
�&�D�O�K�R�X�Q�����7�K�H���1�3�6���,�Q�V�W�L�W�X�W�L�R�Q�D�O���$�U�F�K�L�Y�H

�'�6�S�D�F�H���5�H�S�R�V�L�W�R�U�\

�5�H�S�R�U�W�V���D�Q�G���7�H�F�K�Q�L�F�D�O���5�H�S�R�U�W�V �$�O�O���7�H�F�K�Q�L�F�D�O���5�H�S�R�U�W�V���&�R�O�O�H�F�W�L�R�Q

��������������

�0�D�Q�S�R�Z�H�U���3�O�D�Q�Q�L�Q�J���0�R�G�H�O�V�������,�,�,�����/�R�Q�J�L�W�X�G�L�Q�D�O���0�R�G�H�O�V

�*�U�L�Q�R�O�G�����5�L�F�K�D�U�G���&�������0�D�U�V�K�D�O�O�����.�Q�H�D�O�H���7��

�0�R�Q�W�H�U�H�\�����&�D�O�L�I�R�U�Q�L�D�����1�D�Y�D�O���3�R�V�W�J�U�D�G�X�D�W�H���6�F�K�R�R�O

�K�W�W�S�������K�G�O���K�D�Q�G�O�H���Q�H�W������������������������

�'�R�Z�Q�O�R�D�G�H�G���I�U�R�P���1�3�6���$�U�F�K�L�Y�H�����&�D�O�K�R�X�Q



: 

NPS55Mt75081 

NAVAL POSTGRADUATE SCHOOL 
Monterey, California 

I -0 
>••'% / 

MANPOWER PLANNING MODELS - III 

LONGITUDINAL MODELS 

by 

R. C. Grinold 

and 

K. T, Marshall 

August 1975 

\) 

:rr ":> 
A 

u \^ 

Approved for public release; distribution unlimited. 

Prepared for: 
Headquarters Marine Corps 
Washington, D. C.   20380 

Ropmducrd  by , 

NATIONAL TECHNICAL 
INFORMATION  SERVICE 

U S   DoPflrtmoM  of   ComfTinrco 
Spnngliold, VA    2?15l 

liäää$ä$ä&äi&ki^^0äMm&Miä^^i^tii. 



liplllllp^ 

NAVAL POSTGRADUATE SCHOOL 
Monterey, California 

Rear Admiral Isham Linder 
Superintendent 

Jack R. Borsting 
Provost 

This work was supported in part by the Office of Naval Research and the 
Manpower Planning Division (MP120) of the Marine Corps. 

Reproduction of all or part of this report is authorized. 

/ 

Prepared by: 

Kneale T. Marshall,  Pr7rj?«asor 
Department of Operations Research 

and Administrative Sciences 

R.   C.  Grinold 

Reviewed by 

DaVld A.  Schrady,  Chaii 
Department of Operations Research 

and Administrativer Sje4ences 

Released by: 

Robert Fossum 
Dean of Research 

>.'v , .-„^      . 



S^WW!SWm»!W*^f^ VIPWt^^MWiPiW^   v^- •: i-,v^!W'% '% »>% % ;  "-v -, -% fy-;^:;.-:;% ;-  % v^-;;-' 

I 
^ 

UNCTASSTFIED 
SECURITY CLASSIFICATION OF THIS PAGE (Whmn Deto Entated) 

REPORT DOCUMENTATION PAGE 
1.    REPORT NUMBER 

NPS55Mt75081 
2. GOVT ACCESSION NO. 

4.    TITLE (and Subtltla) 

Manpower Planning Models 
Longitudinal Models 

III 

7. AUTHORf«; 

R. C. Grinold 
K. T. Marshall 

9.    PERFORMING ORGANIZATION   NAME  AND  ADDRESS 

Naval Postgraduate School 
Monterey, California  93940 

1 1.    CONTROLLING OFFICE NAME   AND ADDRESS 

U.    MONITORING AGENCY NAME »   ADDRESSf// dlllarent from Confro/l/n« Office) 

READ INSTRUCTIONS 
BEFORE COMPLETING FORM 

3.    RECIPIENT'S CATALOG NUMBER 

5.    TYPE OF  REPORT a PERIOD COVERED 

Technical Report 
6.    PERFORMING ORG. R/EPORT NUMBER 

8.    CONTRACT OR GRANT NUMBERS«; 

10.    PROGRAM ELEMENT, PROJECT, TASK 
AREA ft  WORK UNIT NUMBERS 

P.O.  3-0092 

12.    REPORT DATE 

August  1975 
13.    NUMBER OF PAGES 

IS.    SECURITY CLASS, (of Ihla report) 

Unclassified 

15«.    DECLASSIFI CATION/DOWN GRADING 
SCHEDULE 

16.    DISTRIBUTION STATEMENT (of Ihle Report) 

Approved for public release; distribution unlimited. 

