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ABSTRACT 

To design a high resolution spectrum estimation module as part of a digital 

tracking array system, the theory and mathematical formulations of several high 

resolution spectrum estimation methods are presented. In the implementation of a 

spectrum estimation system, the received signal is first down-converted to baseband 

frequency using single channel or in-phase (I) and quad-phase (Q) channel down-

converter before it is digitized using an analog-to-digital (ADC) converter. Three distinct 

frequency estimation methods, namely multiple signal classification (MUSIC), estimation 

of signal parameters via rotational invariance techniques (ESPRIT), and multi-resolution 

spectrum sensing (MRSS), are simulated to detect the inherent frequencies of a test 

signal. The performances, such as estimation accuracy, frequency resolution, processing 

speed, observation time, and resilience to noise, are measured and evaluated. Comparing 

the simulation results, the MRSS out-performs the MUSIC and ESPRIT in terms of 

spectral resolution, estimation accuracy, and robustness to noise. Though the MRSS 

requires a higher observation time and processing time, the values remain significantly 

low at 13 μs and 2.4 μs, respectively, for SNR equals to -10 dB. Hence, the MRSS is 

proposed as the frequency estimation algorithm in the digital tracking array to provide 

accurate, robust, and high resolution spectrum estimation. 
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EXECUTIVE SUMMARY 

To design a high resolution spectrum estimation module as part of a digital 

tracking array system, the theory and mathematical formulations of the high resolution 

spectrum estimation methods, namely autoregressive (AR), multiple signal classification 

(MUSIC), estimation of signal parameters via rotational invariance techniques (ESPRIT), 

minimum norm, and multi-resolution spectrum sensing (MRSS), are presented. The basic 

performances and limitations are demonstrated.  

In the implementation of a spectrum estimation system, the received signal is first 

down-converted to baseband frequency. Both the single channel and I and Q channel 

frequency down-converter are demonstrated. The baseband signal is digitized with an 

analog-to-digital (ADC) converter to provide a real or complex sampled data sequence. 

Three distinct frequency estimation methods, namely MUSIC, ESPRIT and MRSS, are 

simulated to detect the inherent frequencies of a test signal. The performances of the 

three methods based on estimation accuracy, frequency resolution, processing speed, 

observation time, and resilience to noise, are measured and evaluated.  

Comparing the simulation results, the MRSS out-performs the MUSIC and 

ESPRIT in terms of spectral resolution, estimation accuracy, and robustness to noise. 

Though the MRSS requires a higher observation time and processing time, the values 

remain significantly low at 13 μs and 2.4 μs, respectively, for SNR equals to -10 dB. 

These values meet the requirements of a digital tracking array system. Hence, the MRSS 

is proposed as the frequency estimation algorithm in the digital tracking array to provide 

accurate, robust, and high resolution spectrum estimation. 
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I. INTRODUCTION 

A. NEED FOR FREQUENCY ESTIMATION 

In a typical wireless radio communication scenario, a radio transmitter modulates 

its baseband frequency signal with a pre-determined high frequency carrier before 

transmitting the combined signal into free space. To retrieve the baseband signal, a 

receiver has to tune to the same carrier frequency in order to demodulate the received 

high frequency signal back to its baseband frequency.  

As a function of electronic warfare (EW), signals intelligence (SIGINT) is the 

gathering of intelligence by intercepting electromagnetic signals that are transmitted into 

free space. The signals can be communications signals transmitted by wireless radios 

(communications intelligence (COMINT)), or non-communications signals transmitted 

intentionally or unintentionally by electronic equipment, e.g., fix all radar (electronic 

intelligence (ELINT)). For COMINT, the carrier frequency of an enemy’s transmission is 

not known. The frequency has to be estimated from the received signal in a very short 

time, so that the signal that is received subsequently can be converted to baseband for 

further processing (e.g. decryption) and intelligence gathering. As the desired signal may 

be received along with other transmitted signals in the propagation channel, high 

resolution spectrum estimation is required to identify all the frequencies of the different 

signals, so that the frequency of the desired signal can be identified and unwanted signals 

can be filtered away. For ELINT, the power spectrum, including bandwidth, power, and 

frequency, of the received signal may reveal the identity of its transmitter. 

In the operation of an unmanned aerial vehicle (UAV), the ground operator of the 

UAV has to maintain a continuous data link with the UAV, so as to control the UAV’s 

flight and onboard equipment. The UAV is used to carry out a variety of military and 

civilian missions, such as surveillance and reconnaissance, target recognition, battle 

damage assessment, EW, search and rescue, and traffic monitoring [4]. A multifunction  
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digital tracking array system can be used to track a UAV in flight, so as to maintain a 

continuous data link with the UAV. In addition, it can perform other functions for 

COMINT and ELINT. 

A possible block diagram of a tracking array system is shown in Figure 1. The 

order of the functions is variable, and not all functions are performed in every case. For 

example, when tracking and communicating with a cooperative UAV, the frequency is 

likely to be known so frequency estimation is not required. However, to determine the 

presence of emitters in the frequency band, spectral estimation must be done. Subsequent 

to that, direction finding (DF) as identification can be performed for COMINT. The 

frequency estimate would provide the initial tuning for the local oscillator (LO) and 

phase lock loop (PLL) to synchronize to the desired frequency. Due to the digital nature 

of the antenna, multiple functions can be performed on the same data. 

The frequency estimation module can be designed to change and track the 

transmission frequency of the UAV when the latter changes frequency to enhance 

COMINT. Similarly, the frequency estimation module can be designed to obtain and 

track the transmission frequencies of several friendly UAVs. 
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Figure 1.   Functional Block Diagram of a Multifunction Digital Tracking Array System. 

B. OBJECTIVE 

The objective of this thesis is to design a high resolution spectrum estimation 

module as part of a multifunction digital tracking array system. Several spectrum 

estimation methods are analyzed and evaluated based on criteria such as estimation 

accuracy, frequency resolution, processing speed, observation time, and resilience to 

noise. 

C.  PREVIOUS WORK 

Gezer [1] designed and built a ground array to angle-track a UAV, so that the 

antenna beam of the array continues to point to the UAV in flight. This is to allow the 

UAV in flight to transfer data to the ground station. It was assumed that the frequency of 

the received signal is known. 
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Lee [2] designed and built a direction finding system using the robust symmetrical 

number system (RSNS). Due to the limitation of the sampling rate of the analog-to-digital 

converter (ADC), the architecture uses the in-phase (I) and quad-phase (Q) channel 

demodulators to down-convert the received analog signal to its baseband frequency 

before digitizing it. The frequency of the received signal is assumed to be known.  

Kwai [3] improved on Lee’s hardware to design and analyze a three-channel 

RSNS virtual spacing direction finding (DF) system. The frequency of the received signal 

is assumed to be known, and it is used to down-convert the received analog signal to its 

baseband frequency before digitizing it. 

D.  THESIS FOCUS 

This thesis focuses on the analysis and evaluation of several high resolution 

spectrum estimation methods, and proposes a method for integration into a digital array. 

In the implementation of a spectrum estimation system, the received signal is down-

converted to baseband frequency. Both the single channel and I and Q channel frequency 

converter will be discussed. In a digital system, before frequency estimation can be 

performed, the signal is passed into an ADC converter to generate digital representation 

of the received signal in the baseband frequency. Three distinct frequency estimation 

methods are simulated to detect the inherent frequencies of a test signal, and their 

performances are measured and evaluated. Based on the simulation results, a high 

resolution spectrum estimation method will be proposed for the digital tracking array 

E.  THESIS OUTLINE 

Chapter II reviews the theory and mathematical formulations of the high-

resolution spectrum estimation methods, namely autoregressive (AR), multiple signal 

classification (MUSIC), estimation of signal parameters via rotational invariance 

techniques (ESPRIT), minimum norm, and multi-resolution spectrum sensing (MRSS). 

Chapter III demonstrates the implementation of a frequency estimation system 

with a frequency down-conversion circuit. Single channel and I and Q channel frequency 

conversion are presented. 
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Chapter IV presents the simulation results of three distinct spectrum estimation 

methods, namely MUSIC, ESPRIT and MRSS. Their performances in terms of 

estimation accuracy, frequency resolution, processing speed, observation time, and 

resilience to noise are measured and evaluated.  

Chapter V summarizes the research findings and concludes the thesis with a 

recommended high-resolution spectrum estimation method for a digital tracking array. 
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II.  HIGH RESOLUTION SPECTRUM ESTIMATION METHODS 

The first section of this chapter states the different high resolution spectrum 

estimation methods. In Section B, a signal is defined in the baseband frequency to 

demonstrate the performance of the various methods. In Section C, the evolution of 

Fourier transform to Fast Fourier Transform (FFT) for implementation in digital receivers 

is discussed. In Section D, the advantages of zero padding in FFT are presented. In 

Section E to Section I, the theory of the various spectrum estimation methods are 

reviewed and are used to generate the respective power spectrums of the baseband signal 

defined in Section B. The basic performances and limitations of the methods are 

highlighted. 

A.  INTRODUCTION 

The Fast Fourier transform (FFT) is used in digital receivers to transform a signal 

between its time domain and its frequency domain representations. It is often used to 

generate the power spectrum of a given input signal. However, if the signal comprises 

two signals of very close frequencies, an FFT operation may not be able to distinguish the 

two frequencies [4]. Instead, only a single peak representing the two frequencies may be 

generated in the power spectrum. High-resolution spectrum estimation methods provide 

higher frequency resolution than the FFT, and they may distinguish two signals of very 

close frequencies with separate sharp peaks. However, high-resolution spectrum 

estimation techniques involve more complex operations, thus resulting in higher 

processing time and delay. In this chapter, the theory behind five high-resolution methods 

are reviewed and demonstrated. The five methods are: 

1. Linear predication or autoregressive (AR)  
2. Multiple signal classification (MUSIC)  
3. Estimation of signal parameters via rotational invariance techniques 

(ESPRIT)  
4. Minimum norm  
5. Multi-resolution spectrum sensing (MRSS) 
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Prior to spectrum estimation, additional processing may be required to determine 

the total number of frequencies within the frequency band of interest. Other inputs such 

as the order of the filter may be required. After a power spectrum is generated, additional 

processing is required to identify the frequencies in the signal that are represented by the 

peaks.  

B. INPUT TEST SIGNAL 

To better illustrate the operations and performances of the different spectrum 

estimation methods, a noiseless test signal in the baseband is generated and simulated 

with the different methods. The signal consists of three signals of different amplitudes, 

phases, and frequencies, namely 21 MHz, 36 MHz, and 38 MHz. It is represented by the 

equation 

6 6 6( ) cos(2 21 10 0.1) 2cos(2 36 10 ) 1.9cos(2 38 10 )x n n n n                (1) 

where n = 0,1,..., 31. The test signal is sampled 32 times at 100 MHz to create a data 

sequence of length 32. That is, the signal is captured over a period of 0.32 μs. A medium-

range ADC can support up to 100 MHz of sampling rate. It is noted that two of the 

frequencies are relatively close to each other. According to Nyquist sampling theorem, 

since the sampling rate of 100 MHz is greater than twice the highest frequency 

component at 38 MHz, the analog test signal can be represented and reconstructed from 

the sampled data sequence, without any data lost. 

