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ABSTRACT

The Joint Platform Allocation Tool (JPAT) is a tool currently used to inform Army deci-
sion makers on resource management, procurement, and operational employment of Army
aerial intelligence, surveillance, and reconnaissance (ISR) assets. The tool is modeled and
implemented using point estimates for input data on future resource, equipment capability,
and employment demand. This research expands the capability of the JPAT to account for
uncertainty and changes in those parameters that bear on the overall operational risk of the
Army’s ISR mission: uncertain and changing future budgets, and uncertainty and unpre-
dictability of future operational demands for ISR assets. Techniques of robust optimization
are explored and applied to JPAT, and results and methodology are shown to be applicable
to other operational areas.
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Executive Summary

The Joint Platform Allocation Tool (JPAT) is a tool currently used to inform Army decision
makers on resource assignment, procurement, and operational employment of Army aerial
intelligence, surveillance, and reconnaissance (ISR) assets. The tool is modeled and imple-
mented using point estimates for input data on future resource, equipment capability, and
employment demand, and does not consider the uncertainty and variation inherent in such
data. This research seeks to account for such uncertainty and sensitivity in the formulation
of such models to help inform better decisions and give the decision maker a sense of the
risk of a given course of action.

An accepted and developed way to approach such problems is through stochastic program-
ming. However, most stochastic programming methods are viable only on relatively small
problems. The complexity and computational cost of applying stochastic programming to
large optimization problems can prove prohibitively expensive.

This research takes a different approach. We explore robust optimization methods and
techniques of relatively recent development and apply them to the JPAT. For most classes
of problems, their robust counterparts are of the same class and computational cost. In
this way uncertainty can be accounted for in the optimization and decision making process
without being prohibitively expensive computationally. In this thesis, robust counterparts
to the JPAT baseline are formulated in ways that apply variation to three of the models input
values: operating budgets, mission priorities, and demand hours per mission. Using a test
data set, the solution of the baseline is compared to its robust counterparts’ for different
scenarios and analyzed in its sensitivity in term of utility and computational cost.

This thesis focuses on one tool in the Army’s analysis arsenal. However, all military deci-
sion making involves some level of uncertainty and risk. The robust optimization method-
ologies and the formulation techniques developed here and applied to the JPAT may be
applied to many other types and classes of problems. Doing so provides a direct and com-
putationally efficient method of accounting for risk and better informing military decision
making.
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CHAPTER 1:
Introduction

This chapter places the Joint Platform Allocation Tool (JPAT) in its operational context.

1.1 Operational Background
In 2011, in the context of mission changes in Iraq and Afghanistan and Office of the Sec-
retary of Defense (OSD) emerging guidance on the future strategic environment, the Army
began assessing its future resource strategies for aerial intelligence, surveillance, and re-
connaissance (ISR) requirements (in the form of unmanned aerial vehicles (UAVs)). In
addition to planning for future aerial ISR needs and emerging technologies, there was a
legacy of quick-reaction capabilities accrued from the campaigns in Iraq and Afghanistan
that would require some sort of disposition: maintain and expand current ISR systems, or
retire and replace them with something more effective, affordable, etc. In October 2011,
the Army TRADOC commander established the Aerial R&S Integrated Capabilities Devel-
opment Team (ICDT) to assist Army decision makers in determining the future resource
strategy for the Army’s aerial ISR requirements. Defense Planning Guidance (DPG) and
the Army’s vision of the strategic environment of 2020 (Army 2020 [1] and Army In-
tel 2020 [2]) influenced the work of the ICDT, and the Program Objective Memorandum
(POM) 14-18 was used as an analytical baseline for their efforts.

One of the key objectives of the ICDT was to inform recommendations and decisions re-
lated to ISR requirements of the POM 15-19. To meet this objective, the ICDT sought to
answer four key study issues: 1) What is the range of intelligence demands over time that
Army aerial ISR systems will have to fulfill? 2) What mixes of Army aerial ISR assets
best satisfy the range of demands given joint and national ISR resource contributions? 3)
What are the resource implications of a given aerial ISR resource mix? 4) What mix of
Army aerial ISR assets is most cost-effective? The ICDT developed the JPAT to inform
answers to the above study issues. The objective of the JPAT model is to satisfy a 12-year
intelligence demand signal by determining what systems should be procured and where
they should be fielded, where current systems should be repositioned, how system config-
urations should be assigned to meet mission demands, and when and what systems should
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be retired from the inventory.

1.2 Technical Background
The Joint Platform Allocation Tool (JPAT) is a mathematical model implemented in
GAMS. The formulation of the JPAT by Craparo et al. [3] is "currently used to evaluate
the strategic implications of cost, sensor performance, mission requirements, and produc-
tion timelines to produce optimal procurement and assignment schedule of aerial recon-
naissance and surveillance assets." [4] The model is formulated as a mixed integer program
that maximizes hours of mission demands met and is solved sequentially over a rolling
horizon time period. This is due to the computational cost of reaching a solution in the
current formulation. Because the model looks 12 years into the future (and each year is
divided into 12 months), and allowing for the rolling horizon, sensitivity analysis on the
implications of uncertainty or change on future parameters cannot easily be performed.

The inputs to the JPAT model are point estimates, many of which represent uncertain future
values. Formulating the inputs in this way is common practice, but can often misrepresent
problems and the potential risk of a given model’s output. This thesis demonstrates robust
optimization (RO) as an alternative to the point estimate approach.

Robust optimization techniques can be applied to the current formulation of JPAT and can
provide insight to decision makers on the effects that uncertainty can have on the opti-
mal solution given certain boundaries of uncertain parameters or constraints (future budget
cuts, or unforeseen mission demands, for example). This research focuses on the JPAT, but
most optimization models are likely candidates for the application of robust optimization
techniques. This research seeks to demonstrate how robust optimization can account for
uncertainty and sensitivity in such models to inform better decisions. The techniques ex-
plored here help analysts consider the inputs to their models as ranges, rather than point
estimates. This is not only more realistic, but it also serves to focus the mind on the impact
of that variability in an operational context.
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CHAPTER 2:
Literature Review

In this chapter, the development of the Joint Platform Allocation Tool is discussed in terms
of its operational context. Robust Optimization theory are discussed, and methods and
techniques are discussed and related to applicable features of the JPAT formulation.

2.1 Robust Optimization Efforts
There are many studies of robust optimization widely available. Its attractiveness as a field
of study is based on the premise that solutions to optimization problems are sensitive to
perturbations of input parameters that can often make the solution suboptimal or infeasi-
ble [5]. This concept has been addressed in several ways since the 1950s and the early
developments of decision theory and extensively developed in the field of stochastic opti-
mization.

