representing the intersection of all 24 graphs. G∩0 is the graph

representing the intersection of 23 hours, excluding hour 00. In Table 5.8, G∩0 is the graph

representing the intersection of 23 hours, excluding hour 01. The results of the union and in-

tersection of graphs is indicated in the four tables to follow: Table 5.5 through Table 5.8. In

Table 5.5, the 12781 vertices in G∗00 represent the vertices that are unique to G00. G∗00 represents

the difference between the vertex and edge sets. In an effort to determine if there is a geograph-

ical relationship between these unique vertices, we performed a geolocation on each IP address

in G∗00; the results are in Figure 5.5.
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G00 G∪all G∪00 G∗00 = G00−G∪00 G∪00−G00 G∗00∩G∗01 G00−G∪all G∪all −G00
Vertex Count 199607 962897 950116 12781 763290 124858 0 763290
Edge Count 412194 2220021 2192721 182969 1714877 226755 0 1972048

Table 5.5: Vertex and Edge Set Differences for Hour 00, probing cycle 2013_02_15.

G01 G∪all G∪01 G∗01 = G01−G∪01 G∪01−G01 G∗00∩G∗01 G01−G∪all G∪all −G01
Vertex Count 207639 962897 949073 13824 755258 124858 0 755258
Edge Count 431961 2220021 2190236 192420 1614782 226755 0 1961495

Table 5.6: Vertex and Edge Set Differences for Hour 01, probing cycle 2013_02_15.

G0 G0∩G1 G∩all G∩0 G∩0−G0 G0−G∩0 G∩all −G0 G0−G∩all

Vertex Count 199607 124858 70304 71829 1525 129303 0 129303
Edge Count 412194 226755 101747 104395 45048 352847 41985 352432

Table 5.7: Vertex and Edge Set Intersections for Hour 00, probing cycle 2013_02_15.

G1 G0∩G1 G∩all G∩1 G∩1−G1 G1−G∩1 G∩all −G1 G1−G∩all

Vertex Count 207639 124858 70304 71554 1250 137335 0 129303
Edge Count 431961 226755 101747 104218 74058 372487 71357 401571

Table 5.8: Vertex and Edge Set Intersections for Hour 01, probing cycle 2013_02_15.

Figure 5.5: Data of G∗00: vertex count by geographic location.
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Figure 5.6: Data of G∗01: vertex count by geographic location.

In Figure 5.5, we depict 30 of the countries with the highest number of allocated IPv4 addresses

in G∗00. The distribution of vertices across multiple countries does not suggest a unique country

or AS as the attributing factor for the increased vsd between G00 and the other hours. In Ta-

ble 5.9, a comparison to the percentage of total allocated IPv4 address space from [29] shows

the proportion of unique vertices in G∗00 are generally consistent with the distribution of IPv4

addresses across the Internet. In Figure 5.6, the results are similar for G∗01.

Let Ḡn be the graph representing the difference of Gn\G∩all , where n is the hour. We computed

the vsd of Ḡn, where n ∈ {0,1,2, ...,23}, comparing the Ḡ00 graph to all other Ḡn graphs for

all values of n. We performed the vsd comparison for every pair of graphs of Ḡn, resulting in

Table 5.10. The large vsd values, between 50%-60%, in Table 5.10 suggest all graphs contain a

similar number of vertices that are unique to that hour’s graphical representation.

