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Abstract-In prior work we have given an intuitive development of Transfer Decomposition, a 
decomposition of the traffic assignment problem into two traffic assignment problems. The intent 
of this paper is to provide a rigorous basis for this technique by establishing that it is a generalized 
Benders decomposition. As an illustration of the result, we give a decomposition algorithm that 
is based on the familiar Frank-Wolfe method. 

1. INTRODUCTION 

In prior work, Barton and Hearn (1978) and Hearn (1984) have given intuitive devel- 
opments of Transfer Decomposition, a decomposition for networks with application to 
aggregation of the standard traffic assignment problem. Essentially, this technique con- 
sists of partitioning a network in such a way that the original problem is transformed 
into two traffic assignment problems: a master problem and a subproblem. The intent 
of this paper is to provide a rigorous basis for this technique by showing it to be equivalent 
to a generalized Benders decomposition (Geoffrion, 1972) of the original traffic assign- 
ment problem. 

At the outset, this equivalence may not be apparent because generalized Benders 
normally does not have a subproblem of the same form as the master. In the typical 
application of Benders Decomposition, the master problems are implicit linear programs 
solved by tangential approximation (Lasdon, 1970) and the subproblems are highly 
structured problems solved by efficient algorithms. However, the master and subprob- 
lems of Transfer Decomposition are both traffic assignment problems. This fact then 
leads to the development of a decomposition alogrithm that utilizes the familiar Frank- 
Wolfe method. A numerical example of the algorithm is given. 

2. PROBLEM FORMULATION AND NOTATION 

The standard traffic assignment problem may be written in node-arc formulation 
as: 

minimize C cij(xii) + 2 cij(yij) 
ijEAl ijEAz 

tThis research was supported in part by the National Science Foundation under Grant CEE-8420830. 

61 



62 

subject to 
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_Yij = C ,Y$ ij E AZ 
k 

PdBzl 

The first two sets of constraints 

=bk kEk 

xk, y’ I 0 k E k. (1) 
are for notational covenience and will be implicit 

in the formulations that follow. Note that the double subscript ij is used to denote an 
arc (or link) from node i to j. The cij are assumed convex. The arcs have been arbitrarily 
split into two subsets, A, and A?, with flows for commodity k (identified by destination) 
on arc ij denoted by _x( for ij E A, and y$ for ij E A:. Arcs in A, and A?, for example, 
might correspond to major arteries and local streets, respectively, in a traffic network. 
We write the vector [Xij]’ with components indexed by ij as xk. The vector bk gives the 
net supply of “commodity k” at each node derived from a trip table T, where Tnk is the 
trip demand between origin n and destination k. Thus, commodities are indexed by 
destination; bk = Tnk and bi = - &fk b:. 

The matrix B = [B,jB,] is the node-arc incidence matrix for the entire network, 
partitioned so that B,(B,) contains columns corresponding to arcs in A,(A,). In addition, 
we can also partition the rows so that B has the following appearance: 

The rows for the submatrix B,,(B& correspond to nodes that are incident to arcs only 
from the set A,(AJ, and the rows for the submatrix [B,2JB2r] correspond to nodes that 
are incident to arcs from both Al and AZ. We refer to this latter set nodes as the 
“interface” nodes since they represent junctions at which the flows transfer from A, 
(major arteries) to A2 (local streets). For simplicity, it is assumed that all interface nodes 
and nodes corresponding to rows of B,L have neither supply nor demand, i.e. the cor- 
responding components of the vector bk are zero for all k. By this assumption, trips are 
permitted to originate from local streets (e.g. a residential area) and to terminate at 
other local streets (e.g. the downtown area). However, this assumption can be relaxed 
by adding additional dummy nodes and arcs with zero cost. 

3. TRANSFER DECOMPOSITION MOTIVATION AND THEORY 

Transfer Decomposition was developed during a study of an ad hoc decomposition 
process used by transportation planners to solve large (10,000 links) traffic assignment 
problems (Wilson et al., 1974; Hearn, 1978). The steps in this process were: (1) extract 
a relatively small subnetwork of primary interest, (2) transfer part or all of the complete 
trip demand matrix to a subnetwork demand matrix, and (3) flow the smaller tractable 
network. Although these steps may not yield an optimal solution, they resemble steps 
in Benders decomposition in that the extraction of a subnetwork of interest in Step 1 is 
simply the partitioning of columns of the node-arc incidence matrix as described above 
and the transferring of the trip demand matrix in Step 2 provides a partial “communi- 
cation” link between the subnetwork and the rest of the network. In Transfer Decom- 
position, these steps are made rigorous and the missing communication link is provided. 