C. FAST FOURIER TRANSFORM (FFT) 

The Fourier transform is based on the concept that any function in the time 

domain can be represented by an infinite number of sinusoidal functions [4]. The Fourier 

transform of a function x(t) in the time domain t is given by X(f) in the frequency domain 

f as follows: 
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2[ ( )] ( ) ( ) j ftF x t X f x t e dt






       (2) 

However, x(t) must be represented in closed form so that the Fourier integral can be 

evaluated.  

The Discrete Fourier Transform (DFT) is used to implement the Fourier transform 

in digital receiver. Unlike the Fourier transform, the DFT can be applied to any kind of 

digitized input data [4]. It is noted that the DFT only provides an approximate solution to 

that of the Fourier transform, especially for data sequence of short length. The DFT of 

x(t) is performed in discrete time for n = 0, 1,…, N -1 as follows: 

21

0

( ) ( )
j knN

N

n

X k x n e




     (3) 

However, the DFT is generally computational intensive, and it requires N2 computational 

operations to calculate the complete DFT of N frequency points.  

Based on the symmetry of e-j2πnk, the Fast Fourier Transform (FFT) was derived as 

an efficient way to calculate the DFT. The FFT and DFT produce the same characteristics 

and properties.  The computations can be reduced from N2 operations to (N/2)log2(N) 

operations. However, the number of data points must be a power of 2 in order to take 

advantage of the fast computation.  

The FFT of the test signal from Eq. (1) is shown in Figure 2. The power spectrum 

displays a sharp peak at 21 MHz and a broader peak that spans from 36 MHz to 38 MHz. 

Thus, the frequencies 36 MHz and 38 MHz cannot be distinguished from the spectrum 

using the FFT using an observation time of 0.32 μs.  
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Peaks detected: 20.9         36.5  

Figure 2.   Power Spectrum of Test Signal Using FFT. 

D. ZERO PADDING TO SAMPLED DATA SEQUENCE 

Zero padding is the appending of zeros at the end of a sampled data sequence 

before the FFT is performed. It makes the locations of the peaks and sidelobes of a power 

spectrum more distinguishable, and enhances the accuracy of identifying the frequencies 

at the peaks [4]. However, this does not mean that the spectral resolution is increased [5]. 

The widths of the peaks remain the same with zero padding, and closely-spaced 

frequencies will remain undifferentiated. To increase the spectral resolution, the length of 

the data sequence, that is, the observation time of the input signal has to be increased.  

Though zero padding increases the amount of data to be processed, it has been 

shown that execution speed for the FFT is the fastest for data sequence of length equals to 

power of two [6].  

The 32 data points are padded with 4,064 zeros in the subsequent discrete time, so 

as to form a data sequence of length 4,096, which is equal to 212.  
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E. AUTOREGRESSIVE (AR)  

The AR model, also known as linear prediction model, predicts the present value 

of a received digital signal as a linear combination of past p values. The sampled data 

sequence data, x(n), can be written as 

1 1

( ) ( 1) ( ) ( 1)
p q

i l
i l

x n a x n Gu n G b u n
 

          (4) 

where ai and bl are constants, G is the gain of the system, and u(n) represents white noise 

[4].  

The power spectrum, ( )ARP f , can be generated using the following equation: 

2
22

2

2

1

( ) ( )

1

sj ft
AR

p
j f

i
i

P f H e

a e











 


   (5) 

where ts is the discrete sampling time sequence, 2( )sj ftH e  is the transfer function,   is 

the noise power, and 2G  . The spectrum generated will be narrowband, and the 

processing to obtain the constants ai is linear.  

The power spectrum of the test signal from Eq. (1) is generated using the AR 

method.  The order, p, of the process is set to be 14, 20, and 30 in Figure 3, Figure 4, and 

Figure 5 respectively. In Figure 3 where p is 14, a sharp peak is formed at 20.5 MHz, but 

the two closely-spaced frequencies 36 MHz and 38 MHz are not distinguishable as in the 

case of the FFT.  
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Peaks detected: 20.5           36  

Figure 3.   Spectrum Using AR for p = 14. 

In Figure 4 where p is 20, the two closely-spaced frequencies can be 

differentiated. As the peaks are not well-defined, the frequencies might not be detected in 

the presence of noise.  
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Peaks detected: 20.5           35           38  

Figure 4.   Spectrum Using AR for p = 20. 
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In Figure 5 where p is 30, the signal is distorted. A frequency is falsely detected in 

between the two closely-spaced frequencies at 36.5 MHz, and a total of 4 frequencies are 

detected. 
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Peaks detected: 20.5           35         36.5         38.5  

Figure 5.   Spectrum Using AR for p = 30. 

From the three spectra, signals with frequencies close together may not be 

differentiated when the order of the process, p, is low. However, spurious signals may 

appear when p is set to be too high. Thus, it is critical that the correct value of p is used in 

order to estimate the inherent frequencies accurately. 

F. MULTIPLE SIGNAL CLASSIFICATION (MUSIC) 

The basic idea of the MUltiple SIgnal Classification (MUSIC) method is to 

separate the signal from the noise in the received signal through eigenvalue 

decomposition of the autocorrelation matrix, R. The eigendecomposition leverages on the 

orthogonal property of the signal and noise subspace [4]. R can be written as 

Frequency (MHz) 
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* *
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(0) (1) ... ( )

(1) (0) ... ( 1)

... ...

( ) ( 1) ... (0)

R R R p

R R R p
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    (6) 

where R(k) is the autocorrelation of x(t) with lag k as follows: 

*( ) [ ( ) ( ) ]R k E x i k x i       (7) 

and E[.] denotes expectation. 

Using eigendecomposition, R can be expressed as 

* *
00 01 0

*
10 11 1

0 0

0 00 1 01 0

0 10 1 11 1

0 0 1 0

...(0) (1) ... ( )

...(1) (0) ... ( 1)
......

...( ) ( 1) ... (0)

...

...

...

...

p

p

p p pp

p p

p p

p p p pp

v v vR R R p
v v vR R R p

RV

v v vR p R p R

v v v

v v v

v v v

  
  

  

  
  

      
      

 
 
   
  
 

  (8) 

where V consists of eigenvectors in its columns, and the corresponding eigenvalues are 

0 , 1 ,…, p . If there are M frequencies in the received signal, the first M eigenvalues 

0 , 1 ,…, 1M   correspond to the M frequencies, and the rest of the eigenvalues 

M , 1 ,…, p  correspond to the noise.  

The relationship between the different eigenvalues is as follows:  

2
0 1 1 1... ...M M M p                  (9) 

where 2 is the noise power. Using this relationship, the number of frequencies in the 

received signal can be estimated. The accuracy of this estimation can be undermined by 

the presence of noise. 
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The first M eigenvectors that correspond to the M signals form the signal 

subspace, and are written as Vs. The rest of the eigenvectors that correspond to the noise 

form the noise subspace, and are written as Vn. That is,  |s nV V V , and sV and nV are 

written as 

00 01 0( 1) 0 0( 1) 0

10 11 1( 1) 1 1( 1) 1

0 0 ( 1) ( 1)

... ...

... ...

... ...

... ...

M M M p

M M M p

s n

p p p M pM p M pp

v v v v v v

v v v v v v
V V

v v v v v v

 

 

 

   
   
       
      
   

 (10) 

Since the signal subspace is orthogonal to the noise subspace, the power 

spectrum, ( )MUSP f , of the input signal can be generated with  

1
( )MUS H H

n s

P f
sV V s

      (11) 

where s is the data sequence sampled from the received signal, and superscript H is the 

hermitian of a matrix. Hermitian of a matrix is the transpose and conjugate of that matrix.  

To generate ( )MUSP f , the number of signals M and the order of the filter, p, must 

be determined. The value of p must be equal to or greater than 2M + 1. The use of the 

default value of 2 / 3p N  is proposed, where N is the number of data points of the 

received signal [4]. 

In Figure 6, the power spectrum of the test signal from Eq. (1) is generated using 

the MUSIC method. There are three frequencies in the test signal, and the number of 

signals, M, is correctly set to three. The order of the filter, p, is set to the minimum value 

of 2M + 1 = 7. The spectrum correctly identifies the three frequencies in the test signal 

with sharp peaks. The peaks are more defined than those generated using the AR method. 
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Peaks detected: 21.1         35.9         38.1  

Figure 6.   Spectrum Using MUSIC for M = 3 and p = 7. 

To measure the effects on the MUSIC when the input M value is not correct, M is 

set incorrectly to be 4 (instead of 3). In Figure 7 and Figure 8, p is set to 9 and 27, 

respectively. Similarly, the spectrum generated distinctly represents the three frequencies 

with sharp peaks.  
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Peaks detected: 21.1         35.9         38.1  

Figure 7.   Spectrum Using MUSIC for M = 4 and p = 9. 
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Peaks detected: 21.1         35.9         38.1  

Figure 8.   Spectrum Using MUSIC for M = 4 and p = 27. 
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When p is increased to 28 in Figure 9, the MUSIC fails to detect the two closely 

spaced frequencies. A high sharp peak is formed at 21 MHz, and a low broad peak is 

formed at about 36.1 MHz.  
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Peaks detected: 21.1         36.1  

Figure 9.   Spectrum Using MUSIC for M = 4 and p = 28. 

In Figure 10, M is set incorrectly at 7 (instead of 3) and p is set to the minimum 

value of 2M + 1 = 15. The spectrum depicts four peaks, thus falsely detecting a frequency 

at 8.8 MHz in the test signal.  
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Peaks detected: 8.8         21.1         35.9         38.1  

Figure 10.   Spectrum Using MUSIC Method: M = 7 and p = 15. 

In Figure 11, M is set incorrectly at 2 (instead of 3), and p is set to the minimum 

value of 2M + 1 = 5. The spectrum detects two frequencies, and fails to distinct the two 

closely spaced frequencies. 
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Peaks detected: 21.5         37.1  

Figure 11.   Spectrum Using MUSIC for M = 2 and p = 5. 
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From the simulated results, it can be observed that the accuracy of the MUSIC 

method in detecting the inherent frequencies of the test signal is less dependent on the 

order of the filter, p. When p varies from 9 to 27, the spectrum shows three sharp peaks to 

represent the three frequencies of the test signal.  