Unlike stochastic optimization, which assumes a probabilistic distribution of the uncer-
tainty in an optimization problem, robust optimization models uncertainty as deterministic
and set based. Ben-Tal and Nemirovski [6] lay much of the foundation for the theory of
robust optimization. They studied convex optimization problems for which the input data
is not necessarily specified and belongs to a set of uncertainty that can be modeled as el-
lipsoidal. They show that the robust formulation to a wide variety of common convex
optimization classes is as tractable computationally as the underlying non-robust formula-
tion. Bertsimas et al. [7] claim that constructing a deterministic uncertainty set over which
any realization in that set yields a feasible solution is preferable to a stochastic approach
because it tends to conserve computational tractability with only a small trade-off in opti-
mality.

Bertsimas et al. [7] show that the robust approach to optimization has several advantages.
First, with careful consideration of the model of the uncertainty set, robust formulations of
a general optimization problem remain tractable, particularly well-known classes of opti-
mization problems such as linear programming and mixed-integer programming (to which
class the JPAT optimization belongs). Additionally, the robust formulation of an optimiza-
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tion problem allows the modeler to make trade-offs between performance and robustness
in a concept Bertsimas [7] calls ‘conservativeness,’ in which the design of the deterministic
uncertainty set can be constructed to reflect a probabilistic distribution a priori optimiza-
tion, or to restrict the uncertainty set or solution in a desired manner.

Many parts of the JPAT formulation are related to classic supply-chain or inventory control
problems. For example, constraints that deal with the on-hand inventory of ISR equipment
at various locations at a given time are common to both situations. In the case of the JPAT
model, there is uncertainty in the mission demand for the inventory of ISR assets as well
as uncertainty on the size of the “inventory” of budget dollars that are required to meet
demands. Bertsimas and Thiele [8] show that robust approach to modeling these types of
uncertainty are numerically tractable and do not increase the computational complexity of
the nominal problem. They do this by allowing a scaled deviation of an uncertain param-
eter from its nominal value in the formulation of the linear problem, which has a robust
linear counterpart (with a proof based on strong duality). One of the benefits of this ap-
proach is that it allows a scaled approach to the conservativeness of a solution by allowing
a constraint on the amount of uncertainty expressed by the uncertain parameters; that is, “it
allows tradeoff between performance and robustness.”

Ben-Tal et al. [9] also address the problem of multi-period asset allocation and develop a
robust optimization counterpart to a classic portfolio problem. They show that the portfolio
policy of the robust counterpart is significantly more robust than nominal or stochastic
modeling policy in simulations, and it is comparable in optimality. They also show that the
computational requirement of the robust approach is significantly less than the multistage
stochastic approach. These concepts can have similar applications to the JPAT formulation
where there are multiple types of assets that can be applied over many time periods that
affect the objective value of the problem.
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CHAPTER 3:
Methodology

This chapter begins with the presentation of the baseline JPAT formulation presented in
section 3.1. Section 3.2 presents stochastic programming and its shortcomings as a possible
method of exploring the effect of uncertainty in the formulation of the JPAT and why it
would be of limited value for the purposes of this thesis. Several robust counterparts of
the JPAT formulation appear in section 3.3. Finally, section 3.4 presents challenges posed
for pessimistic scenario generation and robust counterparts formulated to overcome these
difficulties.

3.1 Baseline JPAT Formulation
For research purposes of this thesis, an unclassified version of JPAT was recovered from
the classified environment. The JPAT formulation is implemented in General Algebraic
Modeling System (GAMS) as a mixed-integer program (MIP). The formulation employs
a rolling horizon time frame to account for sequential decision making and to make the
MIP tractable for each time frame. In the JPAT formulation the rolling time frame is one
year, with time steps of one month. In this chapter we follow Naval Postgraduate School
Technical Report NPS-OR-13-004 for the problem formulation [3].

Indices and Sets

y,y ′ ∈ Y System y in set of all possible systems Y.
c ∈ C Configuration c in set of all possible configurations C.
e ∈ E Equipment item e (to include platforms and payloads) in set of all consid-

ered equipment E.
(t,y,l,l ′) ∈ GP Identifies systems y eligible to transfer from location l to location l ′ at time

t.
(y,y ′) ∈ REP Identifies the system y ′ replacing a retiring system y.
l,l ′ ∈ L Location l and alias l ′ in set of all possible locations L.
t,t ′ ∈ TIME Time step t and alias t ′ in set of all possible time steps T.
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m ∈M Specific mission demand m in set of all mission demands M (later orga-
nized in set for time and place).

i ∈ I INT (intelligence) types I.
r ∈ R Iterations in the rolling horizon model.
t ∈ T(r) ⊆ TIME Time steps considered in an iteration r.
t ∈ N ⊆ TIME Set of time steps at the beginning of a fiscal year.
M(l) Set of mission demands residing in location l.
l(m) Location of mission demand m (each mission demand resides in exactly

one location).

Input Data

iqe,l Initial quantity of equipment e in location l at time 0. [items]
dt,m Number of times mission demand m is present at time t. [occurrences]
okm,i,c Number between 0 and 1 indicating the ability of configuration c to fulfill

requirement type i in mission demand m. [unitless]
omce Operation and maintenance (O&M) cost per month for equipment e. [$M]
pcy Procurement cost for system y. [$M]
rcy Retirement cost for system y. [$M]
bt,y Maximum budget for system y at time t. [$M]
prt,y Maximum production rate of system y at time t. [items]
pm Number between 0 and 1 indicating the importance of mission demand m.

[unitless]
ecc,e Number of equipment e in configuration c. [items]
esy,e Number of equipment e in system y. [items]
hee Hours available for transport and missions per time period for equipment

e, accounts for regular maintenance hours, etc. [hours]
hmm Hours required to perform mission demand m, not including equipment-

specific setup and take down time. [hours]
him,i Hours required for requirement type i in mission demand m. [hours]
sue Hours to set up, take down, and maintain equipment e per assignment.

[hours]
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hte,y,l,l′ Hours required to transfer equipment e as part of system y from location l

to location l′. [hours]
srm,c Sorties required in order for configuration c to fully complete mission de-

mand m. [sorties]
maxdistt,y Maximum number of system y that can be distributed as of time t. [items]
mrt,y Total number of system y that must be retired by time t. [items]
initialy Number of system y initially in theater. [items]

Decision Variables

Gt,y,l,l′ Number of system y transferring from location l to location l′ at time t.
Zt,y,l Number of system y retiring from location l at time t.
Dt,y,l Number of system y distributed to location l at time t.
Pt,c,l Binary variable equal to 1 if sufficient equipment is present to create configu-

ration c at time t in location l; 0 otherwise.
Xt,m,c,i Number of hours configuration c is assigned to mission requirement type i for

mission demand m at time t.
St,m,c Number of sorties flown by configuration c against mission demand m at time

t.
Qt,e,l Quantity of equipment e present in location l at time t.
Bt Budget rolled over from previous time period at time t.

Formulation

For readability and convenience, the formulation is shown in Figure 3.1. The following
description of the formulation is taken from Naval Postgraduate School Technical Report
NPS-OR-13-004 by Craparo et al. [3].