In the remainder of this section, we develop Transfer Decomposition in an intuitive 
manner and show that the model structure is of the generalized Benders form. Finally, 
we also adapt the familiar Frank-Wolfe algorithm to the decomposition. 
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Fig. 1. Example problem. 

Motivational example 
Consider the example of Fig. 1. The arcs of the subnetwork of interest are indexed 

by A,, and all others by AZ. Thus 

A, = (56, 65, 57, 59, 68, 69, 97, 98) 

A2 = (15, 16, 25, 26, 73, 74, 83, 84). 

Note that the nodes have been numbered to yield a node-arc incidence matrix of form 
(2). Now assume that the flows ylj, ij E A2 are fixed at values feasible to the flow 
conservation conditions, i.e. there exist xi 2 0 such that (1) holds. Then, intuitively, 
and it will be proven below, there exists an induced demand matrix (trip table) for the 
subnetwork. By the additive nature of (Pl), the optimal set of Xii for the fixed yij may 
be obtained by solving 

min 2 Cij(Xij) 
ijEAl 

subject to conservation of flow constraints on the subnetwork with respect to the demand 
matrix induced by the fixed yij* As we show later, the demand matrix of the subproblem 
need not retain the original commodity identification given in (Pl). For example, flows 
of commodity “4” from node 1 to node 4 through nodes 5, 9, and 8 in (Pl) are merely 
represented as flows from 5 to 8 in the subproblem, and are combined with all other 
flows leaving the subnetwork at 8 to form subnetwork commodity “8.” 

Based on these observations, the example problem is reformulated as two network 
flow problems: a master and a subproblem, as shown in Fig. 2. Note that the pseudo- 
links (broken lines) of the master network represent feasible paths on the subnetwork 
and the flow on these pseudo-links provide (induce) the trip demand matrix for the 
subproblem. This provides communication from the master problem to the subproblem, 
and guarantess feasibility of the communicated demand matrix. To complete the loop, 
the subproblem optimal solution supplies the master problem with pseudo-link “costs” 
obtained from the subproblem travel times. 

From this example, one can easily see the connection with aggregation in the traffic 
assignment problem. The pseudo-links of the master problem represent a path-flow 
aggregation of the fink-flow activity in the subnetwork. Evidently, if the travel times on 
the pseudo-links are somehow obtainable to sufficient accuracy, the master problem can 
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Fig. 2. Master and subproblem of Transfer Decomposition. 

be taken as an aggregated version of the original. The connection with aggregation 
practices is discussed by Hearn (1984) and Friesz (1985). For related aggregation studies 
see Bovy and Jansen (1983) and Haghani and Daskin (1983). 

From a computational viewpoint it appears that the original model (Pl) can be 
solved by alternately solving the master and subproblems, possibly with different traffic 
assignment algorithms, if that should be advantageous. 

In order to justify such uses, it is necessary that the decomposition be investigated 
theoretically. 

Relation to generalized Benders decomposition 
Geoffrion (1972) has provided a generalization of the original Benders decompo- 

sition that is applicable to nonlinear programs such as (Pl) in which the variables are 
partitioned into two sets. To provide a rigorous theoretical framework for Transfer 
Decomposition, we will derive a generalized Benders problem (P3) that is equivalent 
(through (P2)) to (Pl). We show that the original commodities can be dropped from 
the subproblem, producing (P4), the Transfer Decomposition formulation. 

For the purpose of decomposing (Pl), it is assumed that the partitioning of the 
node-arc incidence matrix into [B,(B,] induces the existence of another node-arc inci- 
dence matrix D which facilitates the following reformulation of (Pl): 

W) 

min 2 cij(xij) + 2 clj(Yij) 
ijEAl ilEA 
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subject to 

Dz’ + Bzyk = bk kEK 

B,xk = Dzk k E K 

Xk, yk, Zk h 0 k E K. 

In other words, it is assumed that (Pl) is equivalent to (P2). Figure 3 illustrates the 
existence of the matrix D for the example in Figs. 1 and 2. Note that the pseudo-arcs 
correspond to columns of D and that x1 will denote the set of pseudo-arcs henceforth. 