However, an accurate value of M has to be input into the MUSIC algorithm in 

order to generate a correct spectrum. When M is increased from 3 to 6, spurious signal 

appears in the spectrum and results in false detection. When M is reduced from 3 to 2, the 

two closely-spaced frequencies are detected as a single frequency. Therefore, for MUSIC 

to accurately detect the frequencies in a received signal, it is critical that the number of 

frequencies is accurately determined from Eq. (9) or other means. 

G. ESTIMATION OF SIGNAL PARAMETERS VIA ROTATIONAL 
INVARIANCE TECHNIQUES (ESPRIT) 

Unlike AR and MUSIC methods, the Estimation of Signal Parameters via 

Rotational Invariance Techniques (ESPRIT) does not search the entire frequency range 

for peaks in the power spectrum. However, the ESPRIT method performs the 

eigendecomposition twice, thus it is computationally more intensive than the AR and 

MUSIC methods [4]. Similar to MUSIC method, the number of frequencies in the input 

signal must be determined correctly, so that the frequency components can be identified 

accurately. 

The input signal is sampled, and is represented as x(n), where n=0, 1,…, N-1. 

Two data series, G1 and G2, are written based on x(n) as 

1

2

(0), (1),..., ( 2)

(1), (2),..., ( 1)

G x x x n

G x x x n

 
 

     (12) 

The order of the filter, p, is set to be 1
2

N
 . With an even number of samples (i.e. N is 

even), the autocorrelation matrix, Ryy, and cross-correlation matrix, Ryz, are formed as 

* *(( ) ) (( ) )H T H T
yy yzR yy y y R yz y z       (13) 
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where the superscript H is the hermitian operation, T is the transpose operation, * is the 

conjugate operation, and  

2 2

2 2
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  (14) 

Eigendecomposition is performed on Ryy as  

yyR e e         (15) 

to obtain e  and  , which are the eigenvectors and eigenvalues respectively. Similar to 

the MUSIC operation in Eq. (9), the number of frequencies, M, in the received signal can 

be estimated by processing e  and  . 

Using the smallest eigenvalue min  from  , matrices Rs and Rt are formed as  

min mins yy t yzR R I R R D        (16) 

where  

 

2 2 2 2

1 0 0 0 0 0 0 0

0 1 0 0 1 0 0 0

0 0 1 0 0 1 0 0

0 0 0 1 0 0 1 0N N N N

I D

 

   
   
   
    
   
   
      

 
 
 

         
 

  (17) 

The generalized eigendecomposition of Rs and Rt is 
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s tR e R e       (18) 

where e  and   are the eigenvector and eigenvalue. The   values close to the unit circle 

are determined.  The values are then used to determine the frequency components of the 

input signal, given by 

1 Im1
tan

2 Re
i

i
i

f


 
  

  
 

     (19) 

The test signal from Eq. (1) is analyzed using the ESPRIT method with the order 

of filter, p, set to be N/2. Similar to the MUSIC method, the number of frequencies, M, in 

the test signal has to be determined and input into the ESPRIT method. To evaluate the 

performance of ESPRIT method, the value of M is varied, and the results are tabulated in 

Table 1. It is observed that the accuracy of ESPRIT is highly dependent on the accuracy 

of M. When the correct number of frequencies is input into the ESPRIT method, the three 

frequencies at 21 MHz, 36 MHz, and 38 MHz are correctly detected. When the number 

of frequencies is under-estimated, (3 – M) frequencies of the test signal are not detected. 

When the number of frequencies is over-estimated, one frequency is falsely detected at 

50 MHz. 

 

Table 1.   Frequencies Detected Using ESPRIT for M = 1, 2,   , 6.  

Number of 
Frequencies, M 

Frequencies 
detected / MHz 

Frequencies Not 
Detected / MHz 

Frequencies Falsely Detected 

1 21 36, 38 - 
2 21, 36 38 - 
3 21, 36, 38 - - 
4 21, 36, 38, 50 - 50 
5 21, 36, 38, 50 - 50  
6 21, 36, 38, 50  50 
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H. MINIMUM NORM  

Similar to the MUSIC method, the Minimum Norm method calculates the signal 

subspace, Vs, and the noise subspace, Vn, as in Eq. (10) [4]. Vn is rewritten as 

0 0( 1) 0

1 1( 1) 1

( 1)

...

...

...

...

M M p
H

M M p

n

n

pM p M pp

v v v

cv v v
V

V
v v v







 
             
 

   (20) 

where the superscript H is the hermitian operation, cH is the first row of Vn, and nV   

contains the rest of the rows of Vn. They are written as 

1 1 1 0

0 0 1 0

1

...
M M p

H
M M p n

pM pM pp

v v v

c v v v V

v v v







 
      
  


   


  (21) 

A vector, d, which is a linear combination of eigenvectors in the noise subspace, 

is calculated as 

 
1

/ H
n

d
V c c c




     (22) 

where the square of the norm of d, 
2 2

0

p

i
i

d d


  , is minimized. 

The power spectrum PMN(f) of the input signal can then be defined as 

1
( )MN H H

P f
sdd s

      (23) 

where s  is assumed to be the input vector 

 2 2 ( 1)1 ...j f j N fs e e        (24) 

The test signal from Eq. (1) is analyzed using the Minimum Norm method. The 

number of signals, M, is correctly set to 3, and the order of filter, p, is set to be 20. The 

spectrum of the input signal is plotted in Figure 12. The results are similar to the MUSIC 

method, except that there are a few low lying peaks. These low-lying peaks might result 

in false detection if the threshold is not properly set or if the noise is significant. 
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Peaks detected: 21         35.8         37.9  

Figure 12.   Spectrum Using Minimum Norm for M = 3 and p = 20. 

I. MULTI-RESOLUTION SPECTRUM SENSING (MRSS) 

A wideband dual-stage multi-resolution spectrum sensing (MRSS) technique was 

proposed for cognitive radio systems [7]. A coarse sensing is performed over a large 

frequency range in a short time to provide a low resolution spectrum. The frequency 

search is then narrowed down to segments of the spectrum where the energy levels are 

higher than the threshold level, thus indicating signals being transmitted in those 

segments. For these identified segments, the fine sensing is used to estimate the 

frequency components of the received signal. The fine sensing takes about 25 times more 

processing time than the coarse sensing. The difference in processing time is significant 

when a wide spectrum is searched for the presence of signals. 

A functional block diagram of an analog MRSS system is shown in Figure 13. It 

consists of a wavelet waveform generator, multipliers and integrators, and low speed 

analog-to-digital converters (ADC). The multipliers and integrators are used to perform 

correlation. The wavelet acts as a bandpass filter and eliminates unwanted signals and 

noise outside of the frequency band of interest.  
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Figure 13.   Functional Block Diagram of an Analog MRSS System (From [7]). 

The spectrum of interest is demarcated by its start frequency, fstart, and its end 

frequency, fstop. For coarse sensing, a larger sweep frequency, fsweep, is chosen to provide a 

lower resolution spectrum. For fine sensing, a smaller sweep frequency, fsweep, is chosen 

to identify the inherent frequencies of the received signal, r(t). 

The locally generated wavelet, w(t), is multiplied with sinusoidal signals from the 

local oscillators to form wI,k(t) and wQ,k(t) as  

 , ( ) ( ) cos(2 ) for 0,...,I k kw t w t f t k KK    (25) 

 , ( ) ( )sin(2 ) for 0,...,Q k kw t w t f t k KK    (26) 

where floor ( ) /stop start sweepKK f f f     and k start sweepf f kf  . Floor[x] is an operation 

to obtain the next integer lesser than x. 

The received signal, r(t), is multiplied with wI,k(t) and wQ,k(t) respectively in the 

in-phase (I) and quad-phase (Q) channels, before each of them is passed through an 

integrator. The outputs of the integrators are 

     
 1

, ,

1 w

w

k T

I k I k
w kT

z t r t w t dt
T

  
      

     (27) 

     
 1

, ,

1 w

w

k T

Q k Q k
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z t r t w t dt
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     (28) 
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The analog-to-digital converter (ADC) in each channel samples zI,k(t) and zQ,k(t) at 

a period of Tw to form the digital signals sI,k(t) and sQ,k(t) as follows: 

 , ,I k I k ws z kT      (29) 

 , ,Q k Q k ws z kT      (30) 

The spectral density at frequency fk is given by 

2 2
, ,k I k Q kp s s       (31) 

The total processing time, Ttotal, for spectrum sensing is inversely proportional to 

the window bandwidth (or the width of the spectrum of interest), Bw, and fsweep as shown 

1 1
total w

w weep

T T KK
B f

        (32) 

The test signal from Eq. (1) is analyzed using the MRSS method. As highlighted 

in Eq. (1), the test signal is sampled 32 times and has N = 32 data points. With fsweep set to 

0.02 MHz, i.e., 1/100 of the smallest frequency spacing of 2 MHz in the test signal’s 

spectrum, the power spectrum of the test signal is generated using MRSS and is plotted in 

Figure 14. The two broad peaks represent the two frequencies that are detected. The 

MRSS is not able to differentiate the two closely spaced frequencies. 
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Peaks detected: 21         36.9  

Figure 14.   Spectrum Using MRSS for N = 32 and fsweep = 0.02 MHz. 

The sweep frequency, fsweep, is reduced by a factor of 10 to 0.002 MHz, i.e. 1/1000 

of the smallest frequency spacing of 2 MHz in the test signal’s spectrum. A plot of the 

spectrum is shown in Figure 15. Despite increasing the sweep resolution by a factor of 

10, the spectrum remains the same, and the two closely spaced frequencies remain 

undifferentiated. 
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Peaks detected: 21         36.9  

Figure 15.   Spectrum Using MRSS for N = 32, and fsweep = 0.002 MHz. 

With fsweep set to the original 0.02 Hz, the number of data points, N, is increased 

by a factor of 2, and the spectrum is plotted in Figure 16. With 64 data points, the MRSS 

is now able to differentiate the two closely spaced frequencies, though the two peaks are 

not very pronounced. Furthermore, the peaks have narrower bases and are more distinct. 
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Peaks detected: 21         35.6         38.4  

Figure 16.   Spectrum Using MRSS for N = 64, and fsweep = 0.02 MHz. 

The number of data points, N, is increased to 320, 512 and 3200, and the 

respective spectra are plotted in Figures 17, 18 and 19. As N increases, the peaks become 

narrower and more defined. The sidelobes between the two closely spaced frequencies 

also decrease allowing for more accurate frequency estimation. The minimum signal 

power decreases by 20 dB from -80 dB to -100 dB as N increases by 10 times from 320 

to 3200, thus increasing the heights of the peaks. 
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Peaks detected: 21  36  38  

Figure 17.   Spectrum Using MRSS for N = 320, and fsweep = 0.02 MHz. 
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Peaks detected: 21  36  38  

Figure 18.   Spectrum Using MRSS for N = 512, and fsweep = 0.02 MHz. 
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Peaks detected: 21  36  38  

Figure 19.   Spectrum Using MRSS for N = 3200, and fsweep = 0.02 MHz. 