The objective function (1) maximizes the weighted mission demand coverage, weighted
by mission demand priority and configuration performance. Constraint set (2) ensures that
intelligence requirements are not oversatisfied by the assigned configurations. Constraint
sets (3-4) maintain a record of the quantity of each equipment type available in each lo-
cation, beginning with the initial quantity (4) and updating the quantity based on system

7



procurements, retirements, and transfers in subsequent time steps (3).

Constraint sets (5-8) ensure that configurations are employed appropriately based on equip-
ment availability. Constraint set (5) forces Pt,c,l to take on a value of zero if any piece of
equipment require to construct configuration c is not present in a sufficient quantity in lo-
cation l at time empht; otherwise, Pt,c,l is allowed to take on a value of one. Constraint
set (6) uses the variables Pt,c,l to control the number of sorties flown by configuration c: if
Pt,c,l = 0, then configuration c cannot fly any sorties against any mission demands in loca-
tion l at time t. Otherwise, configuration c can fly any number of sorties so long as it does
not exceed the number of sorties required to completely satisfy the mission demand. Con-
straint set (7) ensures that the time spent covering intelligence requirements is appropriate
given the number of sorties flown. Finally, constraint set (8) ensures that the hours spent
fulfilling mission demands and transferring from one location to another do not exceed
the“pool” of hours available for each equipment type.

Constraint sets (9-11) ensure that budgetary limitations are observed. Constraint set (9)
calculates the monthly budget rollover Bt while accounting for equipment maintenance,
system procurement, and system retirement costs. Because Bt is a nonnegative variable,
constraint set (9) ensures that the available budget is not exceeded on months that do not
mark the beginning of a fiscal year. Likewise, constraint set (10) performs this function for
months that do mark the beginning of a fiscal year, while constraint set (11) sets Bt to zero
for months at the beginning of a fiscal year.

Constraint sets (12-13) control distribution and retirement of systems. Constraint set (12)
ensures that the total number of system y distributed as of time t does not exceed the limits
posed by system production rates and fielding restrictions. Constraint set (13) ensures that
any system y′ that “upgrades” a system y is not distributed until its predecessor y is retired.
Finally, constraint sets (14-21) declare variable types.

3.2 Multi-stage Stochastic Programming Discussion
In the baseline formulation, several input parameters actually represent decisions that are
made before the initial time-step, and do not change even though they should rely on data
unavailable after the first time-step. For instance, the budget in month 32 is always the
same, even though events and decisions prior to month 32 may drive the decision maker to
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increase or decrease the budget accordingly.

A multi-stage stochastic programming model lends itself to this type of decision making.
While a multi-stage stochastic programming approach would be a good representation of
this type of model and decision making, it comes at a huge computational cost. The multi-
stage programming approach can provide a great deal of information and optimal solution
space for the initial stage of the process, but becomes a computationally prohibitive method
for a full run of the optimization model [9].

For comparison purposes, it is reasonable to compare the RO formulation to a multi-stage
stochastic programing formulation small, controlled test set of data. In recognition of the
adequacy of the stochastic programming approach, it is worth testing the RO formulation
against this to measure differences in the objective values and solutions among them, to see
the small cost to the solution compared to the huge savings in computational tractability.

The parameters that we bring into variation (budgets, priorities, mission demands), should
be handled differently in the different stages of a multi-stage stochastic approach. It makes
sense that budgets for the current and a subsequent few time-steps are known. For this,
making the realizations of these budgets in the first stage of the stochastic program would
make sense. The actual priority of a mission or the demand hours for a given mission (as
opposed to what is expected or planned from the SME perspective) would not likely be
known until execution of the mission (or even until after it). Having the realizations of
these parameters in the second step of the stochastic program would be an appropriate way
to represent this.

For our purposes, the multi-stage stochastic program can take two forms, either a sampling-
based or non-sampling-based approach.

In the sampling-based approach, the initial stage consists of choosing a candidate package
of UAV assignments. In the second stage we estimate the expected value of the objective
function with respect to the variables that are treated as random. Hence, the second stage
consists of sampling the parameter (in this example, the hours of demand) from a defined
underlying distribution and making optimal assignments accordingly; this is repeated a
number of times (up to a prescribed sample size), and produces the estimator by averag-
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ing the values of the objective function. In two dimensions this approach can be easily
visualized as estimating the maximum value of a curve.

Basic formulation

max
P,G,Z,D,S,X ,B,Q

z = ∑
(t,m,c,i):t∈T (r),dt,m>0.him,i>0

pmokm,i,c
Xt,m,i,c

∑i′ him,i′

s.t.

∑
c:okm,i,c>0

Xt,m,i,c ≤ him,idt,m ∀t ∈ T (r),e, l : t > 1

...

Initial stage variables: G,P,Z,D,B,Q

Second stage variables: X ,S

Problem:

max
G,P,Z,D,B,Q

Eω [max
X ,S

∑
(t,m,c,i):t∈T (r),dt,m>0.him,i>0

pmokm,i,c
Xt,m,i,c

∑i′ him,i′,ω j

]

Random search approach:
For loop over 100 iterations (outer loop):
First stage: draw random G,P,Z,D,B,Q from their domain.
For loop over 100 iterations (inner loop, second stage random):

draw him,i′,ω j

then
max
X ,S

z j = ∑
(t,m,c,i):t∈T (r),dt,m>0.him,i>0

pmokm,i,c
Xt,m,i,c

∑i′ him,i′,ω j

s.t.

∑
c:okm,i,c>0

Xt,m,i,c ≤ him,idt,m ∀t ∈ T (r),e, l : t > 1

...

End for loop.
Compute average 1

100 ∑ j z j
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The optimal G,P,Z,D,B,Q of the 100 random realizations from the outer loop is one with
largest 1

100 ∑ j z j

The non-sampling method takes a different approach. In it, we assume a probability distri-
bution with finite support for the random parameter. As in the sampling-based approach,
the first stage consists of finding a candidate package of UAV assignments. In the sec-
ond stage, we solve for the optimal package of UAV assignments for each point of mass
of the random parameter, and then compute the expected value of the objective function
by weighting each second-stage objective function value by the probability mass at each
support point. This approach is deterministic, and hence is not hampered by sampling er-
ror considerations. However, the number of second-stage problems that need to be solved
equals the points of mass of the random parameter. In particular, when several parameters
are treated as random, the number of second-stage problems equals the product of the car-
dinality of the support of each random parameter, meaning that the number of second stage
problems grows exponentially with the number of random parameters.

Basic formulation

max
P,G,Z,D,S,X ,B,Q

z = ∑
(t,m,c,i):t∈T (r),dt,m>0.him,i>0

pmokm,i,c
Xt,m,i,c

∑i′ him,i′

s.t.

∑
c:okm,i,c>0

Xt,m,i,c ≤ him,idt,m ∀t ∈ T (r),e, l : t > 1

...

