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Abstract. We first extend previous results of G S Joyce so as to derive the exact wave-vector-
dependent susceptibilityχN(q, T ) for a ring of N classical Heisenberg spins with isotropic
nearest-neighbour interactions. Our major result however is a simple, highly accurate, analytic
approximation forχN(q, T ) which nevertheless preserves an associated sum rule over the
Brillouin zone.

In recent years there has been renewed interest in one-dimensional models of magnetism
with the advent and refinement of the ability to fabricate nanometre-scale magnetic systems
[1, 2]. A wide variety of molecular clusters containing relatively small numbers of magnetic
ions (e.g. as few as four) can now be fabricated [3, 4] and these provide novel systems in
which to test basic theories of magnetism and offer the prospect of new applications. Quite
often the magnetic moments in these clusters are positioned in a simple ring shape, as in the
‘ferric wheel’, which consists of ten Fe3+ ions, each withS = 5

2, bound in a molecular ring
structure [4] which interact through the Heisenberg exchange mechanism. Whereas there
is a large literature devoted to theory and experiment of one-dimensional magnetic systems
in the form of long chains, there are few results for interacting Heisenberg spins on small
systems.

The purpose of this article is twofold. First, we derive exact expressions for the wave-
vector-dependent susceptibilityχN(q, T ) for a system ofN classical Heisenberg spins with
isotropic nearest-neighbour interactions positioned on a ring. The quantityχN(q, T ) (defined
below in (8)) is required in numerous physical contexts, e.g. in computing time-dependent
spin-correlation functions [5] or the NMR spin–lattice relaxation time [6]. (In the following,
we will generally simplify our notation by suppressing the temperature variableT and write
χN(q).) The relevance of the classical Heisenberg model stems from the fact that elsewhere
[7] we have demonstrated for the ferric wheel that a simple approximate treatment of
interacting classical Heisenberg spins provides results for the magnetic susceptibility in
excellent agreement with experiment except at low temperatures, where quantum effects
hold sway. Previously, Fisher [8] and Joyce [9] have investigated the equilibrium properties
of the one-dimensional classical Heisenberg model for free and cyclic boundary conditions,
respectively. These authors have, for their respective systems, given expressions for the
magnetic susceptibilityχN(0), which is theq = 0 limit of what we seek here. While
the expression for the open-chain susceptibility is extremely simple, that for the ring is
rather complicated and involves infinite series of modified Bessel functions. We note that
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χN(q) is the Fourier transform of the equilibrium two-spin correlation function,CN(n),
defined below in (2). Whereas for the open chain the correlation function exhibits simple
exponential decay with increasingn, CN(n) = exp(−|n|/ξ), independent of the number
of spinsN in the chain [8], the correlation function for the ring is rather involved, also
consisting of infinite series of modified Bessel functions [9]. (Here the correlation lengthξ

is given byξ−1 = ln[|cothK −K−1|], whereK = J/(kBT ) is the dimensionless nearest-
neighbour coupling constant.) Of course, for large enoughN , the nature of the boundary
conditions becomes immaterial and the correlation function for the ring takes the form of
that for the open chain, i.e. simple exponential decay with increasingn. For a finite ring,
however, the correlation function satisfies a cyclic condition,CN(n) = CN(N − n). The
correlation function for the finite ring thereforecannotdecay merely as a simple exponential
with increasingn. The impact of the cyclic condition is especially great for small rings,
with, say,N = 10.

Thesecondpurpose of this article is to present a highly accurate, analytic approximation
for χN(q) for a ring of N spins. Computing the exactχN(q) (see (11)) for the ring
entails the summation of infinite series of modified Bessel functions. As we will see,
these series are such that, for progressively lower temperatures, increasingly more terms
must be included in the sum to achieve good accuracy. Besides the tedium of summing
large numbers of Bessel functions, computations in the large-argument, large-order regime
trigger numerical instabilities unless effective countermeasures are employed. A physically
motivated,approximateexpression forχN(q) for the ring, hopefully as simple as that for
the open chain, would therefore be highly desirable. Indeed, we show that, when compared
with the exact quantity, equation (16) provides anexcellentapproximation over the entire
Brillouin zone of wave vectors for all but extremely low temperatures. Our approximant
for χN(q) is based on a physical approximation for the underlying correlation function,
CN(n), given in (15), that combines the expected exponential decay as a function ofn for
n� N with the cyclic condition of the finite system. We also note that our approximation
for χN(q) will be seen to preserve an exact sum rule over the Brillouin zone.