J. SUMMARY 

The FFT does not provide the required resolution in the power spectrum 

generated, thus high resolution spectrum estimation methods are used. Using the input 

test signal from Eq. (1), the AR method is shown to depend heavily on the order, p, and 

the peaks in the spectrum are not pronounced. The MUSIC is less sensitive to order of the 

filter, p, and displays sharp peaks in the spectrum. However, it is dependent on the 

accuracy of the number of frequencies, M, in the signal. Unlike the MUSIC, the ESPRIT 

does not search the entire frequency range for peaks in the power spectrum. It offers very 

accurate results in a noiseless environment. Like the MUSIC, the ESPRIT is also 

dependent on the accuracy of M. The minimum norm method produces results similar to 

that of the MUSIC, except that the low lying peaks in the power spectrum might result in 

false detection in the presence of noise. The MRSS provides accurate spectrum 

estimation, but it requires a longer observation time. The three distinct methods, namely, 

MUSIC, ESPRIT, and MRSS, are chosen for further analysis in the subsequent chapters.  
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III. IMPLEMENTATION OF A SPECTRUM ESTIMATOR 

The first section of this chapter provides an overview of processing a received 

signal before applying a high resolution spectrum estimation method. In Section B, an 

analog received signal is defined with multi-tone spectrum to test the performance of the 

various spectrum estimation methods. In Section C, a frequency down-conversion mixer 

circuit is presented. In Section D, the received signal defined in Section B is converted 

down to baseband frequency. The last section demonstrates the need of a bandpass filter 

prior to the mixer circuit, so as to eliminate false detection due to frequencies outside the 

band of interest. The FFT is used to show the spectrum of the digitized output signal in 

all the sections. 

A. INTRODUCTION 

A spectrum estimation module of a digital receiver is built and simulated with an 

analog received signal. The received signal is first down-converted to baseband 

frequency. It is further demonstrated that the received signal has to pass through a 

bandpass filter before it is down-converted, so that there are no ambiguities and false 

detections caused by frequencies outside the band of interest. After the received signal is 

bandpassed and down-converted, the analog signal is converted to digital form using an 

analog-to-digital converter (ADC), so that high resolution spectrum estimation methods 

can be used to determine the inherent frequencies of the received signal in the specific 

band of interest. 

B. INPUT TEST SIGNAL 

To rigorously test and evaluate the performance of the spectrum estimation 

module, an analog received signal with multi-tone spectrum is generated and input into 

the module. The simulated received signal is 
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( ) 1.3cos 2 2.410 10 0.1 2cos 2 2.411 10

1.5cos 2 2.4300 10 0.2 1.9 2 2.4305 10

1.4cos 2 2.4400 10 0.3 1.8cos 2 2.4401 10

r t t t

t t

t t

 

 

 

     

    

    

  (33) 

The received signal, r(t), is a combination of seven sinusoidal signals, which have 

different amplitudes and phases. The frequencies are 2.410 GHz, 2.411 GHz, 2.4300 

GHz, 2.4305 GHz, 2.4400 GHz and 2.4401 GHz. The six frequencies can be grouped into 

three pairs of frequencies with 1 MHz, 0.5 MHz, and 0.1 MHz spacing respectively. One 

of the performance criteria of a spectrum estimation method is its spectral resolution. 

That is, the ability to distinguish one frequency from another in each pair of frequencies. 

The spectrum of interest is from 2.4 GHz to 2.45 GHz, that is, the bandwidth of 

interest is 50 MHz. According to Nyquist theorem, the bandwidth is ½ of the sampling 

frequency, fs, of the ADC. This thesis assumes that a medium-range commercial ADC, 

which operates at a maximum sampling rate of 100 MHz, is used. Hence, the bandwidth 

of interest, B, is  

 61 1
100 10 50MHz

2 2sB f      (34) 

The signal, r(t), is captured over an observation window of 1 μs. As the analog 

received signal is simulated using MATLAB, a high sampling rate of 10 GHz is used to 

generate the analog signal.  

C. SINGLE CHANNEL FREQUENCY DOWN-CONVERTER CIRCUIT 

A mixer is utilized to convert the frequency range of the receiver signal to 

baseband for the ease of signal processing [4]. A frequency down-converter circuit is 

shown in Figure 20. The output signal of the mixer, y(t), is given by 

 ( ) ( ) ( )y t r t c t   (35) 

where r(t) is the received signal to be demodulated and c(t) is the local oscillator (LO) 

signal. 
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Figure 20.   Single Channel Frequency Down-Converter Circuit (After [4]). 

A mixer is a nonlinear device, and its output signal current, I, can be related to its 

input signal voltage, V, by 

 2
0 1 2 ...I a a V a V     (36) 

where a0, a1, a2,… are constants. The nonlinear linear relationship between I and V is 

plotted in Figure 21.  

 

Figure 21.   I - V Nonlinear Relationship of a Mixer. 

Assuming that the received signal, r(t) has a single frequency, fr, and amplitude, 

Vr, and the local oscillator signal, c(t), has a frequency, fc, and amplitude, Vc, the input 

signal into the mixer is 
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 ( ) ( ) sin(2 ) sin(2 )r r c cV r t c t V f t V f t      (37) 

Substituting Eq. (37) into the a2V
2 term in Eq. (36), the corresponding part of the signal, 

y(t), is 

 
    

2 2 2 2 2
2 2 2

2

sin (2 ) sin (2 )

cos 2 cos 2

r r c c

r c r c r c

a V a V f a V f

a V V f f t f f t

 

 

 

         
 (38) 

A lowpass filter is implemented to eliminate the noise outside the frequency band 

of interest. When y(t) is passed through a lowpass filter, the baseband signal is obtained 

as  

  2( ) cos 2r c r cz t a V V f f t     (39) 

In MATLAB, as a high sampling rate of 10 GHz is used to represent the analog 

signal, the spectrum of the signal is repeated at every 5 GHz. The lowpass filter will 

eliminate the repeated spectrum in the higher frequencies. Thus, the integrity of the 

MATLAB simulated analog signal is preserved. 

D. FREQUENCY DOWN-CONVERSION 

Using the simulated analog received signal, r(t), in Eq. (33), the local oscillator 

signal, c(t), is generated at 2.4 GHz so as to convert the 2.4 GHz to 2.45 GHz portion of 

the spectrum to the range 0 Hz to 50 MHz. More simply, the entire received signal’s 

spectrum is subtracted and lowered by 2.4 GHz. Due to rolloff in the lowpass filter 

characteristics, the critical frequency, fc, of the lowpass filter is set to be 20% larger than 

the bandwidth of interest, B, at 50 MHz. That is, fc is set to 120 %   50 MHz = 60 MHz.  

Before the signal can be processed to estimate its spectrum, z(t) is sampled and 

converted to its digital form using a ADC. A medium-range ADC, which can support up 

to 100 MHz of sampling rate, is used. In MATLAB, a high sampling rate of 10 GHz is 

used to represent the analog signal. Thus, the ADC is simulated by reducing the sampling 

rate to 100 MHz. This is achieved by interpolating every consecutive 100 data points to 

one point. With an observation window of 1 μs, the digitized received signal, r(t), in 

baseband frequency has 101 data points. 
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The FFT of the digitized z(t) is plotted in Figure 22. From the power spectrum 

plot, the FFT identifies frequencies at 9.4 MHz, 10.9 MHz, 30.5 MHz, and 38.8 MHz. 

Since the spectrum is previously lowered by 2.4 GHz through mixing, the actual 

frequencies are calculated by adding 2.4 GHz to each of the frequencies detected. 

Therefore, the actual frequencies detected are 2.4094 GHz, 2.4109 GHz, 2.4305 GHz, 

and 2.4388 GHz. The maximum error from the actual frequencies is quite significant at 

1.2 MHz. It is noted that the two frequencies spaced at 1 MHz apart can be detected using 

the FFT. As expected, the frequencies spaced at 0.5 MHz and 0.1 MHz cannot be 

detected with the FFT. Therefore, high resolution spectrum estimation methods are 

required. 
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Peaks detected: 9.4         10.9         30.5         39.8  

Figure 22.   Spectrum of Digitized Received Signal, r(t), in Baseband Using FFT. 
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E. NEED FOR BANDPASS FILTER 

To illustrate the need for the received signal to pass through a bandpass filter 

before mixing, a sinusoidal signal at 2.380 GHz is generated, which is out of the 

frequency band of interest (2.4 – 2.45 GHz). It is combined with the received signal, r(t), 

in Eq. (33) to form 

 

 
   
   
   

9

9 9

9 9

9 9

( ) cos 2 2.380 10 0.1

1.3cos 2 2.410 10 0.1 2cos 2 2.411 10

1.5cos 2 2.4300 10 0.2 1.9 2 2.4305 10

1.4cos 2 2.440 10 0.3 1.8cos 2 2.4401 10

r t t

t t

t t

t t



 

 

 

   

    

    

    

 (40) 

Using the same frequency down-converter circuit in Figure 23, the FFT of the 

digitized z(t) is plotted in Figure 21. The actual frequencies detected are 2.4094 GHz, 

2.4109 GHz, 2.4203 GHz, 2.4305 GHz, and 2.4388 GHz. The frequency 2.380 GHz is 

falsely detected as 2.420 GHz. This is because both 2.380 GHz and 2.420 GHz are 20 

MHz away from the frequency of the local oscillator, fs. For a single channel down-

converter, the frequencies below the local oscillator frequency, fc, “wrap around” and are 

indistinguishable from the frequencies above. 

One means of preventing false detection of frequencies outside the band of 

interest, a bandpass filter is implemented at the front of the mixer circuit as shown in 

Figure 24. Considering that the critical frequency of the lowpass filter is set at 60 MHz, 

the passband frequencies are set to be 2.400 GHz to 2.460 GHz. 
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Peaks detected: 9.4         10.9         20.3         30.5         39.8  

Figure 23.   Spectrum of Digitized Received Signal, ( )r t , in Baseband Using FFT. 

 

 

Figure 24.   Single Channel Frequency Down-Converter Circuit With Bandpass Filter. 

The FFT of the digitized z(t) is plotted in Figure 25. As the frequencies outside 

the band of interest are filtered off, there is no false detection. In the MATLAB 

simulation, a finite impulse response (FIR) filter is used as a bandpass filter. As the 

transfer function of the FIR filter is not an ideal rectangular function, the spectrum is 

slightly different from that without the bandpass filter in Figure 21. The peaks in the 

spectrum are not significantly affected by the bandpass filter. 
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Peaks detected: 9.4         10.9         30.5         39.8  

Figure 25.   Spectrum of Digitized Received Signal, ( )r t , in Baseband Using FFT and 
Bandpass Filter. 