Initial stage variables: G,P,Z,D,B,Q

Second stage variables: S,X

Problem:

max
G,P,Z,D,B,Q

Eω [max
S,X

∑
(t,m,c,i):t∈T (r),dt,m>0.him,i>0

pmokm,i,c
Xt,m,i,c

∑i′ him,i′,ω j

]

s.t.

∑
c:okm,i,c>0

Xt,m,i,c ≤ him,idt,m ∀t ∈ T (r),e, l : t > 1

...
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Expected value approach:
First stage: draw random G,P,Z,D,B,Q from their domain.

For each point of probability mass in pmf (him,i′,ω j):

calculate Expected Value: him,i′,ω j ∗P(him,i′,ω j)

then
z j = P(him,i′,ω j)[maxS,X ∑

(t,m,c,i):t∈T (r),dt,m>0.him,i>0
pmokm,i,c

Xt,m,i,c

∑i′ him,i′,ω j

]

End for loop.
Compute E.V. ∑ j z j ∗P(him,i′,ω j)

The optimal G,P,Z,D,B,Q is one with largest 1
100 ∑ j z j

3.2.1 Computational Cost
For the sampling-based approach, the number of stage 1 problems equals the number of
sample points. In one extreme, a small number of sample points results in a relatively low
cost to “optimize,” but its optimal solution and value of the objective function are likely
off from their optimal values, because the variance is high. In the other extreme, allowing
for a large number of sample points spends most of the computational budget solving large
number of problems, each of which is necessarily stopped earlier than in the first case,
meaning that the solution and value of the objective function are more biased. This is
known in the literature as the variance-bias trade off.

The computational cost of the deterministic equivalent approach is likewise prohibitively
expensive. In this case the number of stage 2 problems equals the product of the cardinality
of the support of each random parameter, which grows exponentially with the number of
random parameters.

These considerations suggest that stochastic programming methods are unsuitable for this
situation. A mixed-integer program like the JPAT is already computationally costly: a
stochastic reformulation of the model would only compound the computational difficulty
and would be NP-hard. This thesis does not seek to create such a formulation. A constraint
of the study was to maintain at least the same computation difficulty class as the baseline,
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and would have been of limited value to the sponsor and future projects.

3.3 Points of Entry
Three parameters in the JPAT formulation are identified as ideal candidates for robust op-
timization (RO) reformulation. The first are the monthly budget constraints. The second
are the priority value of particular missions. The third are the monthly mission demands
(more specifically, the number of hours required for a particular mission in a given month).
Each of these are point estimates based on solicitation from subject matter experts (SME),
and are logical candidates for the modeling of uncertainty in the model. Each of these pa-
rameters appear in the formulation in a unique way (mission priority appears only in the
objective function, for example) and present unique challenges and insights.

The monthly budget amounts were a good entry point for the introduction of variability
and uncertainty into the JPAT formulation for several reasons. It is conceptually easy to
understand that budgets are not always certain, especially in the current fiscal environment.
Budget decisions are among the most important types of decisions that leaders must deal
with, so there is great benefit to exploring the implications of variability on the budgets to
gain insight for decision makers. The budget for each time period appears in the formula-
tion in the right hand side of several constraints.

The priority of a mission weights the value of its associated mission in the objective value.
These are not necessarily normalized (that is, they do not sum up to 1). The priorities were
considered for reformulation from a parameter to a RO variable because they strictly appear
in the objective function of the baseline formulation. This provides a unique modeling
challenge as compared to the budget reformulation and has the potential to provide much
insight for the decision maker, especially if they can be reformulated in a way that they
values are normalized in way that provides more inherent meaning.

Monthly mission demands appear as 3-dimensional parameters in the baseline formulation,
presented as a triple of time, location, and intelligence type. They appear in constraints as
well as part of the objective function. Conceptually, uncertainty on the mission demand
is easy to understand as one can imagine, for example, that a UAV platform on a specific
mission may be needed to stay on station longer to exploit a developing situation. In any
case, the realization of the mission demands cannot be known with certainty ahead of time.
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In every case of the reformulations above, we assume the nominal parameter values of the
baseline formulation that are solicited from SMEs are accurate on average, or there is no
systemic bias. However, we may assume that for any given nominal value, the actual value
may vary by a certain percentage. So for example, to incorporate demand variability, we al-
low a range of possible hours for a given intelligence type in a give time and location about
the nominal value given in the baseline, and when a demand is met two things happen: A
value is accrued in the objective function, and resources are consumed (in the constraints).

3.3.1 Budget

Regarding the budget, there are a number of scenarios for exploration: optimistic or pes-
simistic, and with or without transfers. As stated previously the baseline formulation has
the budget parameters appear only in the constraints:

Bt = Bt−1 +∑
y

bt,y−∑
y,l

(
pcyDt,y,l + rcyZt,y,l

)
−∑

e,l
omceQt,e,l

∑
y,l

pcyDt,y,l +∑
y,l

rcyZt,y,l +∑
e,l

omceQt,e,l ≤∑
y

bt,y

To formulate the robust counterpart for the budget parameters, the vector of nominal bud-
get values remains bt,y, around which the new RO variables BUt,y are allowed range. A
parameter that controls the range about the nominal value is allowed to range is introduced,
k. For example, allowing for a 10% variation in either direction, we would have k = 0.10.
To control the total amount of variation across all constraints the budget of variability value
Γ is introduced and can be defined as the analyst wishes depending on the amount of total
variation desired.

For a pessimistic approach, the constraints above are then reformulated:

Bt = Bt−1 + ∑
y
(bt,y− (BUt,y · k ·bt,y)) − ∑

y,l

(
pcyDt,y,l + rcyZt,y,l

)
− ∑

e,l
omceQt,e,l

14



∑
y,l

pcyDt,y,l + ∑
y,l

rcyZt,y,l + ∑
e,l

omceQt,e,l ≤ ∑
y
(bt,y− (BUt,y · k ·bt,y))

and the following constraints are added:

∑
t,y

BUt,y ≥ Γ

0≤ BUt,y ≤ 1

This approach is pessimistic because the new budget constraints are tighter than in the
baseline formulation. The RO variables BUt,y and constraints force a total reduction in the
budget amount controlled by the budget of variability Γ.

For an optimistic approach, the robust counterpart can be formulated to allow for an overall
increase in the budget levels as well as to allow transfers of funds from one system or time
period to another. For this formulation, different RO variables are introduced, Bt,y,+ and
Bt,y,−. There are also two budgets of variability: Γ+ and Γ−. The constraints from the
baseline above are then reformulated:

Bt =Bt−1+∑
y
(bt,y +((BUt,y,+−BUt,y,−) · k ·bt,y))−∑

y,l

(
pcyDt,y,l + rcyZt,y,l

)
−∑

e,l
omceQt,e,l

∑
y,l

pcyDt,y,l + ∑
y,l

rcyZt,y,l + ∑
e,l

omceQt,e,l ≤ ∑
y
(bt,y +((BUt,y,+−BUt,y,−) · k ·bt,y))

To control the RO variables, the following constraints are added:

∑
t,y

BUt,y,− ≤ Γ−

∑
t,y

BUt,y,+ ≤∑
t,y

BUt,y,−+Γ+
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0≤ BUt,y,+ ≤ 1

0≤ BUt,y,− ≤ 1

The RO variables work together to allow for an overall increase in the budget amounts
($) across the systems and time periods, as well as allow for a transfer of funds among
systems and time periods. For this formulation, a budget of variability for Γ+ greater than
zero allows for an increase in the total budget across the indices t and y. The budget of
variability for Γ− controls the amount of funds transfers, regardless of the value of Γ+.
This is considered an optimistic approach because its operational implication is that funds
are flexible and can be transferred among systems and time periods to get the most utility.

