
Calhoun: The NPS Institutional Archive
DSpace Repository

Theses and Dissertations 1. Thesis and Dissertation Collection, all items

1994-03

Design and implementation of a prototype
database for part information to support the
MK92 Fire Control System Maintenance
Advisor Expert System

Talley, Susan G.
Monterey, California. Naval Postgraduate School

https://hdl.handle.net/10945/42955

This publication is a work of the U.S. Government as defined in Title 17, United
States Code, Section 101. Copyright protection is not available for this work in the
United States.

Downloaded from NPS Archive: Calhoun

NAVAL POSTGRADUATE SCHOOL
Monterey, California

AD-A282 955
111

THESIS

Design and Implementation of a Prototype
Database for Part Information to Support the

MK9l Fire Control System Maintenance Advisor
Expert System

by

Susan G. Talley

March,l994

Thesis Advisor: MagdiKamel

Approved for public release; distribution is unlimited.

94-24737 ~b
11111111~111111~n ~

..

. .
:.

DTitl QUALITY ll1ePECTED B

0~ 0 49 .

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704

Nlil:...,......_._,_.._oollllc:liaaol...._._il......_...,__,elllourpcr....,_. ~die lime for--.,ill........, ~.-.. .. -. trbiat c., • .., .. rcvilllrba llleQOiadilaol s-1 c..-_ ... _.._...,..ottaooldaaoiWol-*•·....,..,.._•......_ .. ._._,..,w........_~Savioll.~flwW.. i
0,• . ..t 1215 wr.- Davia JliPway. Sua 121M, AdbttaD. VA 22202 302. _...,II& Ofticeoll'mr1 m ..t Budpc._
h.i..t I0104-01Yl • DC 20505.

1. AGENCY USE ONLY (Leave blank) ,2. REPORT DATE
1994 March 30

,3. REPORT TYPE AND DATES COVERED
Master's Thesis

4. 1TI'LE AND SUB1TI'LE DESIGN AND IMPLEMENTATION OF A S. FUNDING NUMBERS
PROTOTYPE DATABASE FOR PART INFORMATION TO SUPPORT
THE MK92 FIRE CONTROL SYSTEM MAINTENANCE ADVISOR
EXPERT SYSTEM

6. AUTHOR(S) Susan G. Talley

7. PERFORMING ORGAN1ZATION NAME(S) AND ADDRESS(ES) S. PERFORMING
Naval Postgraduate School ORGANIZATION
Monterey CA 93943-SOOO REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
AGENCY REPORT NUMBER.

11. SUPPI.EMENTAR.Y NOTES The views expressed in this thesis are those of the author and do not reflect
the official policy or position of the Department of Defense or the U.S. Government.

12a. DJSTRlBlmON/AV.AJLABILITY STATEMENT 12b. DISTIUBUTION CODE
Approved for public release; distribution is unlimited. A

13. ABSTRAcr (mainulm 200 wortisJ
The MK92 Fire Control System (FCS) is the heart of shipboard weapon systems found aboard U. S. Oliver
Hazard Perry class FFGs. This system, based on 1970's technology, frequently requires extensive
troubleshooting and supplemental shore-base support. A maintenance advisor expert system is being
developed to assist shipboard technicians in correctly diagnosing system faults, providing expert advice
concerning part replacement or further tests which should be made.

Additional information provided by the expert system includes documentation references, alternate
location for a part, and part numbers. Storing such information in a relational database that communicates
with the expert system would greatly improve its maintainability, modifiability, and accuracy.

This thesis addresses the design and implementation of a database to support the MK92 MOD 2 FCS
Maintenance Advisor Expert System using Microsoft Access ™. This database includes such functions as
part and replacement informatio~base maintenance, and expert system support. Research revealed that
the currently supported Windows interprogram communications mechanism of Dynamic Data Exchange
(DDE), as supported by the current versions of Access and Softsell Adept TM, will not adequately support
the database to expert system interface requirements. Suggestions for alternative interface solutions are
provided in the thesis .
.
14. SlJBJECT TERMS Databue. Expert System. MK92 MOD 2 rue Control Syatem. 15. NUMBER OF
Daaabue Delip ad lmplemeatation. Da&abate Application. PAGES 199

16. PJUCE CODE
17. SECURli'Y CLASSIFI- 18. SECUR.ll'Y CLASSIFI- 19. SECURITY CLASSIFI- 20. LIMITATION OF

CATION OF REPORT CATION OF THIS PAGE CATION OF ABSTRACf .ABSTR.ACT
Unclassified Unclassified Unclassified UL

NSN 7S40-01-280-SSOO Standard Form 298 (R.ev. 2-89)

i

Approved for public release; distribution is unlimited.

Design and Implementation of a Prototype Database
for Part Information to Support the

MK92 F'1te Control System Maintenance Advisor Expert System

by

Susan G. Talley
Lieutenant Commander, United States Navy

B.S.M.E., University of Washington

Submitted in partjal fulfillment
of the requirements for the degree of

MASTER OF SCIENCE IN INFORMATION TECHNOLOGY MANAGEMENT

from the

ii

ABSTRACT

The MK92 Fire Control System (FCS) is the heart of shipboard weapon systems

found aboard U.S. Oliver Hazard Perry class FFGs. This system, based on 1970's technology,

frequently requires extensive troubleshooting and supplemental shore-base support. A

maintenance advisor expert system is being developed to assist shipboard technicians in correctly

diagnosing system faults, providing expert advice concerning part replacement or further tests

which should be made.

Additional information provided by the expert system includes documentation references,

alternate location for a part, and part numbers. Storing such information in a relational database

that communicates with the expert system would greatly improve its maintainability,

modifiability, and accuracy.

' This thesis addresses the design and implementation of a database to support the MK92

MOD 2 FCS Maintenance Advisor Expert System using Microsoft Access ™. This database

includes such functions as part and replacement information, database maintenance, and expert

system support. Research revealed that the currently supported Windows interprogram

communications mechanism of Dynamic Data Exchange (DOE), as supported by the current

versions of Access and Softsell Adept ™, will not adequately support the database to expert

system interface requirements. Suggestions for alternative interface solutions are provided in the

thesis. Accesion For

NTIS CRA&I ~
OTIC TAB ~
Unannounced 0

Justification ~---·····-·······-··

By ··------·······-··------··--·--
Distribution I

Availability Codes

Avail and I or
Dist Special

iii

TABLE OF CONTENTS

I. INl'R.ODUCTION ... 1

A BACKGR.OUND .. 1

B. Pl.JRPOSEJOBJECTIVES .. 2

C. RESEARCH QUESTIONS ... 2

D. SCOPE AND LIMITATIONS OF THESIS .. 2

E. :td:ETIIODOLOGY ... 3

F. TIIESIS ORGANIZATION .. 3

ll. REQ~S.AN.AI..YSIS ... S

A DATAREQ~S .. 6

1. Entities and Attrl'butes ... 6

a. General Description .. 6

b. Specific System Entities and Attributes 6

2. Relationships ... 7

a. General Description .. 7

b. Specific System Relationships ... 8

B. PROCESS REQ~S .. 9

1. Process Decomposition .. 10

2. SystemDataFlowDiagrams(DFDs) ... 10

a. Context Diagram .. 11

b. Systems Diagram .. 11

(1) General Description ... 11

(2) Subsystem Descriptions ... 12

c. Middle Level and Primitive Level DFDs 12

(1) GeneraiDescription ... 12

iv

.:.~~-----------------------------------

(2) Parts Information Subsystem ... 13

(3) Data Store Maintenance Subsystem 14

(4) System Usage Subsystem .. 17

C. OUTPUT OF REQUIREMENTS ANALYSIS PHASE 18

m DATABASE SYSTEM DESIGN ... 19

A DATA DESIGN ... 19

1. General Procedures .. 19

2. Specific Database Systems Relations .. 20

B. PROCESS DESIGN' ... 22

1. Menu Design ... 22

a. General Design Strategy ... 22

b. Specific Design ... 22

(1) User Menu .. 23

(2) Administrator (Admin) Menu .. 26

2. General Form/Screen Use and Design .. 28

3. Process Logic .. 29

4. Specific System Reports and Associated Logic 29

a. User Forms ... 29

(1) Browse Part Supply Information. 29

(2) Update Part Supply Status ... 30

(3) Update Circuit Card Information (By Node#) 31

(4) Update Circuit Card Information (By UD#) 32

b. Administrator (Adlnin) Forms ... 33

(1) Common User and Adlnin Forms 33

v

(2) Unique Admin Fonns - Update Circuit Information

(By Node#) ... 33

5. Report Design .. 35

a. User Reports .. 35

(1) Parts Not On Hand Report .. 35

(2) Parts On Order Report .. 36

(3) Parts Under Stock Report ... 36

b. Admin Reports··· 36

C. CONCLUSION OF DESIGN PHASE .. 37

IV. DATABASE SYSTEM IMPLEMENTATION .. 38

A SOFTWARE SEI..ECTION .. 38

1. Software llequireJnents .. 38

2. Available Software Programs: Advantages and Disadvantages 39

L ~croso:ft .Access™ DBMS .. 39

b. Paradox™ DBMS for Wmdows ... 39

c. ~croso:ft FoxPro™ DBMS for Wmdows 40

3. DBMS Selected ... 40

B. MICROSOFT ACCESS™ DBMS OVERVIEW 40

1. Tables .. 41

L Table Creation and Definition ... 41

b. Establishing Relationships Between Tables 43

c. Data Entiy .. 44

2. Queries .. 44

L Types of Queries .. 45

b. Query Development .. 45

vi

3. Forms .. 46

a. Form Development Environment .. 46

b. Mem1 Screens ... 48

c. Input/Output Screens .. 49

4. Reports .. so
S. Macros .. 51

a. Macro Design ... 51

b. Using Macros With Forms .. 53

c. Linking Input and Output Forms ... 53

6. Modules .. 54

a. Use of Access Basic ... 54

b. Access Basic Language ... 55

C. DATA JMiti..EMENTATION ... 56

D. PROCESS JMiti..EMENTATION ... 57

1. Process Development Example .. 57

a. Implementation of Specific Process Tasks 51

b. Process Example .. 51

2. Query Development and Examples ... 59

a. Parts On Order Query ... 59

b. Systeln Parts list Query ... 61

3. Menu/Screen/Form Development ... 63

a. Update Node-Replacement - Admin Form 63

(1) Form: Replacement Info Sub(sub)form 63

(2) Form: Node-R.eplacemeDi Info Subform 64

(3) Form: Node-Replacement Info 65

vii

b. Input Node# Form .. 66

4. Report Developlllellt .. 66

a. Parts On Order Report .. 66

(1) Report: Parts On Order Subreport 66

(2) Report: Parts On Order ... 67

b. System Parts List Report .. 68

(1) Report: System List Subreport 68

(2) Report: System Parts List .. 69

E. OUTPUT OF Tim IMPLEMENTATION PHASE 70

V. INTERFACE BETWEEN EXPERT AND DATABASE SYS1EMS 71

A WINDOWS INTERPR.OGRAM COMMUNICATION 71

1. Dynamic Data Exchange (ODE) ... 7l

a. DDE in .Access •.. 72

b. DDE in Adept .. 73

2. Object LinkiDg and Embedding (OLE) ... 74

B. IMPLEMENTATION OF DDE INTERFACE BETWEEN ADEPT

AND ACCESS .APPUCATIONS ... 76

1. General Requirelnents .. 76

2. Possible Solutions .. 76

a. Establishing Communications: First Approach 77

(1) Methodology ... 77

(2) Results .. 77

b. Second Approach ... 77

(1) Methodology ... 77

(2) Results .. 78

viii

c. Third Approach .. 78

(I) Methodology ... 78

(2) Results .. 79

d. Fourth Approach .. 80

(1) Methodology ... 80

(2) Phased Testing .. 80

(3) Results .. 81

2. IInpleJnentation Specifics ... 82

a. Node Number from Adept to Access 82

b. Part Infonnation Records from Access 83

(1) Part Information Query by Access 83

(2) Information Request by Adept 84

c. Display of Part Infonnation to User .. 84

C. FIN'AI.. REStJLTS .. 86

VI. LESSONS LEARNED AND CONCLUSIONS .. 89

A SPONSOR FEEDBACK ABOUT PROTOTYPE 89

1. Expert Systezn Interface ... 89

a. Acknowledged Communication Problezns 89

h. Perfonnance Issue .. 89

2. Parts Supply Information Subsystezn .. 90

3. DB Maintenance Subsystezn ... 90

4. Usage Subsystezn ... 90

S. Administrator iDd User Interface ... 90

B. DIRECTION OF FOLLOW-ON WORK .. 91

I. Expert Systezn - Database Interface .. 91

ix

2. Database Application Functionality .. 92

3. Database Application Environment .. 92

4. Documentation .. 92

C. I.ESSONS I.EARNED ... 92

1. Database Selection ... 92

2. Application Development ... 93

D. CONCLUSION .. 93

APPENDIX A- ENTITIES, ATTRIBUTES, AND ENTITY-RELATIONSIDP

DIAGR.AM .. 94

A ENTITY DEFINITIONS AND ATIRIBUTES .. 94

B. ATIRJBUTE DEFINITIONS ... 95

C. ENTITY-RELATIONSHIP (E-R) DIAGRAM ... 97

APPENDIX B - DECOMPOSmON AND DATA FLOW DIAGRAMS 98

APPENDIX C- .MENU HIERARCHY AND SCREENS .. 112

A 1\ffiNU HIERARCHY .. 112

B. 1\ffiNU SCREEN'S .. 114

APPENDIX D- PROCESS LOGIC, SYSTEM FORMS, AND SYSTEM REPORTS 121

A PROCESSLOGIC' ... 121

1. User Procedures .. 121

2. Administrator Procedures .. 129

3. SysteJn Functions ... 13 7

B. SYSTEMFORMS .. 138

C. SYS1'EMREPORTS .. 145

APPENDIXE- IMPLEMENTATION OF PROCESS LOGIC 149

A STANDARD :METHODS OF PROCESS LOGIC IMPLEMENTATION. 149

X

B. APPUCATION OBJE.CTS .. 152

1. APPUCATION TABLES AND FIELDS .. 152

2. APPUCATION QUERIES ... 152

3. APPUCATIONREPORTS .. 153

4. APPUCATION FORMS: CONTROLS, PROCESSES, AND

PROPERTIES ... 154

5. MACROS AND ARGUMENTS .. 160

6. APPUCATION ACCESS BASIC MODULES 164

APPENDIX F- DDE DOCUMENTATION ... 172

A ACCESS BASIC LANGUAGE ELEMENTS FOR DDE 172

B. ADEPT FUN~TIONS FOR DDE ... 173

C. ADEPT AND ACCESS APPUCATION INTERFACE PROCESSES 174

1. Adept Expert Systemlnter&ceNodeand Scripts 174

a. Interface Node .. 174

b. Interface Node Scripts .. 175

c. Adept Display of Part Infonnation .. 179

2. Database Application Procedures and Macros 179

UST OF REFEREN'CES .. 183

BmUOGRAPHY ... 184

INITIAI.. DISTRIB{JTION UST .. 185

xi

I. INTRODUCTION

A. BACKGROUND

The MK92 Fire Control System (FCS) is the heart of shipboard weapon systems

found aboard U.S. Oliver Hazard Perry class FFGs and some U.S. Coast Guard and

Australian vessels. Based on 1970's technology, the system requires a great deal of effort

to correctly identify components causing system faults. Shipboard technicians spend

valuable man hours and often replace good components, resulting in significant costs

and/or extended system down time. In addition, shipboard technicians may not have the

necessary expertise, and technical assist visits from shore-based technicians are often

required to get the system back into operation. (Smith, 1993, p. 1)

A maintenance advisor expert system is being developed to enhance fault diagnosis

and calibration of the MK92 MOD 2 FCS. Its purpose is to reduce the amount of time

and money spent on system diagnostics and to reduce overall system down time. More

significant, this expert system has the potential for reducing the dependence on shore

based systems support, which is not likely to be available during at-sea operations or war

when it is critical for the MK.92 FCS to be fully operational.

There are several potential uses of a database in conjunction with the expert system.

A database is required to manage information concerning replacement part information,

locations of identical parts within the system, and documentation references which are

part of the expert system conclusions or recommendations. Since this information is used

in more than one place within the expert system, storing it within a database will make it

more easy to modify than if it were bard wired within the expert system itself. A second

use of a database is to provide a supply support and inventory function to the technicians,

1

to facilitate procurement of parts when they are required. Another possible benefit of

using a database is using it to store and report usage/historical information, with respect

to the use of the expert system, for future analysis and planning.

B. PURPOSE/OBJECTIVES

The purpose of this thesis is to design and implement a prototype database system

which will work in conjunction with the MK92 FCS Maintenance Advisor Expert System

(MAES). This database will primarily act as a repository for detailed information on

replacement parts which will be available to the user, through the expert system. An easy

to use interface will be provided to the users which allows them to maintain database

information. In addition, the database will perform a supply support function for the

technicians.

C. RESEARCH QUESTIONS

The following are the research questions that this thesis is addressing:

1. Does the use of off-the-shelf databases with expert systems add to the

functionality of expert systems?

2. Does the use of databases with expert systems facilitate the maintenance

of the currently developed expert systems?

3. What is the viability of the integration of databases and expert systems in

the Windows environment?

D. SCOPE AND LIMITATIONS OF THESIS

This thesis defines, designs and implements primary functionality of a relational

database system for use in conjunction with the MK92 Fire Control System MAES.

Methods for integration of the database and expert system were explored and tested.

2

E. METHODOLOGY

This thesis uses the database life cycle and prototyping approach to develop the

database application. This methodology of software development combines formal

requirements and design techniques with one which utilizes a series of adaptive

prototypes to test feasibility and to use for evolutionary requirements analysis.

The initial design and prototype focuses on the requirements generated by the

interaction between the database and the expert system. When necessary, database

complexity was limited to keep communications between the database and expert system

as simple as possible.

F. THESIS ORGANIZATION

This thesis is organized in the following manner:

Chapter ll describes the system requirements (Requirements Analysis Phase). Data

and process requirements are discussed and represented using an Entity-Relationship

(E-R) diagram and a leveled set of Data Flow Diagrams (DFD).

Chapter m covers how the requirements are converted into a database design

(Design Phase). Data and process design are discussed, including the design of menus,

forms, and reports.

Chapter IV discusses the implementation of the database (Implementation Phase).

In this phase, data and processes are discussed in terms of implementation within a

specific database software program. This chapter covers the construction of a Microsoft

Access 1M application from a generic design.

Chapter V discusses the integration of the database and expert system. Dynamic

data exchange (DDE) is the primary method covered, with other possible mechanisms

briefly discussed.

3

Chapter VI presents lessons learned from the system development and future work

requirements.

4

······· ·-------------------------------'

n. REQUIREMENTS ANALYSIS

Requirements analysis consists of determining two types of system requirements:

data requirements and process requirements. Determining data requirements specifies

what data needs to be stored in the system, while process requirements specify the

processes which operate on the data in order to provide the required database

functionality. In the requirements analysis phase of software design, initial design

requirements were obtained by analyzing the functionality of the expert system and

gathering the requirements and capabilities requested by the program manager, the Naval

Surface Warfare Center (NSWC), Port Hueneme Detachment (PHD).

Prior to beginning the database design, its requirements had been discussed by the

MK92 FCS MAES project team during several meetings, with the primary requirement

determined to be presenting the user particular amplifying information concerning the

expert system result nodes. NSWC PHD provided this information in the fonn of a list for

the calibration portion of the expert system. Data requirements were developed primarily

from this list and the knowledge representation diagrams.

In addition, discussion with NSWC personnel and the project advisors included

interest in the possibility of storing data concerning the usage of the expert system to

provide justification for the development of the system. Initial requirements were based

on the possible information this sort of system would store, along with likely input and

output processes, but the detailed design and the implementation of these requirements

will not be covered in this thesis. Follow-on work may contain this functionality if it

remains a system requirement.

Requirements for a supply function were based on personal experience with

technicians and their needs for quick infonnation for ordering parts. This system will be

developed further based examination of the prototype by NSWC in follow-on work.

s

Some type of interface for maintenance is required of all databases. While much of

the maintenance is performed by an administrator, it may also be practical for data to be

maintained by the users, as well. If the users are required to maintain data, the design of a

database maintenance interface is considerably more important. This interface must

provide the capability to maintain the data items subject to change and at the same time

present the inadvertent corruption of the database, to the greatest extent possible.

A. DATA REQUIREMENTS

Data requirements may be stated in the form of an entity-relationship (E-R) model,

which consists of entities, attnoutes, and relationships. The entity-relationship (E-R)

diagram is used to visually descnbe the entities and the relationships between them, and is

provided in Appendix A, Section C. Data requirements are descnDed below.

1. EDtities and Attributes

a. General Dacl'iptio•

The basic object in an E-R model is an entity, which is defined as

"something important to the users in the context of the system that is to be built"

(Kroenke, 1992, p. 98). Each entity has specific properties called attributes, which are

characteristics that describe it. Each instance of an entity is a unique occurrence of that

entity, which can be specified by a particular attribute or identifier.

b. Specijic System EIJtities IIIUl Attributes

One of the primary entities for this system is the NODE, which is the

result node within the expert system requiring information on part replacement from the

database. Attributes of a NODE are a Node-number and a Module-reference, with Node

number being the identifier, or unique attribute.

The second primary entity is REPLACEMENT. This entity descnbes a

particular part and its location within the system, which may be replaced by the technician

6

troubleshooting faults within the MK92 FCS. Attributes of a REPLACEMENT are a

Circuit-card-location-reference, Alternate-location, and Notes. The Circuit-card-location

reference, commonly called the UD number within the system technical manuals as well as

the expert system, is the identifier for the Replacement entity.

The next primary entity is P AR.T, which descnDes a particular electronic

part in the system, another item of interest to ~ technician. Attn"'butes ofP AR.T are the

Part-number, Stock-number, Price, Part-allowance, Part.on-band, and Parts-on-Order.

Part-number is the identifier for the PART entity.

The fourth entity is NODE-REPL, which provides a link between the

NODE and the REPLACEMENT entities. The identifi• is a composite attribute

consisting of Part-number (from PART) and Circuit-card-location-reference (UD#) (from

REPLACEMENT). There is also one attribute, circuit-reference, which is the document

reference for a particular combination ofNODE and REPLACEMENT identifiers.

The last entity is USAGE, which would store a record of the actual

usage of the expert system to allow management to analyze its effectiveness and perfonn

more accurate cost/benefit analysis. The initial definition of the attributes ofUSAGE are

the Usage-number~ Usage-date, Part-replaced, and Usage-notes. Usage-number is the

identifier for the USAGE entity.

Other entities may be added to the system as development progresses.

Appendix A, Sections A-B contains a listing of all system entities, their attn"butes, and

their definitions.

2. Relationships

a. Genertd Description

The association between two entities is called a relationship. A rela

tionship can be characterized on several dimensions. The first dimension is the degree of

7

the relationship. Most relationships involve only two entities and are called binary

relationships.

The second dimension is cardinality, which specifies how many instances

of each entity may be associated with the other entity in the relationship. There are three

main types ofbinary relationships, 1:1 (one-to-one), 1:N (one-to-many), and N:M (many

to-many).

A third dimension is participation. The participation constraint tells

whether the relationship between one entity and another is required (mandatory) or not

required (optional). If every member of an entity set must be related to another entity,

then the participation constraint is mandatory, or total. If members of an entity can exist

without being related to another entity, then the participation constraint is optional, or

partial. (Elmsari and Navathe, pp. 50-51)

b. Specific Systmt Rellltionships

The relationship between the NODE entity and the REPLACEMENT

entity is a N:M relationship, that is, a NODE may use more than one REPLACEMENT

and likewise, a REPLACEMENT may be used by more than one NODE. This

relationship contains the attn"bute circuit-reference, as the documentation reference is

usociated with neither Node nor Replacement, but the combination of the two. Since this

relationship cannot be implemented directly, it has instead, been broken into two 1 :N

relationships, as ciiscussed below.

The relationship between the NODE entity and the NODE-REPL entity

is a 1 :N relationship, that is, a NODE instance may be associated with more than one

instance ofNODE-REPL, but each instance ofNODE-REPL may be associated with only

one instance ofNODE. Similarly, the relationship between REPLACEMENT entity and

the NODE-REPL entity is a 1 :N relationship. A REPLACEMENT instance may be

8

associated with several instances ofNODE-REPL, but each instance ofNODE-REPL may

be associated with only one instance ofNODE. The participation constraints are such that

there is a mandatory requirement for each NODE-REPL instance to be associated with a

NODE aud a REPLACEMENT iristance. On the other hand, NODE and

REPLACEMENT instances can exist without an associated NODE-REPL instance,

therefore those constraints are optional.

The relationship between the PART entity and the REPLACEMENT

entity is a 1 :N relationship, since a PART instance may be associated with more than one

REPLACEMENT instance, but each REPLACEMENT instance is associated with only

one PART instance. The participation constraint is optional both ways, that is a

REPLACEMENT instance may have a reJated PART instance and aPART instance may

exist without being related to a REPLACEMENT instance.

B. PROCESS REQUIREMENTS

Process requirements are the second component of the overall system requirement.

Processes can be modeled in terms of how the data flows through the system and the

processing that is performed on the data. Data flow models are used to depict the

processes aud how they interact with one another, and how the data flows between

processes. (Whitten, et. al., 1989, p.275)

Process modeling begins with factoring a system into subsystems and functions,

using a top-down functional decomposition diagram. Logical data flow diagrams (DFDs)

are then constructed, corresponding to each level in the decomposition diagram. Middle

level DFDs show details about key subsystems, and the primitive level diagrams show

explicit data flows and processes for a single functional piece of the system. (Whitten, et.

u., 1989,pp.284-321)

9

1. Proceu Decompositioa

The decomposition of the process requirements for this system is shown in the

decomposition diagrams provided in Appendix B. This system is broken into three main

subsystems: the Part laformatioa a:bsystem, the Data Store Maiateaaace subsystem,

and the System Usage subsystem (Figure B-1).

These subsystems have been further broken down into subprocesses, which

are activities corresponding to various system transactions, data maintenance functions,

and reports. Further decomposition is shown in Figures B-2 through B-4. There is a

fourth component of the database, which is associated with the interface between the

database and the expert system. This component is discussed in detail in Chapter V.

2. System Data Flow Diagrams (DFDs)

Logical data flow diagrams (DFDs) are used to show detailed processing and

associated data flows. Higher level DFDs correspond to the higher levels in the

decomposition diagram, and give a more general illustration of what the subsystems do.

The lower level DFDs show the detailed processing requirements of the primitive level

functions. (Whitten, et. al., 1989, p. 289)

There are three main components of a data flow diagram: the external entities

to the system, the logical data flows, and the logical processes. The external entities

define the system boundaries, are the agents with which the system interacts, and include

the end-users of the system. These end-users may be either sources of data or recipients

of system infonnation, or both. (Whitten, et. al., 1989, pp. 277-8)

In this system, the two major entities are 1) the Technician (or Expert System

User), and 2) the System Admiaistrator (System Admin). Two separate entities are used

because, while the majority of the system processes are of possible use to both entities,

there are separate processes which are designed for use by personnel maintaining the

10

expert system and/or the database system (system administration). Changes to the expert

system may require related changes to the database, where the user may be required to

perform some simple database maintenance tasks if information in the data stores changes.

A simplified interface is provided for the primary end-user (technician).

& Colltext Diagram

The highest level DFD is the context diagram. This diagram "defines

the scope and boundary for the system and project, (Whitten, et. al., 1989, p. 289)" and in

this case is shown in Figure B-S. In this diagram, the only process shown is the root

process. In addition, this diagram shows the external entities and the major data flows.

Since details are not shown, the flows in this diagram represent a collection (or

consolidation) of flows between the system and the entities.

System maintenance information flows from the System Administrator

to the system, and parts information flows from the system to the System Administrator.

User information (including maintenance information) flows from the Technician to the

system and parts/supply information flows from the system to the Technician.

b. System Diagrt1111

(I) General Description. The system diagram is an explosion of the

context diagram into a more detailed picture of the system, and is the second level DFD.