The matrix D represents possible paths between all pairs of interface nodes in the 
subnetwork. This allows the following result. 

LEMMA 3.1. 
Let@ = {Dz: zrO}andfi = {Bix: x?O}.Then,@ = R. 

Proof. The space @ corresponds to net node flows in the arc-chain representation for 
the subnetwork composing of arcs in Al and the space s2 corresponds to net node flows 
in the node-arc representation for the same subnetwork. By Theorem 2.2 of Ford and 
Fulkerson (1962) these are equivalent. n 

Let S denote the set of all interface nodes. Then, D can be constructed by finding 
for each node s E S a directed tree rooted at s that spans the maximum number of nodes 
in the subnetwork defined by A,. For each t E S that is reachable from S, a column 
corresponding to a pseudo-arc (s, t) is added to D. However, the connectivity structure 
of the subnetwork corresponding to A, will be known in many instances, and the structure 
of D will be obvious. For example, if any interface node is reachable from any other 

56 57 59 65 68 69 78 87 97 98 15 16 25 26 73 74 83 84 
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Fig. 3. The existence of the matrix D for the example in Figs. 1 and 2. 
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interface node using only arcs in A,, then D is the node-arc incidence matrix of a complete 
directed graph on the node set S. This is often the case of the ad hoc decomposition 
process where the subnetwork consists of major highways. 

By partitioning the variables into 2 sets: (y, z) and x and applying generalized 
Benders decomposition to (P2) , we obtain 

(P3M) 

min u(z) + 2 c,,(Y,j) 
ijEA: 

subject to 

(P3S) 

subject to 

Dzk + Bzyk = b’ k E K 

y', zk 2 0 k E K. 

u(z) = min C c,(+) 
ijEAl 

B,xk = Dzk k E K 

xk 2 0 k E K. 

By Theorem 2.1 of Geoffrion (1972) for the generalized Benders Decomposition we 
have 

LEMMA 3.2 
(P2) and (P3) are equivalent. 

Note that Lemma 3.1 guarantees that if (y, z) feasible to (P3M), then there exists 
an x feasible to (P3S). However, the vector Dzk does not generally have the same form 
as bk, i.e. the right hand side vector for (P3S) does not have an associated trip matrix. 
For the example in Figs. 1 and 2, let zk = (10, 0, 20, 0)’ then 

Dz’ = 

0 
0 
0 
0 

10 
20 

- 10 
-20 

0 

and the original commodity index does not correspond to trips with the same destination 
in the subproblem, (P3S). In this case, Dz’ can be decomposed into two commodities 
as follows_ 

Dzk = 

0 
0 
0 
0 

10 
0 

- 10 
0 
0 

+ 

0 
0 
0 
0 
0 

20 
0 

-20 
0 
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Below, it is shown that there exists a traffic assignment (TA) problem, (P4S), equivalent 
to (P3S). 

Let D be a matrix of size N x L, where N is number of nodes in the original 
network and L is number of pseudo-arcs, and d, denote the (i, j) element of D. Since 
D is a node-arc incidence matrix, the rows of D are linearly dependent and sum to zero, 
i.e. 

or 

2 [DZk]j = 0, 

(3) 

where [wlj denotes the jth component of w. Let 12 = {j : [Dz’]j > 0) and 1; = 
{j : [DZ’]j < 0). E quation (3) then implies that 

C [Dz’]j = - 2 [Dzk]j = ak 2 0. 
jE/i jCJC 

For the remainder, it is assumed that ok > 0, for otherwise the kth commodity can be 
discarded from the subproblem. Let Tk = {(i, j) : i E Jk+ and j E J,}; then, Tk indexes 
a set of “subtrips” for the original commodity k, and the lemma below shows how to 
construct a trip matrix from Dzk, k E K. 