3.3.2 Priorities
For the priority parameter for each mission, the robust counterpart formulation will be
different than for the budget because the priority parameter pm appears in the objective
function as a scalar for each mission:

max
P, G, Z
D, S, X,
B, Q,

z = ∑
(t,m,c,i):t∈T (r),dt,m>0,him,i>0

pmokm,i,c
Xt,m,c,i

∑i′ him,i′

To create a robust counterpart, the RO variable PMm replaces the parameter in the objective
function:

max
P, G, Z
D, S, X,

B, Q, PM

z = ∑
(t,m,c,i):t∈T (r),dt,m>0,him,i>0

PMmokm,i,c
Xt,m,c,i

∑i′ him,i′

The following constraints are added to the formulation to control the value range that PMm

can take:
(1− k)pm ≤ PMm ≤ (1+ k)pm

∑
m

pm = ∑
m

PMm
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For each mission, the difference between the nominal value and the priority variable cannot
be more than k percentage of the nominal value. By forcing the sums of the variables PMm

to equal the sum of the nominal parameters pm the overall priority value does not change.
From a conceptual point of view, this would be much more powerful and insightful if
the priorities are normalized, and relative priorities of various missions can be intuitively
compared since the priority of a mission only has meaning when compared to the priority
of another.

This is an optimistic approach because it allows the solver to apply more priority value
to those missions in the objective function that can accrue the most value. Operationally
this would mean priority would be taken from hard-to-complete missions and given to
easier-to-complete missions (since the mission values accrued are ratios of hours met to
hours required) and thus that satisfying demands that are easier to meet would yield more
operational (objective) value, a very optimistic outlook.

On face value, there is not a viable pessimistic alternative. The sum of the new priorities
could be required to be less than the sum of the nominal values, but it would have the same
operational outcome as keeping the sums the same. That is, the solver algorithm would
still want to take priority value from hard to complete missions to easier to increase easier
complete missions. Section 3.4 discusses these challenges more in depth and presents
a method to develop a pessimistic robust counterpart formulation for the priority values.
Other techniques could also be explored to develop pessimistic or worst-case scenarios,
such as Benders’ decomposition, that could be valuable future work (see Section 5.3).

3.3.3 Mission Demand
There are two approaches that can be taken for modeling uncertainty on the mission du-
rations. The first is to consider the mission durations from the perspective of the number
of time periods in which a mission occurs. The second approach is to consider the mis-
sion demands within a time step: the frequency of the mission (think sorties) and the hours
required per sortie. Both of these are numeric parameters, and the product of them is the
number of hours required for a mission in a demands. The hours (number of hours required
for a system configuration to be on station to meet the mission) as a parameter expresses a
total for the mission, as it accounts for hours of different intelligence types. Perhaps adding
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a new intelligence type uncertain that can act as the scaling parameter for the mission dura-
tions would be useful. Either way, this is done in the preprocessors, as there is no constraint
in the formulation that limits the total mission demands to the sum of the different types.
The mission demands by type of intelligence are, as mentioned, accounted for separately
in the formulation in the objective function and the constraints.

The second approach is attractive because it allows for some perturbations in the mission
demands that obviously have an effect on the scheduling, and one can say that for any
given mission demand that the SMEs are accurate within a certain percentage range about
the nominal values for hours of mission demand.

Taking this approach, the robust counterpart formulation for the mission demands is similar
to that taken for the mission priorities. The hours required for a mission are represented
by the parameter him,i. In the baseline JPAT formulation, this parameter appears in the
objective function and in the constraints:

max
P, G, Z
D, S, X,
B, Q,

z = ∑
(t,m,c,i):t∈T (r),dt,m>0,him,i>0

pmokm,i,c
Xt,m,c,i

∑i′ him,i′

∑
c:okm,i,c>0

Xt,m,c,i ≤ him,idt,m

To make the robust counterpart formulation for the hours of demand, the robust variable
HImi is introduced, and replaces the parameter him,i in the about equations:

max
P, G, Z
D, S, X,

B, Q, HI

z = ∑
(t,m,c,i):t∈T (r),dt,m>0,him,i>0

pmokm,i,c
Xt,m,c,i

∑i′HIm,i′

∑
c:okm,i,c>0

Xt,m,c,i ≤ HIm,idt,m

As with the priority robust counterpart in section 3.3.2, the parameter k is introduced and
the following constraints are added to the formulation:
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(1− k)himi ≤ HImi ≤ (1+ k)himi

∑
mi

himi = ∑
mi

HImi

These constraints allows each robust variable to range about a certain percentage of the
nominal value, scalable by the parameter k. The final constraint added keeps the overall
mission demand hours the same. This is an optimistic approach because the robust variables
will increase or decrease from their nominal values where they will provide the most overall
utility. Section 3.4 discusses challenges and solutions to creating a pessimistic approach or
scenario to the robust counterpart for mission demands.

3.4 Pessimistic Formulation
The robust optimization formulation methods can be applied to the monthly budget param-
eters in such a way that allows the analyst to choose an optimistic or pessimistic approach.
For example, one can allow the transfers of budgets among the time periods that can be op-
timally applied to accrue more utility. Conversely, the analyst can force an overall decrease
in the budget parameters by a specified amount to create a pessimistic formulation.

The robust counterparts for the priority and mission demand hour parameters cannot be
formulated in the same way as the budgets in the context of allowing pessimistic scenar-
ios. In the case of the priorities, forcing an overall decrease in the budget of uncertainty
on the parameter is effectively meaningless. The priorities for missions are weights in a
weighted sum and only have meaning relative to each other. The demand hours parameter
also appears in the objective function, and provides its own challenge to the formulation
of a pessimistic scenario. The demand hour parameter is the denominator of the of the
weighted sum’s ratio. In this case it would be unclear what an interpretation of a pes-
simistic scenario would mean. A reduction in demand hours of a mission would increase
the total utility value from the objective function. An increase in demand hours could also
lead to an increase in total utility value as there is more potential value to accrue.

To overcome the conceptual and interpretation challenges of a naively formulated robust
optimization application to the mission priority and demand hour parameters, a differ-
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ent modeling approach needs to be taken. The problem is approached from an attacker-
defender standpoint: The Army is “attacking” when assigning assets to accrue utility value
by satisfying mission demands, and Uncertainty is “defending” when making those asset
assignments the least valuable by minimizing the utility over the robust variables. This
would be a min-max class of problem, and introduces its own modeling difficulties.