43



Country %IP Space G00* G01* Country %IP Space G00* G01*
United States 35.9% 30.1% 30.5% Sweden 0.70% 0.9% 1.1%
China 7.7% 7.3% 7.3% Spain 0.70% 0.8% 0.7%
Japan 4.7% 4.0% 4.1% Mexico 0.60% 0.9% 0.9%
United Kingdom 2.9% 3.2% 3.5% Poland 0.50% 1.9% 2.0%
Germany 2.8% 3.1% 3.0% Switzerland 0.50% 0.7% 0.7%
South Korea 2.6% 9.5% 9.6% South Africa 0.50% 0.6% 0.5%
France 2.2% 1.9% 2.0% Norway 0.40% 0.8% 0.7%
Canada 1.9% 2.3% 2.1% Indonesia 0.40% 0.6% 0.4%
Italy 1.2% 2.1% 2.4% Turkey 0.40% 0.5% 0.4%
Brazil 1.1% 3.2% 3.1% Austria 0.30% 0.9% 0.8%
Australia 1.1% 1.2% 1.1% Denmark 0.30% 0.5% 0.6%
Netherlands 1.1% 0.9% 1.0% Hong Kong 0.30% 0.6% 0.6%
Russian Federation 1.0% 2.5% 2.8% Ukraine 0.30% 0.8% 0.6%
India 0.8% 1.3% 1.5% Argentina 0.30% 0.5% 0.5%
Taiwan 0.8% 0.8% 0.8% Romania 0.30% 0.8% 0.5%

Table 5.9: Percentage of IPv4 allocation space for G∗00 and G∗01 vertices by country, from [29].

Ḡn Ḡ00 Ḡ01 Ḡ02 Ḡ03 Ḡ04 Ḡ05 Ḡ06 Ḡ07 Ḡ08 Ḡ09 Ḡ10 Ḡ11 Ḡ12 Ḡ13 Ḡ14 Ḡ15 Ḡ16 Ḡ17 Ḡ18 Ḡ19 Ḡ20 Ḡ21 Ḡ22 Ḡ23

Ḡ00 0.000 0.591 0.572 0.571 0.574 0.573 0.572 0.572 0.572 0.573 0.571 0.573 0.571 0.572 0.572 0.573 0.573 0.572 0.574 0.572 0.571 0.572 0.571 0.573

Ḡ01 0.591 0.000 0.561 0.561 0.561 0.561 0.562 0.563 0.561 0.563 0.562 0.563 0.562 0.563 0.562 0.563 0.562 0.563 0.564 0.564 0.563 0.564 0.564 0.563

Ḡ02 0.572 0.561 0.000 0.534 0.533 0.535 0.535 0.535 0.536 0.534 0.535 0.535 0.534 0.536 0.535 0.536 0.537 0.537 0.540 0.538 0.537 0.539 0.538 0.538

Ḡ03 0.571 0.561 0.534 0.000 0.533 0.533 0.534 0.533 0.534 0.535 0.532 0.534 0.533 0.533 0.534 0.534 0.537 0.536 0.538 0.537 0.536 0.538 0.539 0.538

Ḡ04 0.574 0.561 0.533 0.533 0.000 0.533 0.533 0.535 0.534 0.533 0.533 0.536 0.533 0.534 0.534 0.536 0.537 0.536 0.539 0.538 0.538 0.537 0.539 0.539

Ḡ05 0.573 0.561 0.535 0.533 0.533 0.000 0.534 0.535 0.534 0.534 0.536 0.536 0.532 0.533 0.534 0.535 0.536 0.536 0.540 0.537 0.538 0.538 0.537 0.539

Ḡ06 0.572 0.562 0.535 0.534 0.533 0.534 0.000 0.534 0.535 0.535 0.534 0.535 0.534 0.536 0.534 0.536 0.536 0.536 0.538 0.538 0.539 0.537 0.538 0.539

Ḡ07 0.572 0.563 0.535 0.533 0.535 0.535 0.534 0.000 0.534 0.533 0.534 0.533 0.532 0.535 0.536 0.536 0.537 0.536 0.538 0.537 0.537 0.538 0.538 0.538

Ḡ08 0.572 0.561 0.536 0.534 0.534 0.534 0.535 0.534 0.000 0.533 0.533 0.534 0.533 0.532 0.536 0.536 0.536 0.537 0.539 0.539 0.537 0.539 0.538 0.540

Ḡ09 0.573 0.563 0.534 0.535 0.533 0.534 0.535 0.533 0.533 0.000 0.533 0.532 0.532 0.533 0.534 0.535 0.535 0.536 0.539 0.537 0.537 0.539 0.539 0.538