This diagram shows the major subsystems and how they interact with one another. This

system diagram is shown in Figure F-6, and shows the three primary subsystems (1.0 Part

Info, 2.0 Data Store Maintenance, 3.0 System Usage) which are the second level of the

decomposition diagram. In addition to showing data flows between the systems and the

external entities, this and lower level DFDs also show communications between the

processes and the data stores. Multiple data stores and entities of the same name are used

only to keep the diagram readable; symbols using the same name represent the same entity

11

or data store. In some cases, a single "data model" is used to represent all systems data

stores for simplification. (Whitten, et. al., 1989, pp. 291-294)

In a few instances, the data flows shown on this diagram still

represent composite flows, which are exploded further in lower level diagrams. In

addition, most communication between the system and the user is two-way, yet may be

o1liy shown in one direction. To simplify DFDs, only the net data flow is shown; for

example, in an inquiry, the result is shown but not the request.

(2) Subsystem Descriptions. The Part Info Subsystem receives part

supply input and provides (local) part information to the Technician and provides

(system) part information to the System Administrator.• This subsystem uses the Part and

the Replacement data stores.

The Data Store Maintenance Subsystem receives (system)

maintenance information from the System Administrator and (local) maintenance

information from the Technician. This subsystem maintains the Replacement, Node, Part,

and Node-Repl data stores.

The System Usage Subsystem receives usage infonnation from

and provides usage reports to the Technician. This data is stored in the Usage data store.

c. Middle Level tmd Primiti~ Level DFDs

(1) General Description. Each of the processes on the systems

diagram is further exploded to show more of the subsystem details. In the case of this

system there is only one level DFD between the system level DFD and the lowest or

primitive level DFD. Each diagram will show progressively more detail concerning flows

1 The term "local" is used with respect to the data flows to generally denote
information going between processes and the Technician entity, and the term "system" is
likewise used to denote infonnation between processes and the System Admin entity.

12

until reaching the primitive level. At the primitive level, all data flows are shown and

composite flows are broken down into their individual components. The letter P is added

to the identification number for primitive processes to show that this process does not

explode to another DFD.

(2) Parts Information Subsystem. The Parts Information Subsystem

is exploded ftom the systems diagram into two levels (Figures B-7 and B-8). There are

three processes in the first level, two of which are primitive level processes. These

correspond to the decomposition diagram for this subsystem.

(a) Browse Part Info process (l.lP). This allows the

technician to look at part information for a particular part. Part Supply Details are

retrieved ftom the Part data stor~ and then provided to the Technician, by selecting a

particular part-number.

(b) Update Supply Status process (1.2P). This allows the

technician to change supply status information for a particular part. Changes are provided

to the po.;~ which then updates details in the Part data store.

(c) Report Part Info process (1.3). This allows the technician

and system administrator to retrieve Part Reports and System Part Reports, respectively.

This process uses details ftom the Part and Replacement data stores. This process is

broken down into the following primitive processes (Figure 8):

(i) Not On Hand Report process (1.3 .lP). This

provides a report to the Technician, of parts which are not in stock, using the part-number

element ftom the Part data store and the circuit-card-location-ref (UD#) element from the

RepJacement data store. This report provides aU UD#s which are related to a particular

part.

13

(ii) Parts On Ordtr Report process (1.3.2P). This

provides a Parts On Order Report to the Technician, using the part-number, and the parts

on-order element from the Part data store, and the circuit-card-location-ref(UD#) element

from the Replacement data store.

(iii) Parts Under Stock Report process (1.3.3P). This

provides a list of all parts which are under allowance level to the Technician, using details

from the Part data store.

(iv) System Parts List process (1.3.4P). This provides

a list of all parts in the system to the System Administrator, using the part-number element

from the Part data store, and the circuit-card-location-ref (UD#) element from the

Replacement data store. All UD#s corresponding to a particular part are listed.

(3) Data Store Maintenance Subsystem. The Data Store Maintenance

Subsystem is exploded ftoll" the systems diagram into two levels (Figures 9-13). There

are three processes in the first level (Figure 9), which all explode into lower level

procesus.

(a) Node Maintenance process (2.1). This allows the System

Administrator and the Technician to perfonn maintenance on the Node data store, as well

as related data stores (Replacement and Node-Repl), by selecting a particular Node#.

This process explodes into the following primitive processes (Figure B-1 0):

(i) Update Node/UD Info by Node process (2.l.IP).

This process allows the System Administrator and Technician to select a particular node

and update all elements in the Node, Node-Repl, and Replacement data stores except

node-number.

14

(ii) Change Node## process (2.1.2P). This process

allows the System Administrator to change the Node number of a particular node. Node

number from both the Node and the Node-Repl data stores are changed.

(iii) Add Node process (2.1.3P). This process allows

the System Administrator to add a new node to the system. Other related information,

such as associated UD#s, pertaining to new nodes must be added by other processes.

(iv) Delete Node process (2.1.4P). This process allows

the System Administrator to delete a node from the system, using node-number to delete

the related instances in the Node and Node-Repl data stores.

(v) Add UD to Node (By Noae) process (2.1.5P). This

process allows the System Administrator and Technician to add UD#s related to a

particular node-number by adding Node-l<..epl data store instances to ~he system. This

process checks to see if the UD# exists. If it does not, a message will request the user to

add the UD# before creating an instance in the Node-Repl data store.

(vi) Delete UD from Node (By Node) process (2.1.6P}.

This process allows the System Administrator and Technician to delete UD#s related to a

particular node-number by deleting instances in the Node-Repl data store from the system.

(b) Replacement (UD) Maintenance process (2.2). This

process allows the System Administrator and Technician to perform maintenance on the

Replacement data store, and related data stores (Part and Node-Repl), by selecting a

particular UD#. This process explodes into the following primitive processes (Figure

B-11}:

(i) Change Replacement Info By UD# process

(2.2.1P). This process allows the System Administrator and the Technician to change

information related to a particular circuit-card-location-ref (UD#) in the Replacement and

15

Part data stores. If part-number is changed, the corresponding Part data store instance

will also have its part-number attn"bute changed.

(ii) Chauge UD# process (2.2.2P). This process allows

the System Administrator and the Technician to change circuit-card-location-ref (UD#)

for a particular instance in the Replacement data store and related instances in the Node

Repl data stores.

(iii) Add UD to Nodes (By UD) process (2.2.3P). This

process would allow the System Administrator to add Replacement data store and corre

sponding Node-Repl data store instances for a single UD#. This would be an alternative

to adding a UD# to a number of nodes one node at a time. For Replacement data store

instances not related to an existing Part-number, a new instance in the Part data store

would be created.

(iv) Delete UD from Nodes (By UD) process (2.2.4P).

This process is similar to that of2.2.3P, but deletes rather than adds UD#s related to

Nodes. This is accomplished by deleting Node-Repl instances.

(c) Part Maintenance process (2.3). 'fbi's process allows the

System Administrator and Technician to perform maintenance on the Part data store, and

related data stores (Replacement and Node-Repl), by selecting a particular Part#. This

process explodes into the following primitive level processes (Figure B-12}:

(i) Change Part Info process (2.3.1P). This process

allows the System Administrator and Technician to change information relating to a

particular part in the Part data store, by part-number.

(Ii) Change Part# process (2.3.2P). This process

allows the System Administrator and Technician to change the part-number of a particular

part, changing related part-numbers in both the Part and Replacement data stores.

16

(ill) Delete Parts & UDs process (2.3.3P). This process

allows the System Administrator to delete Part instances from the Part data store.

However it checks to see if corresponding instances with the same part-number exist in

the Replacement data store. If they do exist, the user will be asked to delete related

Replacement instances first.

(iv) Add Parts process (2.3.4P). This process allows

the System Administrator and Technician to add instances to the Part data store.

(4) System Usage Subsystem. The System Usage Subsystem is

exploded from the systems diagram into two levels (Figures B-13 and B-14). There are

two processes in the first level, one of which is a primitive level process.

(a) Enter Usage process (3.1P). This process allows the

Technician to enter system usage data. The identifier attribute will be a usage-number,

which will document consecutive entries. Other items of interest will be usage-date, part

replaced (Part#), and notes (UD#, etc.). These attributes are stored in the Usage data

store.

(b) Report Usage Data process (3.2). This process explodes

into the following primitive level processes (Figure B-14):

(i) Report Usage process (3 .2.1P). This process will

retrieve usage details from the Usage data store in a formatted report.

(ti) Annual Report process (3.2.2P). This process will

retrieve usage details for the current year from the Usage data store, in a formatted report,

and (as required) archive data to clear the Usage data store.

17

C. OUTPUT OF REQUIREMENTS ANALYSIS PHASE

The statement of requirements is the output of the requirements phase. This

statement includes the description of the data and process requirements, the entity

relationship diagram, and a leveled set of data flow diagrams. The next chapter discusses

the next stage of database development, the design phase.

18

10. DATABASE SYSTEM DESIGN

The design phase consists of two parts, data design and process design. In data

design, also known as logical database design, data requirements specified in the

requirements phase are converted into a relational design which may be implemented later

in any specific database software. In process design, also known as application design,

update, display, and control mechanisms such as forms, menus, and reports, for the

application are developed.

A. DATADESIGN

1. Genenl Protedures

During data design, entiti~ and the relationships between entities, are

descnDed in terms of relational database designs using the relational model. This is

accomplished by first defining a relation for each entity. These relations have the same

name as the entity and the attributes of the relation are the properties of the entity. The

key attribute is the same as the identifier (or unique) property of an entity. (Kroenke,

1992, p. 206)

After initial data design, relations are checked to ensure they are free from

modification anomalies. H not, normalization is used to eliminate these anomalies which

might result in an improperly designed database. It should be noted, however, that

normalization often adds additional relations by breaking entities into smaller units. The

best database design is a combination of minimizing modification anomalies while at the

same time preventing the design from becoming too contrived or complex. (Kroenke,

1992, pp. 207-208)

Once a relation is constructed for each entity, with all of the entity's

properties, the different kinds of relationships in the E-R. model are also represented. The

representation of one-to-one (1: 1) and one-to-many (1 :N) relationships is straightforward.

19

Each entity is represented as a relation and then the key attribute of one of the relations is

also stored in the other. In the case of the l:N relationship, the key attnoote of the parent

(on the "one" side) is stored in the relation representing the child (on the "many" side).

The key attnoote stored in the relation, whether 1: 1 or 1 :N, is called the foreign key since

it technically does not belong to that relation. (Kroenke, 1992, pp. 211-214)

To represent many-to-many relationships a new relation is created, called an

intenection relation. This intersection relation represents the relationship itsel(and the

key is the combination of the keys ofboth of its parent relations. (Kroenke, 1992, p.21S-

217)

1. Specific Database Systems Relations

The entity-relationship diagram shown in Figure A-1, Appendix A is

converted into a relational model using the principles described above. This model is

shown in Figure 1, below. This system is primarily designed with the expert system

inter&ce in mind, so all relations and attributes have been designed to simplify the

resulting output. The transfonnation of the entities in this system are described in detail

below.

The NODE entity is represented as the relation NODE, with the attributes of

Nadel and Module Ref. The key attn'bute is Nodel.

The REPLACEMENT entity is represented as the relation

REPLACEMENT, with the attributes UD#, Alt Loc, and Notes. UD# is the key

attribute. This relation is the child of the PART relation, therefore the attn'bute Part# is

also iDduded in the REPLACEMENT relation as a foreign key.

The PART entity is represented as the relation PART, with the attributes

Part#, NSN, Price, Allowance, Parts On Hand, and Parts on Order. Part# is the key

attn"bute of this relation.

20

-~' ·------------------------------------~~~~~

The NODE-REPL entity is represented as the relation NODE-REPL, with

the attributes Node#, UD#, and Circuit Ref. The combination ofNode# and UD# is the

key attribute of this relation. This relation is an intersection relation between the two

parent relations, NODE and REPLACEMENT.

For this thesis, the USAGE entity is not represented in the relational model, as

discussed in Chapter n.

NODE

REPLACEMENT

Parts On Order

Figure 1· Relation Diagram

21

B. PROCESS DESIGN

Process design involves the design of menus, screens, fonns, reports and the logic

associated with these items. In most databases, the primary concern is the output

requirements.

1. Meau Design

& Genertil Daign Strtltqy

There are a number of common strategies for user interface design. The

most popular is the use of menu selections where various options are presented to the end

user. The user then can easily selects an appropriate action from those presented on the

menu. In some cases, the menuing technique is driven by the database software being

used, because the mechanisms for one or the other type are more easily implemented. One

common technique available in current database software is the use of pull-down menus,

where the user highlights the chosen action using arrow keys, a mouse, or initial letters of

the action. If submenus exist, they descend from the pull-down menu choice. presenting

more choices to the user. This allows the user to traverse through a hierarchical structure,

selecting one of a collection of fUnctions. (Whitten, et. al., 1989, p.SSS)

Many Wmdows-based database software programs take an object

oriented design approach, where command buttons invoke macros which perform certain

tasks. Wrth event-driven programs, instead of presenting the user a strict hierarchical

structure, it may be possible to provide more convenient and natural ways for users to do

things. (Jones, 1994, pp. 31-32)

b. Specific Daign

This system menu is primarily hierarchical, but some functions will be

combined where it makes sense, and will not be presented exactly as found in the

decomposition diagrams. The menu hierarchy is provided in Appendix C, Section A All

22

functions and menu selections are provided via command buttons, which allow the user to

either select a button using the Wmdows pointing device (mouse or trackball) or by typing

in the highlighted letter (underlined) on the "button•. In addition to the selections shown

in the menu hierarchy listing, each menu level contains one or more buttons which return

the user to the previous menu and/or the main menu (as appropriate). The menus are

discussed in detail below.

There are two subsystems, one for administrators and one for users

(technicians). The User menu is separated from the Administrator menu, even though

many of the functions are the same, so that Database Administrators can have access to a

more complete set of data maintenance functions than Users would require. The first

menu screen presented to Administrators is the Opening screen, which is shown in Figure

C-1, Appendix C. Database administrators (DBAs) have the option of accessing either the

User or Administrator version of the system.

(I) User Menu. The main User Menu screen allows the user to select

ftom four command button choices, three which invoke submenus (the Part Information

submenu, the Usage History submenu, and the DB Maintenance submenu), and one to exit

the system. (Figure C-2) This is the first menu screen presented to users accessing the

system.

(a) Part Information Submenu. The Part Information submenu

presents four choices to the user: two which invoke part information functions (Browse

Part Supply Info and Update Part Supply Status), one which invokes the Part Reports

Submenu, and one which returns the user to the main (User) menu. (Figure C-3)

23

(i) Browse Part Supply Information. This function

allows the user to browse supply information concerning a specific part selected from a list

of parts. This provides a basic display mechanism for the PART entity. Screens used for

this display are discussed in Section 2, below.

(d) Update Part Supply Information. This function

provides the capability for the user to update the supply information for a specific part.

This provides the update mechanism for the PART entity. Forms used for this function

are discussed in Section 2, below.

(ill) Part Reports Submenu. The Part Reports submenu

presents five choices to the user: three which generate reports for the user, one which

returns the user to the Previous menu (Part Information), and one which returns the user

to the main menu (User). (Figure C-4) Reports are discussed in detail in Section 3,

below.

{A} Parts Not On Hand Report. This option

generates a report on parts which are not on hand.

{B} Parts On Order Report. This option generates

a report on parts which are on order.

{C} Parts Under Stock Report. This option

generates a report on parts which are under allowance level.

{D} Previous Menu. This option returns the user

to the previous menu screen (Parts Information).

{E} Return to Main User Menu. This option

returns the user to the top level user menu.

(iv) Return to Main User Menu. When selected, this

option returns the user to the top level user (Main - User) menu.

24

(b) Usage Submenu. The Usage submenu presents four

choices to the user· one to enter usage information, two for generating reports, and one to

return to the main (User) menu. (Figure C-5) As discussed in Chapter n, this submenu is

not implemented in this thesis.

(c) DB Maintenance Submenu. This submenu presents four

choices to the user: one to update circuit card information, one to add UD#s to/delete

UD#s trom Nodes, one to update Part Information, and one to return to the main (User)

menu. (Figure C-6)

(i) Update Circuit Card Information. This option

allows the user to update the NODE, NODE-REPL, and REPLACEMENT entities. The

function provides a submenu to th(user, allowing selection between updating by Node#

or by UD#. This menu scret>n. is shown in Figure C-7.

{A} Update By Node#. This option allows the

user to update the NODE, NODE-REPL and/or REPLACEMENT entities for the

information related to a particular Node#. Screens used for these updates are discussed in

Section 2, below.

{B} Update By UD#. This option allows the

user to update the REPLACEMENT and NODE-REPL entities for the information related

to a particular UD#. Screens used for these updates are discussed in Section 2, below.

(d) Add UDs to/Delete Nodes from Nodes. This option

allows the user to update the NODE and NODE-REPL entities. This function is not

implemented.

(ill) Update Part Infonnation. This option allows the

user to update the PART and REPLACEMENT entities. This function is not

implemented.

25

(iv) Return to Main User Menu. When selected. this

function returns the user to the top level user menu.

(d) Exit. The Exit function closes the database application

after saving any changes.

(2) Administrator (Admin) Menu. The main Admin menu allows the

same three submenu choices as the User menu (Part Information. Usage History, and DB

Maintenance), plus Exit. This menu will be used by the DBA, and is shown in Figure C-8.

(a) Part Information Submenu. This menu presents the same

choices as in the User Subsystem, which is discussed above, and is shown in Figure C-9.

(i) Browse Part Supply Information. This is the same

function as in the User Subsystem, and it uses the same screens.

(d) Update Part Supply Information. This is the same

function as in the User Subsystem, and it uses the same screens.

(ill) Part Reports Submenu. The Part Reports submenu

in this subsystem presents three choices to the DBA: one which generates a report for the

DBA, one which returns the DBA to the Previous menu (Part Information - Admin), and

one which returns the DBA to the main menu (Admin). The report is discussed in detail in

Section 3, below. (Figure C-1 0)

{A} System Parts List. This option generates a

listing of all parts in the expert system, for use by the DBA

{B} Previous Menu. This option returns the user

to the previous menu screen (Parts Information - Admin).

{C} Return to Main Admin Menu. When

selected, this option returns the DBA to the top level Admin menu.

26

(iv) Return to Main Admin Menu. When selected, this

option returns the DBA to the top level Admin menu.

(b) Usage Submenu. This submenu is not covered in this

thesis.

(c) DB Maintenance Submenu. This submenu provides the

same maintenance functions as in the User Subsystem, plus an additional function to

maintain the NODE entity (and related entities) within the system. (Figure C-11)

(i) Update Circuit Card Information. This option

provides enhanced capabilities to the DBA for maintenance of the NODE, NODE-REPL,

and REPLACEMENT entities, in addition to those provided to the user. The function

provides a submenu to the user, allowing an update by either Node# or by UD#. This

menu screen is shown in Figure C-12.

{A} Update by Node#. This option provides the

same basic capabilities as that of the user menu plus it allows the DBA to change Node#

within the NODE and related NODE-REPL entities. Screens used by this function are

discussed in Section 2, below.

{B} Update by UD#. This option provides the

same capabilities as that on the User menu to update the NODE, NODE-REPL, and

NODE-REPL entities.

(u) Add UDs to/Delete UDs from Nodes. This option is

the same as on the User menu.

(iii) Update Part Information. This option is the same as

on the User menu.

27

(iv) Add Nodes to/ Delete Nodes from System. This

option allows the DBA to add instances to the NODE entity or delete instances from the

NODE entity. This function would be used in the case of a adding , deleting, or modifying

nodes in the expert system.

(v) Return to Main Admin Menu. When selected, this

option returns the DBA to the top level Admin menu.

(d) Exit. This option returns the DBA to the Opening menu,

instead of exiting the program.

2. General Form/Screen Use and Design

Forms are used for both data entry and display of information. Since this

database does not model any existing paper forms, as is the case with many database

systems, fonns were designed from scratch with simplicity and consistency in mind. Some

forms were designed with a form generator while others were put together using other

design tools. The form generator and form design tools will be discussed in more detail in

Chapter IV.

Forms can be designed based on either entities or a combination of entities.

There are two types of forms in this database application, forms based on a single table,

and forms based on more than one table. Multi-table forms can be used to display entities

with 1: 1 relationships, or er.tities with 1 :N relationships. Some forms are based on a table

and some forms are based \)n the results of a query. Examples of these forms are

discussed below.

As with menus, command buttons can be used on forms to execute additional

:functions or tasks. Procedures or tasks executed in this way allow one or more tasks to

be grouped together in a single cohesive presentation, with different options available to

the user at his or her selection. Other tasks included in forms are updates to related

28

information, viewing related infonnation, and cancellation of changes. The application

forms will be discussed below, along with functions and procedures. Specific form design

is discussed in Section 4, below.

3. Process Logic

Process logic describes the logic of the different modules of the system. There

are two types of process modules used in the system: procedures and functions. Both

procedures an~ ilnctions are designed with software reuse in mind, that is, in many cases

functions and ?rc...: :~ ·~s contain actions which may be used by more than one process.

Examples of actions which may by either functions or procedures, or both,

include: present a form to a user, read input, search for a particular instance or set of

instances of an entity or entities, display instances to the user, cancel actions, update

entities, delete entities, and others.

Process logic is discussed with respect to specific system fonns and reports,

and is presented in detail in Appendix D, Section A

4. Specific System Forms and Associated Logic

a. User Forms.

(1) Browse Part Supply Information. When invoked from the Part

Information submenu, this function involves the use of a set of two forms.

The input form (Browse Part) is shown in Figure D-1,

Appendix D. This form is based on a query of the PART entity, which is invoked by the

user selecting a Part# from a scroll list of all the system part numbers. Infonnation about

that part is displayed by selecting or "pushing" the Locate command button. A Cancel

function button is also available. When a Part# and the Locate button are selected, the

associated procedure (see Appendix D, section A, Ul.IL) is executed. The Cancel

29

button executes procedure Ul.l C, returning the user to the previous screen, Part

Information Menu.

The output form (Part Supply Info Browse) is based on the same

query and presents the results of the procedure (Figure D-2). This form has one command

button, Return, which takes the user back to the previous (input) screen using procedure

Ul.IL-R

(2) Update Part Supply Status. When invoked from the Part

Information submenu, this procedure (Ul.2~ involves the use of a set of two primary

forms and three secondary forms.

The input form (Update Part) is shown in Figure D-3. This form

requires input from the user in the form ofPart#. By selecting the Locate command

button, the user invokes a process (Procedure Ul.2L) which locates a particular instance

of the PART entity and displays it to the user. If there is no matching part, a message is

provided to the user. A Cancel function button is also available, which executes

procedure U1.2C, returning the user to the previous menu form (Part Information Menu).

The output form (Part Supply Info) is based on the PART entity

and presents the results of the procedure (Figure D-4). This form has five command

buttons: Return, which returns the user back to the Part Information menu using

procedure Ul.2L-R; More, which saves the existing information, including any updates,

and takes the user back to the previous (input) screen using procedure U1.2L-M; Issue,

which invokes the process which displays the Issue Parts form (U1.2L-1); Order, which

invokes the process which displays the Parts Ordered form (Ul.2L-O); and Receive,

which invokes the process which displays the Parts Received form (Ul.2L-R).

30

One secondary form associated with this procedure, Issue Parts, is

shown in FtgUre D-S. This form requires the user to input the amount of parts issued.

The user may either Cancel this action (U1.2L-IC), or Update the number of parts on

hand (Ul.2L-IU}, and then return to the previous form (Part Supply Info).

The next secondary form, Pans Ordered, is shown in Figure D-6.

This form requires the user to input the amount of parts ordered. The user may either

Cancel this action (U1.2L-OC), or Update the number of pans on order (Ul.2L-OU),

and return to the previous form (Part Supply Info).

The third secondary form, Parts Received, is shown in Figure D-7.

This form requires the user to input the amount of parts received. The user may either

Cancel this action (U1.2L-RC), or Update the number of parts on order and parts on

hand (Ul.2L-RU), and return to the previous form (Part Supply Info).

(3) Update Circuit Card Information (By Node#). When invoked

from the Part Information submenu using the Select Change submenu, this function

involves the use of a set of two forms and two subforms.

The input form (Input Node#) is shown in Figure D-8. This form

requires the users to input a Node#. By selecting the Locate command button, the user

invokes a process (Procedure U2.1.1L) which locates a particular NODE instance, if it

exists, and displays that NODE and its related NODE-REPL and REPLACEMENT

information. If there is no matching NODE instance, a message is provided to the user. A

Cancel function button is also available, which executes procedure U2.1.1 C.

The output form (Update Node-Replacement - User) is based on

the NODE entity and is displayed in Figure D-9. A subform appears within this form,

which displays the related NODE-REPLACEMENT entity information. Also a sub(sub)

form within the subform displays the REPLACEMENT entity information. In this

31

manner, it is possible to display a NODE and all REPLACEMENT instances associated

with that Node#, by using instances in the NODE-REPL entity to link these two other

entities. This form has three command buttons: Oear, which clears any changes, before

they are committed using procedure U2.1.1L-C; Exit, which returns the user back to

Select Change menu using procedure U2.1.1L-E; More, which saves the existing

information, including any updates, and takes the user back to the previous (input) screen

using procedure U2.l.lL-M. The subform has two command buttons: Fwd, which

displays the next NODE-REPL instance associated with that Node# using procedure

U2.1.1L-F; and Back (Procedure U2.l.1L-B), which displays the previous instance of

NODE-REPL associated with that Node#.

(4) Update Circuit Card Infonnation (By UD#). When invoked ftom

the Part Information submenu using the Select Change submenu, this function involves the

use of a set of two forms. This function also permits another function to be invoked,

Update UD# , using a third form.

The input form (Input UD#) is shown in Figure D-10. This form

requires the user to input a UD#. By selecting the Locate command button, the user

invokes a process (Procedure U2.2.1L) which locates a matching UD# in the system, if it

exists, and displays that particular Replacement instance to the user. If there is no

matching Replacement instance, a message is provided to the user. A Cancel function

button is also available, which executes procedure U2.2.1C.

The output form (Update UD# - Replacement) is shown in Figure

D-11, and is based on the REPLACEMENT entity. This form has four command buttons:

Update UD#, which invokes the process U2.2.1L-U, and is discussed in more detail

below; Oear, which clears any changes made, before any updates are made, using

procedure U2.2.1L-C; Exit, which returns the user back to the Select Change menu using

32

procedure U2.2.1L.E; More, which saves the existing information, including any updates,

and takes the user back to the previous (mput) screen using procedure U2.2.1L.M.

The Update UD# process invokes the third form, Change UD#

(Figure D-12). The subform has two command buttons: Cancel, which cancels the

Update UD# process using process U2.2.1L.UC; and Change UD##, which invokes a

process (U2.2.1L.UD) which accepts a new UD# and presents a message giving the user

an opportunity to confirm the change by selecting Yes or No. If the user selects "No" the

process is cancelled and he/she is returned to the Change UD# form. If the user selects

•y es•, this activates the function "Update Related UD" (Appendix D, Section A-3). This

function first finds all of the instances of the REPLACEMENT entity with the old UD#

and updates them with the new UD#, then it finds all related (with the same UD# as the

old UD#) instances of the NODE-REPL entity and updates them with the new UD#.

Upon completion of this function, the user is returned to the Update UD# -Replacement

form.

b. Administrator (Admin) Forms.

(1) Common User and Admin Forms. Most of the Admin Forms are

the same as the User forms and pedorm the same function. The primary difference in the

processes invoking the forms or processes attached to command buttons is the menu

screens from which the user starts or to which the user returns to after the completion of

the process(es). Process logic is contained in Appendix D, Section A-2.

(2) Unique Admin Form: Update Circuit Information (By Node#)

When invoked from the Part Information submenu using the Select Change submenu, this

function involves the use of a set of three forms and two subfonns.