To solve most min-max problems, the preferred method would be to take the dual of the
inner primal problem and then minimize over all the variables. This is preferred when
conditions can be met that would assure strong duality as the optimal solutions of the dual
and primal would then be equivalent. As a mixed-integer program, the JPAT formulation
unfortunately does not meet all of the conditions of strong duality.

The approach taken below is to optimize the baseline JPAT and determine what the opti-
mal variable assignment levels are (which is essentially the optimal plan). The decision
variables are fixed at the levels for the optimal plan, and the robust counterpart is solved,
minimizing over only the robust variables. This reveals the worst realization of the optimal
plan subject to the variability of the robust parameters. The steps for this for the mission
demands follow:

1. Solve the baseline JPAT for z∗:

max
P,G,Z,D,S,X ,B,Q

z∗ = ∑
(t,m,c,i):t∈T (r),dt,m>0.him,i>0

pmokm,i,c
Xt,m,i,c

∑i′ him,i′

s.t.

∑
c:okm,i,c>0

Xt,m,i,c ≤ him,idt,m ∀t ∈ T (r),e, l : t > 1

...

2. Fix all decision variables to current levels (P,G,Z,D,S,X ,B,Q)
3. Solve the robust counterpart JPAT for z∗ minimizing over the robust variables:

min
HImi

z∗ = ∑
(t,m,c,i):t∈T (r),dt,m>0.him,i>0

pmokm,i,c
Xt,m,i,c

∑i′HIm,i′
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s.t.

∑
c:okm,i,c>0

Xt,m,i,c ≤ HIm,idt,m ∀t ∈ T (r),e, l : t > 1

...

The case for the pessimistic robust counterpart to the mission priorities follows a similar
sequence. In both cases the optimal plan is not allowed to change. The scenario does
reveal how the utility of the optimal plan degrades subject to the variability on the robust
parameters. This information may be of only marginal use as applied JPAT model. This
is because the valuable output of the JPAT is the variable assignment levels and not the
objective value itself. For a model in which the objective value is an important output, it
can be very informative. For example, if the objective function was a measure of the flow
of a commodity through a network, such as water through underground pipes, it would
be good to know how your total flow is affected by some amount of variability of some
parameter (ambient temperature, seismic activity, etc.), and whether or not the flow would
fall below some critical threshold.

For the analysis conducted in Chapter 4, the robust counterparts for the mission priorities
and mission demands are used as depicted above. It finds the worst-case outcome of a given
baseline plan for a given level of variability (as defined by the variability parameters) while
maintaining the plan’s feasibility.

Though outside the scope of this thesis, it would be interesting to know what realizations
or levels of variability of the robust variables would make the optimal plan infeasible. One
method to explore this concept would be to introduce elastic variables for a given decision
variable and penalize it in the objective function. The elastic variables would allow the
model to remain feasible while revealing the infeasibility of the solution in an operational
context. This would be an interesting topic for future research.
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max
P, G, Z
D, S, X,
B, Q,

z = ∑
(t,m,c,i):t∈T (r),dt,m>0,him,i>0

pmokm,i,c
Xt,m,c,i

∑i′ him,i′
(1)

s.t. ∑
c:okm,i,c>0

Xt,m,c,i ≤ him,idt,m ∀ t ∈ T (r),m, i : dt,m > 0,him,i > 0 (2)

Qt,e,l = Qt−1,e,l + esy,e ∑
y
(Dt,y,l−Zt,y,l +∑

l′
(Gt,y,l′,l−Gt,y,l,l′)) ∀ t ∈ T (r),e, l : t > 1 (3)

Qt=1,e,l = iqe,l ∀ e, l (4)

Pt,c,l ≤
Qt,e,l

ecc,e
∀ t ∈ T (r), l,c,e : ecc,e > 0,∃m ∈M(l) : dt,m > 0 (5)

St,m,c ≤ srm,cdt,mPt,c,l(m) ∀ t ∈ T (r),m,c (6)

Xt,m,c,i ≤
hmmSt,m,c

srm,c
∀ t ∈ T (r),m,c, i : okm,i,c > 0,hmm,i > 0,dt,m > 0 (7)

∑
y,l′

hte,y,l,l′Gt,y,l,l′+ ∑
c,m∈M(l)

ecc,e

(
hmm

srm,c
+ sue

)
St,m,c ≤ heeQt,e,l ∀ t,e, l (8)

Bt = Bt−1 +∑
y

bt,y−∑
y,l

(
pcyDt,y,l + rcyZt,y,l

)
−∑

e,l
omceQt,e,l ∀ t ∈ T (r)\N : t > 1 (9)

∑
y,l

pcyDt,y,l +∑
y,l

rcyZt,y,l +∑
e,l

omceQt,e,l ≤∑
y

bt,y ∀ t ∈ T (r)∩N (10)

Bt = 0 ∀ t ∈ T (r)∩N (11)

∑
l,t ′≤t

Dt ′,y,l ≤ maxt,y ∀ t ∈ T (r),y (12)

∑
t ′≤t,y:(y,y′)∈REP

Zt ′,y,l ≥ ∑
t ′≤t

Dt ′,y′,l ∀ t ∈ T (r), l,y′ : ∃y : (y,y′) ∈ REP (13)

Pt,c,l ∈ {0,1} ∀ t ∈ T (r),c, l (14)

Gt,y,l,l′ ∈ Z+ ∀ (t,y, l, l′) ∈ GP : t ∈ T (r) (15)

Zt,y,l ∈ Z+ ∀ t ∈ T (r),y, l (16)

Dt,y,l ∈ Z+ ∀ t ∈ T (r),y, l (17)
Xt,m,c,i ≥ 0 ∀ t ∈ T (r),m,c, i (18)
St,m,c ≥ 0 ∀ t ∈ T (r),m,c (19)
Qt,e,l ≥ 0 ∀ t ∈ T (r),e, l (20)
Bt ≥ 0 ∀ t ∈ T (r) (21)

Figure 3.1: Mathematical formulation for JPAT
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CHAPTER 4:
Analysis

Section 4.1 discusses the experiments and test data used. Section 4.2 presents the results
and analysis of the experiments conducted.

4.1 Experiments
A test data set was constructed to provide a realistic, plausible scenario in which to run
experiments on the JPAT robust counterpart formulations. It is of a smaller scale in terms
of number of parameters and variables than the actual JPAT data that resides in the classified
operating environment.

Six robust counterpart models of the baseline JPAT formulation were created, as described
in Chapter 3. Experiments were conducted to explore the behavior of the models under
different levels of induced variability. Of interest is the impact of the variability parameter
k and the budget of variability Γ on the objective values and solutions to the optimiza-
tion models. The experiments provide insights to analysts and decision makers about the
operational and modeling impacts when using robust optimization techniques to model
variability and uncertainty.