Ḡ10 0.571 0.562 0.535 0.532 0.533 0.536 0.534 0.534 0.533 0.533 0.000 0.532 0.532 0.534 0.532 0.534 0.536 0.534 0.537 0.536 0.536 0.537 0.538 0.537

Ḡ11 0.573 0.563 0.535 0.534 0.536 0.536 0.535 0.533 0.534 0.532 0.532 0.000 0.532 0.533 0.534 0.537 0.536 0.535 0.538 0.537 0.538 0.539 0.538 0.539

Ḡ12 0.571 0.562 0.534 0.533 0.533 0.532 0.534 0.532 0.533 0.532 0.532 0.532 0.000 0.531 0.531 0.534 0.534 0.535 0.537 0.536 0.536 0.536 0.536 0.538

Ḡ13 0.572 0.563 0.536 0.533 0.534 0.533 0.536 0.535 0.532 0.533 0.534 0.533 0.531 0.000 0.534 0.534 0.533 0.535 0.538 0.537 0.535 0.538 0.537 0.537

Ḡ14 0.572 0.562 0.535 0.534 0.534 0.534 0.534 0.536 0.536 0.534 0.532 0.534 0.531 0.534 0.000 0.534 0.536 0.536 0.538 0.537 0.538 0.537 0.537 0.537

Ḡ15 0.573 0.563 0.536 0.534 0.536 0.535 0.536 0.536 0.536 0.535 0.534 0.537 0.534 0.534 0.534 0.000 0.536 0.534 0.539 0.536 0.536 0.539 0.538 0.538

Ḡ16 0.573 0.562 0.537 0.537 0.537 0.536 0.536 0.537 0.536 0.535 0.536 0.536 0.534 0.533 0.536 0.536 0.000 0.534 0.537 0.537 0.535 0.538 0.538 0.536

Ḡ17 0.572 0.563 0.537 0.536 0.536 0.536 0.536 0.536 0.537 0.536 0.534 0.535 0.535 0.535 0.536 0.534 0.534 0.000 0.536 0.536 0.536 0.535 0.538 0.537

Ḡ18 0.574 0.564 0.540 0.538 0.539 0.540 0.538 0.538 0.539 0.539 0.537 0.538 0.537 0.538 0.538 0.539 0.537 0.536 0.000 0.538 0.537 0.539 0.538 0.539

Ḡ19 0.572 0.564 0.538 0.537 0.538 0.537 0.538 0.537 0.539 0.537 0.536 0.537 0.536 0.537 0.537 0.536 0.537 0.536 0.538 0.000 0.535 0.537 0.537 0.537

Ḡ20 0.571 0.563 0.537 0.536 0.538 0.538 0.539 0.537 0.537 0.537 0.536 0.538 0.536 0.535 0.538 0.536 0.535 0.536 0.537 0.535 0.000 0.536 0.535 0.537

Ḡ21 0.572 0.564 0.539 0.538 0.537 0.538 0.537 0.538 0.539 0.539 0.537 0.539 0.536 0.538 0.537 0.539 0.538 0.535 0.539 0.537 0.536 0.000 0.537 0.538

Ḡ22 0.571 0.564 0.538 0.539 0.539 0.537 0.538 0.538 0.538 0.539 0.538 0.538 0.536 0.537 0.537 0.538 0.538 0.538 0.538 0.537 0.535 0.537 0.000 0.537

Ḡ23 0.573 0.563 0.538 0.538 0.539 0.539 0.539 0.538 0.540 0.538 0.537 0.539 0.538 0.537 0.537 0.538 0.536 0.537 0.539 0.537 0.537 0.538 0.537 0.000