LEMMA 3.3. 
For each k E K, there exists a set of constant pi, for all (p, q) E Tk such that 

(9 Piq 2 0 

(ii) 2 pi, = ak 
@.4@ 

(iii) c P,“, = [Dzk], p E J; 
qEJ< 

(iv) c -p,“, = -[Dz’], q E J,. 
pEJ: 

Proof. Conditions (i), (iii), and (iv) constitute the constraint set of the Hitchcock- 
Koopman transportation problem. Equation (3) above guarantees that total demand 
equals total supply, which implies that the feasible region is nonempty. Thus, there exist 
a set of p:, satisfying (i), (iii), and (iv). Then, condition (ii) is obtained from summing 
condition (iii) over p or condition (iv) over q. n 

Since columns of the transportation problem have the form (e, - e,) where er, is 
the pth unit vector in RN, 

Dzk = C Pg,(e, - e,> 
(P4)ETk 

= CC Piq(e, - e,L 
P 4 

where pi, = 0 if (p, q) fE T’ and the summation over p and q both range from 1 to N. 
That is, Lemma 3.3 permits us to decompose the vector Dzk into vectors that are indexed 
by node numbers, i.e. ps and qs. 

Given that pf, is chosen for all p, q, and k, then we can define for any given zk 

Wq = CC Bj, (e, - e,) for all q 
k P 
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and S(wq) = {F : Blfq = wq : fs 1 0, q = 1, . . . , N}. Note that wq depends on ps 
which, in turn, depends on 2’. Moreover, 

wq = CC %ep - 
k P 

implies that wp 2 0, j = 1, . . . , (q - l), (q + l), . . . , N, and W: = - I&, WY. 
Hence, wq has the same form as bk in problem (Pl) and one can easily derive a subnetwork 
trip matrix from w 9. Thus, S(wq) is a feasible region for a TA problem. Define the 
feasible region for (P3S) as follows: 

S(P) = {x” : B,xk = Dzk; xk = 0, k E K}. 

Then, the lemma below establishes the equivalence of the two feasible regions. 

LEMMA 3.4. 
S(zk) is equivalent to S(wq) in thar xk E S(zk) induces a f4 E S(wq) and vice versa. 

Proof. For any xk E S(zk), xk 2 0 represents a flow vector satisfying B,xk = Dzk. 
Consider the set of arc (i, j) with positive flow, i.e. the ijth component of the vecotr xk 
is positive. Because xk is feasible, these arcs with positive flow must form paths which 
connect pairs (p, q) in Tk. Then, xk must be composed of flow vectors, xk(P@, for (p, 
q) E Tk, which has the same dimension as xk and represents sending some pig units of 
flow for commodity k along a path consisting of arcs with positive flow and connecting 
p to q. That is, 

xk = 22 xk(Pvq), and 
P 9 

B,xk@@ = p&(e, - e,), (4) 

where -#4 = 0 and p,“, = 0 for (p, q) not in Tk. Since xk is feasible, ppkq must also 
satisfy the conditions in Lemma 3.3. From (4), we have that 

BICC Xk’p*q) = CC ppkq(ep - e,) = wq. 
k P k P 

Let fg = &zp xk(P*@; then fq E S(wq). 
For the converse, if fq E S(wq), then Brf q = wq. By a similar argument, we have 

that 

fq = cc fk@.q), and 
P 9 

B,fk@‘~q) = p&(e, - e,), 

where fk(P*@ = 0 when /3:, = 0, and pig, for all (p,q) E Tk, satisfy conditions in Lemma 
3.3. By letting x k = ZpC, fk@*q), xk is a member of S(zk). n 

Define (P4) as follows: 

(P4M) min U(Z) + 2 Cij(_Vij) 
ijEA? 

subject to 

Dz’ + Bzyk = bk k E K 

Y k : zk 2 0 k E K. 

(P4S) V(z) 3 min C Clj(fi,> 

ijEA, 



69 Equivalence of Transfer and generalized Benders decomposition methods 

subject to 

B,fq = w” q = 1,. . . ,N 

fq 2 0 q = 1,. . . ,N. 

THEOREM 3.1. (Pl) and (P4) are equivalent. 

Proof. (Pl) and (P2) are equivalent by Lemma 3.1, (P2) and (P3) are equivalent by 
Lemma 3.2, and (P3) and (P4) are equivalent by Lemma 3.4.H 

This theorem, which shows Transfer Decomposition to be a generalized Benders 
decomposition, has as corollaries the many results proven by Geoffrion (1972) for gen- 
eralized Benders problems. In particular, we cite 

COROLLARY 3.la. u(z) is convex for any z feasible in (P4M). 