33

The primary input form (Input Node#) is shown in Figure D-8,

and is the same as the User form of the same name. This form requires the user to input a

Node#. By selecting the Locate command button, the user invokes a process (Procedure

A2.1.1L) which locates a particular Node# in the NODE entity, if it exists, and displays

that NODE and its related NODE-REPL and REPLACEMENT instances information. If

there is no matching NODE instance, a message is provided to the user. A Cancel

function button is also available, which executes procedure A2.1.1 C.

The output form (Update Node-Replacement - Admin) is based

on the NODE entity and is displayed in Figure D-13. A subform within this fonn, displays

related NODE-REPL entity information. A sub(sub) form within the subform is used to

display related REPLACEMENT entity information. In this manner, it is possible to

display a NODE and all REPLACEMENT instances associated with that Node#, by using

instances in the NODE-REPL entity to link these two entities. This form has four

command buttons: Oear, which clears any changes made, before they are committed,

using procedure A2.1.1L-C; E:dt, which returns the user back to Select Change menu

using procedure A2.1.1L-E; More, which saves the existing information, including any

updates, and takes the user back: to the previous (mput) screen using procedure A2.1.1L

M; and Update Node#, which invokes procedure A2.1.1L-N, that changes the current

Node# to another one as specified by the user. This last process is discussed in more

detail below. The subform has two command buttons: Fwd, which displays the next

NODE-REPL instance associated with that Node# using procedure A2.1.1L-F; and Back

(Procedure A2.1.1L-B), which displays the previous instance ofNODE-REPL associated

with that Node#.

The Update Node# process (A2.1.1L-N) invokes the third form,

Change Node# (Figure D-14). This form has two command buttons: Cancel, which

34

cancels the Update Node# process using process A2.2.1L-NC; and Change Node#, which

invokes a process (A2.2.1L-NA) which accepts a new Node# and presents a message

giving the user an opportunity to confirm the change by selecting Yes or No. If the user

selects "No" the process is cancelled and the user is returned to the Change Node# form.

If the user selects "Yes", this activates the function "Update Related Node" (Appendix D,

Section A-3). FJ.rSt, this function finds all of the instances of the NODE entity with the old

Node# and updates them with the new Node#, then it finds all related (with the same

Node# as the old Node#) instances of the NODE-REPL entity and updates them with the

new Node#. Upon completion of this process, the user is returned to the Update Node

Replacement -Admin form.

5. Report Design aad System Reports

There are currently four reports in this system, three for the User Subsystem,

and one for the Administrator (Admin) Subsystem. Examples of these reports are

provided in Appendix D, Section C, and are discussed below. Process logic for the

processes involved in these reports is detailed in Appendix D, Section A

& User Reports

(1) Parts Not On Hand Report. This report is invoked from the

Report Parts Info Menu- User, using the Report Parts Not On Hand procedure (U1.3.1).

A sample report is shown in Figure D-15. This report is based on the results of a search

for all instances of the PART entity, where the number ofParts On Hand equals zero. A

list of the Part#s for instances matching the search criteria is then used to obtain a sub

listing of all UD#s related to the resultant Part#s from the REPLACEMENT entitiy. Part#

and all associated UDf#s, for parts which are not in stock, are reported to the user.

35

(2) Parts On Order Report. This report is invoked from the Report

Part Info Menu- User, using the Report Parts On Order- procedure (U1.3.2), and is shown

inFigureD-16. This report is based on the resuhs of a search for all instances ofthe

PART entity, such that the number of Parts On Order is greater than zero. A list of the

Part#s for instances matching the search criteria is then used to obtain a sub-listing of all

UD##s related to the resultant Part#s ftom the REPLACEMENT entity. Part#, Number of

Parts On Order, and all associated UD#s, for parts which are on order, are reported to the

~.

(3) Parts Under Stock Report. This report is invoked ftom the

Report Parts Info Menu- User, using the Report Parts Under Stock procedure (U1.3.3).

A sample of the report is shown in Figure D-17. This report is based on the results of a

search for all instances of the PART entity, such that the number ofParts On Hand is less

than the parts Allowance. A list of the Part#s for instances matching the search criteria is

displayed along with Number Parts On Hand, Number Parts On Order, and the Part

Allowance.

b. Atlmi11 Reparts

There is currently one Admin report, which is invoked ftom the Report

Parts Info Menu - Admin, using the System Parts List procedure (Al.3 .1). Part of this

listing is shown in Figure D-18. This report is based on the results of a search for all

instances of the PART entity which had a Part#. A list of the Part#s for instances

matching the search criteria is then used to obtain a sub-listing of all UD#s related to the

resultant Part#s ftom the REPLACEMENT entity . Part# and all associated UD#s for

parts in the system are reported to the administrator.

36

C. OlTI'PUT OF DESIGN PHASE

Tbe output of the design phase is a document that describes the structure of the

database. 1bis structure of the database includes a desaiption of the relations, their

attributes, and the relationships between relations, and the related processes. The

description of the process design includes the menus, forms, screens, and process logic.

The aext chapter discusses the next stage of database development, the implementation

phase.

37

IV. DATABASE SYSTEM IMPLEMENTATION

Similar to the requirements and design phases, the implementation phase consists of

two parts, data implementation and process implementation. In data implementation the

relational model is converted into the database structure of a specific DBMS. Process

implementation involves the construction of forms, reports, maws, procedures, and

fimctions developed during the design phase. During this phase a specific DBMS softwve

is used, and implementation of the system becomes dependent on the functionality and

design of this software and its language, features, limitations, and structures. This chapter

describes system implementation by discussing software selection, the DBMS used, data

implementation, and process implementation.

A. SOFTWARE SELECfiON

1. Software Requirements

This thesis is not only interested in developing a standalone database

application, but also a database application that integrates with an expert system

application. Therefore, a primary requirement for DBMS software to be used for this

thesis is that it be compatible with Softsell Adept TM expert system shell used to develop

the MK92 FCS Maintenance Advisor being developed at the school. Since Adept is a

Microsoft Wmdows-based program, the selected DBMS must have the ability to pass data

or infonnation using Wmdows mechanisms.

Another consideration was whether the software supported the development

of a "run-time" version for the user, so that the full database environment is not required

to be included with the operational version. This requirement saves both money and

storage space, which is generally scarce on laptop computers.

38

A third consideration was, of course, the functionality and ease of use of both

the development environment and the user environment.

2. Available Software Procrams: Advantaaes aud Disadvautaaes

Wrth above selection criteria in mind, the initial software selection was made

early in 1993. At that time the major Wmdows database programs had been just

introduced and experience with their use was rather limited.

& MJCI'OsojtAuasTM DBMS

Microsoft Access DBMS had the advantage that it is a Microsoft

product. Since Wmdows is also a Microsoft product, conceivably Access would have a

better implementation of one of the prinwy Wmdows communications mechanisms of

interest, Dynamic Data Exchange. The application development environment was

considered to be the easiest, but was less capable in developing and running queries than

Paradox. (Coffee, 1993, pp. 270-297) One feature of interest was the availability of an

application development kit, which could produce run-time executable programs for

distribution to the end-users.

b. Borlluul Plll'llllox™ DBMS for Willdows

The Paradox DBMS was also well reviewed, and in some respects

considered to be better than Access. Paradox has a report generator which was

considered to be the best of these three databases, but required the use of its programming

language for most tasks unlike the AI:.cess' macro &cility which simplifies development

(Coffee, 1993, pp. 270-297). Paradox has a programming language which is considered

to be a superior, object-oriented, C-like language (CofFee, 1993, p. 285). A run-time

engine or application development version was not advertised, but likely to be announced

in the future since one is available for the Paradox version for DOS. The major drawback

with Paradox was that communications between two different programs is difficult

39

enough, let alone if the database and expert system interface were to involve three vendors

(Wmdo~ Parado~ and Adept).

c. Microsoft FaxJiroTM DBMS for WiiUiows

FoxPro DBMS is considered to be a superior development environment,

but challenging for a programmer not already experienced in programming in an XBase

programming language, such as dBASE uses (Campbell and Hudnall, 1993, p. 25). With

this in mind, there seemed to be too much of a learning curve to overcome ifFoxPro were

to be used. DDE capabilities were also unknown, although Microsoft was a major player

in converting FoxPro, from being initially a program for the Macintosh, to versions for

Wmdows and DOS. It is therefore likely that FoxPro's DDE environment is as capable as

that of Access.

3. DBMS Selected

Base on an analysis of application requirements and the characteristics of

initial DBMS selection as well as literature reviews, Access was selected as the

development environment for this thesis. FoxPro was initially considered after being

recommended by NSWC sponsors, but was eliminated from further consideration after it

was discovered, as mentioned above, that it has a steep learning curve.

B. MICROSOFT ACCESSTM DBMS OVERVIEW

Microsoft Access DBMS provides a comprehensive development environment for

developing database applications. It consists of six main components: tables, forms,

queries, reports, macros, and modules. These components are invoked from the Access

main database window, shown in Figure 2, to develop all database objects (tables, forms,

reports, etc.) for an application. In addition, an extensive help system is available, which

includes information based on a search, examples, and "Cue Cards." Cue cards are an on-

40

line form of tutorial which steps the user through the creation/design of a particular object.

The following sections discuss each component of Access in some detail ..

1. Tables

II1NX
II NEW'TX
• NODE
II NODE-HELP
II NODE-REPL
II PART

Pamlist

Figure 2 -Database Wmdow

tL Tabk Creation and Definition

Tables are created by selecting the "Table" and "New" buttons in the

database window. This brings up the Table environment or "Design View." In this view

the fields are named, and the type and length of data that will be stored in each field as

well as any rules which govern data entry into the table are specified. Table properties

such as a description, a key, and indexes may also be entered in this view or at a later time.

These items will be discussed in more detail below. The design environment for a table is

shown below, in Figure 3. (Jones, 1994, pp. 39-40)

There are eight types of fields including text, memo, number, data/time,

currency, counter, yes/no, and OLE object. Memo fields allow a great deal of flexibility in

41

the amount of data it can hold, and are useful for storage of a large amount of text since

up to 32,000 characters can be stored in a memo field for each record. Descriptions for

each field can also be added. (Jones, pp. 40-42)

Once the field type has been defined, there are a number of field

properties applicable to each type of field. For example, the properties for a text field are

the field size, the caption, the default value (if any), the validation rule (if any), validation

text (If any), and whether the field will be indexed. There is a default size for text fields,

which may be cbP'Jged in the properties box. There are other properties associated with

the other data types. "Validation rules" are a feature which lets the developer control how

data is accepted into the fields of a table, so program code is not needed for validating

data on data-entry forms. Other properties may be added or changed, as appropriate,

including field sizes. (Jones, 1994, pp. 46-49)

In most tables, there will be a key field or fields, and this relates directly

to the key attn"bute(s) in the relation design. The key field (or combination of fields) is

a..~gned by highlighting the particular field or fields and then selecting the "Key"

command button on the toolbar menu, a feature which can be seen in Figure 3. An index

can be added to most fields of a table (all fields except fields of data type memo, yes/no,

and OLE object). Indexes are used to speed the performance of searches on a given field.

(Jones, 1994, p. 60)

42

Figure 3 -Table Design Environment Example

b. Estllblishing Reltltionships Between Tables

Once the tables in a database hav~ oeen created, relationships between

these tables can be established. This is performed by selecting "Edit/Relationships" from

the menu and then filling in the options in the Re~ationship dialog ~?ox, which is shown in

Figure 4.

~-- ltftlc~ ~--,.._ ·!t oo- Ia- if 1 811MP 1

,.,_,._.,.... ,_.......,s-
a..-ID - e.-10 ~

- ., 1"-

cr -...,-..
l ... j I a-- I i --r I aa. I 1 l

I

Figure 4 - The Relationships Dialog Box

Defining relationships between tables allows for the automatic

definition of the related field during the design of queries, form/subform combinations,

and report/subreport combinations. The effect of these defined relationships will be

43

discussed later within the context of the different types of objects in later sections of this

chapter. This will also provide enforcement of referential integrity between the data in

related tables, if desired. If the referential integrity option is turned on, then Access will

maintain referential integrity during operations which involve the editing and deleting of

records. This means that records cannot be added to a related table if there is no

corresponding entry for the matching field in the primary table, and similarly, a record

from the primary table cannot be deleted if that will leave related records in the other table

as "orphans." (Jones, 1994, p. 62) This feature may be desirable during the use of a

database, especially if specific program code is not used to perform the same functions.

To define a relationship, the primary table is selected first. Then the

type of relationship is defined as either "One," which defines a one-to-one relationship, or

"Many," which defines a one-to-many relationship. Next, the related table is selected in

that list box. The matching field used to link the tables is then selected. Finally, if the

"Enforce Referential Integrity" feature is desired, that check box is selected.

c. Data Entry

Data entry may be performed by using a form or directly in the Table

"Datasheet" view. If a Table is selected and the "Open" command button is used, it will

open that table's datasheet view showing all existing records. This view allows the entry

of new records and existing records can be changed. If it is not necessary to view existing

records, but merely add new ones, once a table is opened, "Records/Data Entry" may be

selected from the menu to facilitate the entry of new data records.

2. Queries

Queries are one of the most important components of a database system,

because they provide the capability to display and/or report data to the user. Queries are

44

used to find data within the Tables of a database. Once a query is created, it becomes the

basis for fonns, reports, graphs, and/or other queries.

a. Types of Queries

There are several types of queries: select queries, which retrieve data to

be viewed or updated; crosstab queries, which present data in a spreadsheet format; and

action queries, which can be used to update existing tables, delete records, and make a

new table from other tables. (Microsoft Corporation, Access User's Guide, 1992)

b. Query Development

Access has a feature called graphical query by example (QBE}, which

allows queries to be created quickly by selecting the tables to be used and then selecting

the desired fields of those tables. Tables can also be joined in several ways, such as with

an outer join, so that records from one table which do not match records from the second

table can still be displayed to the user. Criteria for particular fields can be specified, so

that records which have data matching the criteria will be selected.

To design a new query, the "Query" button on the Access database

menu is selected followed by the "New" button. At this time, an interface is opened

which allows the user to select the object(s) on which the query will operate on (Tables or

Queries) in the" Add Table" window. When objects are added, they appear in the query

window, such as the table PART, shown in FigureS below. After all of the desired

objects are added to the QBE window, the relationships between them are established by

connecting the related fields of the two tables. If the relationship is obvious, i.e. the two

fields have the same name or relationships have been established earlier, relationships in

the QBE environment appear automatically. If relationships are not previously

established, they can be created or "drawn" by clicking on the first related field and

holding the left mouse button down and dragging until it touches the related field on the

45

second table. These relationships are shown in the diagrams of the completed queries.

(Figures 12 and 13, below)

Figure S - Adding a Table to a Query

After drawing relationships, particular fields of interest are selected from

the tables and placed into the "Field" box of the QBE grid. The easiest way to perform

this task is to use the mouse and click on the particular field in a table and "drag" it into

the "Field" box of the grid. The developer can choose whether or not to display a field;

whether to use an ascending, or descending, or no order; and on what criteria the selection

will be based, if any.

3. Forms

Menus, screens, and forms are all developed in Access as Forms, with the

term screen and form being generally synonymous.

cr. Form Development Environment

Forms can be created using an easy to use generator called a "Form

WJ.Zard" or from scratch. The generator requires the programmer to select a Table or

46

Query on which the form will be based, and then it proceeds to ask what type of form,

which fields to include, and what "look" the form will have from several options

presented. The basic form is designed by the "wizard." Subsequently, the developer could

make changes to that form using other form development tools, which are described

below.

The form design "toolbox" is used to add a number of different kinds of

controls to particular form. These controls include text boxes, labels, command buttons,

check boxes, list boxes, subreport/subforms, lines, option buttons, and toggle buttons.

Text boxes are used for input or output of information and are either bound to a field, so

they display the information from that field, or unbound. Unbound text boxes are often

used for user input of information. Command buttons are used to "activate" processes

relating to a form. List boxes are related to a particular list of choices, usually the

particular data items stored in a particular field of a table. The choices in a list box, or

combo box, can also be enumerated lists which are not from another object.

Various properties, such as control name, control source, status bar

text, data format, default values, and validation rules can be set for each control. For text

boxes, there are other properties such as whether the box can shrink or grow, when it will

be displayed, etc.

A palette feature can be used to quickly apply colors to text,

backgrounds, and borders within forms. The palette can also be used to change the "look"

of controls giving them a sunken or raised 3-D effect.

The toolbox, palette, and properties box are all windows which may be

activated by command buttons on the screen toolbar. The toolbar can also be used to

toggle between the design view and the form view of the form. The size of the form

"window" can easily be resized by dragging the borders in or out using a mouse.

47

In addition, once a fonn or menu is created, it is simple to copy it to

another fonn name, and change the control sources and properties for a particular control.

This "copy and paste" capability provides consistency within various levels of menus and

across an application.

The fonn design environment is shown in Figure 6.

Figure 6 - Form Design Environment

b. Mellll SCIWIIS

The design of menu fonns involves three tasks: the design of the form

itself; the design of a mechanism to perform process actions, and a method for connecting

the form and the actions mechanism. Menu forms are designed using blank forms, and can

not be designed using the fonn wizard since menu forms are not bound to an object.

Labels can be added for different headings, and command buttons with labels can be added

for invoking various processes.

Macros are used as the mechanism by which process actions are

performed by a fonn (both menu and other types offonns). Fonns are invoked by

macros, and use macros to invoke related processes. Macros can be invoked upon the

48

opening of a form, by a control such as a command button, or upon the exiting from a

form. The use of macros with forms will be described further in Section S.

c. lnpllVOiltpllt ScreeiiS

Input and output forms are more complex: than menu forms. Where

menu forms included only one action type of control, the command button, input/output

screens usually include additional controls. Most output forms are bound to a source such

as a table or query. If the data to be displayed comes from a single table, the form is

bound to that table, and each text box or list box on the form is bound to a field in that

table. If the data in a single form comes from more than one table, but does not involve a

1 :M relationship on the form itse1(a query can be performed on those tables, and the

form's object source can be the query. As with a single table, one or more fields in the

query may be bound to a particular display control.

It is possible to display related information in a formlsubform

combination. Generally the subform is created first, or created at the same time with the

Form Wu.ard. When the subform is created first, the main form is created, and then the

toolbox is used to add the subform control. Fonns are Unked via MASTER and CHILD

entries in the subform control properties listing, using the common field in the related

tables. These MAS1ER/CHILD fields relate directly to the Key/Foreign key relationship

in the underlying relations. Neither of these fields have to be displayed on either fonn, but

must exist in the sources on which the fonns are based. An example of the creation of the

subform is contained in Section D, below.

Fonns which accept input from the user may be bound to a particular

source or may be unbound. An unbound form uses text boxes and/or possibly other

controls, to accept user input. This form will then use a process invoked by a command

button to connect the information in the text box to another object. An example of this

49

will be provided in Section D. Display or output forms become input forms when they

accept input in the form of updates from the user.

4. Reports

Reports can be created from scratch or using an easy to use generator called a

"Report WIZII'd". As with the Form WJ.Zard, the report generator requires the

programmer to select a Table or Query on which the report will be based. The generator

then asks questions such as what type of report, which fields to include, and what "look"

the users want for their report from several options presented. Once the basic report is

designed by the generator, it is easy to make changes after afterwards. The palette and

toolbox can be used to add various design elements to reports.

Reports can be one of several types: Single column, with all fields lined up

vertically, Groups/Totals, with grou:rings up to ten levels; or Mailing Labels. Text boxes

can be added to reports that display data based on a calculation such as the sum (total) of

the values. Multi-table reports can be created using a report/SQb-report combination, with

multiple instances in the table on which the sub-report is based related to a particular

instance of the table on which the master (or main) report is based. Default reports come

with controls which provide the current date each time the report is printed or viewed, and

page numbers, but these features can be modified or deleted as desired.

The design of reports involves both the design of the report itself and the

design of the mechanism used to invoke the report from the menu. In this application,

many of the reports are reportlsubreport combinations, which means that subreports were

designed first. When the main report is designed, a subreport control is added to the

report. The properties of this control include the source of the control and which fields

are used to link the report and subreport in a MAS1ER/CHILD relationship like that used

50

with multi-table fonns. In general, the linking field is only displayed on one of the forms,

but need not be displayed on either.

Examples of the implementation of several reports are provided Section D.

below. The report design environment is shown in Figure 7.

Figure 7 -Report Design Environment

5. Macros

a. MtlC1'0 Daign

Macros contain one or more instructions which are grouped together to

perform various procedures or actions. These instructions or actions model the process

logic in the design of a database application. In Access, Macros a..~ used to replace

program code in most instances, thus simplifying application development. An example of

a macro design environment is provided in Figure 8.

51

Figure 8 -Macro Daign Environment

Macros can be used to perfonn routine tasks, such as the following (Jones,

1994, p.l78):

1. Automatically opening or displaying frequently used objects, such as tables, fo~ and

reports.

2. Validating data entered into a fonn with greater flexibility than is provided within the

validation mechanism in a Table.

3. Automating transfer of data (import or export) between an Access application and

other software packages.

Macros oonsist of a series of "actions" and each action has one or more

argument which applies to that action. Macro actions include the following: aose

(window), GoToControl, FmdRecord, Maximize, OpenFonn, MsgBox, OpenQuery,

OpenReport, Quit, RunCode, RunMacro, SetWamings, and others. These actions will not

be discussed, except in the context of specific application requirements later in this

chapter. Each one of these actions has its own set of arguments, for example the

arguments for the OpenForm action are the name of the form which is to be opened and

several other items which apply.

The macro design environment allows the user to select an action :from a list

of permitted actions, and then the appropriate arguments are displayed in the window

52

below. The mechanism for entry of arguments is also shown in Figure 7. Macros can be

designed as a single set of actions, or as macro groups. Storing related macros together as

a group simplifies the design environment for the programmer.

6. U&i11g MIICI'Os W"Jth Forms

On forms, command buttons are used to invoke these macros, through

the use of the "On Push" property of the command buttons. The macro name is entered

into this property, and when that button is "pushed" or selected, the macro actions are

invoked in sequence.

Menu forms are displayed using the macro "OpenFonn" command,

which will display a particular form to the user. Some menus invoke submenus, and in this

case, a macro is used by the menu to open the submenu form. Generally, each menu

command button is linked to a macro which opens a form of one type or another. What is

not apparent to the user, is that there are other actions which are performed by the same

macros, either before or after the form is displayed. An example of this might be a macro

action which turns "Echo" off: so that the user does not see messages which Access

normally provides while macros are run. Another example is a macro action which would

"Maximize" a fonn, thereby filling the entire screen with a fonn, after it is invoked.

c. Li11king Input and Output Forms

One useful technique for linking input forms and output forms is

through the macro action OpenForm and its "Where Condition" argument. The initial

form displayed may request an item of interest. This fonn is not bound to a particular

source, and the control into which the user types the requested information is also

unbound. A command button on the fonn can then invoke a macro which retrieves the

necessary information based on user input, and then displays it. The simplest form of the

macro works in the following manner: the OpenForm action contains a number of

53

arguments, the first of which is the name of the form which is to be opened. The next

important argument is "Where Condition, • which allows the programmer to specify which

field in the source of the display fonn is based on the control in the fonn receiving the user

input. An example of the syntax used is as follows: [Field Name]= Fonns! [Input Form

Name]![Control Name]. This presents the user with the record having a match in that

particular source field with the information provided into the Input Form in the control of

the name specified. Another important argument is whether the user will be allowed to

edit the data presented or whether it will be "read only."

6. Modules

a. Use of Access Basic

Access Basic is not a traditional programming language and cannot

really be treated as such, since the language is tightly integrated with Access-specific

objects (such as tables, fonns, queries, etc.) such that the language can directly manipulate

these objects. Access Basic is primarily used to perform tasks that cannot be performed

with Access objects though the use of macros, or is used to shield the user from the inner

workings of the application in a controlled run-time environment. Access Basic is

particularly useful for transaction processing, error handling and trapping, performing

DDE, and the creation of reusable code libraries. (Perschke and Liczbanski, 1993, p. 170)

Access Basic code is stored in objects called modules. Modules are

divided into procedures or functions, which are best used to perform specific tasks in

order to modularize program code and maximize reuse. (Perschke and Liczbanski, 1993,

p. 181)

Modules are used to define functions specified in the design phase of

Chapter m. Some actions specified in logical procedures are actually implemented in

modules vice macros, usually because they perform specific tasks which the macro

54

environment is not capable of performing. Modules can invoke macros, using the

"R.unMacro" command, and macros can invoke functions in modules, using the

"RunCode" action. This allows for flexibility and the maximum reuse of macros and

functions once they are designed.

b. Access Btuic lAnguage

Access Basic provides the capability for a number of different types of

data and the manipulation of those data types. It also contains several flow control

structures such as decision structures (If. .. Then. .. Else ... , Select Case), loop structures

(Do Until ... Loop, Do While ... Loop, Do ... Loop While, For ... Next). "Do Loops," for

example, are used to execute a block of code while a condition is True. (Perschke and

Liczbanski, 1993, pp. 187-188)

Within the Access Basic language, there are different types of elements,

and some of these are described as follows: Actions, such as those used with macros, can

be executed directly from Access Basic procedures using the "DoCmd" statement;

Functions are preprogrammed language elements which return a value which can be

returned in a statement, such as DDEinitiate, DDERequest, and many others; Objects,

such as Fonns, Reports, Tables, Database, and others; Operaton, like "+", "And", "Or",

"Not", and others; Properties, which are the same as the properties attached to objects,

and which can be controlled directly from the code if necessary, and several others. An

example of the Module Design Environment and the Access Basic Language is shown in

Figure 9. (Microsoft Corporation, 1992, Access Language Reference)

55

· c....-. HDOEI I• rel•t•' recor~ I• ~1 t.a~•s
' Vritt .. S.T•l11f 1/1al9a

01 ... ,_ • F-f(NMe 1:11-.Jf(*MI)
........ ,_,(...... a.-..JfiMewta•J
.... x

set 111ft • curr .. tN(,
11•,...t, IIDftlepl As .,._.t, leplKellilllt As IJNUt
Set • •n.erutee,MHt(.,.H"')
set ..._..,1 • ••z.cre•t .. ,uset('"IIIDl-lllrt.")
set lepl.ce ... t • ••z.cre•t .. ,.._t("'EPLICIIEIIT"")

If Uput....,. "' Tr• Tllil•
If IIIS ... a("lre ,_ Are fOil uat u c:Nage " & lldltlla & " te " &

Figure 9 - Module Design Environment I Access Basic Language

C. DATA IMPLEMENTATION

Using the Access Tables tacility, the relational design developed previously was

converted into an Access database. This process is fairly straightforward, in that relations

and their properties are converted respectively into database tables and fields. Tables and

their fields are listed in Appendix E. Most fields used in this program were of a Text

nature, since there were very few data items which were strictly numerical or "fixed"

formats.

The tables in this application contain long fields, due to the nature of the data they

contain. The length of fields, and therefore the length of a record, makes viewing records

in a "datasheet" or spreadsheet-type of format impractical.

Validation rules are entered in the form of expressions inside the Table design

function of Access, and are consistent with the attribute definition "masks" stated in

Appendix A, Section B. (Jones, 1994, pp. 48- 49)

56

D. PROCESS IMPLEMENTATION

Process implementation consists of linking the required forms and reports,

developed initially during the design phase of Chapter ill and shown in Appendix D, with

their underlying processes. The processes designed in Chapter ill are implemented

through the use of queries, macros, and modules which connect the forms and reports to

the appropriate data in the tables. The methods and tools used to implement processes are

discussed below.

1. Process Development and Examples

Process logic developed in the design phase of Chapter ill can be roughly

translated into a series of tasks which are implemented in a number of different ways.

Some tasks may be implemented in more than one way, and not all possible methods of

performing various tasks will be covered in this thesis, rather only those actually used.

a. Implementation of Specific Process Tasks

Process tasks which are part of the process logic developed in the

Design Phase, such as update, activate, retrieve, and others, are implemented in fairly

standard ways within this application. Appendix E contains a listing of these tasks and the

way(s) in which they are implemented (modules, macros, etc.).

b. Process Example: Locate Supply Parts

The process which is listed in Procedure Ul.2L LOCATE(U) in

Appendix D is implemented using a combination of macros and an Access Basic

procedure. First, the INPUT PART# [UPDATE PART] form is open. The user provides

input in the form of a Part# and then "pushes" the Locate command button which

activates this procedure.