Table 5.10: Data of Ḡn: vsd comparison by hour.
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Given the results of Figure 5.2, we considered the possibility that each of the remaining six

probing cycles would exhibit similar behavior as revealed in probing cycle-2013_02_15. We

began with a vsd comparison for the remaining six probing cycles as indicated in Figure 5.7. All

of the graphs display a maximum vsd between hours with the largest difference in vertex counts

as indicated in Table 5.1. For example, in Figure 5.8, hour 00 has over 17000 less vertices than

hour 01. This difference is consistent with comparisons between hour 00 and subsequent hours

as well, as depicted in Figure 5.8. The remaining figures reveal a similar relationship between

the hour with the lowest vertex count and the maximum vsd; the maximum vsd indicated in

the figure corresponds to the hour within the probing cycle with the lowest vertex count. From

Figure 5.7 to Figure 5.13, we see the results are similar for every probing cycle, which could be

the explanation of the slightly bigger vsd values.

Figure 5.7: A visualization of the vsd comparison (24 hrs x 24 hrs) for probing cycle
2013_02_15.
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Figure 5.8: A visualization of the vsd comparison (24 hrs x 24 hrs) for probing cycle
2013_02_17.

Figure 5.9: A visualization of the vsd comparison (24 hrs x 24 hrs) for probing cycle
2013_12_01.
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Figure 5.10: A visualization of the vsd comparison (24 hrs x 24 hrs) for probing cycle
2013_12_03.

Figure 5.11: A visualization of the vsd comparison (24 hrs x 24 hrs) for probing cycle
2013_12_05.
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Figure 5.12: A visualization of the vsd comparison (24 hrs x 24 hrs) for probing cycle
2013_12_07.

Figure 5.13: A visualization of the vsd comparison (24 hrs x 24 hrs) for probing cycle
2013_12_09.
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CHAPTER 6:

Future Work and Conclusion

In this chapter, we present our findings and provide insights into areas that might require further

research.

6.1 Summary
The intent of our research was to determine if the time of day is a factor when probing the

Internet for measurement. Given the results from our analysis of seven probing cycles, there

is no indication that time is a factor. The graph measures of vertex and edge count played a

significant role in determining our outcome; however, the use of graph measures alone is not

sufficient. While the statistical measures allowed for quantitative comparisons of each hourly

partition, the small sample size of seven probing cycles was not enough to employ more ro-

bust statistical analysis. The boxplot in Figure 5.2 identified a difference in hours 00 and 01

when compared to the subsequent sets. The processing time required to convert the large files

containing CAIDA probing cycles limited our ability to infer a difference with certainty. We

believe there is a relationship between low vertex counts and higher vsd values. The use of all

three measures reinforced the reasoning and analysis that resulted in our outcome.

6.2 Future Work
A limitation of our research is the large size of the warts files representing a probing cycle from

CAIDA. Given file sizes over 3GB per cycle, the time required to format the data for analysis

limited the focus of our research to seven probing cycles. Using a larger sample size, future

work in the areas below would expand our research.
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• The vertex and edge counts serve as data for the statistical and complex network mea-

sures. Using additional graph measures such as clustering coefficient, radius, and diame-

ter may reveal insights not addressed in this research.

• The statistical measures offer the ability to employ hypothesis testing on the mean of

hourly partitions to determine if the means are similar. One could apply a multiple com-

parisons test to determine if the means in Figure 5.1 are similar. Combining the hourly

partitions of multiple cycles may reveal additional insights as well.

• The visualizations of the December 2013 probing cycles illustrate a relationship between

the vertex count and vsd along the diagonal of the figure. As the day count increases, the

maximum vsd shifts towards hour 00 compared to the other probing cycles. Further study

to include additional probing cycles would determine if the phenomena is unique to those

probing cycles or indicative of other properties, such as the beginning of a probing cycle.

6.3 Conclusion
The use of graphical, statistical, and complex network measures gave no indication of time as a

factor in probing the Internet for measurement. The three measures were not sufficient individ-

ually; however, relationships between the measures contributed to our outcome, particularly the

relationship between large variations in vertex counts and larger vsd. The variations in vertex

counts result in significant changes in the vertex set for each graph, increasing the vsd.
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