17.    DISTRIBUTION STATEMENT (of the »betract entered In h  DLK 30, If different from Report) 

18.    SUPPLEMENTARY NOTES 

19.    KEY WORDS (Continue on reverae aide It necaaaary mnd Identity by block number) 

Manpower 

Planning 

Modelling 

Longitudinal Flow 

20.    ABSTRACT (Continue on revere'» aide II neceeamry and Identity ;iy block number) 

This is the third in a series of reports on Manpower Planning 
Models. The emphasis in this report is on the formulation, theory, 
and application of longitudinal models.  The concepts of chain flows 
are introduced and exploited in a number of applications. 

DD ,'; FORM      1473 
EDITION OF  1 NOV 65 IS OBSOLETE 

S/N  0102-014-6601  I 
UNCLASSIFIED 

SECURITY CLASSIFICATION OF THIS PAGE (Whan Data Bntarad) 



pipspp^fs^^ riftT^tf't*~-'''v'V:~vm$iffl!! 

I 
% � 

TABLE OF CONTENTS 

1.  Introduction 

2.  The Assumption of Longitudinal Stability 

3.  A Special Case:  One Class, One Chain 

4.  Equilibrium 

5.  Probabilistic Interpretation of the Longitudinal Model 

6. A Student Enrollment Forecasting Model 

7. A University Planning Model 

8.  Applications of the One Class, One Chain Model 

9. A One Class, Many Chain Model 

10. Longitudinal Conservation 

11.  Systems Without Conservation 

12.  Notes and Comments 

1 

2 

14 

20 

28 

31 

36 

49 

62 

68 

81 

84 



r 

pwmpwf!'^fpm&#m>ii} 

III.  LONGITUDINAL MODELS 

1.  Introduction. 

The cross-sectional models discussed in Chapter II are useful because of 

their simplicity and their reliance on available cross-sectional data.  More 

will be said about manpower data in a later Chapter. The cross-sectional model 

has a serious structural fault when used to describe manpower flow, especially 

when the flow fractions are interpreted probabilistically.  Simply stated, this 

assumption says that flow from one class to another is independent of the time 

an individual has spent in a given class.  Such an assumption is clearly not 

valid in many manpower syr.tems, where time in i given class is a critical 

factor in determining availability for promotion or movement. 

The models in this chapter do not require this restrictive assumption to 

hold.  They are much more general than the cross-sectional models, and attempt 

to describe the flow of a group, or cohort, through ehe manpower system over 

time.  The models are based on the entire history of the group, and hence are 

longitudinal models. As we shall see, the greater realism in the model is 

bought a  price of a significant increase in data requirements. 

Section 2 describes the basic longitudinal model and gives examples. 

Section 3 looks at a simple special case and Section 4 analyses the concept of 

equilibrium in a longitudinal model.  Section 5 gives a probabilistic interpre- 

tation of the model.  Sections 6, ,7, 8, and 9 describe some examples In student 

forecasting, university planning, and military force structure planning. The 

Chapter ends with two advanced sections, 10 and 11, dealing with the concept 

of longitudinal conservation, followed by notes and comments. 
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2.     The Assumption of Longitudinal Stability. 

This section describes the general form of longitudinal models and gives several 

examples.  As in previous chapters, we assume the organization contains N classes 

of manpower.  The novel assumption in this chapter concerns the inflow into the 

system.  The inflow is partitioned into K different categories.  i'hese categories 

are called either chains, cohorts, paths, or histories.  For example, we could 

classify the students entering a university simply by their year of entry. 

In that case K=l.  The students could also be classified according to 

eventual status.  Of course when the manpower inflow is partitioned according 

to even'-.ual status it is not possible to specify which individuals belong to 

which class when they enter. Fortunately this specific type of accounting 

is not necessary to answer a host of interesting questions as we shall see. 

Example 1: Each year at matriculation ceremonies at TIM engineering school 

the dean speaks to the 600 new freshmen.  To bracr them for the hard work 

of the next four years he asks them to "look at the person to your left 

and to your.right; only one of the three will graduate." The dean based 

his remark on the observation that the school has taken in 600 students per 

year for the past 20 years and has been awarding roughly 200 degrees per year 

over the same period. Thus the 600 new freshmen can be classified according 

to eventual status; 200 degree winners and 400 dropouts, even though it is 

not known which individuals fall into each class. B 

Let g(t) be a K-vector which gives the input of people in period t. 