COROLLARY 3.lb. For a fixed y, z feasible in the master problem of (P4M), any set of 
optimal multipliers of (P4S) is a set of subderivatives of u( z). The function v is differentiable 
if and only if the set of multipliers is unique. 

COROLLARY 3.1~. If a solution of the master problem of (P4M) is within E, of optimality 
and the corresponding solution of (P4.3) is within e2 of optimality, then the combined 
solution is within E, + E? of optimality for (Pl). 

For the example in Figs. 1 and 2, the constraints of (P4S) can be written as: 

0000000000 
0000000000 
0000000000 
0000000000 
11 l-l 0 0 0 0 0 0 

-1 0 0 1 1 1 0 0 0 0 
o-1 0 0 0 0 l-l -1 0 
0 0 0 o-1 o-1 1 o-1 
0 o-1 0 o-1 0 0 1 1 

p = 

0 
0 
0 
0 

W5 
w6 

w7 

Y3 

0 

and the superfluous rows of zeros can be deleted to obtain a reduced set of constraints 
that is truly a Set of flow conservation equations. Moreover, u(z) = u(z5,, zs8, z67, z~) 
in the example. It can then be easily shown that the subderivatives of u(z) are the path 
times from node 5 to 7, 5 to 8, 6 to 7, and 6 to 8 at the optimal subnetwork flow. In 
general, the subderivatives of u(z) are the path times for pairs (p, q) in A,. 

In summary, the development given here justifies the intuitive development given 
earlier. The master problem (P4M) is a traffic assignment problem as is the subproblem 
(P4S). To demonstrate the usefulness of this result, we next utilize a popular traffic 
assignment algorithm within the Transfer Decomposition framework. 

4. A TRANSFER DECOMPOSITION ALGORITHM 

Adapting Frank- Wolfe to Transfer Decomposition 
Previous analysis verifies that both (P4M) and (P4S) have the same form as the 

original problem (Pl). Thus, any algorithm for (Pl) can be employed for both the master 
and subproblems of Transfer Decomposition. One popular method for large-scale prob- 
lems is the algorithm of Frank and Wolfe (1956) as adapted by LeBlanc et al. (1975). 
In the following we adapt the Frank-Wolfe algorithm to (P4) by using it for (P4M) and 
allowing any traffic assignment algorithm for (P4S). In this description, A, denotes the 
set of pseudo-links. 
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Step 0 (Initialization). Select tolerances el and E: for problems (P4M) and (P4S). 
Choose an arbitrary set of flows (y, z) feasible for problem (P4M). Set LB = --3~. 

Step 1 (Solve P4S). Construct the subnetwork demand matrix from z. Solve (P4S) 
for u(z) within e2 by any user-equilibrium traffic assignment algorithm. Let rv = path 
times (dual variables) for (i, j) E 2,. 

Step 2 (Linearize P4M). Linearize the arc costs of (P4M) for all ij E A2 U A, by 
the formulas 

dcii(Yii) 
d,, = @ii 

ij E A2 

Tii ij E A,. 

Assign all demands (in 7’) to minimum paths with respect to d;j. Denote this set of flows 

by (Y, 9. 
Step 3 (Update lower bound and test for termination). Let 

LB = C Cij(Yli) + U(Z) + C d;j(y - Y) + C d,(Z - Z). 

ij ijEA: i/E‘41 

Set LB = max[LB,m]. If C C,(yij) + U(Z) - LB 5 E, + ~2, stop. 
ijEAz 

Otherwise, go to Step 4. 
Step 4 (P4M Line Search). Search the line segment [(y, z), (F, z)] for an improved 

solution, (y”, z”), of (P4M). Replace (y, z) by (y”, z”) and go to Step 1. 
Of course, particular care must be exercised in Step 4, the line search. Since each 

iteration requires a resolving of problem (P4S), the method is only practical if just a few 
points on the line need be evaluated. A heuristic variation performs the line search, not 
on the objective of (P4M), but on a function g(y, z) that is defined to be the maximum 
of all tangent planes generated in prior iterations. The information required to evaluate 
g(y, z) is easily obtained by employing Corollary 3.lb. It must be stored, so the heuristic 
would require more computer memory, but the trade-off with time required to solve 
the subproblems could be substantial. This heuristic does not produce monotonically 
decreasing objective values for (P4M). 