The "On Push" pro}Jerty activates a macro called Part Macros.Locate

Parts. This macro performs actions described in Figure 10:

57

1. Set Value
Arguments:

Description: Hides form
Visible: No

2. OpenForm Description: Opens the Part Supply Info fo1111, retrieves the record
which bas the value of Part# contained in the Part# field in the Part# Input Form, aDd
displays it in the form.

Arguments: Form: Part Supply Info Description: Opens the Part Supply
View: Form
Where Condition: [Part#]=Forms![Part# Input)![Part#]
Data Mode: Edit
Window Mode: Nonnal

3. RunCode Description: Checks to see if the Part# in the Part Supply Info form
is a null value, if so, then the Part# does not exist or no value was entered. A message box,
with a message to that effect is provided to the user aDd the user returns to the Part# Input
form.

Arguments: Function Name: CbeckEmptyPartO

Figure 10 - Locate Part Macro

The function referred to in the RunCode action, CheckEmptyPartQ is shown in Figure

11. Note, this function calls another macro, with the DoCmd RunMacro statement.

This macro is the one which returns the user to the Input Part# screen.

Function CheckEmptyPart 0

PartX =Forms! [Part Supply lnfo]![Part#]
lflsNuU(PartX) Then

wiD = MsgBox("No matching Part# found (or No Part# entered)", 32,
"No Match Found")

DoCmd RunMacro "Part Macros.More Parts"
End If

End Function

Figure 11 - CheckEmptyPartQ Function

58

2. Query Development and Examples

Queries are important to this application because they provide the basis for

several important functions, which will be discussed in this and later sections. Queries

using outer joins and/or specified criteria are used in this application. Both select queries

and action queries are used in this application, and will be discussed in the examples

provided. A list of the queries in this application is provided in Appendix E.

This section will contain discussion concerning the implementation of several

of the queries in this database application. Note, there are a number of different ways in

which these queries may be accomplished, in order to achieve the same results.

a. Parts On Order Query

The Parts on Order query used for the Parts on Order report was

created in the QBE environment. The development of the report is discussed in SectionS,

below, but the implementation of the actual query is discussed here. In this query, two

tables are used in the query: PART and REPLACEMENT. These tables are linked

through the common attn'bute Part#. Because it is possible to have PART instances which

do not have corresponding REPLACEMENT instances, an outer join from PART to

REPLACEMENT is used to retrieve all instances ofPART, including those that do not

have REPLACEMENT instances associated with them. Note, this outer join is designated

by the arrow on the relationship link between the tables in Figure 12. The selection

criteria used is that the value of the field Parts On Order is greater than zero, and the fields

Part# and Parts On Order are displayed. This query is shown in Figure 12, below.

59

Figure 12 - Parts on Order Query

A second query is also used for the same repo~ Parts On Order2. This

query is used to link the REPLACEMENT table and the PART table to get all UD#s

associated with the selected Part#., This query is shown in Figure 13.

Figure 13 -Parts on Order2 Query

60

b. System Pt111s List Query

There are three queries used in creating the System Parts List repo~

which is a list of all the parts which are used by the expert system, i.e. parts that currently

have replacements. Two are created in a similar manner as in the Parts On Order query

above, but instead of being based on one of the main tables in the database, they are based

on a temporary table which is created through the use of a "Make Table" action query.

The use of the action query will be discussed here, with respect to the creation of the

System Parts List report.

The first step in creating a "Make Table" action query, is to create a

select query, using the QBE environment as discussed above. The purpose of this query is

to select a list of unique parts from the REPLACEMENT table to be used as the basis for

other queries. The criteria Part# Is Not Null is also used, to eliminate records in this table

which have no value for Part#.

Once the select query is designed and tested, it is converted into a

"Make Table" action query by selecting "Query: Make Table" from the menus at the top

of the Access window. The name of the table to be created, when the query is performed,

is entered into a form as shown in Figure 14, below. The table created by this query, can

be considered a temporary table, and is named PartsList. Using the "Check Box" for

"Unique Values Only" at the bottom of this form ensures there are no duplicate values in

this new table, which could occur when several UD#s have the same Part#, as Part# is not

the original key field of the REPLACEMENT table.

61

Figure 14 -Make Table Query Properties

Each time this query is run, the PartsList table will be overwritten with

new data. Unless warnings are suppressed, this action will tell the user that this query will

overwrite existing data and verify whether or not the query should continue. The Systems

Part List query is used as the basis of another query, which are used in the System Parts

List report, and is shown in Figure 15. The other queries for this report are implemented

in the same ruanner as those for the Parts On Order report, in the previous example,

except they are based on the temporary PartsList table instead on one of the application's

base tables.

Figure 15 - System Parts L1st Query

62

3. Menu/Screea/F'orm Development Examples

Examples of the implementation of several forms are provided in the section

below. A list of' the application forms is provided in Appendix E. This list also contains

documentation concerning each form's source. its controls and the processes invoked by

these controls, and any special characteristics or properties of the form.

11. Upt/llte NoU-Replil&enwll- Admi11 F01711

This form is one of the most complex forms in this application. It is

comprised of three separate forms, which are linked together in a fonnlsubform

relationship. The "Form WIZard" is used to design the fonnlsubform combination. W'rth

two layers of subforms, only the inner two forms could be designed using the Form

WJZard method. AJ1 forms may also be created with the Form WIZard, using the "single-

column" selection, and adding a subform control from the Toolbox as required.

(1) Form: Replacement Info Sub(sub)form. The first form created

was the fonn based on the REPLACF..MENT table. The first step after selecting the

"Form: New" button, was to chc.. ;c;.e tne correct tabl~ and then select the "Form Wtzard"

button. After that, the Embossed "look" was selected from the choices presented. Next,

the fields in the table were listed, and the ones to be included in the table were selected, in

the particular order desired. The final step is to select a title (form heading) for the form.

In this form's properties box, the scroll bars and the record

selecton were checked off to prevent the user from trying inadvertently to select records

using these tools. A property in the Form Header (section) properties box was used to

"bide" the header section. Fmally the form was resized and the text boxes moved so that

the field labels display in their entirety.

63

(2) Form: Node-Replacement Info Subform. The Fonn W1Z8rd was

used again to create a form, based on the NODE-REPL table. In addition, to changes

made to the previous form, the "look" of the UD# field was changed to "raised" versus

"sunken", to distinguish a field which is not directly updatable from ones which are not.

Several controls were added to this form: two command buttons,

three labels, and the subform. The "command button" button on the toolbox was used to

add these controls to the form. First, the properties were changed as follows: the caption

was changed, so the words on the button indicated the function of the button; and the

Update Macros: Scroll Up macro was added to the "On Push" property of the "Back"

button and another macro to the "Fwd" button, to provide the correct functionality.

Three labels were added to provide information to the user concerning the buttons. The

palette was used to add a frame and color to one of the labels, to draw the users attention

to the information contained therein.

The third type of control, the subfonn/subreport control, was then

added to the form. Through trial and error and switching between form views (Design

and Open), the subform was sized so that it displayed correctly on this form when this

form is opened. The Source Object control must contain the name of the subform, which

in this case is Replacement Info Sub(sub), and the Link Master/Child Fields property is

set to UD#.

Figure 16 shows the design environment of this form. The

properties box for the subform control is shown in the upper right-hand comer, the

toolbox is shown in the lower right-hand comer, and the palette is shown in the lower

center of the figure.

64

~)u«raneu: 0 N<»·aai 0 R~d 0 Sunken

l~;•••o••••••••••••
ft~: •••o•••••••••••• r.Jc • ._:•

B<>t(i<M: •••o••••••• .. ••• a..:o
Vdh:

Figure 16- Node-Repllnfo Form Design Environment

(3) Form: Node-Replacement Info. This is the main form for this set

of subforms, and is the one opened by the command button "By Node#" on the "Select

Change" Submenu of the DB Maintenance Submenu. The form and its controls are

designed in the same manner as the previous form. There are two differences to this form:

one is that the header is left so it is visible and the second is that the"*" button invokes a

macro which in tum invokes a series of screen displays and associated logic.

65

b. Inp11t Nodi!# Fon~~

This form was not desiped using tbe Form W1ZII'd since it is not based

on a source object. Form properties were set so ~..u there were no record selectors or

scroD bars visible, as in the previous forms. When a blank form is opened, there is no

automatic creation of a form header or footer, so a Label control was used to add a form

heading. Two command buttons were added, with each button invoking a different macro

using the On Push property.

4. Report Development Eumplet

The reports implemented in this application are listed in Appendix E. These

reports were all implemented with the Report W1Z8rd, using the "Executive Look."

a. P1111s On Order Rq011

The Parts On Order report is comprised of two repo~ Parts On

Order and Parts On Orderl, which are combined in a report/subreport combination. A

sample report is provided in Figure D-16, Appendix D.

(1) Report: Parts On Order Subreport. The Parts On Order report is

a single-column type report based on the Parts On Order2 query, which was discussed in

Section 2.b.(l)(b) above. While both Part# and UD# are included in the report source

query, only UDII is included on this subreport since Part# wiU be shown on the main

report. The field to be used for a sort order was also selected. The default settings for

Report Header and Footer were changed so that no Headers or Foot~ either Report or

Page, were visible. The design environment of this report is shown in Figure 17.

66

Figure 17 -Parts On Order Subreport Design Environment

(2) Report: Parts On Order. This report was based on the Parts On

Order query (See Section 2.b.(l)(a), above). Both Part# and Parts On Order Fields were

placed on the report, sorted in order ofPart#.

A subreport control was created through the use of the toolbox,

with its source being the name of the subreport (Parts On Order2). The size of the

subreport must be manipulated within its design environment so that the detail section of

the subreport fits within the size of the subreport control. This is performed largely

through trial and error, and by noting the size of both items on the ruler. The "Link Child

Fields" and "Link Master Fields" are set to Part#, since this is the attribute which links the

report and subreport such that all UD#s for a particular Part# are listed in the subreport

section of the report. In addition, the default is set so that one record of the main report is

displayed on a single page. :U: as in this case, it is desirable to have multiple records per

pag~ it is necessary to resize the detail section of the form so that the Page Footer section

break is right after the last item in the report design, the Parts On Order field and its label.

67

The design environment of this report is shown in Figure 18. An example of the report

itself is shown in Figure D-16, Appendix D.

Figure 18 -Parts On Order Report Design Environment

b. System Parts List Report The System Parts List report is comprised of

two reports, System Parts and System Parts2, which are combined in a report/subreport

combination. The implementation of these reports is very similar to the implementation of

the Parts On Order Report, and only the differences between the two reports will be

discussed. An example of the printout of this report is provided in Figure D-18,

Appendix D.

(I) Report: System Parts List Subreport. The System Parts List

report was created using the "Report W"tzard," based on the System Parts query, which

was discussed in Section 2.b.(2)(b), above. This report was created by copying the Parts

On Order report and making two changes. First, the Report property Record Source was

68

changed to System Parts2 and the detail section of the report was enlarged slightly to fit

into the space of the main report.

(2) Report: System Parts List. This report was designed using the

"Report WIZird," based on the System Parts query (See Section 2.b.(2)(a) above). Part#

is the only field on this report and is sorted in ascending order. The subreport control was

added, its label removed, and System Parts2 was entered into its Source Object property.

The Child Link Fields and Master Link Fields properties were also UD#. Again, this

provides all UD#s for each Part#. In order to report as many parts (and their UD#s) per

page as possible, the detail section was compressed to the smallest practical size. The

design environment of this report is shown below in Figure 19.

Figure 19 - System Parts List Report Design Environment

69

E. OUTPUT OF THE IMPLEMENTATION PHASE

At the conclusion of the implementation phase, the database application is

completed, and operational, as designed. This includes the development of the tables,

forms, reports, and their underlying processes and queries. If a prototyping methodology

was not being employed, the database application would be independently tested and

delivered to the user. Instead, the prototype application is used as a device to elicit

feedback for future enhancements. Once the users experiment with the prototype, they are

able to better define their requirements and comment on the preliminary design, and its

structure and processes could be changed accordingly. The final chapter contains some of

the feedback received from the program managers at NSWC, which will guide the

direction of follow-on work.

The next chapter contains a discussion of the separate issue in this thesis, that of the

inter&ce between the :.MK92 FCS MAES and this database application.

70

V. INTERFACE BETWEEN EXPERT AND DATABASE SYSTEM

In general, the purpose of creating an interface between the expert system and a

database is to provide a powerful mechanism for storing and managing information

required by the expert system user, which is more efficient than mechanisms provided by

the expert system itself. Efficiency can be defined both in terms of flexibility to retrieve

different kinds of data for different purposes and in terms of maintainability and

modifiability. This chapter discusses Wmdows interprogram communications mechanisms

and the efforts made towards using these mechanism to link the .MK92 FCS MAES and

the Access database application which stores and manages the information the expert

system is requires.

A. WINDOWS INTERPROGRAM COMMUNICATION

1. Dynamic Data Exchange (DDE)

DDE is one method ofinterprogram communications between two Wmdows

applications. The program that initiates the communication and requests data or services

is called the client, and the program that re!lnonds to the client's request is called the

server. Some applications can be both client and server.

DDE can be used to establish links between programs in several different

ways. As previously mentioned, one method involves requesting data (or services) from

the server. Another method involves the server notifying the client that an item has

-:hanged value, after which time, the client could make a request in order to obtain the new

data A third method involves a "hot link," which means that the server application sends

the new value to the client any time the data value changes. (Perschke and Liczbanski,

1993,p.243)

71

In general, the application initiating a DDE link opens a DDE channel with the

other application. The client can then use a number ofDDE functions or statements to

perform different tasks. Since the syntax used for DDE by different programs is not

standard, functions available to Access and Adept are discussed separately.

a. DDE in Access

Access is capable of handling a number of different DDE functions or

commands, and these are listed in Appendix F. Access has the capability of being both a

DDE client or a DDE server. DDEinitiate() is used to initiate a conversation between

Access and another application. Included in the argument for this function is the name of

the application which can respond to DOE, such as the name of" Adept," and the name of

the topic, which in the case of Adept is the specific "application name" being executed.

The topic name must be recognized by the "called" application. This function is used to

establish a channel between two applications, which can be used later with other DDE

functions. The use of this and other functions is shown in the example provided in

Appendix F, Section C-2. (Microsoft Corporation, Access Language Reference, 1992,

p.ll8)

Another important function is DDERequestO, which is used to request

an item of information from another application. Arguments for this function include the

channel (as previously mentioned) and the item of interest. The name of the item must be

something which is recognized by the other application, such as variable or spreadsheet

name. (Microsoft Corporation, Access Language Reference, 1992, p.121)

»DETerminate() is used to close a channel which has been opened,

with the argument being the channel. (Microsoft Corporation, Access Language

Reference, 1992, p. 124)

72

Additional commands are available, as shown in Appendix F, Section

A-1, but they are not used in this thesis.

b. DDE ill Adept

DDE in Adept is very similar to DDE in Access, except that different

syntax is used for similar functions. Like Access, many functions involve a channel, an

application, a topic, and/or an item. Theoretically, Adept can carry on a number of

conversations with different client programs at the same time. In a similar manner,

another application can request data from more than one Adept application, or two

different applications can request information from two different Adept applications at the

same time. (Symbologic Corporation, 1991, p. 33)

The first step in initiating a conversation with another application is to

use the OpenCbannel function to open a channel. To use this function, the name of the

channel, the other application, and the topic are required (Symbologic Corporation, 1991,

p. 36). In the case of an application running under Access, the application name is

"MSAccess,". and in the case of an Access run-time application, the application name is the

name of the run-time executable filel. The syntax of the commands actually used by the

Adept application for the purpose of this thesis is provided in Appendix F, Section C-1.

Adept can request information from another application, using the

Request function. In this case, the channel, item, and data arguments are used. Item is a

variable which identifies the data (m the other application) and data is a variable where the

data is to be stored in Adept. (Symbologic Corporation, 1991, p. 37)

Execute can be used to execute a function, run a program, perform a

task, or a number of other things in the other application. This function uses the

arguments channel and command. The command is the most important part of this

1 A file with the ".MDB" extension.

73

function, as it must be something that can be understood by the other application. In

general, the syntax of the other program must be used to correctly use this function.

(Symbologic Corporation, 1991, p. 39) A good example of this is the use ofExecute with

respect to an Access application. Only commands which Access understands can be used

with the Adept Execute command.

One other function which might be useful is Poke. This function uses

arguments channel, item> and data to specify what data item in Adept should be "sent" to

the other application, and where in the (client) application it should go. (Symbologic

Corporation, 1991, p. 39)

Other commands are available, as shown in Appendix F, Section B, but

they are not used in this thesis.

2. Object Linking and Embedding (OLE)

Object linking and embedding, or 0~ is a Wmdows mechanism which

allows objects created in one application to be linked to or embedded in another

application. This method of interprogram communication is closely related to DDE, and

like DDE there are both clients and servers. As ofVersion 1.1, Access can only act as an

OLE client, in that it can only accept OLE objects from the server application. 2 An

enhanced version of OLE, OLE 2.0 is beginning to be used in applications, however

Access 1.1 is not OLE 2.0 compliant. (Jennings, 1993, pp. 504-505)

OLE capabilities were first used with Microsoft Excel™ and

PowerPoint TM, and were officially introduced with Wmdows 3 .1. In general, an OLE

server provides a source "document" to an OLE client "document." Once an OLE object

is embedded or linked to the destination document, this document becomes a "compound

document." In the case of Access, the destination document can be tables or forms. A

2 Access 2.X is expected to be OLE 2.0 compliant.

74

source document can be a file from a word processor, a spreadsheet from an application

like Excel, a slide from a graphics program like PowerPoint, a graphics image from a

variety of programs, or even multimedia objects such as music. (Jennings, 1993, pp. 505-

506)

When an OLE object is embedded, a copy of the OLE object's data is included

in the destination document. Embedding an OLE object ensures that the object's data is

available regardless of what happens to the source. Linking a document is more

appropriate when the source document is likely to be changed periodically. However, if

the source document gets moved to another location or deleted, it no longer exists at the

destination either. (Jennings, 1993 pp. 510-511) A linked object will also update in the

client application whenever it is edited or updated in the server application which created

it. (Perschke and Liczbanski, 1993, p. 238) In some cases linking will save disk space,

since the object is only stored in one location. Graphics images, however, will require as

much or more disk space to link to an Access table or form, as to embed it. (Jennings,

1993, pp. 510-5ll)

One of the primary advantages to storing documents as OLE objects within

Access, rather than as •pictures, • is that by using OLE the object can be edited through

the original server program which was used to embed the program. A source document

which has been embedded as a picture, rather than as an OLE object, can no longer be

edited. (Jennings, 1993, p. 5ll)

Other applications which can act as servers include Lotus Corporation Ami

Pro™, WordPed'ect™ for Wmdows, CorelDRAW!™, and Wmdows Paintbrush™.

There are also a number of commercial OLE-compliant drawing and image editing

applications which can be used to create and manipulate photos and other images.

(Jenuings, 1993, pp. 5ll-517)

75

Adept is not OLE compliant at this time, but may be in future versions.

B. IMPLEMENTATION OF DDE INTERFACE BE1WEEN ADEPT AND

ACCESS APPLICATIONS

1. General Requirements

Logically, the basic functionality of the interprogram communication between

Adept and Access is as follows:

1. When a conclusion is reached in Adept and part information is needed from the

database, Adept must initiate a conversation with Access, asking if Access is ready to

communicate.

2. If Access is ready to communicate, a communication channel is opened between

Access and Adept.

3. Adept sends a message to Access asking for data, or asking Access to perform a

query and supplies the appropriate parameters.

4. Access acknowledges the request and canies it out (or denies it).

S. After the data and commands are exchanged, Adept sends a message to the Access

program notifying it that the conversation is about to be terminated and then closes the

communication channel.

2. Possible Solutions

To perform the above basic functionality, an obvious solution is for the Adept

application to send the Node Number into the Access Application, where a query would

be run, and then the Adept application could request (or the Access application send) the

resuhs of query, so it can be displayed to the user.

Another obvious solution would be for an SQL-type query to be made directly

from Adept, eliminating the need to send query parameters to Access.

76

OLE was obviously not an appropriate interface between the Adept expert

system and the Access database because Adept does not currently support OLE.

& Esttlblisldng Co,.,.,llicatiou: Fust ApprtHICit

(I) Methodology. The following steps were taken in the first attempt

in establishing communications between the two programs:

1. Opea a channel between Adept and Access, with Adept as the client and Access as

the server.

2. Use Poke from Adept to Access to place the query parameter into a temporary table

in the Access application.

3. Eucute a query, whose parameter is the value received ftom Adept through the

poke.

4. Request the results of the query and store it in a variable in Adept to be displayed to

the user.

S. Dose chanael.

(2) Results. The problem with this approach is that Poke cannot be

used to send data into an Access table. Since the initial attempt at establishing a link

between the expert system application and the database application using the Poke

command to send information to the Access application failed to work, a second approach

was used.

b. Secorul Appnwclt

(1) Methodology

1. OpeD a channel between Adept and Access, with Adept as the client and Access as

the server.

2. Esecute an SQL-type query directly ftom Adept, which locates the correct records

bued on a parameter related to a particular expert system result node.

77

4. Request the information into an Adept variable.

3. Oose channel.

(2) Results. SQL queries of any sort did not seem to work from

Adept to Access. While the set of statements required for the type of query in

requirement 2, above, is complex, even simple SQL-type statements did not get any

response from Access. Adept may not support the kind of statements Access needs or the

correct syntax may not have been used.

The first attempt to use of SQL-type statements was to perform

the complete query as shown in Figure 20, below. The second attempt to use of SQL

type statements was to try to solve the problem of how to get information into an Access

table as shown in Figure 20.

**Select particular records from one table to start with:
AccCall = OpenChannel("MSAccess", "2MK92DB.MDB;SQL ");
Execute (AccCall, "RunSQL SELECT *FROM Node WHERE [Node#] =

""N006""·")· , ,

••Update lNX table with Node Number vice Poke command:
AccCalls = OpenChannel("MSAccess", "C:\ACCESS\2MK92DB.MDB;SQL ");
Execute (AccCaL, "RunSQL UPDATE lNX SET [Node#] = ""N006"";");

Figure 20 - Adept DDE Statements Using SQL

c. Third Approach

(1) Methodology

1. Opea a channel between Adept and Access, with Adept as the client and Access as

the server.

78

2. Use the Execute command to execute an Access Query, with the appropriate

parameters.

3. Use Request to get the results of the query and store it in a variable in Adept to be

displayed to the user.

4. Oose channel

(2) Results. Problem: While Adept DDE syntax supports the use of

an argument (i.e. a query parameter) in the Execute command, Access does not support

the use of arguments with its queries or macros. Since Access functions do support

arguments, passing parameters between the Node variable in Adept and the Node_number

variable in an Access function was attempted, also without success.

In the Execute statement in Adept, as previously discussed, the

first item is the cbanne~ and the second is the command. The command bas to be

something understood by Access. First, the command "RunCode PartsQuery()" (or any

number of syntax variations) could not be used in an Execute statement, as the RunCode

function can not be used directly by a DDE Execute. Instead, the RunCode action can be

used in a macro, which then may be executed using the syntax "Execute(Chan,

"[lTableODly]". Unfortunately, there does not appear to be any way to pass arguments to

a macro.

There appears to be problems with the compatibility of the Adept

SQL syntax with that of Access in that arguments outside of the Access statements cannot

be passed with them. Even if an argument could be used, it might not be in the form of a

variable, thus eliminating some of the benefits of using a database if each Node number

had to be "hard-coded" inside scripts.

79

tl. FDIITtll AppiYNlCIJ

(1) Methodology This methodology was suggested by Microsoft

Product Support personnel, and involves having Access request the query paruneter from

Adept, instead of having Adept send it to Access.

1. Open a channel between Adept and Access, with Adept as the client and Access as

the server.

2. Use Execute to run an Access Basic function which would:

a. Open a (second) channel between Access and Adept, with Access as the client

and Adept as the server.

b. Pedonn a DDERequest from Access to retrieve the query parameter, node

number.

c. Store the variable returned in a temporary table.

d. Oose Access to Adept (second) channel.

3. Use Execute to run a query, whose parameter is the value received from Adept

through Access' DDERequest. Several different types of queries were attempted, and

these will be discussed below.

4. Use Request to get the results of the query and store it in a variable in Adept to be

displayed to the user.

5. Cue channel.

(2) Phased Testing. Because this was a complex: series of actions,

each step was tested separately before running the entire sequence. One problem with

interprogram communication is that there is no easy way to debug code, and only through

trial and error and modular testing, can problems be tracked to any particular statement.

80

The quecy (step 4) was tested first. After that, the DDE request by Adept (step 5) was

tested. Next, the request from Access to Adept (step 2b) was tested. Each step, and the

problems encountered, is discussed in the following sections.

(a) Query Solutions. Once it was determined that Adept could

easily retrieve the contents of an entire table from Access, the goal became to place all of

the required information, the results of quel}', in a single temporary table. This table bas a

structure which matches the data items required by the expert system. Because this is an

extremely complicated query in Access Basic, a better solution is to implement a "Make

Table" Action quecy using QBE which is invoked from a macro.

If the Node# was placed in a temporary table, the macro

containing the OpeoQuery action could be executed by the Adept application, and the

temporary "results" table would contain the correct information. Therefore step 4 was

working correctly, given the quel}' argument was correct in the table on which the quel}'

was based. This query is discussed in detail below, in Section 3.

(b) Adept Request. Given the table created in Step 4, above,

the next step is to retrieve it. As was predicted, retrieval of whole table was simple, and

each record could also be retrieved separately. This process is discussed in detail below in

Section3.

(c) Access Request. If the Adept application assigns the item

of interest to a variable, an Access basic function was able to perform tasks which

requested the value of that variable from Adept, placed it into an Access variable, and then

stored that variable into another temporary table. This is also discussed in detail below, in

Section3.

(3) Results. While each one of these processes worked

independently, they did not work correctly in sequence. First, Adept calls Access and

81

executes a macro. This macro then executes a function containing the DDE commands

insid~ among others, which in tum open a channel with Adept and run the same

DDEllequest command which had already been tested. This time, when this function was

executed from Access, it did not perform correctly and Access could not get Adept to

respond. This problem is also covered in more detail in Section 3 below.

3. Implementation Specifics

The Adept side of the interprogram communications is contained in a

"combination nod~" which is the combination of two custom nodes and one display node.

This combination node is shown in Figure F-1. The Access side is contained in several

different structures: macros, functions, tables, and a query. The implementation of

specifics on both sides, with respect to the methodology in the fourth approach discussed

abov~ are provided below.

& Node Number from Adept to Access

The Adept node contains a script in which the item of interest, the node

number, is placed into the variable Node. The node number is directly related to the

expert system conclusions, which are shown in the knowledge representation provided by

the experts. This script also contains statements which open a DDE channel to the Access

application and then execute a macro, as discussed above. The script which performs

these functions is shown in Appendix F, Section C-1 (Part 1).

The Access macro, executed through the DDE command by Adept, uses

the command RunCode to execute the Access Basic function GetNode(). This function

first opens a channel to Adept, and then requests the value of the Adept variable Nod~

from the Adept application using the DDERequest function. As mentioned in Section

A l.(a), abov~ the item in this request must be using syntax recognized by the server

82

application, in this case Adept. The GetNode() function and DDERequest syntax is

shown in Appendix F.

The temporary Table lNX is used to store the value ofNode. Access

Basic commands in GetNocle() delete the previous value and add the new value to the

INX table, close the table, and then terminate the channel.

b. PtUt lnforltllllion Reconb from Acca.s to Adept

First, a •Make Table• action query is used to retrieve the required

information into a temporary table, and then Adept requests the information contained in

that table. Ideally, the macro which performed the RunCode action in the previous

section would then perform the OpeuQuery action which executes the query. These tests

were not performed in this manner since the program halted in the GetNode() function

and the query would never have been executed.