In what follows, we briefly review some of the known thermodynamic properties of a
ring of classical Heisenberg spins. We then successively derive exact expressions forχN(q),
present our approximation forχN(q), and discuss the performance of our approximant.

The classical spin Hamiltonian for a one-dimensional system ofN Heisenberg spins
with a cyclic boundary condition and isotropic nearest-neighbour interactions originates in
the associated quantum-mechanical model Hamiltonian

HS = −JS
N∑
i=1

Si · Si+1− µSB ·
N∑
i=1

Si (1a)

where theSi are quantum spin operators, withSN+1 ≡ S1, JS is the exchange interaction
energy,B is the external magnetic field, andµS = gµB is the magnetic moment per spin,
with g the Land́eg-factor andµB the Bohr magneton. We note that (J < 0) J > 0 promotes
(anti-) ferromagnetic ordering at low temperature. The classical spin approximation consists
of replacing the quantum spin operators with classical vectors of fixed length

√
S(S + 1)

that are free to orient in any direction. RescalingJS by JS → J = S(S + 1)JS andµS by
µS → µ = µS

√
S(S + 1) then leaves a model Hamiltonian

H = −J
N∑
i=1

êi · êi+1− µB ·
N∑
i=1

êi (1b)

defined in terms of classical three-dimensional unit vectors,êi , free to point in any direction,
with êN+1 ≡ ê1. In what follows, we will consider all quantities evaluated in zero magnetic
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field.
We denote the two-spin correlation function for theN -spin ring as

CN(n) = 〈êi · êi+n〉N ≡ Z−1
N

∫
d0 exp(−βH)êi · êi+n (2)

whereβ ≡ (kBT )−1, d0 ≡ ∏N
i=1 (d�i/4π), with d�i = sinθi dθi dφi the element of solid

angle about̂ei , and whereZN is the partition function,ZN =
∫

d0 exp(−βH). The exact
value of the latter quantity in zero magnetic field is given by the infinite series [9]

ZN(K) =
∞∑
l=0

(2l + 1)f Nl (K) (3)

whereK = βJ andfl(K) ≡
√
π/(2K)Il+1/2(K) is the modified spherical Bessel function

of order l. These functions have the property thatfl(−K) = (−1)lfl(K) and they decay
extremely rapidly with increasingl for l > |K|. Thus, for numerical calculations, the higher
the temperature, the fewer the terms of (3) that are required to be summed. For a finite
ring with translational symmetry, we shall show that the correlation function has the cyclic
property

CN(n) = CN(N − n). (4)

(We note that this condition implies a distinct set of relations among the correlation functions
only for 06 n 6 [N/2], where [N/2] is the integer part ofN/2.) Equation (4) is therefore
a boundary condition to be met by any approximate theory of the correlation function.

For zero magnetic field, Joyce [9] has also derived an exact double infinite-series
expression for the correlation function in terms of the Wigner 3j -symbol. Elsewhere [7]
we show that his result may be simplified to a single infinite sum, namely

CN(n,K) = Z−1
N

∞∑
l=0

(l + 1)f Nl (K)[ρ
n
l (K)+ ρN−nl (K)] (5)

whereρl(K) ≡ fl+1(K)/fl(K). We note thatρl(−K) = −ρl(K) and that|ρl| < 1 for all
l > 1 . It follows at once from (5) that the cyclic property (4) is obeyed. From (5) it can
be shown that

Lim
N→∞

CN(n,K) = ρn0(K) ≡ un(K) (6)

whereu(K) = I3/2(K)/I1/2(K) = cothK−K−1 is the Langevin function. Thus, the decay
of the correlation function is exclusively exponential for the infinite ring. The result in
this limiting case is consistent with Fisher’s finding [8] that for the open chain of classical
Heisenberg spins

Cchain
N (n,K) = un(K) (7)

independently ofN . We note that for a ring withN even,CN(n,−K) = (−1)nCN(n,K),
whereas for oddN there is no simple relation between the correlation functions for ferro- and
antiferromagnetic couplings. We also note that the requirementCN(0,K) = 1 is satisfied
by (5).