Convergence properties of this algorithm can be established, but the details are 
beyond the scope of this paper, except to note that the known convergence results of 
the Frank-Wolfe method insure global convergence whenever V(Z) is continuously dif- 
ferentiable (see Corollary 3.la). 

A numerical example 
It is instructive to consider a numerical example of the algorithm. Figure 4 gives 

traffic assignment data for the example network. The “volume delay” formula, typical 
of transportation planning models, represents the time to traverse each link as a function 
of the link volume, or flow. For this problem, the Cij are integrals of the volume delay 
formula. The constant T,, is the uncongested travel time for the link, and the “Capacity” 
term is capacity only in a penalty sense. The optimal objective value of (Pl) is for the 
user equilibrium model of traffic flow. The fixed trip demand matrix requires that a total 
of 100 trips traverse the network from origins 1 and 2 to destinations 3 and 4. The number 
beside each link represents a user-optimal solution in terms of total link flow. 

The initial iterations on this problem are illustrated in Fig. 5. The subnetwork trip 
tables passed from (P4M) to (P4S) are in the first column. In effect, these are extreme 
points of the domain of (P4M) with respect to the pseudo-link flow variables (z5,, zs8, 

267 9 za). Step 4 of the algorithm, the line search, transfers a convex combination of all 
past trip tables to the subproblem. These are shown in the second column. Step 2 of 
the algorithm solves the subnetwork traffic assignment problems with the trip table of 
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Optimal Objective Value = 1453 

Volume Delay = 

Tg( 1 .O + O.l5(FlowlCapacityP ) 

3 4 

1 10 20 

2 q 30 40 

Trip Table 

Link To Capacity 

1-5 10 
1-6 : 16 
2-5 ; 35 

2-6 5-6 1 :: 

5-7 5-9 : :: 

6-5 6-8 : :: 

Link To Capacity 

6-9 
7-3 : :: 
7-4 6 24 

7-8 1 
8-7 8-3 : 

58 
43 

8-4 
9-7 

1 50 

9-8 : :: 

Fig. 4. Example problem data. 

Iteration 1 

Fi \I:::l,;e~+q+ 1600 

Iteration 2 

! 
~~-~~+qq._ 1471 

Fig. 5. Iterations of the algorithm on the example problem. 
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Fig. 6. Alternative Transfer Decomposition of the example problem 

column 3 and produces the multipliers (travel times) shown in the third column. Suc- 
cessive values of the objective for (P4M) are shown in the final column. Note that in 
only three iterations the subnetwork trip table, a convex combination of the three trip 
tables of column two produces a solution within 2% of the optimal value. The travel 
times (multipliers) for the traversal of the subnetwork are approaching their optimal 
values of (5.60, 6.00, 4.60, 5.00). 

5. ALTERNATIVE TRANSFER DECOMPOSITIONS 

The subnetwork of the decomposition in Fig. 1 is a “natural” one in that the network 
divides into disjoint segments and the pseudo-links have an easily visualized interpre- 
tation. Other choices of a subnetwork are possible, however. Consider Fig. 6, where 
the same network as before has been decomposed so that the links (59,97,74) comprise 
the subnetwork. One advantage of this decomposition is that the subnetwork is a tree 
and therefore the execution of Step 1, solution of subproblem (P4S), is trival. The 
disadvantage is that the outer network is three links larger than the original network. 
Note, however, that the subnetwork demand matrix is not unique for this choice of 
decomposition (i.e. the ppIs in Lemma 3.3 are not necessarily unique). If links associated 
with z5.1 and 294 were removed from the outer network, the subnetwork could be as 
shown and the demand matrix would only contain zs9, z~, and z7+ The important dif- 
ference is that the pseudo-links of the outer network always have “costs” that sum to 
u(z), even if the pseudo-link replaces an original link. 

6. SUMMARY 

Transfer Decomposition provides a mathematical representation for the ad hoc 
decomposition process. This makes it possible to characterize the strengths and weak- 
nesses of the transportation planning process. The decomposition method may be effi- 
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cient for models where A, is large but with a small number interface nodes or where 
the network induced by A, is of a special structure. The final example shows that Transfer 
Decomposition is quite general and the decomposition can be varied to suit different 
needs. 

Acknowledgement--Several comments by referees have helped to clarify the exposition of this paper, partic- 
ularly on the existence of D and the proof of Lemma 3.3. 
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