(1) Part Information Query by Access. Initial tests of this function

were performed by manual input of a value ofNode# into the INX table. The function

which performs this task, MakeTable(), executes three macros: WarningOff,

lNewTxQuery, and WarniD&()n. The Warning0ft7 WamingOn combination is used to

suppress warning messages which occur when the query overwrites existing records. In a

procedure such as this, the warning messages would either hang up communication at

worst, or annoy the user unnecessarily at best. Since the user does not need to know what

is happening, it is best to suppress messages after the functions generating them are weB

tested.

The lNewTxQuery macro performs one task; it performs an

110penQuery" action on the Query lXQ, thus executing it. This query is an action query

which is performed on the INX, NODE-REPL, and REPLACEMENT tables. Since INX

contains only one value, this query finds all matching instances ofREPLACEMENT by

83

•,

the relationship between NODE# in the first two tables and UD# in the second and third

tables. In addition, since this is a "Make Table" type of action query, it places the selected

records into a table which is named NEWTX.

(2) Information Request by Adept. The second part of the custom

node retrieves the information from the table created with the macro used in the previous

node. After a channel was opened, each record in the temporary table was retrieved using

the DDE command Request. With respect to a table. Request can be used with

arguments such as "FirstRow," which requests the first record in a table; "NextR.ow,"

which requests the next row in the table; "FieldNames," which returns the names of the

fields in the table; and "All," which returns the entire table including field names. In this

case, after the first record was requested, up to three other records were also requested.

This script works for up to four replacement parts, a number selected because currently

the data only shows nodes which require one, two, or three related records. Currently,

expert system nodes only required three records.

This request and display are awkward at best, because

programmh1g techniques used with arrays could not be used by Adept scripts. If records

could be counted, a loop could be used with a counter, vice the fixed values. Since there

was no simple way to count the number of records, "flag" values were used, such that if a

variable still contained the flag value, a record had not been assigned to that variable.

These flag variables were used in a series of "If. .. then" statements to determine how many

records or "Rows" had been retrieved from Access.

c. Display of Ptu1 lnfol?tUltion to User

The purpose of then second Adept node and its script is to format the

information retrieved from the database. If Access records stored data in fixed sized

fields, it would not be necessary to change the format before it is displayed. In fact, the

84

I
:

• .

entire table, field headings and all, would have provided an effective and relatively quick

way to display the infonnation. Access however, stores each field in only the amount of

space required by the data it contains; that is, if a field does not contain any infonnation it

is stored in the minimum amount of space, and if a field contains a long data item, then it

takes up more storage space. This creates a problem when several records are listed one

after another since the fields will not line up vertically, unless the data for a field just

happens to be the same size. Each field is also separated by <CTRL><TAB>. An

example of what this would look like is provided in Figure 21, below. In a word

processor, it might be possible to get the fields to line up, if tabs were correctly placed, but

the Adept display did not have that capability so a different method had to be used.

4UI.U.WG liUift7 G2/.AJ-WG Sft..14-7,5HI WG(AZCDIIAISI:MBLY) •

4UIAJ.&UtNUSAISDOlLY 5'7'7Ull Gll.u.RAitNaSA"'M'tlY Sft-14-7,51D AZNIAZP71'LUCABI.& •

Figure 21- Records Retrievedl

First, the "*" character was added in a field at the end of each record as

a record end marker. This allowed the length of each record to be detennined by finding

the"*" character and using the "Length" function. The record was also put into a text

variable using the "GetSubText" function. Next, the value of each field is detennined by

finding all characters before the first <CTRL><T AB> combination. "FindText" finds the

length of this field, and then "GetSubText" gets the contents of the field by using the

arguments (record variable, start (offset), and ending (offset)). After the first field in the

record variable is determined, "GetSubText" is used to get everything remaining, and

3 This display is an example of what the display would look like if the entire table were
retrieved, except the • field would not be required.

85

assigns this to the record variable. At this time, the process repeats, since now the second

field in the record is the first field in this variable. This continues until the values of all five

fields for each record is placed into a separate variable. Since these fields are still of

various lengths the best way to display them is in a vertical (left justified) manner. This is

shown in Figure F-2, Appendix F. The script used for this is shown in Section C-1 (Part

ll), Appendix F.

This above methodology is extremely contrived and extremely inflexible.

In addition, the performance is very slow when there are several records.

C. FINAL RESULTS

This section primarily applies to the fourth approach, but some of the "lessons

learned" came from other approaches as well. After abortive attempts to execute an

Access function, it was discovered that DDE can not directly use several commands, such

as RunCode. Macros can not be used directly, because the DDERequest function can

only be executed from Access Basic procedures. Therefore, Adept can execute a macro,

which uses the RunCode action to execute an Access Basic procedure. In the fourth

attempt, this procedure contains statements which perform a DDERequest to Adept,

requesting the value of the variable Node, which contains the node number about which

the user requires information.

If this procedure is executed from Access, there was no problem; Access

could indeed retrieve the correct Node value (assigned by an Adept node) and place it into

an Access variable, which could then be put into a table. The code required to perform

this task is provided in Appendix F, Section C. It could not, however, be executed from

Adept. The Adept application performed a DDE execution of the 1 TestDDENodeReq

macro, which instructed the Access application to make a request. When that request was

made, the Adept application did not respond back to Access, and the process "timed out."

86

It appears that once an Adept application makes a DDE request from an application, it

ceases to listen for other requests. At this time there is no explanation for this problem,

and Softsell Product Support personnel are looking into a solution or a way to work

around this anomaly.

One other possible solution was briefly explored, by using an alternate Adept

procedure as a third-party. There were two ways to approach this, and both were tried.

One was to have the MK92 FCS MAES (or the test application) call a second application

running in the background. The main application would tell the second application to

"call" the Access application, which would then request the value ofNode from the main

application. This met with similar results as the first trial, that is, either one application did

not recognize the other or the process did not execute properly and "timed-out." One

other possible solution would be for the Main Adept application to send the Node number

to the secondary Adept application, and have Access request the information from the

secondary application, which should be "listening" for requests since there were no

outstanding requests of its own. Initial trials with this methodology did not produce

successful results since attempts to put Node into a static (one not being operated on by a

user) procedure did not work.

Part of this research was successful, since establishing certain types of one

way communications was &irly effective. Possible uses for DDE should be explored in

future applications, however DDE can not be relied on to solve all interface problems,

since there appears to be no consistent implementation ofDDE even within Microsoft's

own programs let alone with third-party vendors. OLE 2.0 may be more capable and

combine some of the benefits ofboth DDE and OLE to provide an interface between two

programs, not just for display of objects, but for actual use and manipulation of them by

the client application in addition to allowing changes from the server application. Until

87

OLE objects can be recognized as text string~ vice as something el~ it will be difficult to

use them in databases for query purposes when the user input will generally still be in the

form of text.

Other possible solutions to the Adept - Access application interface problems

are discusse in Chapter VI.

88

VL LESSONS LEARNED AND CONCLUSIONS

This project established the viability of developing a separate database that inter

&ces with the MK92 FCS MAES and can be used as a stand alone application for tracking

and maintaining Parts and other information. In this chapter, the feedback provided by the

project sponsors concerning the functionality of the prototype database application is

discussed. In addition, requirements for follow-on work for both the interface between

the MK92 FCS MAES and the database application, and the stand-alone run-time and

administration versions of the application are presented.

A. SPONSOR FEEDBACK ABOUT PROTOTYPE

Feedback from sponsors concerning the prototype database application fall under

four categories: Expert System Interface, Parts Supply Information, Usage, and Database

Maintenance. Each or these categories are discussed below.

1. Expert System Interface

11. Aclmowletlgetl Collllllllllication Problems

As previously mentioned, there are problems with the using DDE for

interprogram communications with the current versions of Adept and Access. The spon

sors acknowledged these problems, as well as the probability that other possible solutions

may not provide a seamless interface as was hoped. The main problem with alternative

solutions is that it is unlikely that the interface between the two programs will be transpar

ent to the user, and may actually require user input for information retrieval instead ofbe

ing totally "automated."

b. PerforiiUIIIC~ Issue

Due to the slow performance of Adept in displaying an Access table in

an etfective manner, further pursuit of the Adept-Access DDE interface may not be of any

value. If another DBMS software program were known to be more capable of performing

89

the required DDE functions and could store data in fixed length fields, the overall per

formance would probably be acceptable. Since, however, the DDE performance of other

DBMS software is still unknown, it is more beneficial to look at other interface methods.

2. Parts Supply Information Subsystem

While both sponsors and shipboard technicians indicated that parts informa

tion is a highly desired feature, some record fonnat changes would be more beneficial.

Technicians do not necessarily have a supply of spare parts, therefore keeping track of in

ventory is not really required. The sponsors however, felt they could use an inventory

system at their site. This system would be used to keep track of parts they receive ftom

decommissioned ships and would be distnouting to other ships at no cost, since the parts

are not in the actual supply system. Slight changes to existing forms and tables could be

made to provide this capability, as wen as perhaps an additional table to track requests re

ceived from ships Changes to the forms, reports, and processes available to the techni

cians will not be significant and will merely simplify those which already exist.

3. DB Maintenance Subsystem

While there is still discussion concerning the functionality of this system, and

wbat items of data users would be able to change, the need for users to maintain at least

some of the data is a desirable feature. When this feature is implemented, password

protection should provide security within the application to prevent inadvertent damage.

4. Usage Subsystem

While there is value in obtaining usage data ftom the users for future use by

management, this may be outside the scope of the application's actual requirements.

S. Administrator and User Interfaces

The separation of Administrator and User menus and functions was recog

nized as being a good idea. Non-programmers may be doing the bulk of data store main-

90

tenance with respect to this system, and may be responsible for updating data stores and

providing updates to the user. Providing extra capabilities for the administrator will

facilitate overall system maintenance while keeping the user interface as simple as possible.

B.. D1REC110N OF FOLLOW-ON WORK

Follow-on work should continue the investigation of a viable method for accessing

the database from the expert system. It would also implement changes suggested by the

program manager and complete the implementation of several maintenance related

functions which were not completed in this thesis.

1. Expert System - Database Interface

One possible way to provide an expert system - database interface is to pro

vide the user with the capability to use the database directly to retrieve the required infor

mation. This might be achieved by using an icon activated program which first opens

Access to the required screen through the use of a macro, and then begins the Adept pro

gram. In this approach, both Adept and Access and applications will be running simulta

neously. The user, however, will only be seeing the Adept screens, since they generally

will be in the foreground. In order to retrieve information about a required replacement or

part, the user could invoke a process to provide direct manipulation of the database.

If this process could "minimize" the Adept window, the Access wiudow

would then be visible to the user. At this time, the user would have to make an entry in

order to retrieve the correct information. This would accomplish "manually" what this

thesis tried to automate through the use of DDE. Perhaps Node# would still be a good

argument for the query even though it is not particularly meaningful to the technician, be

cause it is short and fiirly easy to remember (vice UD#s which are difficult to remember).

Using Node#s would allow the current database structure to be used in retrieving all ap

plicable information about Parts and Replacements, instead of about one UD# at a time.

91

The display form would use a command button to invoke a procedure to maximize Adept

and put Access back in the background until needed.

l. Database Application Functionality

As mentioned above, the functionality of each of the different subsystems re

quires a number of changes. FoHow-on work will complete the planned functionality,

which still remains a requirement, particularly in the area of maintenance, and will make

other changes as requested by the sponsor. The sponsors have expressed an interest in

adding the capability to track excess parts which are distn"buted to ships. This may require

additional tables tG track the requests from particular ships for particular parts.

3. Database Application Environment

Once the application is complete, the database environment has to be made

secure. Generally, the run-time environment does not allow the user access to objects;

however, a user could inadvertently halt processes or cause problems if care is not taken

to fix some of the current loopholes. Error·trapping routines need to be added to ensure

there are no abrupt terminations of the application. Customized help files may be added,

and would prove useful. (Perschke and Liczbansld, pp. 295-296)

4. Documeatatioa

Documentation for both the user and the administrator should be completed.

This thesis provides the foundation for some of the system documentation, but updates

will be required as the system changes. In addition, this thesis does not provide a User's

Manual, since this is only the first generation prototype of this system.

C. LESSONS LEARNED

1. Database Selection

Using a database which supported fixed fields would have solved some of the

problems and performance issues associated with the display of information retrieved from

92

the database by Adept. This may be a moot point, however, if no database can accept a

query parameter passed from Adept.

2. Application Development

More interface with the user would have been helpful. A great deal of time in

developing this system was spent in researching the interface between the expert system

and the database and in attempts to get it working, rather than specifying the functionality

of the system precisely. It should be pointed out that even if the nature of some of the

prototype's processes and forms change, most of tbe existing objects and processes could

be used with little modification.

D. CONCLUSION

This thesis proved the viability of using interprogram communicationbetween a

database and an expert system to enhance the functionality of the expert system and to

help the users save time spent looking up related information manually. Database vendors

are working to standardize interprogram communications as users demand the capability.

New releases ofboth Adept and Access are expected to provide capabilities which may

solve many of the existing problems. Insights gained in this thesis can be used as a model

to develop approaches for other attempts at interprogram communications.

This thesis is a typical example of the problems and issues faced today in the soft

ware development environment when trying to get different vendor's software to commu

nicate with one another. This sort of interprogram communications has been one of the

most difficult problems to solve, and will continue to be so, as long as adherence to any

sort of communication protocol standards is not demanded by the users and/or application

developers.

93

APPENDIX A· ENTITIES, ATfRIBUTES, AND ENTITY
RELATIONSHIP DIAGRAM

A. ENTITY DEFINITIONS AND A1TRIBUTES

NODE Entity
NOD Elf;
MODULE REF;

REPLACEMENT Entity
llJH;
PART#;
ALTLOC;
NOTES;

PART Entity
PART##:
NSN;
PRICE;
ALLOWANCE;
PARTS ON HAND;
PARTS ON ORDER;

NODE-REPL Entity
NODE##;
1mtt&
CKTREF;

USAGEEmity
VSEI#;
DATE;
PART REPLACED;
NOTES;
(Others TBD)

node~umber
module-refenzce

circuit-card-location-ref
part-number
altemate-location
replacement-DOtes

part-number
stock-number
part-price
part-allowance
parts-on-band
parts-on-order

node-number
circuit-QI'd-location-ref
circuit-reference

_ denotes key attribute of entity

94

a ATnUBUTEDE~ONS

alternate-location
Text2S
Location (UD#) where same part may be found in system

circuit-card-location-ref
Text28
UD# or other reference information for replacement part

circuit-reference
Text27
Documentation reference

module-reference
Text20
Reference number on knowledge diagrams

node-number
Text 6, Mask N####, # any digit
Artificially generated number used to track nodes

part-allowance
Integer
Number of a part allowed on board (COSAL or other requirement)

part-number
Text20
Reference number for part

part-replaced
Boolean
Set if part replaced

parts-on-hand
Integer
Number of a part on board

parts-on-order
Integer
Number of a part on order

95

price
Currency
Price of part

replacement-notes
Text32
Infonnation for user

stock-number
Text IS
National Stock Number (NSN) for part

usage-date
Date
Date of usage

usage-notes
Memo
Infonnation about usage

usage-number
T 6 Mask U" .. "" '#~' # digit. ext , ,,,,~,, 4, any
Artificial number for usage occurrence

96

C. ENTITY-RELATIONSHIP (E-R) DIAGRAM

FIGURE A-I

97

APPENDIX B. DECOMPOSITION AND DATA FLOW DIAGRAMS

MKS2 FCS MIHTEHAHCE ADVISOR
EXPERT SYSTEM DATABASE

1.8
PART
UFO
SliiSYSTEM

e

MK92FCSMES
08

2.e
DATA STORE
MIHTEHAHCE
Sl8SYSTEM

DECOMPOSITION DIAGRAM

3.8
SYSTEI1
USAGE
SI.BS'I'Sl'Et1

Figure B-1 - MK92 FCS MAES DB Decomposition Diagram

98

1.1P
IRGISE
PMT
INFO

1.3.1P
HOT OH
tWI)

REPORT

1.2P
I.PDATE
SlfiPL.Y
STATUS

PARTS OH
ORDER
REPORT

1.8
PART
UFO
Sl.IISYSTEM

1.3
REPORT
PART
UFO

1.3.3P
PARTS
lHlER
STOCK
REPORT

DECOMPOSITION DIAGRAM
1.8

1
1.3.4PM
SYSTEM
PARTS
LIST

M FUHCTIOH AUAIUIBLE OHL. V TO
SYSTEM ADMINISTRATOR

Figure B-2 - MK92 FCS MAES DB Decomposition Diagram (1.0]

99

""---~

z.e
DAT'-~
MIMTDWICl,.,

2.1 lz.z 2.3

::r"' (g,) ,.iHf
....,.

- MJHf

_2.1.11' 2.1 2.1.'3PII 2.1 2.1.!1' 2.1 ...

=~ :: :::. ~ :u.:. ~
lM'II (8\' cay .NIIIl£) .NIIIl£CWf
NIIDII> ICIIIl>

1.2.2.11' z.z.zP Z.2.3P z.z.•
1::::--.. =- ;-:.:. ::;:..

lM'II (ll'fll)) IIIIlS
.... 11)11 (ll'f II))

" JI\IICTJOII ...,.ILML.£ GIL V TO
SVSTDIIIIDIIlN:iSTMTOII

2.3.11' 2.3.. .2.3.. 2.3.41>

=- :: ~ :.
JMI'O IIIII

Figure B-3 - MK92 FCS MAES DB Decomposition Diagram [2.0]

100

1'1K92 FCS MINTEHAHCE ADUISOR
E>CPERT SYSTEPI IMTAMSE

3.8
SYSTEPI
USIQ
DATA
SI.IISVSTEt1

3.1P
ENTER
UMiiE
DATA

3.2
REPORT
UMGE
DATA

3.2.1P
PERICIIIC
USAGE
REPORT

OECOf'f'OSI T IOH DIAGRAM
3.8

1
3.2.2P
AtHIAL
REPORT

Figure B-4 - MK:92 FCS MAES DB Decomposition Diagram [3.0]

101

E>CPERT
SYSTEJ1

NODE REUST

REQI.ESTED
PARTS ItFO

l'ECNIICII¥
<USER>

PMTS/StA'L V
UFO

111<92 FCS MAINTENANCE ADVISOR
EXPERT SYSTEt1 DATABASE

CONTEXT DIAGRAM

e

11<92FCSES
DB

USER liFO

PARTS UFO

"-----1
SVSTEr1 t1AINT
UFO

Figure B-5 - .MK92 FCS MAES DB Context Diagram

102

SYSTEI'I
ADt'IIH

TICtfollCl
<UIIIt>

I'1ICS2 FC:S I'Mllf'I'IHANCE IIOUlSOit
IDCPIRT SYTErt OATIWAII

SVSTErl DlACIW'I

1.8 ~ DETAILS

INFO
SUIS'1STErl

IIMT ~y
STATUI DETAILS

Figure B-6 - MK.92 FCS MAES DB System Diagram

103

SVSTEI'I
Allt'IIN

·_.,_

PMT Sl.PPLY
STATUS INQUIRY

~----1

1.1P
BROWSE
PMT
lHFO

..., PART Sl.PPL Y
IE..,..__-__, DETAILS

.. ~-----------------~~i T PMT

-...

PMT STATUS
DETAILS

PART Sti'PLY
STATUS owtGES ----.L.-----.

.. -

PMT R£POR1'S

SYSTEI'I PART REPORTS

1.2P
I.POATE
Sti'PLY
STATUS

1.3
REPClRT
PMT
IHFO

I

::: ...

PMT DETAILS

I REPLACErEHT

PMT RELATED
LOs

Figure B-7 - DFD: Part Info Subsystem [1.0]

104

DFO - REPORT PMT JtoFO t 1. 3l

1.3.1P
HOT ON
HAHD 1-
REPORT ::-....-

NOH R£LATED lJ)s
PMT NOH REPORT

NOH PMTIS l \PART

11.r
1.3.2P

TECHHICIM PART ON ORO REPOR1 PMTS OH
<USER> ORDER 1.- ..._____ .I I ._ REPORT- I

- 1 OH ORO R£LATED lJ)s ._ ...

PARTS \H£R
STOCK REPORT

1.3.3P OH ORDER PART DETAILS
PMTS
lHIER

~ STOCK
REPORT

SYSTEtt
ADniH lHJER STOCK PARriS ~·'I r:: I PMT -- SYS1B1 .--fl:>

REPORT 1.3.4PM PART IS
SYSTEI'I ..
PARTS LA I r LIST ... I

SYSTEI1 PART
RELATED lJ)s

Figure B-8 - DFD: Report Part Info [1.3]

105

I=
SYS'ml NDDE
MINT INFO

DFD • DATI< STORE MlNTEIWICE
IA.8$YSTEI'I t2. ll

~NDDE
MJNT JIFO

1IDIGCl
~)

.....,., ...,.
-----' MJMT JII'O

UDMJNT
DETAIL$

Figure B-9 - DFD: Data Store Maintenance Subsystem [2.0]

106

DIL£'I"ED Ill
<F'IIOI MODE>

liFO - MODE nAlHftiWU ca. 1J

Figure B-1 0 - DFD: Node Maintenance [2.1]

107

.---~----

SYSTEM
ADtiiH'

TEQtfiCI
<USER>

SYSTEI'I
ADtiiH

SYSTEn ll:l
TO CHANGE

UD TO ADD
LVHODES

UDTODEL.ETE
IV HODES

DFO - REPLACEMENT < UO >
ttAINT C2.2l

2.2.1P
CHANCE PART BY UD CHANGES
REPLACEI'£HT
ItEO 1--------~ PMT
BVll» 1...-L.;....;:...,__

ADD UD
TO ltOOES
<BVUD>

Figure B-11 - DFD: Replacement (UD) Maintenance [2.2]

10&

SVST£n
MlnJH

TECttUCI
<USER>

TECHNIC I
<USER>

2.3.1P
CHANGE
PMT
UFO

2.3.2P

2.3.3P
DELETE
PARTS
a tms

ADO
PARTS

PART
owas

Figure B-12 - DFD: Part Maintenance [2.3]

109

PMT

TECtltiC I AI-
<USER>

...

OFD - SYSTEM USAGE
SlSSYSTEM [3.81

3.1P
ENTER
USAGE USAGE DETAILS IlofiUT
[)j:ITA -

_.,
LOCAL USAGE UFO ..

LOCAL USAGE REPORTS

USAGE

USAGE REPORT DETAILS
3.2
REPORT
UMCE
DATA ... -

Figme B-13- DFD: System Usage Subsystem [3.0]

110

OFD - REPORT USAGE DATA [3.2]

3.2.1P
REPORT
USAGE

~

PERIODIC
tSIG£

TECHNIC I At
.A

DETAILS
<USER> - PERIODIC USAGE

... REPORT ..
AtKJAL USAGE

. REPORT USAGE

3.2.2P
AHNUAL ~
REPORT ... USAGE

DETAILS

Figure B-14- DFD: Report Usage Data [3.2]

111

APPENDIX C -MENU HIERARCHY AND SCREENS

A. MENU HIERARCHY

References to Decomposition Diagram are provided in {}

USER. MENU
Part Information (Part Info) Submenu { 1. 0}

Browse Part Supply Info (Supply) { 1.1P}
Update Part Supply Status (Update) { 1.2P}
Part Information Reports (Report) Submenu { 1.3}

Report Parts Not On Hand (Not on Hand) { 1.3 .1P}
Report Parts On Order (On Order) { 1.3.2P}
Report Parts Under Stock (Under Stock) { 1.3.3P}

Usage History (Usage) Submenu {3.0}
Enter Usage Data (Enter) {3.1P}
Periodic Usage Report (Periodic) {3.2.1P}
Annual Report (Annual) {3.2.2P}

DB Maintenance (DB) Submenu {2.0}
Update Circuit Card Info (Ckt Card) Submenu <2A>

Select By Node# (By Node#) {2.1.1P}
Select By UD# (By UD#) {2.2.1P}

[Change UD#] {2.2.2P}
Update UDs (Submenu) <2B>

Add UDs to Nodes (Add) Submenu <2B-l>
Select byUD# [AddNewUD]{2.2.3P}
Select by Node# [Add NewUD]{2.l.SP}

Delete UDs from Nodes (Delete) Submenu <2B-2>
Select by UD# {2.2.4P}
Select by Node# {2.1.6P}

Update Part Info (Part) Submenu <2C>
Update Info by Part# {2.3.1P}

[Change Part#] {2.3.2P}
Add Parts {2.3.4P}
Delete Parts {2.3.3P}

ADMINISTRATION MENU
Part Information (Part Info) Submenu { 1.0}

Browse Part Supply Info (Supply) {1.1P}
Update Part Supply Status (Update) { 1.2P}

112

Part Information Reports (Report) Submenu { 1.3}
Systems Part List (Parts List) { 1.3 .4P)

DB Maintenance (DB) Submenu {2.0}
Update Circuit Card Info (Ckt Card) Submenu [2A]

Select By Node# (By Node#) {2.1.1P}
[ChangeNode#] {2.1.2P}

Select By UD# (By UD#) {2.2.1P}
[Change UD#] {2.2.2P}

Update UDs (Submenu) [2B]
Add UDs to Nodes (Add) Submenu [2B-l]

Select by UD# [Add New UD] {2.2.3P}
Select by Node# [Add New UD] {2.1.5P}

Delete UDs from Nodes (Delete) Submenu [2B-2]
Select by UD# {2.2.4P}
Select by Node# {2.1.6P}

Update Part Info (Part) Submenu [2C]
Update Info by Part# {2.3.1P}

[Change Part#] {2.3.2P}
Add Parts {2.3.4P}
Delete Parts {2.3.3P}

Node Info [2D]
Add Nodes {2.1.3P}
Delete Nodes {2.1.4P}

Usage History (Usage) Submenu {3 .0}
To Be Determined

[] Additional functions provided on screen, vice on menu
<> Combination menus referenced in Process Logic section (Appendix D, Section A)

113

B. MENU SCREENS

MK 92 FCS Maintenance Advisor Expert System
Database

User Version

Exit Program

Figure C-1 - Opening Menu

IMK 92 FCS MAES Database

~-----

!Part Information I
jSystem Usage Historical Data

jOatabase Maintenance

jExil Database I

Figure C-2 -User Menu Screen

114

Administrative Version

IMK92 FCS MAES DB- Part lnfonnation I
fB'OWS8 Supply Information for Palt

~pdate Part Supply Status

part Information Reports

(Retum to Main Menu

Figure C-3 -Part Infonnation Submenu

IMK92 FCS MAES DB - Part Information I
IPart Reports I

r~----

(ust Parts Not on Hand

(Ust Parts On Order

pst Parts Under Allowance Level I
IRetum to Part lnfonnation Menu I
IRetum to Main Menu

Figure C-4 - Part Reports Submenu

liS

IMK92 FCS MAES Usage Data

fEnter Usage Information

fReport Usage Data I
(AI"nual Data Report and Archive

feturn to Main Menu

Figure C·S - Usage Submenu

116

NK92 FCS MAES Database Maintenance

r-~-~----- ·-·-----

!Update Circuit Card/Node Information

fAdd UOs toiOalete UOs tom Nodes

fUPdate Pwt Information
'

JRitum to MDI Menu I

Figure C-6 -DB Maintenance Submenu

Select Type of Oaange Required to
Crcuil Card I Node Information

IQlOOie one or c.at I

-

Figure C-7 -Update Selection Screen

117

r;4K92 FCS MAES Database -Administrative Version

r----
t

part Information

fSystem Ua.ge Historical Data

flalabase Maintenance

FxitDatase

Figure C-8 - Administrator (Admin) Menu

lMK92 FCS MAES DB- Part Information (Admin) l

!
.----
!