The zero-field, wave-vector-dependent susceptibility per spin can be written as

χN(q,K) = C

T
N−1

N∑
n=1

N∑
m=1

eiq(n−m)〈ên · êm〉N (8)

where the constantC is given byC = µ2/(3kB). Using the properties of the correlation
functions listed above, it can easily be shown thatχN(q,K) = χN(π −q,−K) for N even.
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There is no analogous result for oddN . We note that, for anyN , χN(q) obeys the following
sum rule:

T

2πC

∫ π

−π
χN(q,K) dq = CN(0,K) = 1. (9)

Using the cyclic property (4), the definition ofχN(q) depends on whetherN is even or
odd. ForN odd we have

C−1T χN(q,K) = 1+ 2
[N/2]∑
m=1

cos(mq)CN(m,K) (10a)

whereas forN even

C−1T χN(q,K) = 1+ 2

( [N/2]−1∑
m=1

cos(mq)CN(m,K)

)
+ cos(Nq/2)CN(N/2,K). (10b)

Substituting the exact expression (5) into (10a) and (10b), respectively, we find

C−1T χN(q,K) = 1+ 2Z−1
N

∞∑
l=0

(l + 1)f Nl

×
[
ρl(cosq − ρl)− ρNl (1− ρl cosq)+ 2 sin(Nq/2)ρ [N/2]+1

l Fl(q)

1− 2ρl cosq + ρ2
l

]
(11)

where

Fl(q) =
{
(1+ ρl) sin(q/2) (N odd)

sinq (N even) .
(12)

By settingq = 0, we recover Joyce’s result [9]:

C−1T χN(0,K) = 1+ 2Z−1
N (K)

∞∑
l=0

(l + 1)

[
f Nl fl+1− flf Nl+1

fl − fl+1

]
. (13)

Finally, considering the limitN →∞ in (11), it can be shown that

C−1T χ∞(q,K) = 1− u2(K)

1− 2u(K) cosq + u2(K)
. (14)

The form of (14) is common to infinite, one-dimensional models with an exponentially
decaying correlation function, where the parameteru can be identified in terms of the
correlation length,|u| = exp(−ξ−1).

Inspecting (5), one notes that the cyclic property for the correlation function, equation
(4), is separately obeyed by each termρnl + ρN−nl of the sum. The cyclic condition,
however, would equally well be satisfied by anapproximatecorrelation function with
the basic formCN(n,K) = [vn(N,K)+ vN−n(N,K)]/[1+ vN(N,K)], where v(N,K)
is some appropriately chosen, effective function of the coupling strength. Note that this
approximant preserves the short-distance requirementCN(0,K) = 1. Without loss of
generality we can assume that|v(N,K)| 6 1. Since the large-system limit, equation (6),
should also be obeyed, we have the restriction that LimN→∞ v(N,K) = u(K). Although
other choices are possible [7] for the functionv(N,K), and in fact provide superior results,
the simplest choice is justv(N,K) = u(K), i.e. independent ofN . Thus, we adopt as an
approximation the simple formula

CN(n,K) ∼= [un(K)+ uN−n(K)]/[1+ uN(K)]. (15)
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This approximation combines the expected exponential decay of the correlation function with
the cyclic property for the finite system and properly reduces to pure exponential decay in
the large-N limit. Elsewhere [7] we have shown that ifN > 6, equation (15) provides an
accurate approximation to (5) at least for|K| < 3, i.e. excluding very low temperatures. It
should be remarked that for low temperature, the classical Heisenberg Hamiltonian given
by (1b) cannot adequately represent the quantum-mechanical counterpart given by (1a).

Substituting (15) into (10a) and (10b) leads to the following approximate result for
χN(q):

χ
approx
N (q,K) ∼=

(
1− uN
1+ uN

)
χ∞(q,K)+ C

T

4 sin(Nq/2)u[N/2]+1F(q,K)

(1+ uN)(1− 2u cosq + u2)
(16)

where

F(q,K) =
{
(1+ u) sin(q/2) (N odd)

sinq (N even)
(17)

and whereχ∞(q,K) is given by (14).
For completeness, we also obtainχN(q) for the open chain. By substituting (7) into

(8), we obtain

C−1T χchain
N (q,K) = 1− u2

1− 2u cosq + u2
− 2u

N(1− 2u cosq + u2)2

× {(cosq(1+ u2)− 2u)(1− uN cos(Nq))+ uN sin(Nq) sinq(1− u2)}.
(18)

Note that there are no even–odd effects in (18). It is easy to see that by lettingN →∞ in
(18), we recover (14), as we should. Settingq = 0 in (18), we recover Fisher’s result [8]:

C−1T χchain
N (0,K) = 1+ u

1− u −
2u(1− uN)
N(1− u)2 . (19)

We have now derived three expressions forχN(q) for a one-dimensional system ofN
classical Heisenberg spins: equation (18), which is the exact result for the finite open chain;
equation (11), the exact result for the finite ring; and equation (16), an approximate result
for the finite ring. We note that each of these expressions satisfies the sum rule given in
(9). The fact that the approximate result for the ring, equation (16), satisfies the sum rule
can be traced to the fact that our approximation, equation (15), for the correlation function
preserves the propertyCN(0,K) = 1.