4.2 Numerical Results
In the first experiment, 101 iterations of the optimistic robust budget scenario were run,
incrementing the parameter k from 0 to 1 by 0.01 each time. In each run, the value of k

represents the percentage away from the nominal values of the budgets bt,y that the robust
variables could take. In Figure 4.1 the objective value (referenced by Z from here out) is
plotted for each run against its k. Z is increasing in k, and generally concave. Note also that
the right vertical axis of the graph shows the percentage difference from the baseline JPAT
objective value for this test data (ZBASELINE = 6.52).

Figure 4.1 shows a continuous increase in the value of Z in the range of about k = 0.10 to
k = 0.30. This region is interesting and worth exploring from both an analyst perspective
as well as an operational perspective. For any given point estimate given by a SME, the
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RO Formulation: Budget, Optimistic
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Figure 4.1: Objective value of the robust formulation for optimistic budgets as a function of
k. The parameter k in the formulation controls the percentage about the nominal value of the
budget parameter bt,y that the robust budget variables BUt,y are allowed to vary.

true value due to variability (though highly dependent on the subject matter and the SME
expertise) would reasonably be within 10 to 30 percent of the estimate. Exploration of the
operational impacts (mission assignments, procurement schedules, etc.) that occur around
these ranges of variability can provide key insights to mitigating operational risk.

Using the test data, the budget expended when k = 0.10 is $168M and when k = 0.30 is
$197M. This difference of $29M reduces the number of unmet mission demands by about
one quarter and leads to a significant jump in utility. For a decision maker, this difference
in the objective value for a given input (such as operating budget) also yields the optimal
assignment of that input when using a robust formulation. The robust formulation could
also reveal any large jumps in the objective value over a small range of k, and knowing that
these “cliffs” exist on the objective value function is useful because mitigating steps may
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RO Formulation: Budget, Pessimistic
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Figure 4.2: Objective value of the robust formulation for pessimistic budgets as a function of k

then be taken to overcome that risk frontier if they are operating near the edge of it.

Similar experiments were conducted on the pessimistic robust formulation for the budget
parameters: 101 iterations of the optimization for each incrementation of the parameter k

from 0 to 1. The objective value Z as a function of k is non-convex in this scenario as well,
but it does not have the plateau evident in the optimistic formulation. This is because each
iteration of the model has tighter constraints than the one before it, so an incumbent solution
is not at all likely to remain from one iteration to the next (see Figure 4.2). However, there
appear to be “neighborhoods” of solutions such that a given range of the parameter k yields
a tight range of similar objective values and solutions. An analyst can examine a candidate
range of k values to glean insights into operational impact similar to the optimistic scenario.
Examination of the frontiers of the likely variability region can provide useful insights to
models and problems beyond the scope of the JPAT formulation.
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The same analyses of the k parameter were conducted on the robust counterpart for the
priority parameter. For the optimistic scenario, the objective value increases in k in a
roughly linearly manner (see Figure 4.3). These results are what is expected. Unlike in
the budget robust counterpart though, there are no regions where a slight perturbation in
the uncertainty can have an outsize influence on the objective value. Close examination of
the decision variable levels reveals that there is no significant impact from an operational
perspective regarding system procurement and assignment. For this test data the priority
parameters do not have an operational impact beyond the utility revealed by the objective
function. Follow on research could reveal under what conditions variability on the weights
in a weighted sum (as the priority parameters are) could impact the basis of a model solu-
tion.

k

RO Formulation: Priority, Optimistic
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Figure 4.3: Objective value of the robust formulation for optimistic priorities as a function of k.

The same results hold for the pessimistic case of the priority parameters because of the
method used to construct the pessimistic scenario. The bisection search method can find
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the worst case outcome for a given variable assignment solution and allowed amount of
variability. Figure 4.4 shows the linear effect of k on the objective value.

k

RO Formulation: Priority, Pessimistic
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Figure 4.4: Objective value of the robust formulation for pessimistic priorities as a function of k.

Analysis of the k parameter on the on the robust counterparts for the mission demand
parameters reveal similar behavior as that for the priority parameter. Figures 4.5 and 4.6
for the optimistic and pessimistic scenarios reflect the expected impact on the objective
functions (increasing and decreasing in k, respectively, and ). There are erratic behaviors at
the extreme values of k (k < 0.1 for pessimistic, and k > 0.9 for optimistic) reflecting the
solvers attempts at integer solutions. Figure 4.6 also shows that even in extreme cases of
variability, the worst outcome of the optimization is no less than 6 percent worse than the
baseline. The ability to reveal behavior such as this using a robust formulation is useful,
and can allow decision makers to focus their efforts and resources on mitigating scenarios
that produce worse outcomes.

For both the priority and demand robust counterparts, the parameters under variability ap-
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Figure 4.5: Objective value of the robust formulation for optimistic demands as a function of k.

pear in the objective function. For the JPAT model and this test data, the introduction of
variability in the objective function yields mundane results. This is partly due to the fact
that for a problem such as the JPAT, the objective value itself is not a primary outcome of
the model, nor is it a very informative piece of information. The value of the JPAT is in the
variable assignments: what systems to purchase when, which machines to assign where.

For models similar to the JPAT, variability introduced on the constraints can reveal those
areas of risk and alternative variable assignment levels that are interesting from an opera-
tional perspective. Likewise, variability can be modeled robustly in those areas that have
the most impact, and to a degree that fits the users needs and reflects the operating envi-
ronment. For example, variability parameters such as k don’t have to be uniform across an
entire model. They can be applied in a robust formulation in a way that allows different
parameters to have different ranges of variability about their point estimates. This can of-
ten be the case for formulations that model problems over time: The budget in five years
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Figure 4.6: Objective value of the robust formulation for pessimistic demands as a function of k.

known with a lesser degree of precision than the budget for next year. Also, variability can
appear on different parameters within a single model, with each their own of variability
constraints or all subject to common ones.

Experiments were conducted to explore the interaction of the variability parameter k and
the budget of variability Γ. The optimistic robust counterpart for the budget parameters was
executed iteratively over a sample of chosen k sizes, from 0 to 0.5, and for each model was
optimized with incremented values of Γ from 0 to 55. Figure 4.7 shows that with a higher
variability parameter of k, the value of Γ has a continual impact on the solution as it scales
up. Likewise, for a lower value of k, the value of Γ has less influence on the solution. In
essence, for the optimistic scenario, the more variability about the nominal values (higher
k values), the more of an impact that Γ (variability budget parameter) has on the objective
value. If k is low, a greater increase in Γ makes little difference because variability on each
applicable parameter would be maximized before the variability constraint of Γ is tight.
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Figure 4.7: Objective value of the robust formulation for optimistic budgets as a function of Γ

for various k values.