fBrowse Part Supply Information

ppdata Part Information

fatt Information Reports

(Return to Main Menu

Figure C-9 -Part Information (Admin) Submenu

118

fMK92 FCS MAES DB - Part Information (Admin) I
IPart Reports I
fJ8t Parts in System wl UOs I

r•um to Part Information Menu 1

jRetum to Main Menu

Figure C-10- Part Report (Admin) Submenu

119

ppdate Circuit Card/Node Information

f"dd UOs to/Delete UOs flom Nodes

fUpdate Part Information

(Add Nodes to /Delete Nodes tom System

fRetum to Main Menu

Figure C-11- DB Maintenance (Admin) Submenu

Select Type of Change Required to
Qrcuit card I Module Information

lo.oc- one ar Cancel: I

-
Figure C-12 - Update Selection (Admin) Screen

120

APPENDIX D- PROCESS LOGIC, SYSTEM FORMS, AND SYSTEM REPORTS

A. PROCESS LOGIC

Program START
Activate OPENING MENU procedure

OM OPINING MENV: (procedure)
Activate OPENING Menu - Display Menu

On Command Button Push, Run procedures
(USER MENU, ADMIN MENU, EXIT)

1. User Procedures

1JM USER MENU: (procedure)
Activate USER Menu -Display Menu

On Command Button Push, Activate procedures
(PART INFO MENU- USER, USAGE HISTORY MENU, DB MAlNT

MENU -USER, EXIT)

Ul.O PART INFO MENU· USER: (procedure)
Activate PART INFO -USER. Menu -Display Menu

On Command Button Push, Activate procedures
(SUPPLY, UPDATE SUPPLY INFO, REPORT PARTS INFO MENU-

USER, RETURN)

Ul.l SUPPLY: (procedure)
Activate BROWSE PART form
Input PART# &om fist selection

On Command Button Push, Activate subproced!U'eS
(LOCATE, CANCEL)

Ul.lL LQCATE: (procedure)
Activate PART SUPPLY INFO fonn

Retrieve PART instance WHERE PART#= Form[BROWSE
P ART][P ART#]

Display PART instance
On Command Button Push, Activate subprocedures

(RETURN)

121

U1.1L-R UTUBN: (procedure)
Close PART SUPPLY INFO form
Activate USER. MENU procedure

U1.1C CANCEL: (procedure)
Close PART SUPPLY INFO form
Activate PART INFO MENU- USER procedure

Ul.l UPDATE SUPPLY INFQ: (procedure)
Activate UPDATE PART form

Accept PART#
On Command Button Push, Activate subprocedures

(LOCATE(U), CANCEL(U))

Ul.lL LQCAIE(U): (procedure)
Check to see ifPart# input provided and it exists

if not, display message and Activate UPDATE SUPPLY INFO
procedure

Retrieve PART instance WHERE PART#= Form[UPDATE PART][PART#]
Activate PART SUPPLY INFO UPDATE form
Display PART instance
Accept changes to Part information

On Command Button Push, Activate subprocedures
(MORE, RETURN(L), ISSUE, ORDER, RECEIVE)

Ul.lL-M MQRE: (procedure)
Update PART instance WHERE PART#= Form[PART SUPPLY

INFO UPDATE][PART#)
Close PART SUPPLY INFO UPDATE form
Activate UPDATE SUPPLY INFO subprocedure

U1.2L-R BETURNlLl (procedure)
Update PART instance WHERE PART#= Form[P ART SUPPLY

INFO UPDATE][PART#]
Close PART SUPPLY INFO UPDATE form
Activate PART INFO MENU- USER procedure

U1.2L-I ISSUE (procedure)
Activate ISSUE PARTS form
Set initial number of parts issued to 0
Accept update to number of parts issued
On Command Button Push, Activate subprocedures

(UPDATE(I), CANCEL(l))

122

U1.2L-IU UPDATEffi: (procedure)
Calculate number of parts on band: Subtract number of

parts issued ftom number of parts on hand
Close ISSUE PARTS form

Ul.lL-IC CANCEUD: (procedure)
Close ISSUE PARTS form

Ul.lL-0 OBDER (procedure)
Activate PARTS ORDERED form
Set initial number of parts ordered to 0
Accept update to number of parts ordered
On Command Button Push, Activate subprocedures

(UPDATE(O), CANCEL(O))

Ul.lL-OU UPDATE(()): (procedure)
Calculate number of parts on order: Add number of parts

ordered to number of parts on order
Close PARTS ORDERED form

Ul.lL-OC CANCEUO>: (procedure)
Close PARTS ORDERED form

Ul.lL-R RECEIVE (procedure)
Activate PARTS RECEIVED form
Set initial number of parts received to 0
Accept update to number of parts received
On Command Button Push, Activate subprocedures

(UPDATE(R), CANCEL(R))

Ul.lL-RU JJPDATE(R>: (procedure)
Calculate number of parts on order: Subtract number of

parts received ftom number of parts on order
Calculate number of parts on hand: Add number of parts

received to number of parts on hand
Close PARTS RECEIVED form

Ul.lL-RC CANCEUR>: (procedure)
Close PARTS RECEIVED form

Ul.lC CANCEUJD
Close UPDATE PART form
Activate PART INFO MENU -USER procedure

123

U1.3 REPQRT PARTS INFO MENU- USER: (procedure)
Activate PARTS REPORT MENU- USER form

On Command Button Push, Activate subprocedures
(REPORT PARTS NOT ON HAND, REPORT PARTS ON ORDER,

REPORT PARTS UNDER STOCK, PREVIOUS (RPU),
RETURN TO MAIN(RRU))

U1.3.1 BEPQBT PARIS NOT ON HAND (procedure)
Quay PART for PARTS NOT ON HAND:

Select Part#, Number Parts (Jn Hand WHERE
Number Parts On Hand = 0

Quay PART and REPLACEMENT for UDs FOR PARTS NOT ON HAND:
Select Part#, UD# WHERE Number Parts On Hand = 0

Display PARTS NOT ON HAND report from PARTS NOT ON HAND
quay

Display PARTS NOT ON HAND subreport from UDs FOR PARTS NOT
ON HAND quay

WHERE PART# for PARTS NOT ON HAND subreport =PART# for
PARTS NOT ON HAND report

On Command Button Push, Activate procedures
(CANCEL, PRINT, ZOOM) ••

•• Note: these are Access procedures, and are not covered further

U1.3.2 REPQRT PARIS ON ORDER (procedure)
Quay PART for PARTS ON ORDER:

select Part#, Number Parts On Order WHERE
Number Parts On Order> 0

Quay PART and REPLACEMENT for UDs FOR PARTS ON ORDER:
select Part#, UD# WHERE Number Parts On Order> 0

Display PARTS ON ORDER report from PARTS ON ORDER query
Display PARTS ON ORDER subreport from UDs FOR PARTS ON ORDER

que:y
WHERE PART# for PARTS ON ORDER subreport =PART# for

l'ARTS ON ORDER report
On Command Button Push, Activate procedures

(CANCEL, PRINT, ZOOM) ••
•• Note: these are Access procedures, and are not covered further

124

Ul.3.3 BEPORT PARTS VNDER STOCJ((procedure)
Query PART for PARTS UNDER STOCK:

select Part#, Allowance, Parts On Hand, Parts On Order WHERE
(Number Parts On Hand < Allowance)

Display PARTS UNDER STOCK report from PARTS UNDER STOCK
query

On Command Button Push, Activate procedures
(CANCEL, PRINT, ZOOM) ••

•• Note: these are Access procedures, and are not covered

U1.3P PREVIOUS<RPUl (procedure)
Close PARTS REPORT MENU- USER form
Activate PART INFO MENU- USER procedure

Ul.lR RETURN TO MAIN <RRID (procedure)
Close PARTS REPORT MENU- USER form
Activate USER MENU procedure

Ul.ORUTJJRN
Close PMT INFO -USER menu
Activate u~.i: :- . .{EN{] procedure

lJ;. _3 DB MAINT MENU- USER (procedure)
Activate DB MAINT- USER Menu- Display Menu

On Command Button Push, Activate procedures
(CKT CARD(U), UD(U), PART INFO(U), RETURN(DU))

Ul.A CKI CARDlUl (procedure)
Activate SELECT CHANGE Menu- Display Menu

On Command Button Push, Activate procedures
(BY NODE#(U), BY UD#, RETURN)

U2.1.1 BY NODE#KU) (procedure)
Activate INPUT NODE# form
Accept Node# input

On Command Button Push, Activate procedures
(CANCEL(NU), LOCATE(NU))

125

Ul.l.lL LQCATElNJJ) (procedure)
Retrieve NODE, NODE-REPL, and REPLACEMENT instances

WHERE Node#= Fonn[INPUT NODE#][NODE#]
Check to see ifNode# input provided and it exists

if not, display message and Activate BY NODE# procedure
Activate UPDATE NODE-REPLACEMENT ·USER forms
Display NODE instance and first NODE-REPL and REPLACEMENT

instances
Accept changes to Node and Replacement information

On Command Button Push, Activate procedures
(CLEAR(NR), MORE(NRU), EXIT(NRU), FWD(NR),

BACK(NR))

Ul.l.IL-C CLEAR<NRl (procedure)
Cancel changes to Node and Replacement information

Ul.l.lL-M MORElNRU) (procedure)
Update NODE, NODE-REPL, REPLACEMENT instances where

Node#= Fonn[UPDATE NODE-REPLACEMENT
USER][NODE#] AND UD# = Fonn[UPDATE NODE
REPLACEMENT(sub)][UD#]

Close UPDATE NODE-REPLACEMENT forms
Activate BY NODE#(U) procedure

Ul.l.lL-E EXIT<NRUl (procedure)
Update NODE, NODE-REPL, REPLACEMENT instances where

Node#= Fonn[UPDATE NODE-REPLACEMENT]
[NODE#] AND UD# = Fonn[UPDATE NODE
REPLACEMENT -(sub)][UD#]

Close UPDATE NODE-REPLACEMENT- USER forms
Activate CKT CARD procedure

Ul.l.IL-F FWD<NRl (procedure)
Display next NODE-REPL and REPLACEMENT instances for

NODE#

Ul.l.lL-B BACKINBl (procedure)
Display previous NODE-REPL and REPLACEMENT instances for

NODE#

Ul.l.IC CANCEUNU) (procedure)
Close INPUT NODE# form
Activate CKT CARD(U) procedure

126

U1.1.1 BY UD#KU) (procedure)
Activate INPUT l.JD# fonn
Accept l.JD# input

On Command Button Push, Activate procedures
(CANCEL(UDU), LOCATE(UU))

Ul.1.1C CANCEUUDU)
Close INPUT UD# form
Activate CKT CARD(U) procedure

U1.1.1L LOCATE<UDl
Retrieve REPLACEMENT instances

WHERE UD# = Fonn[INPUT UD#][UD#]
Check to see ifl.JD# input provided and it exists

if not, display message and Activate BY l.JD# procedure
Activate UPDATE UD#- REPLACEMENT fonn
Display REPLACEMENT instance
Accept changes to Replacement information

On Command Button Push, Activate procedures
(UPDATE UD#, CLEAR(UD), EXIT(UDU), MORE(UD))

Ul.2.1L-U UPDATE UD# (procedure)
Activate CHANGE UDII form
Accept UD# input
Check to see ifUD# input provided and it does not already

exist, if not correct display message and Activate
UPDATE UD# procedure

On Command Button Push, Activate procedures
(CANCEL(UD), CHANGE UD#(UD))

Ul.l.lL-UC CANCEUUD) (procedure)
Close CHANGE UD# form

Ul.l.lL-UD CHANGE UD#(tJJ)l (procedure)
Accept NEW UD# input
Validate change (Yes/No)

ifNO, Close CHANGE UD# fonn
Activate UPDATE RELATED UD function
Display UPDATE UD#- REPLACEMENT form where

l.JD# =NEW UD#

U2.2.1L-C CLEAR(UU) (procedure)
Cancel changes to Replacement information

127

U2.2.1L-E EXII(JJJ)Jl) (procedure)
Update REPLACEMENT instance where UD# = Fonn[UPDATE

UD#- REPLACEMENT][UD#)
Close UPDATE UD#- REPLACEMENT form
Activate CKT CARD(U) procedure

U2.2.1L-M MOREWUl (procedure)
Update REPLACEMENT instance where UD# = Fonn[UPDATE

UD#- REPLACEMENT][UD#]
Close UPDATE UD#- REPLACEMENT fonn
Activate BY UD#(U) procedure

U2.B UPDATE UD(U) (procedure)
Not Yet Designed

U2.C UPDATE PART INFO(U) (procedure)
Not Yet Designed

U2.0-ll REJURNWUl (procedure)
Close DB MAlNT- USER MENU
Activate USER. MENU

U3.0 USAGE W§IORY MENV (procedure)
Activate USAGE MENU

On Command Button Push, Activate procedures
(ENTER USAGE DATA(U), PERIODIC USAGE REPORT(U), ANNUAL

USAGE REPORT(U), RETURN(IRJ))

U3.1 puR USAGE DATA(U) (procedure)
Not Yet Designed

U3.2 PERIODIC usAGE BEPQRT(U) (procedure)
Not Yet Designed

U3.3 ANNVAL USAGE REPORT(U) (procedure)
NotYetDesigned

U3.3-ll Rl!iTUBN<BID (procedure)
Oose USAGE MENU
Activate USER. MENU procedure

128

2. Administrator Procedures

AM ADMIN MENU (procedure)
Activate ADMIN Menu - Display Menu

On Command Button Push, Activate procedures
(PART INFO MENU- ADMIN, USAGE MENU, DB MAINT MENU

ADMIN, EXIT ADMIN)

Al.O PARI INFO MENU- ADMIN: (procedure)
Activate PART INFO- ADMIN Menu- Display Menu

On Command Button Push, Activate procedures
(SUPPLY, UPDATE SUPPLY INFO, REPORT PARTS INFO MENU-

ADMIN, RETURN(AR))

Al.l SUfPLY: (procedure) [SAME AS Ul.l]
Activate BROWSE PART form
Input PART## from list selection

On Command Button Push, Activate subprocedures
(LOCATE(AS), CANCEL(CS))

Al.lL LOCA'I'E(A$): (procedure) [SAME AS Ul.lL]
Activate PART SUPPLY INFO form

Retrieve PART instance WHERE PART#= Form[BROWSE
PART][PART#]

Display PART instance
On Command Button Push, Activate subprocedures

(RETURN(AS))

Al.J.L.R BETJJRN(ASl: (procedure)
Close PART SUPPLY INFO form
Activate ADMIN MENU procedure

Al.lC CANCEUcs>: (procedure)
Oose PART SUPPLY INFO form
Activate PART INFO MENU- ADMIN procedure

A1.2 UPPAD SUfPLY INFO: (procedure) [SAME AS Ul.2]
Activate UPDATE PART form

Accept PART##
On Command Button Push, Activate subprocedures

(LOCATE(UA), CANCEL(UA))

129

... _,_. ---·· _____________________________________ _____J

Al.2L LOCAJE(]JAl: (procedure)
Check to see ifPart# input provided and it exists

if not, display message and Activate UPDATE SUPPLY INFO
procedure

Retrieve PART instance WHERE PART#= Form[UPDATE PART][PART#]
Activate PART SUPPLY INFO UPDATE form
Display PART instance
Accept changes to Part information

On Command Button Push, Activate subprocedures
(MORE, RETURN(LA), ISSUE, ORDER, RECEIVE)

Al.lL-M MQBE: (procedure) [SAME AS Ul.2L-M]
Update PART instance WHERE PART#= Form[P ART SUPPLY

INFO UPDATE][PART#]
Close PART SUPPLY INFO UPDATE form
Activate UPDATE SUPPLY INFO subprocedure

Al.2l.,R BETURN<LA) (procedure)
Update PART instance WHERE PART#= Form[P ART SUPPLY

INFO UPDATE][PART#]
Close PART SUPPLY INFO UPDATE form
Activate PART INFO MENU- ADMIN procedure

Al.lL-1 ISSUE (procedure) [SAME AS U1.2L-l]
Activate ISSUE PARTS form
Set initial number of parts issued to 0
Accept update to number of parts issued
On Command Button Push, Activate subprocedures

(UPDATE(I), CANCEL(I))

A1.2L-W VPDATEffi: (procedure) [SAME AS U1.2L-IU]
Subtract number of parts issued from number of parts on hand
Close ISSUE PARTS form
A1.2L-IC CANCEUD: (procedure) [SAME AS U1.2L-IC]
Close ISSUE PARTS form

Al.li.,O OBDEB (procedure) [SAME AS U1.2L-O]
Activate PARTS ORDERED form
Set initial number of parts ordered to 0
Accept update to number of parts ordered
On Command Button Push, Activate subprocedures

(UPDATE(O}, CANCEL(O))

130

A1.2LOU UPQAD<Q): (procedure) [SAME AS U1.2L
OU]

Add number of parts ordered to number of parts on order
Close PAR.TS ORDERED form

Al.lL-OC CANCEUOl: (procedure) [SAME AS U1.2L
OC

Close PAR.TS ORDERED form

Al.lL-R RECEM (procedure) [SAME AS Ul.2L-ll]
Activate PAR.TS RECEIVED form
Set iDitial number of parts received to 0
Accept update to number of parts received
On CoiDIDind Button Push, Activate subprocedures

(UPDATE(R), CANCEL(R))

A1.2L-RU UPDAJE(Rl: (procedure) [SAME AS U1.2L
llU]

Subtract number of parts received from number of parts on
order

Add number of parts received to number of parts on band
Qose PAR.TS RECEIVED form

A1.2L-RC CANCEIJRl: (procedure)[SAME AS U1.2L
llC]

Cose PAR.TS RECEIVED form

A1.2CCANCEUJJA)
aose UPDATE PAR.T form
Activate PAR.T INFO MENU -ADMIN procedure

Al.l JJPORI PARTS INFO MENU- ADMJN: (procedure)
Activate PAR.TS REPORT MENU- ADMIN form

On Command Button Push, Activate subprocedures
(SYSTEMPAR.TS LIST, PREVIOUS(RPA), RETURN TO

MAIN(RRA))

Al.l.l SYSTEM PABIS J,JSJ (procedure)
Query PAR.T for SYSTEM PAR.TS:

select Part# WHERE Part# <>Null
Query PAR.T and REPLACEMENT for UDs FOil SYSTEM PAR.TS:

select Part#, UD# WHERE Part#= Parts list[Part#]
Display SYSTEM PAR.TS report from SYSTEM PAR.TS quay

131

Display UDs FOR. SYSTEM PARTS subreport from UDs for SYSTEM
PAilTSquery

WHERE PAilT# for UDs FOR. SYSTEM PARTS subreport ==PART#
rorSYSTEMPAilTS~rt

On Command Button Push, Activate procedures
(CANCEL, PRINT, ZOOM) ••

•• Note: these are Access procedures, and are not covered further

Al.3P PREYIOUSIBPAl (procedure)
Close PARTS REPORT MENU- ADMIN form
Activate PART INFO MENU- ADMIN procedure

A1.3R RETURN TO MAIN IBIW (procedure)
Close PAilTS REPORT MENU- ADMIN form
Activate ADMIN MENU procedure

Al.OR RETJJRN(ARl
Close PART JNFO -ADMIN menu
Activate ADMIN MENU procedure

A2.0 DB MA1NI M1NJJ- ADMIN (procedure)
Activate DB MAINT- ADMIN Meau- Display Menu

On Command Button Push, Activate procedures
(CKT CAllD(A), UD(A), PAilT INFO(A), RETURN(DA))

A2.A CKT CABJ)(Al (procedure)
Activate SELECT CHANGE Menu- Display Menu

On Command Button Push, Activate procedures
(BYNODEI#(A), BY UD##, RETIJRN)

A2.1.1 BY NQDI##(Al (procedure)
Activate INPUT NODE# form
Accept Node## input

On Command Button Push, Activate procedures
(CANCEL(NA), LOCATE(NA))

A2.1.1L LOCATE(NAl (procedure)
Retrieve NODE, NODE-REPL, and REPLACEMENT instances

WHERE Node## • Form[INPUT NODE#][NODE#]
Check to see ifNode## input provided and it exists

if not, display message and Activate BY NODE# procedure
Activate UPDATE NODE-REPLACEMENT- ADMIN rorms

132

Display NODE instance and first NODE-REPL and REPLACEMENT
instiDCel

Accept cballges to Node and Replacement information
On Command Button Push, Activate procedures

(UPDATE NODE#, CLEAR(NRA), MORE(NRA),
EXIT(NRA), FWD(NRA), BACK(NRA))

A2.1.1J,N UPPAD NODE## (procedure)
Activate CHANGE NODE# form
Accept NODE# input
Check to see ifNODE# input provided and it does not already

exist, if not correct display message and Activate
UPDATE NODE# procedure

On Command Button Push, Activate procedures
(CANCEL(UN), CHANGE NODE#)

Al.l.IJ,NC CANCEUUN) (procedure)
Close CHANGE NODE# form

A2.2.1J,ND CHANGE NODE## (procedure)
Accept NEW NODE# input
Validate change (Yes/No)

ifNO, Close CHANGE NODE# form
Activate UPDATE RELATED NODE timction
Display UPDATE NODE-REPLACEMENT- ADMIN form

where NODE#= NEW NODE#

A2.t.IJ,C q.EARCNRAl (procedure)
Cancel changes to Node and Replacement information

Al.l.IJ,M MQJWNRA) (procedure)
Update NODE, NODE-REPL, REPLACEMENT instances where

Nodel# = Form[UPDATE NODE-REPLACEMENT
ADMIN][NODE#] AND UD# = Form[UPDATE NODE
REPLACEMENT -ADMIN(sub)][UD#]

Close UPDATE NODE-REPLACEMENT- ADMIN forms
Activate BY NODE# (A) procedure

133

... ························------------- ------

Al.l.J.L..E IXlitNRA) (procedure)
Update NODE, NODE-REPL, REPLACEMENT instances where

Node# • Fonn[UPDATE NODE-REPLACEMENT
ADMIN][NODE#] AND UD# = Form[UPDATE NODE
REPLACEMENT-ADMIN(sub)][UD#]

Close UPDATE NODE-REPLACEMENT- ADMIN forms
Activate CKT CARD(A) procedure

Al.l.J.L..F FWDlNBl (procedure) [SAME AS U2.1.1L-F]
Display next NODE-REPL and REPLACEMENT instances for

NODE#

U:Z.l.J.L..B BACiqNRJD (procedure) [SAME AS U2.1.1L-B]
Display previous NODE-REPL and REPLACEMENT instances for

NODE#

Al.l.lC CANCEIJNA) (procedure)
Close INPUT NODE# form
Activate CKT CARD(A} procedure

AUl BY UD##(Al (procedure)
Activate INPUT UD# form
Accept UD## input

On Command Button Push, Activate procedures
(CANCEL(UDA}, LOCATE(UDA))

AUlC CANCEUJJJ)Al
Close INPUT UD# form
Activate CKT CARD(A} procedure

Al.:Z.lL WCATEroJ)Al
Retrieve REPLACEMENT instances

WHERE UD# = Form[INPUT UD##][UD#]
Check to see ifUD# input provided and it exists

if not, display message and Activate BY UD# procedure
Activate UPDATE UD##- REPLACEMENT form
Display REPLACEMENT instance
Accept changes to Replacement information

On Command Button Push, Activate procedures
(UPDATE UD#, CLEAR(UD}, EXIT(UDA),

MORE(UDA}}

134

'- --···-----------------------

A2.2.1L-U UPDATE UP# (procedure)
Activate CHANGE UDt# form
Accept UDt# input
Check to see ifUD# input provided and it does not already

exist, if not correct display message and Activate
UPDATE UD# procedure

On Command Button Push, Activate procedures
(CANCEL(UU), CHANGE UD#)

Al.l.lL-UC CANCEUUID (procedure)
Close CHANGE UD# form

A2.2.1L-UD CDANGE UP# (procedure)
Accept NEW UD# input
Validate change (Yes/No)

ifNO, Close CHANGE UD# form
Activate UPDATE RELATED UD function
Display UPDATE UD#- REPLACEMENT form where
UD#=NEWUD#

A2.2.1L-C CLEARtJJUl (procedure)
Cancel changes to Replacement information

Al.l.lL-E EXITCUDAl (procedure)
Update REPLACEMENT instance where UD# = Form[UPDATE

UD#- REPLACEMENT][UD#]
Close UPDATE UD#- REPLACEMENT form
Activate CKT CARD(A) procedure

Al.l.lL-M MQRElUDAl (procedure)
Update REPLACEMENT instance where UD# = Form[UPDATE

UD#- REPLACEMENT][UD##]
Close UPDATE UD#- REPLACEMENT form
Activate BY UD#(A) procedure

A2.B UPDATE UD(A) (procedure)
Not Yet Designed

Al.C UPPATE PART JNFQCA) (procedure)
Not Yet Designed

135

.... ······----·-------------~

Al.O-R RETURNWAl (procedure)
Close DB MAINT- ADMlN MENU
Activate ADMlN MENU

A3.0 U$AGE HISTORY MENV<Al (procedure)
Activate USAGE MENU
Not Yet Designed

136

3. System Functioas

Function UPDATE RELATED UD
SELECT an NODE instances
Old UD# =Form[Change UD#][UD#]
SELECT an REPLACEMENT instances WHERE UD# =Old lTD#

store in TEMP entity
UPDATE an instances in TEMP entity

UD#=NewUD#
INSERT into REPLACEMENT an instances in TEMP entity
DELETE an instances in TEMP entity

Loop Until Done

End

FIND NODE-REPL instances WHERE UD# =Old UD#
UPDATE UD# to New UD#

Form[UPDATE UD#- REPLACEMENT][UD#] =New UD#

Function UPDATE RELATED NODE
Old Node## • Fonn[Change Node#][Node#]
SELECT an NODE instances WHERE Node#= Old Node#

store in TEMP entity
UPDATE all instances in TEMP entity

Node#= New Node#
INSERT into NODE an instances in TEMP entity
DELETE an instances in TEMP entity

Loop Until Done

End

FIND NODE-REPL instances WHERE Node#= Old Node#
UPDATE Node# to New Node#

Form[Update Node-Replacement -Admin][Node#] =New Node#

137

B. SYSTEM FORMS

Browse Part Supply Information

lPertl I (1 ~ 11

--
Press ~eel to Rs1um to Menu

Figure D-1 -Browse Part Supply Infonnation Fonn

NSN: (1.?.!. J
Price: I s1 .eoo.oo 1

Alow•~ee. L---·-·--···-Jj
On Hand: 1 ~
On Order: [___ . __ Jj

Press Return to locate Another Pert
or to Return to Main Menu

Figure D-2 -Part Supply Infonnation Fonn

138

Update Supply Status For Parts

P.t I [.-·····-···-·-·---·-·_1

Type in Part Number and Press Locate or
Press Cancel to Retum to Menu

Figure D-3 - Part Supply Information Update Form

Part Supply Information :
Update

, .. ·--···-·············-···--·····-·~····-·············-············
P..a: m~~.!··---·-·J
NSN: fBL _ __,
Price: [$~00 j I ~ ... liCe: c __ ._~

On Hand: (.---·--···· ... ~
On Order. Lli

<-TJ~~Ntln
Changes to
lnfonMiion

Parts laaued

Parb Ordered

Parb Received

Figure D-4 -Part Supply Information Update Form

139

Input Quantity of Parts Issued

.,...,... 0

--Type in Outintitt of Pert Issued and Press
Updeta or Press Cancel

Figure D-S - Parts Issued Form

Input Quantity of Parts Ordered

Q..-IQ Dlderlld D

--Type in Quantity of Part Ordered and
Press Updals or Press Cancel

Figure D-6 - Parts Ordered Form

Input Quantity of Parts Received

QllalltQ Received [J

--Type in Quentity of Pmt Receiwd Dnd
Press Update or Press Cancel

Figure D-7 -Parts Received Form

140

Input Nodel For Update

Node 8 L -.................. J ..
Type in Node Number end Press locate

or Press Cencel to Retum to Menu

Figure D-8 -Input Node# Form

Update Node and Replacement Information

NodeS: ftiiii·--·-···J
...... Ref: ._I5H_1_.Jr. __ ____,

Pardi: ~~~L····--··--········-··-··-·-.i

N~ l i

... ..~

Figure D-9 -Update Node-Replacement Information

141

Input UDI For Update

UD I l.. J

Type in Node Number and Press Loads
or Press Cancel to Retum to Menu

Figure D-10 - Input UD# Form

Update UDI or Replacement
Information

<- c.nc.l
a..ng.. -liil UD~ ~~1-~------------~·

r~~-~~~~~~U~~~~U~D~I~~-------------

Partl: 11~.~·-·-··-·-·--··--·····--··-... J
Alternale Localian: L~·---·········-·-·-·····-·-··-··-··J

N._ t... ... ·-----· ---- __ j

Figure D-11 - Update UD# - Replacement Form

142

OldUD I

Input New UDI

0.~--.. ···-··-·-·-···j Now UD I

T~ in New UO Number and O.ange UOI or
Press Cencel to Retum to Previous Saeen

Figure D-12 - Change UD# Form

143

..........,.,..,.,.~
Nodd: lN& Iii

Mac~~* Ret. [~y~·-·-····-···J

U• Bullanalo laat at fiiiiiiil 1iiiiii1
Mare UDalar lhia Node ~ Mare UD• - PnMous UDa

(As AppbbleJ UDI: f44'fiffi:wi2 .. ,

D~.ation Reference: (w.9.:1~~J

Partlt 15381-u&l

A1temate localion: IHqt!~·-···-·---··-----.. ··--·J

N~~ L~---------------~
Figure D-13 -Update Node-Replacement (Admin) Fonn

Input New Nodel

Type in New Node Number end Olange Node#
or Press Cancel to Ratum to Previous Saeen

Figure D-14- Change Node# Fonn

144

C. SYSTEM REPORTS

Parts Not On Hand
06-Mar-94

P...-: 3151940-1

Ul»: 412/A1A7-K22

VI»: 432/A1A7-K22

P...-: 5381390-1

VI»: 441/A3F1-A/13

P...-: 5381406-1

VI»: 4.41/AJFl-A/12

P...-: 5399983

Ul»: 412/AIAS-A9

Ul»: 432/AIAS-A9

Figure D-1 S - Parts Not On Hand Report

145

Parts On Order
06-Mar-94

Part#: 12345

UD#: 2559

Oa Order:

Part#: 5399968-2

UD#: 412/AlAS

UD#: 432/AlAS

OaOrder:

5

2

Figure D-16 - Parts On Order Report

146

Parts Under Allowance
06-Mar-94

....... 5399968·2

Part dowace:

O.lluad:

o.o ... r:

4

2

2

Figure D-17 - Parts Under Stock Report

147

Complete Parts Listing for System
{)(..Afllr.J.l

Part*: 31-'4961

tJDt: 403/PAl' D-Vl I

tJDt: 4:Z31PAND-Vll

Partit: 3145464-3

Partt: 3148443

tJDt: 403/PA)I; D-52

tJDt: ~ZJIPAN D-S2

Partft: 315194~1

tJDt: 412/A1Ai•K:2

tJDt: 432/AlAi-K.::!