F. IN-PHASE (I) AND QUAD-PHASE (Q) CHANNEL CONVERSION 

In the above sections, the bandwidth of interest is limited to half of the maximum 

sampling rate, fs, of the ADC. However, the effective bandwidth can be doubled if both 

an in-phase (I) and quad-phase (Q) channel (quadrature) is used instead of a single 

channel frequency down-conversion [4].  According to Nyquist sampling theorem, the 

minimum sampling rate is twice the highest frequency in the band of interest. With an 

additional Q channel, the number of data samples doubles for a fixed sampling rate. 

Thus, the bandwidth of interest is also doubled. 

An I and Q channel frequency down-converter circuit is shown in Figure 26. The 

received signal, ( )r t , is split and passed through two bandpass filters simultaneously. 

Unlike the single channel converter, the bandpass filters have bandwidths of fs (instead of 

fs/2) centered at the carrier frequency, fc. The top branch of the circuit represents the I  
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channel, and it is exactly the same as the single channel frequency converter. Similarly, 

the output signal from the bandpass filter is mixed with a locally generated sinusoid, c(t), 

to give 

          cos 2I c cy t r t c t r t A f t      (41) 

 
  

 

Figure 26.   In-Phase (I) and Quad-Phase (Q) Channel Frequency Down-Converter 
Circuit. 

 

In the lower branch of the circuit, which represents the Q channel, the same 

sinusoid, c(t), is shifted by 90° in phase to form    2 2cos 2c cc t V f t     

 sin 2c cV f t . The sinusoid is then mixed with the output signal from the bandpass 

filter to give 

          2 sin 2Q c cy t r t c t r t A f t         (42) 

Both  Iy t  and  Qy t  are passed through lowpass filters of critical frequency 

equals to 2sf , so as to eliminate noise outside the frequency band of interest. The  
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outputs of the lowpass filters,  Iz t  and  Qz t , are sampled to form the digitized signals, 

Iz  and Qz  respectively. The two sampled data sequences are combined to form a 

complex data sequence as 

I Qz z jz       (43) 

The FFT is performed on the complex data sequence, z , and the power spectrum 

generated is plotted in Figure 27. A distinct difference between the single and I and Q 

channel conversion is that the latter generated a spectrum with negative frequencies. The 

frequencies detected are -21.1 MHz, 8.6 MHz, 10.2 MHz, 29.7 MHz, and 39.1 MHz. As 

the spectrum is lowered by 2.4 GHz through mixing, the actual frequencies detected are 

2.3789 GHz, 2.4086 GHz, 2.4102 GHz, 2.4297 GHz, and 2.4391 GHz. Unlike the single 

channel conversion that resulted in false detection at 2.2 GHz, the frequency 2.38 GHz in 

the received signal is detected correctly as 2.3789 GHz with 1.1 MHz error. This shows 

for the same ADC operating at maximum sampling rate, the bandwidth of interest is 

doubled with the use of I and Q channel conversion. The bandwidth of interest is thus 

equals to the sampling rate, fs.   
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Peaks detected:   -21.1          8.6         10.2         29.7         39.1  

Figure 27.   Spectrum of Complex Data Sequence from I and Q Channel Frequency 
Down-Conversion. 
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G. SUMMARY 

Before spectrum estimation is performed, the received analog signal has to be 

down-converted to baseband frequency and digitized. Single channel or I and Q channel 

can be used for the frequency down-conversion. It has been demonstrated that a bandpass 

filter is required before the frequency down-converter so as to prevent false detection due 

to frequencies outside the band of interest. For the single channel converter, the 

frequency band of interest is equal to half the sampling frequency, that is, fs/2. As 

compared to the one channel converter, the I and Q channel converter has twice the 

frequency band of interest, which is equal to the sampling frequency, fs. The single 

channel converter provides a real data sequence, and the I and Q channel provides a 

complex data sequence. 

The next chapter focuses on applying the three selected high resolution spectrum 

estimation methods from Chapter II to the output data sequence. 
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IV. SIMULATION AND RESULTS 

The first section of this chapter identifies candidate solutions to the frequency 

estimation function. In Section B, the power spectrum of the test signal from Eq. (40) is 

generated using the MUSIC method. In Section C, additive white Gaussian noise 

(AWGN) is added to the test signals before the spectrum is again generated by the 

MUSIC. In Section D, the same test signal is simulated with the ESPRIT method.  In 

Section E, the simulation is repeated after the test signal is added with AWGN. In Section 

F, the MRSS is used to generate the power spectrum of the test signal. In the last section, 

the simulation is repeated after the test signal is added with AWGN.  

A. INTRODUCTION 

In Chapter II, a signal with multi-tone spectrum was generated and passed 

through a bandpass filter, frequency down-converter, and an analog-to-digital (ADC) 

converter. The output is a digitized signal in its baseband, so that high resolution 

spectrum estimation can be performed.  The FFT was demonstrated to have low spectral 

resolution. In this chapter, the power spectrum of the digitized signal is estimated using 

the MUSIC, ESPRIT and MRSS methods. The performances of the methods will be 

measured and evaluated. Additive white Gaussian noise (AWGN) will be added to the 

signal to quantify the robustness of the methods against noise. As the MUSIC is able to 

process complex data sequence, the I and Q channel frequency down-conversion is used 

to provide a wider frequency band of interest. On the contrary, the ESPRIT and MRSS 

are designed to process real data sequence, the single channel frequency down-

conversion is used.  

B. ANALYSIS WITH MUSIC 

The MUSIC method is used to estimate the spectrum of the signal from Eq. (40). 

The I and Q channel frequency down-conversion is used so as to double the bandwidth of 

interest to fs = 100 MHz. There are M = 7 frequencies in the signal, namely 2.380 GHz, 

2.410 GHz, 2.411 GHz, 2.4300 GHz, 2.4305 GHz, 2.4400 GHz and 2.4401 GHz. The 
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number of frequencies, M, is assumed to have been estimated correctly using Eq. (9). It is 

highlighted in Chapter II that the MUSIC is highly dependent on the accuracy of the 

number of frequencies in the signal. At this point, the signal is assumed to be free of 

noise. 

When the order of the filter, p, is set to the minimum at 2 M + 1 = 27 + 1 = 15, 

the power spectrum of the signal is plotted in Figure 28. The plot is distorted and shows 

numerous peaks.  
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Figure 28.   Spectrum Using MUSIC for M = 7 and p = 15. 

In Figure 29, p is incremented to 16, and five out of the seven frequencies in the 

received signal are detected. MUSIC is able to differentiate frequencies spaced at 0.5 

MHz apart. Though there is a sharp peak at -20 MHz, the frequency may not be detected 

as the height of the peak is relatively low. The height of the peak is comparable to that of 

the broad peak at -50 MHz. The processing time is measured using the MATLAB 

function “tic” and “toc”, and it includes the time required to identify the values of the 

peaks. The maximum estimation error is 0.1 MHz, and the processing time is 0.112968 s. 
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Peaks detected:   10           11         30.1         30.5         40.1  

Figure 29.   Spectrum Using MUSIC for M = 7 and p = 16. 

In Figure 30, p is incremented to 17. The spectrum is distorted and shows 

numerous peaks. The processing time is 0.115015 s.  
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Figure 30.   Spectrum Using MUSIC for M = 7 and p = 17. 
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As p increases to 18 and 19, the spectrum remains distorted. When p is increased 

to 20, the spectrum detects six out of seven frequencies in the received signal. The power 

spectrum for p equals to 20 is plotted in Figure 31. The MUSIC is still unable to 

differentiate the frequencies spaced at 0.1 MHz apart. The maximum estimation error is 

0.1 MHz, and the processing time is 0.090337 s. 
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Peaks detected:   -20           10           11         30.1         30.5         40.1  

Figure 31.   Spectrum Using MUSIC for M = 7 and p = 20. 

In Figure 32, p is incremented to 21. The spectrum is again distorted and shows 

numerous peaks. The processing time is 0.115015 s.  
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Figure 32.   Spectrum Using MUSIC for M = 7 and p = 21. 

The above trend continues as p increases, and the spectrum is distorted for most 

values of p. As p increases, the spectrum will be distorted except when p equals to 24, 28, 

32, 36, 40, 44, 48, …, or 92. This means that p has to be incremented by a value of four 

from 24 to generate non-distorted spectra. In Figure 33, p is incremented to 48, and the 

spectrum continues to show six out of the seven frequencies. The frequencies spaced at 

0.5 MHz remains differentiable. The maximum estimation error is 0.1 MHz, and the 

processing time is 0.113248 s. It is observed that the heights of the peaks have reduced by 

about 10 dB as p increases from 24 to 48. The floor of the spectrum also increases by 10 

dB from -85 dB to -75 dB. In Figure 34, the spectrum is distorted for p equal to 49. 
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Peaks detected:   -20           10           11         30.1         30.5         40.1  

Figure 33.   Spectrum Using MUSIC for M = 7 and p = 48. 
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Figure 34.   Spectrum Using MUSIC for M = 7 and p = 49. 

The recommended value of p is 2 N / 3 = 67.3 [4]. However, the spectrum is 

distorted when p equals to 67, but when p is rounded up to 68, the spectrum is plotted in 

Figure 35. Similarly, the spectrum shows six out of the seven frequencies, and it retains 

its ability to differentiate frequencies spaced at 0.5 MHz apart. The maximum estimation 
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error remains at 0.1 MHz, and the processing time is 0.116560 s. However, the floor of 

the spectrum increases by 9 dB from -65 dB to -56 dB, and the average height of the 

peaks reduces by about 5 dB.  
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Peaks detected:   -20           10           11         30.1         30.5         40.1  

Figure 35.   Spectrum Using MUSIC for M = 7 and p = 2 N / 3 ≈ 68. 

In Figure 36, p is increased to 92. Similarly, the spectrum shows six out of the 

seven frequencies, and it retains its ability to differentiate frequencies spaced at 0.5 MHz 

apart. The maximum estimation error remains at 0.1 MHz, and the processing time is 

0.132163 s. However, the floor of the spectrum increases by 23 dB from -56 dB to -33 

dB, and the average height of the peaks reduces by about 3 dB.  
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Peaks detected:   -20           10           11         30.1         30.5         40.1  

Figure 36.   Spectrum Using MUSIC for M = 7 and p = 92. 

The highest value of p that the spectrum is not distorted is 101, which is an 

increment of 9 from 92. The spectrum is shown in Figure 37, and it detects only the two 

frequencies with the highest peaks. The maximum estimation error is 0.2 MHz, and the 

processing time is 0.143407 s. For p equals to or greater than 102, the spectrum is 

distorted.  
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Peaks detected:   30.3         40.1  

Figure 37.   Spectrum Using MUSIC for M = 7 and p = 101. 