In figure 1 we plot(3|J |/µ2)χN(q) versusq for a system withN = 6 andK = 2, for
each of the three expressions, equations (11), (16) and (18). To compute the exact results, we
have used the following method to efficiently and accurately evaluate the necessary modified
spherical Bessel functions,fl(K). We use the recurrence relation for the functionsfl(K)

(equation (10.2.18) of reference [10]) to obtain values of the ratiosρl(K) = fl+1(K)/fl(K).
To avoid crippling numerical instabilities, it is necessary to invoke a backward iteration
method [11] to evaluateρl(K). One then hasfl = f0ρ0ρ1 · · · ρl−1, wheref0 has the simple
form f0(K) = sinh(K)/K.

It can be seen in figure 1, for this temperature (K = 2), that (16) provides an
excellent approximation when compared with the exact results. We note, however, that
the approximation rapidly improves for increasing values ofN . In figure 2, we show the
same quantities as for figure 1, except thatN = 10. In this case one cannot distinguish
between the exact and approximate results for the ring. In general, the approximate result
given by (16) is quite robust. This is illustrated in figure 3, where we show(3|J |/µ2)χN(q)
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Figure 1. The magnetic susceptibilityχN(q) as a function of the wave vectorq for a system of
N = 6 interacting classical Heisenberg spins forK = 2: ring, exact (equation (11)), solid curve;
ring, approximate (equation (16)), solid triangles; open chain (equation (18)), dashed curve.

Figure 2. The magnetic susceptibilityχN(q) as a function of the wave vectorq for a system
of N = 10 classical Heisenberg spins forK = 2 (the key is the same as for figure 1).

for the ten-spin ring withK = 20. It can be seen that while the quantitative agreement with
the exact result has degraded, the qualitative agreement is excellent despite the low value
of the temperature. We note that the performance of the open-chain formula, equation (18),
is considerably inferior.

The oscillations seen in figure 3 for the exact and approximate ring results arise from
what can be called the ‘even–odd’ terms in (11) and (16), respectively, the terms proportional
to sin(Nq/2). With increasingN , there will be a decreased period of oscillation in the
behaviour ofχN(q) versusq. The amplitude of the oscillations, however, is temperature
dependent and decreases exponentially with increasing temperature. For increasingN ,
therefore, there will be significant oscillations inχN(q) only for progressively smaller
temperatures, until in the limitN → ∞, χN(q) is purely monotonic for all temperatures.
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Figure 3. The magnetic susceptibilityχN(q) as a function of the wave vectorq for a system
of N = 10 classical Heisenberg spins forK = 20 (the key is the same as for figure 1).

The fact thatχN(q) becomes negative for selectedq-intervals (as occurs in figure 3), and
hence that the magnetization would be directed oppositely to that of a wave-vector-dependent
magnetic field, would appear to be restricted to the small-N , low-temperature regime.

In summary, we have derived the exact wave-vector-dependent susceptibilityχN(q) for
a one-dimensional system of classical Heisenberg spins with isotropic nearest-neighbour
interactions for both a closed ring and an open chain, equations (11) and (18), respectively.
In the case of the ring, the exact results entail the summation of infinite series of modified
spherical Bessel functions. In contrast, the simple formula given by (16) provides excellent
approximate results when compared with the exact quantity. Equation (16) is based on the
approximate formula (15) for the two-spin correlation function. This simple approximation
combines the expected exponential decay of the correlation function with the cyclic property,
equation (4), associated with the finite ring. Furthermore, the approximateχN(q) based on
this approximation for the correlation function satisfies the exact sum rule given by (9).
Elsewhere [12], we use the present approximate result forχN(q) to derive a theoretical
expression for the NMR spin–lattice relaxation time of small rings. In that work, the
predictions of our theory are compared to experimental data for ring structures with
N = 6, 10.
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