Parat: 3154151

UDt: 403/PAN D-SSO

tJDt: 423/PAN D-SSO

Partfl': 5299~-1

tJDt: 432/AlA6-:Fl.~

Figure D-17 - System Parts List Report

148

'

APPENDIX E. IMPLEMENTATION OF PROCESS LOGIC

A. STANDARD METHODS OF PROCESS LOGIC IMPLEMENTATION

• Accept - • refers to a form with an unbound text box which will accept user input.

• Accept dwlaes to-. • updates the record when changes are made in a bound text box, in

a form. This update is actually automatically performed, unless actions are taken to

prevent it ftom happening.

The "Activate - menu" or • Activate- form" is what happens when a command button

is "pushed" and macro opens a form. The "On Push" property is used to invoke a

macro which performs the OpenF'orm action. The name of the form must be

included in the arguments, and other arguments may also be used. The • Activate -

fonn WHERE (Item] • F'onn!(FonnName]! (Form Item]" is used in "Locate"

actions to locate a particular record of interest, where the form(mput) item is

compared against the items in the table on which the activated form is based.

"Calcalate number of ••• " uses a macro with the RunCode action to perform the required

calculations. The procedure executed by this action first checks to see if the number

entered by the user is a positive number, and if it is not, a message box is displayed

and the user is returned to the entry screen. If the entry is a positive number then

calculations are performed on the values in the appropriate fields.

"Check- input provided and it exists" process checks to see if input is actually

provided and it exists as data in the field and table specified, and then displays a

message if it doesn't. This process uses both a macro and a Access Basic procedure.

The "Locate" button first performs the OpenForm action, attempting to locate the

149

.,. ___ ___,j

key value the user has placed into the text box. If no match is found, Access actually

brings up a record with a null value in its key field. The next action in the macro is

RuaCode which runs the procedure CheekEmpty-0 which compares the value in

the record displayed to see if the key is null, and if it is, a message box is created

with a message and a command button. This command button only allows the

function to continue to the next statement therein, which is to invoke a macro. This

macro then performs an OpeaF'orm action on the original input screen so the user

may try another input value if an error was made or cancel the action.

"Qose...form• uses the Oose action in a macro with the argument being the name of the

form which will be closed.

"Display- iDstance" is actually part of the same implementation process as "Retrieve" or

• Activate WHERE," since when Access retrieves a record using the OpenForm

command with the WHERE CONDmON, it displays that instance in the form

which has been opened.

"Display - report from - query• uses the macro action OpeaReport with the

arguments of the Report Name the "Print Preview" view. The report's source is the

specified query. "Display ••• subreport. .. • uses similar actions, however this report

is displayed within another report and is invoked by the property of the subreport

control on the main report. In addition, the statement "(Field) for ... report"

designates the field to be used for the Link Master /Link Child Fields properties.

"Display nat. •• instances for ••• • uses the macro action ScroDDowo to move to the next

record in a group of records.

"Display previous ... instances for ... " uses the macro action ScroUUp to move to the

previous record in a group of records.

150

-..pat• geaerally refers to the selection of an item from a list or direct user input into the

Text Box of an unbound form.

"Query- for (Query Name), select.- WHERE ••• 11 uses a query designed in the QBE

environment to implement a query which looks at specified tables to produce a query

of name Query Name. Specified fields are displayed and WHERE designates the

criteria used for the selection of records.

"Retrieve. •• iastuce WHERE..." is implemented in the same manner as "Activate ... form

WHERE ... " process covered above.

"Retrieve.-(related tables) iDstances WHERE... 11 is implemented using a subfonnlform

combination which retrieves records related to the main record through the Link

Fields in subform control. If

"Set initial value to.-" uses the SetValue action in a macro, with the arguments of the

field, and the specific value of this field to which it will be set. .

lSI

B. APPUCATION OB.rnCI'S

1. APPUCATION TABLES AND FIELDS

PRJMARY TAJLES W/ FIELDS (JHOSE IMPLEMENJEDl
NODE - used to store Node# and a drawing reference

FIELDS: NODE#. MODULE REF
NODE-REPL- used as intersection between NODE and REPLACEMENT

also contains a documentation reference figure for that
combination ofNode# and UD#

FIELDS: NODE#. 1mtt, CKT REF

REPLACEMENT - used to store UP# related info such as Part# and an
Alternate Location for that same part

FIELDS: 1IDit, PART#, ALT LOC, NOTES

PART - stores supply information about a part
FIELDS: PART#, NSN, PRICE, ALLOWANCE, PARTS ON HAND

PARTS ON ORDER

DMPQBARY TABI.ES
lNX - Used for DDE Query - stores Node number

FIELDS: NODE#

NEWTX- Used for DDE Query - stores results of Make Table query
FIELDS: UD#, PART#, ALT LOC, CKT REF, NOTES

TempNode (same structure as NODE, empty, used by SQL Update)

TempNode-Repl (same structure as NODE-REPL}

TempReplacement (same structure as REPLACEMENT)

PartsList - used for System Parts Report
FIELDS: PART#

l. APPUCATION QUERIES

OJJERIES

Get Supply Info - Gets infonnation for Browse Parts Supply Information process
TABLES: PART

152

Parts Not On Hand ~ Finds parts for which Parts On Hand = 0 for Parts Not On
Hand Report

TABLES: REPLACEMENT- PART

Parts ~ot On Hand2- Used for subreport ofParts Not On Hand Report,
lists UD#s

TABLES: REPLACEMENT- PART

Parts On Order - Finds parts for which Parts On Order > 0 for Parts On Order
Report

TABLES: REPLACEMENT<- PART

Parts On Order2 -Used for subreport ofParts On Otder Report, lists UD#s
TABLES: REPLACEMENT<- PART

Parts Under Stock- Finds parts for which On Hand amountt is less than
allowance for Parts Under Stock Report

TABLES: PART

System Parts - Gets list of parts for System Parts List report
TABLES: PartsList

System Parts List - ACTION QUERY- Makes table ofPart#s
TABLES: REPLACEMENT

System Parts - Gets list ofUD#s for Parts for System Parts List subreport
TABLES: PartsList->REPLACEMENT

lXQ -ACTION QUERY- Makes table ofParts Info for expert system request
TABLES: lNX -NODE-REPL- REPLACEMENT

3. APPLICATION REPORTS

R- Parts Not On Hand -Reports Parts which are not on hand and may require ordering

with their respective UD#s

SOURCE: "Parts Not On Hand (query)

Parts Not On Hand2 - subreport for Parts Not On Hand report

SOURCE: Parts Not On Hand2 (query)

153

R-Parts oa Order - Reports Parts which are on order with their respective UD#s

SOURCE: : Parts On Order (query)

R-Parts Oa Orderl - subreport for Parts On Order report

SOURCE: Parts On Order2 (query)

R-Parts Uader Stock- Reports Parts which are under allowance level

SOURCE: Parts Under Stock (query)

R-System Parts -Reports all Part#s in System, and their respective UD#s

SOURCE: System Parts (query)

R-System Partsl - subreport for System Parts report

SOURCE: SystemParts2 (query)

4. APPUCATION FORMS: CONTROLS, PROCESSES, AND

PROPERTIES

1 Update Node-Repl -Update Node-Repl Form from NODE- No Node## Update
RECORD SOURCE: NODE
BtnTONS: On Push

[Clear] 1lpdatn Macros. Clear - Cancel Changes
[Exit] Exit2 - Exit Form aod Saw
[More] More- Saw and request another Node-Repl

SPECIAL CHARACTERISTICS:
SUBFORM- Source: I Update Node-Repl(sub)

Link Master/Child Field =Node##

!Update Node-Repl M- Update Node-Repl Form from NODE incl. Update Node button
RECORD SOURCE: NODE
BUITONS: On Push

(Clear] Update Macros· Clear - Cancel Changes
[Exit] Exit2 - Exit Form aud Saw
[More] More - Saw and~ another Node-Repl
[•] Change Node ..()pens form to input new Node#

SPECIAL CHARACTERISTICS:
SUBFORM- Source: I Update Node-Repl(sub)

Link Master/Child Field = Node##

154

1Update Nocle-Repl (sub)- View UD##s related to node, update Doc Ref info
RECORD SOURCE: NODE·REPL
BUITONS: On Push

[Fwd] Update Macros. Scroll Down- Move to Next UD#
[Bade] Scroll Up ·Move to Previous UD#

SPECIAL CHARACTERISTICS:
UDt# - Loclced to pmvent inadvertent cbanae must use Change UD#
Node## DOt 011 form (on master form)
SUBFORM- Source: I Update Repl (Sub Sub)

Link Master/Child Field = UD#

1 Update NR-UD -Used to update UD#, Rcplacemalt info
RECORD SOURCE: REPLACEMENT
BUITONS: On Push

[Clear] Ugdate Macros. Clear- Cancel Changes
[Exit] Exit UD- Save aud Exit Form
[More] More UD - Save aud request aDOtber UD#
[•] CbaDge UD - Use to cbanae UD to maintain

referential integrity across related tables

1Update Repl (Sub Sub) - Subform ·REPLACEMENT info
RECORD SOURCE: REPLACEMENT
BUITONS: On Push

Ncme

DB Mmat SWBD M- Admin DB MainteDance Menu Form
RECORD SOURCE: Ncme
BUITONS: On Push

[Ckt Card] DB-Maint SWBD - M.Ckt Card- Opens Select Change Menu
[Update UDs] Update UDs -Not implemented
[Part Info] Part Info -Not implemented
[Return] Return to Main- Return to Main Menu

DB Maiat SWBD U- User DB Maintenance Menu Form
RECORD SOURCE: Noue
BUITONS: On Push

[Ckt Card] DB·Maint SWBQ - U. Ckt Card- Opens Select Change Menu
[Update UDs] Update UDs -Not implemented
[Part Info] Part Info -Not implemented
[Retum] Retum to Main- Return to Main Menu

ISS

·······-·····---------------------------------

MD2 MaiD Switchboard· Maiat • Admin Main Menu
RECORD SOURCE: Noae
Btm'ONS: On Push

[Part Info] MK92 Main - M. Open Parts M- Opeos Part IDfo Maw
(Usage] Open Usage M- Opens Usase Mana
[DB] Open DB Maint-M- ()peas DB Maint Maw
[Exit] Exit - Exits to Acccssl()pening

MK92 Main Switchboard· User- User Main Maw
RECORD SOURCE: Noae
Btm'ONS: On Push

[Part Info] MK92 Main -U. Open Parts -()peas Part Info Mea:w
[Usage] Open Usage- Opcos Usage Menu
[DB] Open DB-Maint U- Opens DB Maint Mana
[Exit] Exit - Exits to Acccssl()pening or Quits in Runtime

Node Owaae-used in Nodc-R.epl update
RECORD SOURCE: NODE
Btm'ONS: On Push

[Cancel] Update Macros. Cancel Node Change - Cancels Change
[Change Node#] Change Node3 - CbaDps Nadel# in NODE aud

Node* Iaput2 -used in Nodc-R.epl update
RECORD SOURCE: Noac
Btm'ONS: On Push

NODE-REPL nx:ords

[Cancel] J4M1ate Macros· Exit - Cancels aod mums to previous screen
[Locate] Find Node2 -Used to Locate correct Node, Node-

Rep}, aDd R.eplacanent records

NocW Iaput2 M-used in Node-Repl update Admin
RECORD SOURCE: None
Btm'ONS: Onrush

[Cancel] Update Macros· Exit M - Cancels aDd retums to prev screen
[Locate] Find Node2 M - Used to Locate correct Node, Node-

Rep!, aDd Replacemeot records

Not Implemented ·used by SWBD I buttons not implemented
RECORD SOURCE: None
Btm'ON: On Push

[Return] Close NI - Closes this form and returns to previous form

156

Opaiac SWBD - OpeoiDg Administrator Menu
RECORD SOURCE: None
BUITONS: On Push

[User] QaUns $WBD. Open User- ()peDs Main User Maw
[Admin] Open Maint- ()peDs Main Admin Maw
[Exit] Close - Exits to Acc:ess Database

Part lafo SWBD - for user to get Part Info screeDSireports
RECORD SOURCE: Nooe
BUITONS: On Push

[Supply] Part Info $WBD. Supply - Browse Part Supply Info
[Update] Update - Update Part Supply Info
[Report] Report - Part Supply Info Reports
[Rdum] Return to Main - Rdums to Main Maw

Part IDfo SWBD M- to set Part Info screeas/reports for Administrator
RECORD SOURCE: Nooe
BUITONS: On Push

[Supply] Part Info SWBQ. Supply - Browse Part Supply Info
[Update] Update - Update Part Supply Info
(Report] Report M - Part Supply Info Reports Admin
[Rdum] Return to Main M- Returns to Main Admin Menu

Part Report SWBD - Submam for Part Info Menu
RECORD SOURCE: Nooe
BUITONS: On Push

(Not 011 HaDd] Part Report SWBQ. Not On Hand -Lists Parts Not in Stock
[On Order] On Order -Lists PartsiUDs 011 order
[UDder Stodc] UDder Stock -Lists PartsiUDs undec allowarx:e
[Previous] Return to Prev- Returns to Part Info Menu
[Rdum] Return to Main - Rdums to Main Menu

Part Report SWBD M- Submam for Part Info Menu Admin
RECORDSOURCE:Nooe
BUITONS: On Push

[System] Part Re!Nrt $WBD. System M -Lists PartsiUDs in system
[Previous] Return to Prev- Returns to Admin Part Info Menu
[Return] Return to Main -Returns to Main Admin Menu

157

Part Supply Wo • Allows update to Part Supply info except Partl#
RECORD SOUR.CE: PAR.T
BUITONS: On Push

[More] Part Macrps. Mole Parts • BriDp up IDOtbcr Part nx:ord
[Caned] Caocel2 - Can=1s and exits
(Issue] 0peo Issue • ()peas the Parts Issued form
[Order] OpeD Order • ()peas the Parts Ordered form
[Receive] Opeo Receive - Opens the Parts Received form

Part Supply Iot'o Browse • Allows browse of part supply info for a part# from list
RECORD SOUR.CE: Get Supply Info (query)
BUITONS: On Push

[Return] Part Maqos. More Parts Test· retums to previous screen

Part Supply Wo Test- Allows browse of part supply info for a part# from list
RECORD SOUR.CE: Get Supply Info (quety)
BUITONS: On Push

[Return] Part Maqos. More Parts Test • retums to previous screen

Parts Issaed
RECORD SOUR.CE: Noue
BUITONS: On Push

[Update] Part Macros. Issue Update • Updates the number of parts oa. haDd
[Cancel] Issue Cancel- Cancel and return to previous form

Parts Ordered
RECORD SOURCE: None
Btm'ONS: On Push

[Update] Part Macros. Order Update • Updates number parts on order
[Cancel] Order Cancel - Cancel and return to previous form

Parts Reeeived
RECORD SOURCE: None
BUITONS: On Push

[Update] Part Macros· Receive Update - Updates number parts on order
and parts on band

[Cancel]

Part Supply Wo Test
RECORD SOURCE: Get Supply Info (CJUC4'"Y)
BUITONS: On Push

[Return] Part Macrps. More Parts Test • Rdums to prev screen
SPECIAL CHARACTERISTICS:

Before Update: Clear Record
On Update: Clear Record
On Close: Clear Record

158

... ····-····--------------------------

Partllapat
RECORD SOURCE: Noac
BUITONS: On Push

[Caacd) Part Macros. CaDcel- caned IDd raum to prmous screen
[Locate) Locate Parts • Gets auotbcr Part##

Pu1N Iapat Browse
RECORD SOURCE: Get Supply Info (query)
BUITONS: On Push

(CaDccl] Part Maggs. CaDcel Test - Cancel aDd returns to prev screen
[Locate] Locate Parts Test • Gets another Partl#

SPECIAL CHARACTERISTICS:

COMBO BOX:
Coatrol Source: Part##
Row Source Type: Table/Query
Row Source: Get Supply Info (query)

Pant Iapat Tat
RECORD SOURCE: Get Supply Info (quay)
BUITONS: On Push

[CaDcel] Part Macros. CaDcel Test - Cancel and return to prev screen
[Locate] Locate Parts Test - Locates anotbe:r Part#

SPECIAL CHARACTERISTICS:
On Close: Clear R.econl

s.et Cllaop2 - Selec:t Qanae Type Mcma
RECORD SOURCE: Naae
BUITONS: On Push

(By NocW] TTmWr Macros. Select Node U- Allow changes by Node##
(By UDI#] Wect UD -allows changes by UDi#
(RdQm] Select CaDcel2 - Caacel aDd return to pmr meDII

s.et Oap2 M- Select Cbanae Type Mcma Admin
RECORD SOURCE: Nooe
BUITONS: On Push

[By Nodet#] 1lgdate Maqos. Select Node M- AJ1ow changes by Node#
(By UD#I] Select UD -allows changes by UDi#
(RdQm] Seleet CaDcel2 - CaDceliDd return to pmr menu

UDO.p
RECORD SOURCE: REPLACEMENT
BUITONS: On Push

[CaDcel) J1Ptn)lagos. Cal¥:e1 UD CbaDae - Callcels cbangc
[CJumae UDI#] Change UD3 - Process for Changing UD#

159

. ····· ···----------------------------.--..J

UDI - ADows UDN b update of Replacement iDfo by UDN
RECORD SOURCE: Noae
Btrn'ONS: On Push

[Caacd) Qpdetc Maqos. Exit UD - Caned dwJp mum to prev screen
[Locate) Find UD2 - Locate Replacement record for a UD#

Usap SWBD -Allows user to record and 1ep01t 011 usage history (fimctiODs DOt implanalted)
RECORD SOURCE: Noae
BUITONS: On Push

[Emer) Usge $WBD. Eme:r - Eme:r usage iDfo
[llctricwe) Rdriewe - retriewe usage iDfo ad boc
[Ammal) ADDUal Report - Produce formatted report
(Rdum] Rdum to Main -Returns to Main User Mema

5. MACROS AND ARGUMENTS

AatoExee OpenForm: :MK92 Main Switchboard -User

MD2 Mai.a- u.
Open Parts
Open Usage
Open DB Maint- U
Exit

Part IDf'o SWBD.
Supply
Update
Report
Return to Main

Part Report SWBD.
NotonHand
On Order
Under Stock
Return to Prev

Return to Main

ARGUMENTS
OpenForm:
OpenForm:
OpenForm:
Oose:

OpenForm:
OpenForm:
OpenForm
Close:
Close:
OpenForm:

OpenReport:
OpenFonn:
OpenForm:
Close:
OpenForm.
Close:
Close:

160

Form: Part Info SWBD
Form: Usage SWBD
Form: DB Maint SWBD- U
Form: :MK92 Main Switchboard -User

Form:
Form:
Form:
Part Info SWBD
DB Maim SWBD- U
:MK92 Main- u

Report: R-Parts Not On Hand
Not Implemented
Not Implemented
Part Report SWBD
Part Info SWBD
Part Report SWBD
Part Info SWBD

UsqeSWBD
Eater OpenForm: Form: Not Implemented
:Retrieve OpenFonn: Form: Not Implemented
Anmlallleport OpenForm: Form: Not Implemented
Return to Main Close: Form: Usage SWBD

DB MaiDt SWBD • U
Ckt Card OpenForm: Form: Select Change (False)

OpenForm: Form: Select Change2
Help Info OpenForm: Form: Not Implemented
Part Info OpenForm: Form: Not Implemented
Return to Main Close: Form: DB Maint SWBD - U
CoseNI Close: Form: Not Implemented

Waraiaaotr Set Warning off

WaniaJOD SetWaming on

Put Macros
FmdParts OpenForm: Form: Part Supply Info Test

Set Value: VISible: No
Locate Parts OpenFonn: Form: Part Supply Info

Where Condition: Part# =Forms!
[Part# Input] I [Part#]

More Parts Close: Form: Part Supply Info
Set Value: Forms! [Part# Input]I[Part#] I Null
Close: Form: Part# Input
OpenForm: Form: Part# Input

Cancel Set Value: Fonnsi[Part# Input]I[Part#] /Null
Close: Form: Part# Input

CaDcel2 Set Value: FonnsJ[Part# Input]J[Part#] I Null
Close: Form: Part Supply Info
Close: Form: Part# Input

MorePartsTest Close: Form: Part Supply Info Test
OpenForm: Form: Part# Input Test (Read Only)

Locate Parts Test Set Value: V1si'ble/No
OpenForm: Form: Part Supply Info Test

Where Condition: Part#= Forms!
[Part Input Test]! [Part#]

Cancel Test Close: Form: Part# Input Test
Cancel2 Test Close: Form: Part Supply Info Test

Close: Form: Part# Input Test

161

·············-··--·---

Finish Close: Form: Part Supply Info Test
OpenFonn: Form: Part# Input Test (Read Only)
Close: Form: Part# Input Test

Open Order OpenFonn: Form: Parts Ordered
Set Value: Forms! [Puts Ordered]![OrderAmt]l 0

Open Issue OpenFonn: Form: Parts Issued
Set Value: Forms I [Puts Issued]I[IssueAmt]l 0

Open lleceive OpenFonn: Form: Parts lleceived
Set Value: Forms! [Parts Received]I[ReceiveAmt]/ 0

Issue Update RunCode: lssueParts()
Issue Cancel Close: Form: Parts Issued
Order Update RunCode: Order Parts()
Order Cancel Close: Form: Parts Ordered
Receive Update llunCode: ReceiveParts()
Receive Cancel Close: Form: Parts Received

Update Macro
FmdNode Set Value: VISible/NO
(uses Query) OpenForm: Form: I Update Node-Repl (Test)

Where Condition: Node#=Formsl
[Node# Input]! [Node#]

FmdNode2 Set Value: Visible/NO
OpenForm: Form: I Update Node-Repl

Where Condition: Nodei#=Formsl
[Node# lnput2]1[Node#]

llunCode: CbeckEmptyNode()
More Close: Form: I Update Node-Repl

Set Value: Formsf[Node# Input2]![Node#] I Null
aose: Form: Node# lnput2
OpenForm: Form: Node# Input2

Exit Set Value: Forms! [Node# Input2]![Node#] I Null
Oose: Form: Node# Input2
OpenForm: Form: Select Change (False)
OpenForm: Form: Select Cbange2

Save Set Value: Forms! [Node# Input2]1[Node#] I Null
Close: Form: I Update Node-Repl
Close: Form: Node# lnput2

Exit2 Set Value: Fonnsi[Node# lnput2]1 [Node#] I Null
Close: Form: I Update Node-Repl
Close: Form: Node# Input2
Close: Form: Node# Input Test
Close: Form: Select Change (False)
Close: Form: Select Change2

162

Clear SendKeys: {Esc} /Yes
Change Node OpenForm: Form: Node Change

Where Condition: [Node#]=Fonns!
[!Update Node-Repl]![Node#]

Change Node2 Echo- Off
"Getting Node Informatiom•

RunCode: AskUpdateNode 0
RunCode: UpdateRelatedFields 0
Close: Form: Node Change

Change NodeJ Echo· Off
"Getting Circuit Card Information•

RunCode: AskUpdateNode 0 (False)
RunCode: UpdateRelatedNode 0
Close: Form: !Update Node-Repl
OpenForm: Form: I Update Node-Repl

Where Condition: [Node#] =Forms!
[Node Change]![NewNode]

Close: Form: Node Change
Reset Node# Set Value: (doesn't work)
Not Implemented OpenForm: Form: Not Implemented
ChangeUD Close: Form: I Update Node-Repl (False)

OpenFonn: Form: UD Change
Where Condition: [UD#}=Fonns!

[I Update NR-UD]I[UD#]
ChangeUD3 Echo /Off

"Getting Replacement Information. .. •
RunCode: AskUpdateUD 0 (False)
RunCode: UpdateR.elatedUD 0
Close: Form: I Update UD-NR
OpenForm: Form: I Update Node-Repl!

Where Condition: [Node#]=Fonns!
[UD Change]I[NewUD]

Close: Form: UD Change
FmdUD2 Set Value: VISible /NO (False)

OpenForm: Form: I Update NR-UD
Where Condition: [UD#]=Fonns!