C. ANALYSIS WITH MUSIC IN THE PRESENCE OF NOISE  

To test the robustness of the MUSIC method in a noisy environment, the received 

signal, ( )r t , is added with additive white Gaussian noise (AWGN) such that the signal-

to-noise ratio (SNR) is 10 dB. That is, the signal power is ten times that of the noise 

power. The performance of the MUSIC method is expected to deteriorate in the presence 

of noise. 

As a comparison, the spectrum produced using the FFT is plotted in Figure 38. 

The spectrum is similar to the FFT of the noiseless signal shown in Figure 27. 
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Peaks detected:   -21.1          8.6         10.2         29.7         39.1  

Figure 38.   Spectrum Using FFT for SNR = 10 dB. 

When the order of the filter, p, is set to the minimum at 2 M + 1 = 27 + 1 = 15, 

the spectrum of the signal is plotted in Figure 39. The spectrum is distorted with 

numerous peaks. The processing time is 0.109423 s. Unlike the noiseless case, the 

spectrum remains distorted until p is increased to 24. This means that the minimum value 

of p for spectrum estimation increases in the presence of noise. 
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Figure 39.   Spectrum Using MUSIC for M = 7, p = 15, and SNR = 10 dB. 

In Figure 40, p is increased to 24, and the spectrum detects five out of the seven 

frequencies. Unlike the noiseless case, the MUSIC loses its ability to differentiate 

frequencies spaced at 0.5 MHz apart. The maximum estimation error is 0.2 MHz, and the 

processing time is 0.085496 s. The three low-lying peaks may result in false detections if 

the threshold is not set properly. 
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Peaks detected:   -20           10           11         30.3         40.1  

Figure 40.   Spectrum Using MUSIC for M = 7, p = 24, and SNR = 10 dB. 

The next value of p that the spectrum is not distorted is 28. The spectrum for p 

equals to 28 is generated in Figure 41. The MUSIC regains its ability to differentiate 

frequencies spaced at 0.5 MHz apart. The maximum estimation error is 0.1 MHz, and the 

processing time is 0.086582 s. The next value of p that the spectrum is not distorted is 32. 

In Figure 42, p equals to 32, and the characteristics of the spectrum remain unchanged. 

The maximum estimation error is 0.1 MHz, and the processing time is 0.092939 s. 
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Peaks detected:   -20           10           11         30.1         30.5         40.1  

Figure 41.   Spectrum Using MUSIC for M = 7, p = 28, and SNR = 10 dB. 
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Peaks detected:   -20           10           11         30.1         30.5         40.1  

Figure 42.   Spectrum Using MUSIC for M = 7, p = 32, and SNR = 10 dB. 
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Figure 43 shows that the MUSIC again loses its ability to distinguish the pair of 

frequencies spaced at 0.5 MHz apart when p is incremented by 4 to 36. The maximum 

estimation error is 0.2 MHz, and the processing time is 0.089697 s. This shows that in the 

presence of noise, the order of the filter, p, must be equal to 28 or 32 so as to provide a 

spectral resolution of 0.5 MHz.   
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Peaks detected:   -20           10           11         30.3         40.1  

Figure 43.   Spectrum Using MUSIC for M = 6, p = 34, and SNR = 10 dB. 

In Figure 44, the MUSIC is still able to distinguish the pair of frequencies spaced 

at 1 MHz apart when p is increases to 92. The maximum estimation error is 0.2 MHz, and 

the processing time is 0.119846 s.  

 

Frequency (MHz) 

P
ow

er
 (

dB
) 



 59

-50 -40 -30 -20 -10 0 10 20 30 40 50
-30

-25

-20

-15

-10

-5

0
Number of signals = 7 Order of filter = 92

Frequency/MHz

A
m

pl
itu

de
/d

B

 

 

 
 

Peaks detected:   -20           10         11.2         30.3         40.1  

Figure 44.   Spectrum Using MUSIC for M = 7, p = 92, and SNR = 10 dB. 

The last value of p that the spectrum is not distorted is 101, which is an increment 

of 9 from 92. The spectrum is shown in Figure 45, and it detects only the two frequencies 

with the highest peaks. The maximum estimation error is 0.2 MHz, and the processing 

time is 0.131457 s. For p equals to or greater than 102, the spectrum is distorted.  
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Peaks detected:   30.3         40.1  

Figure 45.   Spectrum Using MUSIC for M = 6, p = 50, and SNR = 10 dB. 

For SNR lower than 10 dB, the MUSIC loses its ability to differentiate 

frequencies spaced at 0.5 MHz apart for all values of p. This shows that the frequency 

resolution of MUSIC is not robust against the presence of noise in the received signal. In 

Figure 46 and Figure 47, the SNR is reduced to 9 dB and the order of filter, p, is set to 28 

and 32 respectively. The frequencies spaced to 0.5 MHz can no longer be differentiated. 

However, the maximum estimation error is reduced to zero. The processing times are 

0.094282 s and 0.094040 s, respectively. 

Frequency (MHz) 

P
ow

er
 (

dB
) 



 61

-50 -40 -30 -20 -10 0 10 20 30 40 50
-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0
Number of signals = 7 Order of filter = 28

Frequency/MHz

A
m

pl
itu

de
/d

B

 

 

 

Peaks detected:   -20           10           11         30.5         40.1  

Figure 46.   Spectrum Using MUSIC for M = 7, p = 28, and SNR = 9 dB. 
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Peaks detected:   -20           10           11         29.9         30.5         40.1  

Figure 47.   Spectrum Using MUSIC for M = 7, p = 32, and SNR = 9 dB. 
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D. ANALYSIS WITH ESPRIT 

The ESPRIT method is used to estimate the spectrum of the signal from Eq. (40). 

Unlike MUSIC, ESPRIT is not able to identify the negative frequencies from the I and Q 

channel complex data sequence. This is because the ESPRIT method will search for 

real  values close to the unit circle from Eq. (18). That is, the 4.38 GHz will be falsely 

detected as 4.42 GHz. Thus, the single channel frequency down-conversion is used, and 

corresponding bandwidth of interest is fs / 2 = 50 MHz. It is highlighted in Chapter II that 

the ESPRIT is even more dependent on the accuracy of the number of frequencies, M, in 

the signal than the MUSIC method. At this point, the signal is assumed to be free of 

noise.  

As the sinusoid at 4.38 GHz will be filtered off in the single channel frequency 

conversion, there are M = 6 frequencies to be detected in the signal from Eq. (40). To 

measure the effects of the accuracy of M on the ESPRIT method, the number of 

frequencies in the signal is varied from one to ten. The results of the frequencies detected 

and frequencies that are falsely detected are tabulated in Table 2. It is observed that the 

ESPRIT is able to identify all the six frequencies in the signal when M is correctly set to 

six. The ESPRIT method is able to differentiate frequencies that are closely spaced at 0.1 

MHz apart. Its spectral resolution surpasses that of the MUSIC at 0.5 MHz. 

For a value of M below six, (6 – M) frequencies will not be detected. For a value 

of M greater than six, (M – 6) frequencies will be falsely detected. This is because the 

ESPRIT method will search for M   values close to the unit circle from Eq. (18), thus 

resulting in M frequency detections. 

 

 

 

 

 

 

 



 63

Table 2.   Frequencies Detected Using ESPRIT for M = 1, 2,…, 10. 

Number of 
Frequencies, M 

Frequencies detected / 
MHz 

Actual Frequencies Not 
Detected / MHz 

Frequencies Falsely 
Detected / MHz 

1 11 10, 30, 30.5, 40, 40.1 - 
2 10.001, 11 30, 30.5, 40, 40.1 - 
3 10.0010, 11.0000, 30.4980 30, 40, 40.1 - 
4 10.0010, 11.0000, 30.4980, 

40.0660 
30, 40 - 

5 10.0010, 11.0000, 30.0010, 
30.4980, 40.0660 

40 - 

6 10.0010, 11.0000, 30.0010, 
30.4980, 39.7840, 40.0660 

- - 

7 10.0010, 11.0000, 19.6600, 
30.0010, 30.4980, 39.7840, 
40.0660 

- 19.6600 

8 3.8650, 10.0010, 11.0000, 
19.6600, 30.0010, 30.4980, 
39.7840, 40.0660 

- 3.8650, 
19.6600 

9 3.8650, 10.0010, 11.0000, 
13.2710, 19.6600, 30.0010, 
30.4980, 39.7840, 40.0660 

- 3.8650, 13.2710, 
19.6600,  

10 3.8650, 10.0010, 11.0000, 
13.2710, 19.6600, 30.0010, 
30.4980, 33.5470, 39.7840, 
40.0660 

- 3.8650, 13.2710, 
19.6600, 33.5470, 

The corresponding maximum error of the detected frequencies from the actual 

frequencies is tabulated in Table 3. The MATLAB processing time is also recorded in 

Table 3. It is observed that the ESPRIT has a maximum detection error of 0.216 MHz 

from the actual frequency component of 40 MHz. This constitutes an error of 0.54 %.  

The processing time fluctuates minimally at about 0.013 s. 
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Table 3.   Maximum Errors and Processing Time Using ESPRIT for M = 1, 2,…,10. 

Number of 
Frequencies, M 

Frequencies detected / MHz Maximum Error / 
MHz 

Processing Time / s 

1 11 0 0.013089 
2 10.001, 11 0.001 0.012981 
3 10.0010, 11.0000, 30.4980 0.002 0.014020 
4 10.0010, 11.0000, 30.4980, 40.0660 0.034 0.012552 
5 10.0010, 11.0000, 30.0010, 30.4980, 

40.0660 
0.034 0.012342 

6 10.0010, 11.0000, 30.0010, 30.4980, 
39.7840, 40.0660 

0.216 0.013297 

7 10.0010, 11.0000, 19.6600, 30.0010, 
30.4980, 39.7840, 40.0660 

0.216 0.012634 

8 3.8650, 10.0010, 11.0000, 19.6600, 
30.0010, 30.4980, 39.7840, 40.0660 

0.216 0.012721 

9 3.8650, 10.0010, 11.0000, 13.2710, 
19.6600, 30.0010, 30.4980, 39.7840, 
40.0660 

0.216 0.012673 

10 3.8650, 10.0010, 11.0000, 13.2710, 
19.6600, 30.0010, 30.4980, 33.5470, 
39.7840, 40.0660 

0.216 0.012648 

 

E. ANALYSIS WITH ESPRIT IN THE PRESENCE OF NOISE 

The signal from Eq. (40) is simulated to be received in a noisy environment by 

adding AWGN to the signal. The SNR is varied and the power spectrum is estimated 

using the ESPRIT method. The presence of noise is expected to degrade the performance 

of the ESPRIT method. To measure the effects of noise on the performance of the 

ESPRIT method, the value of M is assumed to be pre-determined correctly and input into 

the ESPRIT system. The results are tabulated in Table 4. Similar to Section C for the 

MUSIC method, the SNR is set to 10 dB initially. The ESPRIT method is only able to 

detect five of the six frequencies. It also detects a frequency falsely at 12.4950 MHz. The 

noise power is reduced with respect to the signal power, and the SNR is increased in 

steps of 5 dB to 30 dB. However, even as the SNR is increased to 30 dB, the ESPRIT 

method remains unable to detect all the six frequencies, and a frequency is falsely 

detected in place of the 40 MHz frequency.  
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Table 4.   Frequencies Detected Using ESPRIT for M = 1, 2,…, 10 in the Presence of Noise. 