Interaction of the variability parameter k and the budget of variability Γ in the pessimistic
scenario is examined in Figure 4.8. In this case the budget of variability is always tight in
the constraints. If k is relatively high, such as k = 0.5, then as Γ increases, the objective
value and decision variable solutions continually change. The value of Γ also has a greater
impact on the objective value if k is high rather than low (such as k = 0.1). As a modeling
consideration, it is important to realize that a value of Γ that is chosen too high will make
the formulation infeasible. This is reflected in Figure 4.8: Regardless of the value of k, all
the models become infeasible at values of Γ≥ 40.
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Figure 4.8: Objective value of the robust formulation for pessimistic budgets as a function of Γ

for various k values.

Understanding of this dynamic between these two parameters allows analysts to “right-
size” the parameters for a robust optimization model to fit the needs of the problem or model
under examination. For example, in a pessimistic scenario, by allowing high variability
with k and a low Γ, the analyst can identify which points of the model are most vulnerable
to high uncertainty.

In the robust counterparts for the priority and mission demand parameters, there is no Γ

parameter to explore, and thus no experiment to examine it. In the case of mission priority
it is meaningless to allow overall priorities to increase or decrease: they only have value
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relative to each other. For the hours of mission demand, a logical interpretation is hard to
arrive at for allowing an overall increase or decrease in terms of which is better or worse
(or optimistic or pessimistic) because the objective function is a sum of ratios of hours of
demand met.
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CHAPTER 5:
Results and Conclusions

Section 5.1 summarizes the results from Chapter 4. Section 5.2 discusses the conclusions
and lessons learned from this research. Possible future research areas that can build on this
thesis research are in section 5.3.

5.1 Results
The first set of experiments examined the effect of the robust parameter k on the objective
value. The results were as expected. For each of the robust counterparts, when k = 0, the
objective value and variable assignments are the same as for the baseline JPAT formulation
for the test data set. The objective value increases as k increases for the optimistic coun-
terparts, and decreases when k increases for the pessimistic counterparts, and the graphs
of each appear generally concave as expected (see Figures 4.1 and 4.2 for example). The
regions of the values of k in which the general slope of this concave function is higher
reveal those areas of the model with a high amount of sensitivity to the robust parameters.
Likewise, those areas with a lower slope are less sensitive to variability.

Depending on the primary output of the model in question, the value of k can provide useful
insights to the decision maker. For the JPAT model, the primary outputs are the variable
assignments (UAVs assigned to missions, transfers between locations, procurements and
retirements, etc.) that drive the objective value. The robust counterparts for the budgets
provide information on where to optimally expend those budget resources, a key interest of
any decision maker.

The experiments on the effect of the robust parameter Γ reveal an interaction with k. In
an optimistic scenario, if k is low, a greater increase in Γ makes little difference because
variability on each applicable parameter would be maximized before the variability con-
straint of Γ is tight. Likewise, for higher k values, the value of Γ has a greater impact on
the solution to the model. For the pessimistic scenario, the parameter Γ is always tight in
the constraints.
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5.2 Lessons Learned
This thesis focuses on one tool in the Army’s analysis arsenal. However, all military de-
cision making involves some level of uncertainty and risk. The insights derived from this
research can be broadly applied to most optimization models involved in military oper-
ations analysis. Most analysts consider the inputs to such models to be point estimates.
These inputs may model a range of possibilities and be presented as an average, or try to
represent a worst case scenario, but almost always are represented by a single value. To
avoid the pitfalls associated with this approach, model inputs should be represented as a
range of values where it is appropriate to do so. Robust optimization techniques offer one
method to do so.

Extensive adoption of such robust modeling techniques would benefit the Army analysis
community by giving analysts a method to consider variability on the model during the for-
mulation process and consider the operational impact. Oftentimes, the effect of uncertainty
on a model is considered only after it is formulated, when sensitivity analysis is conducted.
The problem with this approach is that the model may not lend itself to easy examination
of uncertainty. For example, if an analyst wanted to run the JPAT baseline formulation to
explore a 10 percent decrease of the overall budget, she would have to choose which budget
values to decrease across all the time periods and systems under consideration (or naively
decrease each budget parameter by 10 percent). Each choice of how that 10 percent cut is
imposed could potentially lead to a unique optimal solution. But if she where to run the
robust counterpart of the JPAT, she could set the levels of variability parameters to impose
an overall 10 percent budget cut, and the solver would find the optimal solution and the
associated budget amounts, indicating where and by how much the cuts should be made to
yield the most utility for the end-user.

The range of variability under which a parameter should be examined will almost always
be driven by real-world circumstances. In keeping with the previous example, perhaps the
funding levels of the Army’s aerial ISR programs are projected to be cut between 10 and 25
percent for the next fiscal year. These cuts drive the values of the variability parameters as
chosen by the analyst, and defines a variability frontier that is of extreme interest to decision
makers. Examination of these frontiers on the operational impact of these budget cuts can
help decision makers mitigate the impact by optimally allocating resources. Being able to
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quantify the impact of such budget decisions can help frame an argument for advocating for
additional resources. Examination of the likely variability frontiers can also reveal those
model solutions that are highly sensitive to uncertainty, where a small shift in an input
parameter can have a large impact on model solution or objective function. Adjusting the
variability parameters can identify those frontiers on the objective function hyperplane.

The scale and size of variability parameters (k and Γ used in the JPAT robust counterparts)
are important modeling considerations. For example, in the pessimistic budget scenario a
very high Γ could make the model infeasible, or extreme values of k and Γ may be com-
pletely unrealistic. The parameter values chosen and how variability is introduced to a
model can be quite flexible. Variability can be modeled in unique ways for any given pa-
rameter within the same model. The ranges about the nominal value can also vary over
indices (for example, a greater range of uncertainty further in the future, a lesser range
sooner in the future). The robust variables can be restricted by unique budgets of vari-
ability (Γ) for each or from a common one. Scenarios can be modeled, such as best- and
worst-case, that can contribute to course of action analysis. This allows the analyst to com-
pare the model solutions (levels of the decision variables, for example) among different
scenarios and know how robust a particular solution set is subject to the variability un-
der consideration. The robust optimization techniques explored here provide an analyst a
flexible tool set to examine optimization under uncertainty.

Depending on the underlying model, robust counterparts generally keep the same same
class of of problem as their baseline. For most such models, the computational cost is
negligible when contrasted with alternatives such as stochastic programming.

The robust optimization methodologies and the formulation techniques developed here and
applied to the JPAT may be applied to many other types and classes of problems. Doing
so provides a direct and computationally efficient method of accounting for risk and better
informing military decision making.

5.3 Future Research Possibilities
This research has identified several areas of future work that may prove fruitful:

1. Comprehensive examination of variability on weights in an objective function,
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specifically what conditions could lead to a meaningful impact on a model’s solu-
tion set.

2. Research into methods of modeling variability on parameters that have known distri-
butions, or apply scaling weights to variable parameters dependent on their distance
from their nominal values.

3. Apply attacker/defender techniques on worst-case scenario generation for robust
counterparts for linear, continuous programs.

4. Apply elastic variables to robust counterparts to reveal and explore infeasibilities
induced by the robust variable settings.
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