[UD# Input] ![UD#)
RunCode: CheckEmptyUD 0

ExitUD Set Value: Fonnsi[UD# lnput]I[UD#] I Null
Close: Form: lUpdateNR-UD
Close: Form: UD# Input
OpenForm: Form: Select Change (False)
OpenForm: Form: Select Change2

163

Select Node Close:
Set Value:
OpenFonn:

Select UD Close:
Set Value:
OpenFonn:

Select Std Close:
Set Value:
OpenFonn:

Select Cancel Close:
Cancel Node Change Close:

SendKeys:
Cancel UD Change Close:

SendKeys:
Select Cancel2 Close:
More UD Close:

Set Value:
Close:
OpenFonn:

Fonn: Select Change (False)
VlSlble/No
Fonn: Node# lnput2
Fonn: Select Change (False)
VlSlole/No
Fonn: UD# Input
Fonn: Select Change (False)
VJ.Sible /No
Fonn: Node# Input2
Fonn: Select Change
Fonn: Node Change
{Esc} I Yes
Fonn: UD Change
{Esc} I Yes
Fonn: Select Change2
Fonn:lU~e~-lnO
Forms![UDI# Input]![UDI#] /Null
Fonn: UD# Input
Fonn: UD# Input

6. APPUCATION ACCESS BASIC MODULES

UPDATES
lDecJarations)
Option Compare Database 'Use database order for string comparison

Dim UpdateUD, UpdateNode
Dim OldUD, OldNode, NewUD, NewNode, NodeX
Dim MK92 As Database
DimwJDOAt

Function AskUpdateNocle 0

OldNode = Fonns![Node Change]f[Node#]
NewNode =Forms! [Node Change]![NewNode]
UpdateNode ==False

lfMsgBox{11 Are you sure you want to change 11 & OldNode & 11 to 11 & New Node &
117", 292) = 6 Then

UpdateNode = True
End If
lfUpdateNode =False Then

164

NewNode-= Null
&dlf

End Function

l'upstiop AskUpdatelJD 0

OldUD = Forms![UD Cbange]![UD#]
NewUD • Forms![UD Change]![NewUD]
UpdateUD =False

IfMsgBox("Are you sure you want to change" & OldUD & "to " & NewUD & "?",
292)=6Then

UpdateUD =True
End If

End Function

luaetion JlpdateRelatedNode 0
1 Changes UD# in related records in all tables
1 Changes NODE# in related records in all tables
1 Written S.Talley 1/10/93

OldNode =Forms! [Node Cbange]![Node#]
NewNode =Forms! [Node Change]![NewNode]
NodeX = NewNode

Set MK92 = CurrentDBO
Dim Node As Dynaset, NodeRepl As Dynaset, Replacement As Dynaset
Set Node= MK92.CreateDynaset("NODE")
Set NodeR.epl = MK92.CreateDynaset("NODE-REPL")
Set Replacement = MK92.CreateDynaset("REPLACEMENT")

IfMsgBox(" Are you sure you want to change 11 & OldNode & " to " & NewNode & "?",
292)=6Then

Criteria= "[Node#] = 111 & NewNode & "1
"

Node.FmdFirst Criteria
IfNot Node.Nomatch Then

MsgBox (NewNode & " is already in use as an Node#. Please enter another Node#")
Exit Function

End If

DoCmd RunMacro "Warning Oft"'

165

DoCmd RunSQL "SELECT * INTO TempNode FROM NODE WHERE [Node#]
-Forms! [Node Change]![Node#];"

DoCmd RunSQL "UPDATE TempNode SET [Node#]= Forms! [Node
Change]![NewNode];"

DoCmd RunSQL "INSERT Into Node SELECT * FROM TempNode;"
DoCmd RunSQL "DELETE * FROM TempNode WHERE [Node#] = Formsf[Node

Change)! [Node#];"

Criteria= "[Node#] = 1
" & OldNode & "1

"

NodeRepl.FindF'IJ'St Criteria
IfNot NodeRepi.Nomatch Then

Do While NodeRepi.[Node#] = OldNode
NodeRepl.Edit
NodeRepi.[Node#] =NewNode
NodeRepi.Update
NodeRepl.YmdNext Criteria

Loop
End If

Node.FindFirst Criteria
Node.Delete
Criteria= "[Node#] = '" & NewNode & "1

"

Node.YmdFirst Criteria
Else

Forms! [Node Change]![NewNode] =Forms! [Node Cbange]![Node#]
EDdlf

DoCmd RunMacro "Warning On"

End Function

Fgpction CbeeJsEmptyNode 0

NodeX =Forms! [I Update Node-Repl]![Node#]
IflsNull(NodeX) Then

MsgBox ("No matching node found (or No Node# entered)")
DoCmd RunMacro •update Macros.More"

End If

End Function

Function QeckEmptyUD 0

166

UDX = Formsi[1Update NR-UD]I[UD#]
IflsNull(UDX) Then

MsgBox ("No matching UD# found (or No UD# entered)")
DoCmd RunMacro "Update Macros.More UD"

End If

End Function

Function UpdateRelatedUD 0
1 Changes UD# in related records in all tables
1 Written S. Talley 1110/93

OldUD = Formsi[UD Change]![UD#]
NewUD = Forms![UJJ Change]![NewUD]

Set MK92 = CurrentDBQ
Dim Node As Dynaset, NodeRepl As Dynaset, Replacement As Dynaset
Set Node= MK92.CreateDynaset("NODE")
Set NodeRepl = MK92.CreateDynaset("NODE-REPL ")
Set Replacement= MK92.CreateDynaset("REPLACEMENT")

' IfUpdateNode = True Then
IfMsgBox(" Are you sure you want to change " & OldUD & " to " & NewUD & "?", 292)
=6Then

Criteria= "[UD#] = '" & NewUD & "'"
Replacement.FindFJ.rSt Criteria
IfNot Replacement.Nomatch Then

MsgBox (NewUD & " is already in use as an UD#. Please enter another UD#")
Exit Function

End If

DoCmd RunMacro "Warning Ofr'
DoCmd RunSQL "SELECT * INTO TempReplacement FROM REPLACEMENT

WHERE [UD#] =Forms! [UD Change]![UD#];"
DoCmdRunSQL "UPDATE TempReplacer 'lt SET [UD#] =Forms![UD

Change]I[NewUD];"
DoCmd RunSQL "INSERT Into Replacement SELECT * FROM

TempReplacement;"
DoCmd RunSQL "DELETE * FROM TempReplacement WHERE [UD#] =

Formsf[UD Change]I[UD#];"

Criteria= "[UD#] = Ill & OldUD & IIIII

167

NodeR.epl.FindFirst Criteria
IfNot NodeRepl.Nomatch Then

Do While NodeRepl.[UD#] == OldUD
NodeR.epl.Edit
NodeR.epl.[UD#] = NewUD
NodeRepl.Update
NodeRepl.YmdNext Criteria

Loop
End If
Replacement.FindFirst Criteria
Replacement.Delete
Criteria = "[UD#] = '" & NewUD & "'"
Replacement.FindFirst Criteria

Else
Forms![UD Change]![NewUD] = Forms![UD Change]![UD#]

Endlf .

DoCmd RunMacro "Warning On"

End Function

SUPPLY
lDedarations)
Option Compare Database 'Use database order for string comparisons

Dim NewOrder, OldOrder As Integer
Dim OrderAmt
Dim MK92 As Database
Dim New Issue, OnHand, Oldlssue, NewOnHand As Integer
Dim lssueAmt
Dim NewReceive, OldReceive As Integer
Dim ReceiveAmt

Function hsueParts 0

OnHand =Forms! [Part Supply lnfo]![Parts on Hand]
IssueAmt =Forms! [Parts Issued]![lssueAmt]
CheckNumber = True
CheckPositive = True

'Check to see iflssueAmt is an integer
If (Not IsNumeric(IssueAmt)) Then

168

MsgBox ("Amount entered must be a positive number. Delete entry and try again or
cancel.")

CheckNumber = False
DoCmd GoToControl "IssueAmt"

End If

'IflssueAmt is a number, then check to see if it's positive
If CheckNumber = True Then

IflssueAmt < 0 Then
MsgBox ("Amount entered must be a positive number. Delete entry and try again or

cancel. (2)")
CheckPositive =False
DoCmd GoToControl "IssueAmt"

End If
End If
If(CheckPositive =True) And (CheckNumber =True) Then

NewOnHand = OnHand- ReceiveAmt
' Check to see if amt on hand (NewOnHand) < 0, if so, sent message and don't update

IfNewOnHand < 0 Then
MsgBox ("Amount issued is more than that on band. Check part supplies and

correct entry.")
Else

Formsi[Part Supplylnfo]I[Parts on Hand] =NewOnHand
End If
DoCmdClose

Else
Forms! [Parts Issued]!IssueAmt = 0

End If

End Function

Function OrderParts 0

OldOrder =Forms! [Part Supply Info]I[Parts on Order]
OrderAmt =Forms! [Parts Ordered]I[OrderAmt]
CheckNumber =True
CheckPositive = True

'Check to see ifOrderAmt is an integer
If (Not IsNumeric(OrderAmt)) Then

169

MsgBox ("Amount entered must be a positive number. Delete entry and try again or
cancel.")

CheckNumber = False
DoCmd GoToControl "OrderAmt"

End If

'IfOrderAmt is a number, then check to see if it's positive
IfCheckNumber =True Then

If OrderAmt < 0 Then
MsgBox ("Amount entered must be a positive number. Delete entry and try again or

cancel. (2)")
CheckPositive =False
DoCmd GoToControl "OrderAmt"

End If
End If
If(CheckPositive =True) And (CheckNumber =True) Then

NewOrder = OldOrder + OrderAmt
Forms I [Part Supply Info]![Parts on Order] = NewOrder
DoCmdClose

Else
Formsf[Parts Ordered]!OrderAmt = 0

End If
End Function

Function ReceiveParts 0

OnHand = Forms![Part Supply Info]f[Parts on Hand]
OldOrder =Forms! [Part Supply Info]![Parts on Order]
ReceiveAmt =Forms! [Parts Received]![ReceiveAmt]
CheckNumber =True
CheckPositive = True
'Check to see ifReceiveAmt is an integer
If (Not IsNumeric(ReceiveAmt)) Then

MsgBox ("Amount entered must be a positive number. Delete entry and try again or
cancel.")

CheckNumber =False
DoCmd GoToControl "ReceiveAmt"

End If

'IfReceiveAmt is a number, then check to see if it's positive
If CheckNumber = True Then

170

lfReceiveAmt < 0 Then
M.sgBox ("Amount entered must be a positive number. Delete entry and try again or

c:ance1. (2)")
Check:Positive =False
DoCmc:l GoToControl "ReceiveAmt"

End If
End If
lf(CheckPositive =True) And (CheckNumber =True) Then
1 Update Amt on Hand (Add Recived to On Hand)

NewOnHand = OnHand + ReceiveAmt
1 Check to see if amt on hand (NewOnHand) < 0, if so, sent message and don't update

lfNewOnHand < 0 Then
MsgBox ("Amount on hand is less than zero. Check part supplies and correct

entry.")
Else

Update Amt on Order (Subtract Received to On Hand)
NewOrder = OldOrder - ReceiveAmt
1 Check to see if this is< 0, send message if true
lfNewOrder < 0 Then

MsgBox ("Amount on order has been calculated as less than zero. Check
outstanding orders and correct entry. (Value has been reset to 0).")

NewOrder=O
End If
Forms I [Part Supply Info)! [Parts on Hand] = NewOnHand
Forms! [Part Supply Info]I[Parts on Order]= NewOrder

End If
DoCmdClose

Else
Forms! [Parts Received]IReceiveAmt = 0

End If
End Function

Function CheckEmotvPart 0

PartX =Forms! [Part Supply Info]![Part#]
lflsNull(PartX) Then

wid= MsgBox("No matching Part## found (or No Part## entered)", 64, "No Match
Found")

DoCmc:l RunMacro "Part Macros.More Parts"
End If

End Function

171

APPENDIX F. DDE INTERFACE DOCUMENTATION

A. ACCESS BASIC LANGUAGE ELEMENTS FOR DDE

DDEO

oomnm*()

DDERequest()

DDESend()

DDEPoke()

DDETermiDate()

DDETermiDateAllO

Elemelat
Type

FUDdion

Function

Function

FUDdion

Statement

Statement

Statement

StateiJiellt

(Perschke, 1992, p. 244)

Initiates a DDE process with &DDtber
applicaUOD aDd Rtums tbe RqUeSted
iuformation

Imtiates aDDE aDd~ with
aDOtber application

Requests an item from a DDE senu
application

Initiates a DDE process with another
applic:ation and sends da1a to tbe
specified item in that applialtioD

Scads a command to aDOtber
application over an eslablisbecl DDE
channel

SeDds data to aDOtb« applli:ation over
an eslablished clumnel

Closes a spec:ifiecl DDE <:Onwrsation
channel

Closes all open DDE conversation
channels

172

Available FI'OIII

~Basic form
<:Ontrols

~Basic form
c:ontrols

R«ord Soun:e
property of certain
CODllols oaly

~Basic aDd
form controls

~Basic aDd
form controls

~Basic aDd
form cootro1s

~Basic aDd
form contJ01s

B. ADEPT FUNCilONS FOR DDE

Fuactioa

CloreAllChannels

CloseCbumcls

Notify

Poke

Unadvise

Descriptio a

Asks a server program to seod a data item to
Adept each time it changes

Closes all open channels

Closes an open c;hannd

Sends an executable commaud to a server
program

Asks a server program to DOtify Adept each
time a data item dwlges

()peDS a channel to a server program

Seads a data item to a server program

Asks a server program to send a data item to
Adept

Asks a server program to stop sending a data
item to Adept each time it cbanges

(Symbologic Corporation, 1991,

173

C. ADEPT AND ACCESS APPUCATION INTERFACE PROCESSES

1. Adept Expert System Interface Node And Scripts

L Interface Node

Custom lnteface Node

FigureF-1

174

Part 1:
o/'.2 = %1;
Node=0/.2;

b. Interface Node Scripts

II This opens a channel to Access and runs a Macro - current one is called "1 TableOnly",
II which takes the node number (already stored for testing) and runs a "make table
II query", which gets the correct data for that node from the database - variable Node
II is not used for anything at this time

AccCall = OpenChannel("MK92T2", "D:\mk92db2\MK92T2.MDB");
Execute (AccCall, "(1 TableOnly]");
CloseCbannel(AccCall)

Partll:
II Once the table is created, this code opens a channel and pulls it from Access
II The Open Channel statement is dependent on the path and must be correct for
II the database being used

AccTalk2=0penChannel("MK92T2", "d:\Mk92db2\mk92t2.mdb;TABLE NEWfX");
II These variables are used to determine how many rows (records) exist
llows=l;
llow2="999";
llow3•"999";
llow4="999";
row=O;

II These statements get the value of the records and check to see how many
II records exist
Request(AccTalk2, "Fustllow" ,llow1);
llequest(AccTalk2, "Nextllow" ,llow2);
llequest(AccTalk2, "Nextllow" ,llow3);
llequest(AccTalk2, "Nextllow" ,llow4);
Ifllow4 - "999" thea llows=3 else llowr-4;
Ifllow3 - "999" thea Rows-2• ,
If:Row2- "999" thea llows=1· ,

II These statements assign values ofRecords to variables to break into fields
II For empty records this program substitutes the foUowing statement
II llowX•"<CTIU><TAB> <CTIU><TAB> <CTIU><TAB> <CTIU><TAB>
II <CTIU><TAB>*" -this eliminates the <NOV ALUE> in the display, which

175

II otherwise occurs if a Row X (or any other row) does not really exist (S combinations
II of <CTRL><T AB> and space fill the empty fields correcly with blank fields

if (Rows=4) then
{

RowA=Row1;
RowB=Row2;
RowO=RowJ;
RowD=Row4;

}
else
if (Rows==J) then
{

RowA=Row1;
RowB=Row2;
RowC=RowJ;
RowD=•

}
else
if (Rows=2) then
{

RowA=Row1;
RowB=Row2;
Rowe=·
RowD=•

}
else
if (Rows==1) then
{

};

RowA=Row1;
RowB=•
Rowe=·
Row:o-•

.... ,

••• ,
••• ,

••• ,
••• , ,

II these statements take the value of each field and assign to variables for 4 rows
until (row== 4) do
{
coi=O;
row-row+ 1;
ux-6;
LX=O;
It (row- 1) then
{

176

Leogth-FindText(RowA, •••);
Rowllnfo=GetSubText(RowA, !,Length);
RO=GetSubText{RowA, l,Length);
};

If (row = 2) then
{
Length=FmdText(R.owB, •••);
Rowllnfo-GetSubText(RowB, l,Length);
RO=GetSubText(RowB, !,Length);
};

If (row= 3) then
{
Length==FmdText(RowC, •••);
Rowllnfo-GetSubText(RowC, l,Length);
RO=GetSubText(RowC,l,Length);
};
If (row== 4} then
{
Length=FmdText(RowD, •••);
Rowllnfo=GetSubText(R.owD, !,Length);
RO=GetSubText(RowD,l,Length);

}~

II This starts the loop looking at fields
do
{

col=col+l;

LO=FmdText(RO," ");
FO=GetSubText(R.O,l,L0-1);
LX=LO+LX;
RO=GetSubText(R.O,LO+ l,Length-LX);

ifcol=l then if(row==l) then (Fll=FO) else if(row=2} then (F2l=FO) else if(row==3)

then (F3l=FO) else (F4l=FO);

if(col-2) then if(row==l} then (Fl2=FO) else if(row=2) then (F22=FO) else if

(row-3) then (F32=FO) else (F42=FO);

177

if(coi===J) then if(row==l) then (FIJ=FO) else if(row=2) then (F23=FO) else if
(row=J) then (FJJ=FO) else (F43=FO);

if(col 4) then if(row=l) then (Fl4=FO) else if(row=2) then (F24=FO) else if
(row-3) then (F34=FO) else (F44=FO);

if(coi===S) then if(row=l) then (FIS=FO) else if(row=2) then (F2S=FO) else if
(row===J) then (FJS=FO) else (F4S=FO)

}
while col<nx;

};
CloseChannel(AccTalk2)

178

c. Adept Display of Part Information

UDI: 4411A3fl-.YIZ -= 538140S.1
An11m•le Location:

NONE
Documentation Reference:

SFI-13-20

441/Alfl-A/13
5381398-1

An11ma1e Location:
NONE

Documentation Reference:
SFD-13-20

Adept Display ofPart Information ftom Database

FigureF-2

2. Database Application Procedures and Macros

Macro:

lNpTxOuerv

Actions: OpenQuery: Query: IXQ

1 TestDDENodeReq

Actions: RunCode: Function: GetNodeQ

179

lMakeJablc

Actions: RunCode: Function: GetNode()

RunCode: Function: MakeTable()

lTableOntv

Actions: RunCode: Function: MakeTable()

WamingOn

Actions: SetWaming: On

WagJiggOft'

Actions: Set Warning: Off

Modules:
ProcedureDDE
Dedlntions
Option Compare Database 'Use database order for string comparisons

DimNodeNum
Dim MK92 As Database

Function Getbllfg_O

DoCmd RunMacro "IMakeTable"

End Function

Function GetNode 0

ChanneiNum = DDEinitiate(" Adept", "Test92")

NodeNum = DDEllequest(CbanneiNum, "VARIABLE Node")
Dim db As Database, T As Table

Set db = CurrentDBQ
Set T = db.OpenTable("lNX")
T.MoveFirst
T.Delete

180

T.AddNew
T'[NocW] • NodeNum
T.Updatc
T.Ciole
DDETermiNtc ChutdciNum

FwliM Meblalllc 0

DoCmd JWaMacro •tNewTx: Query•
DoCmd RuaMacro "Wif'DiD& o..·

Eadfuaaioa

NOTE: iD tbia 6-aoa, ... _.... wbidl boP with' are DOt opcnbonal (comment tiDes)

h¥11e M•lselaMciX 0

DoC.S ••mMacro ,....., Q8ll
• Sel MD2 - CumaiDB()

' S.C NewT • WDl.OpeT~
• NewT .MowiF1nl
• Do UMil NewT .EOF

NewT .Del-..
NewT .NoveNa~

• LoGp
• NewT.ao.

• 'DDS Dmtn' WORlt
' Dila NX AI Dya1-., N8wTible AI 0,.. Noclellepl AI 0,.. aEPLACEMENT

tt.O, n•
• S.MX•MDl.~INXj
' S. NGdiiiPI • NU2.Cni-.J: "NCIDB..JtEPI
' S.I.EPI..ACE.WENT • ND1.Cnlllllll~JMIIIf'ltEJI'LACEI~Ifll
' Ill N.Wrlble • ND2.0..111Dl,_llf'NEWIT')
• THIS8 DJDIM' WOIX
' DoCIId a..sQL -sEL8CT • INTO TIIIIPTible fllOM (NODE-REPLl.

JtiDI'LACEWENT, INX. UPl.ACENEHT INNEJl JOIN (NODE-REPL] ON

Ill

REPLACEMENT.(UD#] • [NODE-REPL].[UD#],lNX INNER JOIN [NODE
llEPL] ON [lNX].[Noclet¥] • [NODE-REPL],(NodeN]~·

I DoCmd RuaSQL •UPDATE TempTable SET [NodeM] ""'Fonns![Node
Cbanae]![NewNode];•

I DoCmd lbmSQL •JNSE.RT 1Dto NEWTX SEI ECT • FROM TempTable~·
DoCmd Jtua.SQL IIJ>ELETE • FROM TanpNode WHERE [Node#] ...

Forms![Nodc Cblllp)I [Noclcl];•
I nus DIDN'T won EI1HEil
I DoCmd J.uDSQL ·sm.r:.cr DISTINCTllOW REPLACEMENT. • INTo NEWTX

F1lOM [NODE-REPL]. REPLACEMENT, lNX. REPLACEMENT INNER
JOIN (NODE-IlEPL) ON REPLACEM.ENT.(UD#)• [NODE
REPL].[l.JDI11NX INNEll JOIN [NOD£..REPL] ON [lNX].(NodeN] • [NODE
llEPL],[Nodel];.

I DoCmd l.uDSQL ·SELECT DISTINCillOW • INTO NEWTX FROM [NODE
llEPL], REPLACEMENT, lNX. REPLACEMENT~ JOIN [NOD£..
llEPL) ON REPLACEM.ENT.[UDI¥] • [NODE-REPL].[UI>I],lNX INNER
JOIN [NOD£..aEPL) ON (lNX}.[Nodei) • (NODE-llEPL}.[Nodell];•

' DoCmd l.uDSQL •SELECT • INTO NEWTX FJlOM [NODE-REPL).
REPLACEMENT. lNX. REPLACEMENT INNEil JOIN [NOD£..REPL) ON
REPLACEM.ENT.[UDM) • [NODE-REPL].[l.JDI11NX INNER. JOIN [NOD£..
UPL) ON [lNX].(Nodel) • [NODE-REPL).{Nodel];•

DoCmd RuaWacro -w--. ()o•

WPuaaioa

112

UST OF REFERENCES

Campbell, T. and Hudnall, M., Ed., •Test Lab,• Compute, pp. 16-36, August 1993.

Coft'ec, P, •Super Databases, • PC Computing, pp. 270-297, October 1993.

EJmuri, ll. and Navatbe, S., F~ of Da1a1Ja.w Systems, The
s.pmia/Cumminp Publishina company, IDe., 1989.

Jenninp, ll., ..4t:en.fTM Dnelopg~ Guide, SAMS PubliJbin& 1993.

JOMI, E .• ~ ..4ccus ..4pplietltiolu, WmdcrestJMcGraw-HiJI, 1994.

Kroeab. D. M.. DattiiJa.w Procafing: ~ duign. ~on. Macmillan
PublilhiDa Company, 1992.

Microto4 CorpontioD. Mk:rofo/1 AL'Qr.S.Y U.,'s Gtnd.. Microsoft Press. 1992.

Ptncbb, S. aad Liczbtnski. M., AccaJ p Willdows POINT l'l'ograMMing, Que
CorponlioD. 1993.

Smith, D. C., .l)nw~:n,.. of t1 ~ GiMitJr E:qJm SyswJEp tJw MK 92 MOD
2 Fin COIIIrOl SyswJE: FC-1 lJalpatk1rr- 11-. ~. Bearing FC-1
~ FC-1 »act-~. llawbe 111111FC-1Daigltalk1rr- n... ~.
&wilt& FC-1 A~ FC-11id' -IW!tp. &Din& 111111 FC-1 111111 FC-S,
Ma1Wil'belis. Naval Pollptulle Scbool, Moaterey. CIJifonU. Sepcember
1993.

S)'lllbolosic CorpontioD. ~~ Mqt'IM ~. Symboloaic CorpontioD.
1991.

Wllia-. J. L • ._..,, L D., IDd a.low, V. M., .s)Gau A11111ysU tlltd Dutp Mdrotb,
l.idalrd D. 1rwiD. IDe., 1919.

Ill

BIBUOGRAPBY

Campbell, T. and HudnaU, M., Ed., --rest Lab: Compute, pp. 16-36, August 1993.

Coft'ee, P, •super Databases: PC Comp~~ting, pp. 270-297, October 1993.

PJmaai, ll and Navatbe, S., F111111Dmmta1s of Database Systems, The
Bcnjamin/CUmminp Publisbina Company, Inc., 1989.

Jaminp,ll, A.cassTM Dneloper's Gvide, SAMS Publishing, 1993.

Joaa, E.,~ Acu.u Applietltiom, WmdcrestJMcGraw-Hill. 1994.

~ D. M., ~ Procusing: ~ design. implmtmJation, Macmillan
Publiahina Company, 1992.

r jtlrin, M., HELP! Mlcrosoft A.cu.a, Ziff-Davis Press. 1993.

MicrOIOft Corpontiora. Mkrott1ft Aec&U ~ &formt;e, Microsoft Press, 1992.

MicrOIOft Corpontioa. Mkrott1ft Aec&U U.,'s Gtlidl, Microsoft Press, 1992.

Pencbke, S. ad Uczt!eNki. M., Aec&U for Willrbn Powr Progr'tlllfllfing. Que
Corpontiora. 1993.

Sill!piiOG. A., ~ Mkrott1Jt Accus. Sybex, IDe., 1993.

Smith. D. C., D.wlq llflft of a~ adtiUor Explrt Syslal p 1M MX. 92 MOD
2 FIN COiriiOl Sptal: FC-J Dalgrttltk1tt - rt.. RI:Jngt, &a11ng FC-J
~ FC-1 7hd-.... lJ«.rrln& and FC-2 Dulgnatiofl- 1llllf, .,_,
ll&wbt& FC-1 ~ FC-11iac.t-.,_, lJ«.rrln& and FC-1 and FC-5,
Muler'l Tbail. Naval Poqnduate Scbool. Moaterey, CaliComia. September
1993.

St. VII 4ine. C., Aa:ut Bac Cooibool. AdcliJoo..Waley Publilbina Company, 1993.

1J1abaio1ic Corpontiora. ~ Adtpt'IM RljGwa, Symbologic Corpontiora.
1991.

v--. J. L, Rua .. Mkrott1ft At:ea:~'IM. Microsoft Press. 1993.

wwa., J. L, a..ley, L. D., IJid a.low, V. M., ~ Alllllpls and Duign M,thods,
~D. lrwiD. IDc., 1919.

114

IND1AL DISTRIBUTION LIST

1. Defense Tecnical Information Center 2
Cameron Station
~ VA22304-61S4

2. Lilnry, Code 052 2
Naval Postpaduate School
Monterey, CA 93943·5000

3. Capt. 0. K Perry m 1
Naval Sea Systems CommaDd
Code 62Z, NCJ, R.oom 8W06
2531 Je&non oms mpway
WuhirJatoa, DC 22243-S 160

4. Mr. Ed McGill 1
Naval Sea System~ Coneaaad
Code 62ZP, NCJ, Room IW06
2531 Je&IIOil Davia Hipway
WullnatOD. DC 22243-5160

s. FCC Steia 1
Naval Sea Sys&emt CcmawwJ
Code 62ZP. NC3. Room IW06
2531 JeftiiiOil Daviii:Jiabway
W......_ DC 2224J..Sl60

6. omJl A.M. Joeepb I
Pon lflweme Di\."ilioD
Na¥11 Sur&ce Wll&te Center
Code4AOO
Port. Hueneme. CA 93043

7. Mr. BiB Campbell 1
Pon Bu DivilioD
Na¥11 Surftce Wllfare C..
Code4A3l
Pan. II&Peaeme. CA 93043

liS

8. Mr. Henry Seto 1
Port Hneueme Division
Naval Surface Warfare Center
Code4A32
Port Hueneme, CA 93043

9. Profeuor Maadi Kamel, Code ASIKa 2
Naval POit8faduatc School
Monterey, CA 94043

10. Profaaor Martin McCafli'ey, Code ASIMf 1
Naval Pottpidlaate ScbooJ
Moatcny, CA 9394l·SOOO

11. LCDll Susan G. Talley 1
COMNA VFORKOREA
UNIT I# IS2.SO
APO AP 9620S..()()23

12. LT Janie C~ Code 37 I
Naval POit8faduatc School
Monterey, CA 9394l·SOOO

186