SNR Frequencies detected / MHz Actual Frequencies Not 
Detected / MHz 

Frequencies Falsely 
Detected / MHz 

10 9.9260, 11.0450, 12.4950, 
29.2500, 31.5610, 40.0520 

40 12.4950 

15 10.0220, 10.9930, 30.0070, 
30.4830, 36.1890, 40.0590 

40 36.1890 

20 9.9810, 11.0130, 30.0420, 
30.5150, 35.2890, 40.0570 

40 35.2890 

25 9.9880, 11.0070, 25.2070, 
30.0040, 30.4820, 40.0620 

40 25.2070 

30 10.0000, 10.9990, 24.5860, 
30.0050, 30.4910, 40.0580 

40 24.5860 

 

As the SNR is increased, the maximum error of the detected frequencies from the 

actual frequencies decreased significantly from 1.061 MHz to 0.042 MHz. That is, the 

accuracy of the ESPRIT method increased with lesser noise. The processing time remains 

about constant at 0.013 s.  

 

Table 5.   Maximum Errors and Processing Time Using ESPRIT for M = 1, 2,…, 10 in the 
Presence of Noise. 

SNR Frequencies detected / MHz Maximum Error / 
MHz 

Processing Time / s 

10 9.9260, 11.0450, 12.4950, 29.2500, 
31.5610, 40.0520 

1.061 0.013671 

15 10.0220, 10.9930, 30.0070, 30.4830, 
36.1890, 40.0590 

0.041 0.013439 

20 9.9810, 11.0130, 30.0420, 30.5150, 
35.2890, 40.0570 

0.043 0.014302 

25 9.9880, 11.0070, 25.2070, 30.0040, 
30.4820, 40.0620 

0.038 0.014107 

30 10.0000, 10.9990, 24.5860, 30.0050, 
30.4910, 40.0580 

0.042 0.012422 

 

F. ANALYSIS USING MRSS 

For the present application, the MRSS is performed using a digital receiver, thus 

the frequency spectrum of interest is limited to half of the ADC sampling rate of 100 

MHz. With a relatively small spectrum of interest of 50 MHz, the fine sensing technique 

is suffice to provide quick spectrum estimation. The MRSS method is used to estimate 
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the spectrum of the signal from Eq. (40). From Figure 12, the MRSS circuit shows that a 

real received signal is required for processing. Therefore, a single channel frequency 

conversion is performed to provide a real data sequence, which is input into the MRSS 

system. At this point, the signal is assumed to be free of noise. 

The signal is captured over an observation window, Tw, of 1 μs. The sweep 

frequency, fsweep, is set to be 10 kHz, which is 1/10 of the smallest frequency spacing of 

0.1 MHz in the signal. The spectrum of the signal is generated using MRSS, and is 

plotted in Figure 48. The MRSS method detects four out of the six frequencies. 

Frequencies that are spaced at 0.5 MHz or less cannot be differentiated. The maximum 

error is 0.8 MHz, and the processing time is 1.521157 s.  
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Figure 48.   Spectrum Using MRSS for Tw = 1 μs and fsweep = 1 kHz. 

It is demonstrated in Chapter II that the performance of the MRSS method is less 

dependent on the sweep frequency, fsweep, and a value of fsweep = 1/100 of frequency 

resolution required is sufficient. In Figure 49, the spectrum is generated for  fsweep = 1/100 

of frequency resolution required = 1 kHz. The spectrum remains unchanged when fsweep is 

reduced from 10 kHz to 1 kHz. The maximum estimation error remains unchanged at 0.8 

MHz, but the processing time increases significantly from 1.521157 s to 27.328215 s.   
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Figure 49.   Spectrum Using MRSS for Tw = 1 μs and fsweep = 1 kHz. 

In Figure 50, Tw is increased from 1 μs to 2 μs, and fsweep is set to 10 kHz. The 

spectrum is not stable, as it loses its ability to differentiate the 1 MHz spaced frequencies. 

However, it is able to differentiate the frequencies spaced at 0.5 MHz apart. The 

maximum estimation error is 0.8 MHz, and the processing time is 1.574587 s. In Figure 

51, when fsweep is reduced to 1 kHz, the spectrum remains the same, but the processing 

time increases to 24.629242 s.  
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Figure 50.   Spectrum Using MRSS for Tw = 2 μs and fsweep = 10 kHz. 
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Figure 51.   Spectrum Using MRSS for Tw = 2 μs and fsweep = 1 kHz. 

In Figure 52, Tw is increased to 3 μs, and fsweep is set to 10 kHz. The spectrum 

stabilizes for Tw equals to or greater than 3 μs. The MRSS identifies four out of the six 

frequencies, and is able to differentiate the frequencies spaced at 1 MHz apart. The 
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maximum estimation error is reduced to zero, and the processing time is 1.568335 s. In 

Figure 53, when fsweep is reduced to 1 kHz, the spectrum remains the same, but the 

processing time increases to 24.462193 s.  
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Figure 52.   Spectrum Using MRSS for Tw = 3 μs and fsweep = 10 kHz. 
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Figure 53.   Spectrum Using MRSS Method for Tw = 3 μs, and fsweep = 1 kHz. 
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In Figure 54, for fsweep equals to 10 kHz, the MRSS is able to differentiate 

frequencies spaced at 0.5 MHz apart when Tw is increased to 5 μs. The five frequencies 

are estimated with zero error, and the processing time is 1.715302 s. In Figure 55, when 

fsweep is reduced to 1 kHz, the spectrum remains the same, but the processing time 

increases to 16.625828 s.  
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Figure 54.   Spectrum Using MRSS for Tw = 5 μs and fsweep = 1 kHz. 
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Figure 55.   Spectrum Using MRSS for Tw = 5 μs and fsweep = 1 kHz. 

In Figure 56, for fsweep equals to 10 kHz, the MRSS is able to differentiate 

frequencies spaced at 0.1 MHz apart when Tw is increased to 9 μs. The six frequencies are 

estimated with zero error, and the processing time is 2.396204 s. It is observed that the 

peaks are more pronounced as Tw is increased. The floor of the signal reduces by about 

10 dB from -58 dB to -68 dB. In Figure 57, when fsweep is reduced to 1 kHz, the spectrum 

remains the same, but the processing time increases to 37.082383 s.  
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Figure 56.   Spectrum Using MRSS for Tw = 9 μs and fsweep = 10 kHz. 
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Figure 57.   Spectrum Using MRSS for Tw = 9 μs and fsweep = 1 kHz. 

Frequency (MHz) 

P
ow

er
 (

dB
) 

Frequency (MHz) 

P
ow

er
 (

dB
) 



 73

G. ANALYSIS USING MRSS IN THE PRESENCE OF NOISE 

The MRSS is simulated to analyze the signal from Eq. (40) in an AWGN 

environment. Similarly, the presence of noise is expected to degrade the performance of 

the MRSS method.  

The noise power is first set to achieve a SNR of 10 dB. For Tw equals to 3 μs and 

fsweep equals to 10 kHz, the spectrum generated by the MRSS is plotted in Figure 58. 

Similar to the noiseless case, the spectrum stabilizes for Tw equals or greater than 3 μs, 

and the frequencies spaced at 1 MHz can be differentiated. Though noise is introduced, 

the maximum error of frequency estimation remains at zero. The processing time is 

1.670444 s. In Figure 59, fsweep is reduced to 1 kHz, but the spectrum remains unchanged. 

The processing time is increased to 29.532189 s. 
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Figure 58.   Spectrum Using MRSS for Tw = 3 μs,  fsweep = 10 kHz, and SNR = 10 dB. 
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Figure 59.   Spectrum Using MRSS for Tw = 3 μs,  fsweep = 1 kHz, and SNR = 10 dB. 

In Figure 60, Tw is increased to 5 μs. As in the noiseless case, the MRSS is able to 

differentiate the frequencies spaced at 0.5 MHz apart. The maximum frequency 

estimation error remains at zero. The processing time is 1.694698 s. In Figure 61, fsweep is 

reduced to 1 kHz, but the spectrum remains unchanged. The processing time is increased 

to 28.674728 s. 
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Figure 60.   Spectrum Using MRSS for Tw = 5 μs,  fsweep = 10 kHz, and SNR = 10 dB. 
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Figure 61.   Spectrum Using MRSS for Tw = 5 μs,  fsweep = 1 kHz, and SNR = 10 dB. 

In Figure 62, Tw is increased to 9 μs. As in the noiseless case, the MRSS is able to 

differentiate the frequencies spaced at 0.1 MHz apart. The maximum frequency 

estimation error remains at zero. The processing time is 2.020169 s. In Figure 63, fsweep is 
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reduced to 1 kHz, but the spectrum remains unchanged. The processing time is increased 

to 37.374430 s. 
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Figure 62.   Spectrum Using MRSS for Tw = 9 μs,  fsweep = 10 kHz, and SNR = 10 dB. 
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Figure 63.   Spectrum Using MRSS for Tw = 9 μs,  fsweep = 1 kHz, and SNR = 10 dB. 
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The frequency resolution and estimation accuracy of the MRSS is demonstrated 

to be robust in a noisy environment of 10 dB SNR. The SNR is further reduced to 0 dB, 

that is, the noise power is equal to the signal power. The value of fsweep is set to 10 kHz, as 

it has been sufficiently demonstrated that 1/10 of the frequency resolution of the signal is 

suffice for accurate spectral estimation. It is also demonstrated that reducing fsweep will 

not improve the frequency resolution, but it will increase the processing time 

significantly. 

In Figure 64, Tw is set to 3 μs. As in the 10 dB SNR case, the MRSS is able to 

differentiate the frequencies spaced at 0.5 MHz apart. However, the heights of the peaks 

are reduced by about 7 dB from 22 dB to 15 dB. This is partly due to the increase in the 

floor of the signal by about 4 dB from -27 dB to -23 dB. The maximum frequency 

estimation error remains at zero, and the processing time is 1.615260 s.  
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Figure 64.   Spectrum Using MRSS for Tw = 3 μs,  fsweep = 10 kHz, and SNR = 0 dB. 

In Figure 65, Tw is increased to 5 μs. Similar to the 10 dB SNR case, the MRSS is 

able to differentiate the frequencies spaced at 0.5 MHz apart. The maximum frequency 

estimation error remains at zero, and the processing time is 1.752301 s.  
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Figure 65.   Spectrum Using MRSS 0 for Tw = 5 μs,  fsweep = 10 kHz, and SNR = 0 dB. 

In Figure 66, Tw is increased to 9 μs. Similar to the 10 dB SNR case, the MRSS is 

able to differentiate the frequencies spaced at 0.1 MHz apart. The maximum frequency 

estimation error remains at zero, and the processing time is 1.986819 s.  
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Figure 66.   Spectrum Using MRSS for Tw = 9 μs,  fsweep = 10 kHz, and SNR = 0 dB. 
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The frequency resolution and estimation accuracy of the MRSS is demonstrated 

to be robust in a noisy environment of 0 dB SNR. The SNR is further reduced to -10 dB, 

that is, the noise power is ten times that of the signal power. In Figure 67, the Tw is set to 

be 3 μs. As in the 0 dB SNR case, the MRSS is able to differentiate the frequencies 

spaced at 0.5 MHz apart. However, the heights of the peaks are further reduced by about 

5 dB from 15 dB to 12 dB. This is partly due to the increase in the floor of the signal of 

about 3 dB from -23 dB to -20 dB. The maximum frequency estimation error remains at 

zero, and the processing time is 1.527710 s.  
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Figure 67.   Spectrum Using MRSS for Tw = 3 μs,  fsweep = 10 kHz, and SNR = -10 dB. 

In Figure 68, Tw is increased to 5 μs. Similar to the 0 dB SNR case, the MRSS is 

able to differentiate the frequencies spaced at 0.5 MHz apart. The maximum frequency 

estimation error remains at zero, and the processing time is 1.642263 s.  
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Figure 68.   Spectrum Using MRSS for Tw = 5 μs,  fsweep = 10 kHz, and SNR = -10 dB. 

In Figure 69, Tw is increased to 9 μs. Unlike the 0 dB SNR case, the MRSS is not 

able to differentiate the frequencies spaced at 0.1 MHz apart. The maximum frequency 

estimation error remains at zero, and the processing time is 2.050098 s.  
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Figure 69.   Spectrum Using MRSS for Tw = 9 μs,  fsweep = 10 kHz, and SNR = -10 dB. 
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In Figure 70, the MRSS regains its ability to differentiate the frequencies spaced 

at 0.1 MHz apart when Tw is increased by 4 μs to 13 μs. The maximum frequency 

estimation error remains at zero, and the processing time is 2.184246 s. This shows that 

the spectral resolution of the MRSS can be improved by increasing the observation time 

of the received signal. It also means that for a fixed spectral resolution, the observation 

time increases when the SNR decreases. 
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Figure 70.   Spectrum Using MRSS for Tw = 13 μs,  fsweep = 10 kHz, & SNR = -10 dB. 

H. SUMMARY 

Before spectrum estimation is performed, the received analog signal is 

bandpassed, down-converted to baseband frequency, and digitized to produce a real or 

complex data sequence. As the MUSIC is able to process complex data sequence, the I 

and Q channel frequency down-conversion is used to provide a wider frequency band of 

interest at fs. On the contrary, the ESPRIT and MRSS are designed to process real data 

sequence, thus the single channel frequency down-conversion is used to provide a 

frequency band of interest at fs/2. 
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V. SUMMARY AND CONCLUSION 

The first section of this chapter provides an overview of the frequency estimation 

module, and states the object of this chapter. In Section B, the simulations results from 

Chapter III are summarized and analyzed. In Section C, this thesis is concluded with a 

recommended high resolution spectrum estimation method for the digital tracking array. 

A. INTRODUCTION 

In Chapter II, the test signal from Eq. (40) was bandpassed, down-converted to 

baseband frequency, and digitized. In Chapter III, the digital baseband signal was passed 

into the MUSIC, ESPRIT and MRSS to generate the power spectra. The results are 

consolidated and summarized in this chapter for efficient comparison. The performances 

and limitations of each high resolution spectrum estimation method are presented and 

compared between the three distinct methods. A high resolution spectrum estimation 

method will be recommended for the digital tracking array. 

B. SUMMARY OF SIMULATION RESULTS 

The simulation results from Chapter III are summarized in Table 6. For the 

MUSIC, the smallest spectral resolution achievable is 0.5 MHz. However, to retain the 

0.5 MHz spectral resolution, the SNR must be equal to or greater than 10 dB. It has a 

relatively small maximum estimation error of about 0.2 MHz in the 100 MHz spectrum 

of interest. The accuracy of the spectrum is dependent on the accuracy of the estimated 

number of frequencies, M, in the received signal. If M is over-estimated, false frequency 

detection will occur. If M is under-estimated, frequencies in the received signal will not 

be detected. For 0.5 MHz spectral resolution, when applied to seven signals, the order of 

the filter, p, can only take on discrete values from 20, 24, 28,…, 92 in increment of 4. 

The spectrum is distorted for other values of p. However, as the SNR decreases to 10 dB, 

the p must be equal to 28 or 32 in order to achieve the same 0.5 MHz spectral resolution. 

The recommended p = 2 N / 3 from [4] cannot provide 0.5 MHz spectral resolution for 
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SNR equals to 10 dB. Though processing time is relatively low, the actual time for 

spectrum estimation needs to factor in the time to estimate the number of frequencies, M, 

in the received signal. 

For ESPRIT, the smallest spectral resolution achievable is 0.1 MHz, which is 

better than that of the MUSIC at 0.5 MHz. The maximum estimation error is small and 

comparable to that of MUSIC. The accuracy of the power spectrum is more dependent on 

the accuracy of the estimated number of frequencies, M, in the received signal. If M is 

over-estimated, (M - 6) frequencies will be falsely detected. If M is under-estimated, (6 - 

M) frequencies in the received signal will not be detected. For SNR smaller than 30 dB, 

the ESPRIT’s spectral resolution drops from 0.1 MHz to 0.5 MHz. This shows that the 

spectral resolution of the ESPRIT is not robust to the presence of noise. As the SNR 

decreases from 30 dB to 10 dB, the maximum estimation error increases significantly 

from 0.042 MHz to 1.061 MHz. At 10 dB, the ESPRIT under-performs the MUSIC. Both 

methods can provide 0.5 MHz spectral resolution, but the ESPRIT has a higher maximum 

estimation error of 1.061 MHz, as compared to that of the MUSIC at 0.1 MHz. Similar to 

the MUSIC, the actual time for spectrum estimation needs to factor in the time to 

estimate the number of frequencies, M, in the received signal. However, it should be 

noted that the MATLAB processing time is typically much longer than that for a 

compiled program, such as LABVIEW. 
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Table 6.   Summary of Simulation Results. 

Method SNR (dB) Resolution 
(MHz) 

Input 
Parameters 

Max. Error 
(MHz) 

Max. 
Processing 
Time (s) 

Remarks 

0.5 M = 7           p = 
16 

0.1 0.112968 -20 MHz not 
detected 

Noiseless 

0.5 M = 7           p = 
20, 24, 28,…, 
92 

0.1 0.132163 

1 M = 7           p = 
24, 36, 40,…,92 

0.2 0.119846 

MUSIC 

 

(Tw = 1 μs) 

10 

0.5 M = 7           p = 
28, 32 

0.1 0.092939 

Spectrum is 
distorted 
except for 
the stated 
values of p 

Noiseless 0.1 0.216 0.013297 

10 0.5 1.061 0.013671 

15 0.5 0.041 0.013439 

20 0.5 0.043 0.014302 

25 0.5 0.038 0.014107 

ESPRIT 

 

(Tw = 1 μs) 

30 0.5 

M = 6 

 

0.042 0.012422 

If M > 6, (M 
- 6) false 
detections. 

If M < 6, (6 
- M) fail 
detections. 

1 Tw = 3 μs 0 1.568335 

0.5 Tw = 5 μs 0 1.715302 

Noiseless 

0.1 Tw = 9 μs 0 2.396204 

1 Tw = 3 μs 0 1.670444 

0.5 Tw = 5 μs 0 1.694698 

10 

0.1 Tw = 9 μs 0 2.020169 

1 Tw = 3 μs 0 1.615260 

0.5 Tw = 5 μs 0 1.752301 

0 

0.1 Tw = 9 μs 0 1.986819 

1 Tw = 3 μs 0 1.527710 

0.5 Tw = 5 μs 0 1.642263 

MRSS 

-10 

0.1 Tw = 13 μs 0 2.184246 

fsweep = 10 
kHz 

 

Unlike the MUSIC and ESPRIT, MRSS does not require prior estimation of the 

number of frequencies, M, in the received signal, nor input of the order of the filter, p. 

The MRSS needs at least 3 μs of observation time, Tw, in order to produce a stable 

spectrum of 1 MHz resolution. The value of Tw has to be increased to 5 μs, so as to 
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increase the frequency resolution to 0.5 MHz. To achieve 0.1 MHz spectral resolution, 

the value of Tw has to be further increased to 9 μs. With thrice the value of Tw, the MRSS 

out-performs the MUSIC and ESPRIT at SNR equals to 10 dB and zero maximum 

estimation error. The processing time of the MRSS is about 124 times more than that of 

the ESPRIT. However, the required observation time, Tw, remains relatively small at 2.4 

μs. The MRSS is exceptionally robust to the presence of noise in the received signal. 

When the SNR is lowered to 0 dB for Tw equals to 9 μs, the MRSS is able to preserve its 

spectral resolution at 0.1 MHz and maximum estimation error at zero. When the SNR is 

furthered lowered to -10 dB, the observation time, Tw, is only required to be lengthened 

by another 4 μs to 13 μs for the MRSS to retain its 0.1 MHz spectral resolution and zero 

maximum estimation error.  

C. CONCLUSION 

The MRSS out-performs the MUSIC and ESPRIT in terms of spectral resolution, 

estimation accuracy, and robustness to noise. Though the MRSS requires a higher 

observation time and processing time, the values remain significantly low at 13 μs and 

2.4 μs respectively for SNR equals to -10 dB. These values meet the requirements of a 

digital array system. Hence, this thesis proposes the use of the MRSS algorithm in the 

frequency estimation module in the digital tracking array to provide accurate, robust, and 

high resolution spectrum estimation. 

An advantage of the digital architecture is that multiple frequency estimation 

processors can be loaded and the specific one selected based on the available data (SNR, 

observation time, etc.).  

D. FUTURE WORKS 

For a digital tracking array, a small observation time is required to provide fast 

response. In this thesis, AWGN noise is generated and added to the simulated received 

signal over this short observation window. The performances of the high resolution 

spectrum estimation methods are measured and evaluated. However, due to the 

randomness of the noise and the short observation time, the specific values of the order of 
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the filter, p, of the MUSIC and ESPRIT might vary slightly. Similarly, the observation 

time, Tw, required of the MRSS might vary slightly with respect to the SNR. To 

determine the design parameter of p or Tw, statistical modeling using Monte Carlo 

simulations is recommended. 
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