Thus gv.Ct)  is the number of people who enter chain k in period  t.  The 

fraction of people who enter chain k in period t who are counted in class 

i at time t + u is P  (u).  The N ^ K matrix P(u) describes the distribution 

of individuals in the K chains over the N classes the u— time they are 

counted.  If we assume M is the maximum number of times an individual is 

encountered, (i.e., M is the maximum number of period in the system) then the 

*a^aa«'^ |^jj^jp,.;^.n,a.„.-..-,..;,.,;.^t...--;.i..-.1 ... .^::.r....,,.., ,^t.:.v.n^-. . 
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M+l matrices P(0), ?(1) ,. .. ,P(M) describe flow through the system. The 

fraction p.. (u), is independent both of the entering period  t and the 

number of individuals,  Si^t)  that enter chain k (see the last paragraph 

in this section). 

The contribution to stock in clsss  i at time t  is due to the inflow 

on chains k = 1,2,...,K in periods t,t - 1,. .. ,t-M. Let  s (t;u) be the 

total stock in class i at time t  that entered in period  t-u. We say 

Luis group has Zength 0&  .4eAvM.ce equal to u, since they have been counted 

at times  t-u, t - u+1,. . . ,t - 1.  When u = 0,  the length of service is zero 

since these individuals are being encountered for the first time. 

The value of s.(t;u)  is made up of contributions from each of the K 

chains 

(1) 
K 

s^tiu)   = I    pik(u)gk(t-u) 
k=l 

The total stock in class; i at time t  is given by 

(2) 
M M  K 

s.U) = I    s.C^u) = I       I    Pik(u)8k(t-U) 
u=0 *       u=0 k=l 

We can also partition the individuals in class i by the chain on which 

they are flowing. Define s., (t)  to be the number of individuals in class i 
IK 

who are on chain k. Evidently 

M 
(3) ..(t) = I    p., (u)g,(t-u)) ik u=0 ik 

and by summing over k we again obtain equation (2) but with order of summation 

reversed. 

Equation (2) describes the longitudinal flow model.  It can be expressed 

in matrix notation as 
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(4) s(t) = P(0)g(t) + P(l)g(t-1) + ... + P(M)g(t-M), 

If we establish the convention that periods t  for t^O are past periods, 

periods t>l are future periods, and that period 1 is the curtent period, then 

we can define the manpower Zzgacy at time t ^ 1 as the contribution of past 

(prior to time 1) inputs [g(0) ,g(-l) ,. .. ,;>(1-M) ]  to the stock at future time t. 

Let £(t)  (an N vector) be the legacy at time  t.  Then 

U't) =(P(t)g(0) + P(t+l)g(-l) + ... + P(M)g(t-M)    if t < M , 

'0 if t > M 

As usual the legacy is simply the sequence of stock levels that would be 

observed if no additional individuals titered the system: i.e., if g(t) = 0 

for t 2 1. 

Problem 1;  Determine an expression for the legacy in class i at time t  that 

entered in period  t-u, and for the legacy in class 1 at time t of individuals 

on chain k. 

Example 2;  Consider a two year junior college with two classes corresponding to 

freshmen  (F) ana sophomores (S). Let G stand for graduation, and D for 

dropout.  We assume there are seven possible chains: 

Chain History 

1 F S G 

2 F F S G 

3 F S S G 

4 F D 

5 F F D 

6 F S D 

7 F F S D 

'% WiiX   •;;:,:".'».% ...!!.% % :.% � 
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Note that N = 2 and K - 7. 

Individuals on chains 1 through 3 eventually receive degrees; those on chains 4 

through 7 eventually drop out.  Individuals on chain 3, for example, repeat the 

sophomore year before graduating.  The matrices P(0)  P(l) and P(2) are 

chain 

P(0) 

P(l) 

P(2) 
0 

1 2 3 4 5 6 7 

1 1 1 1 1 1 1 

0 0 0 0 0 0 0 
J 

0 1 0 0 1 0 1 

1 0 1 0 0 1 0 

0 0 0 0 0 0 0 

0 1 1 0 0 0 1 

The matrices P(u), u>3 are all zero matrices. 

We reemphasize that when a student enters it is not known which of the 

seven chains he will follow.  This is not determined until the student finally 

graduates or drops out.  However, the model can still be useful as we show in 

later sections.  It may be possible to estimate from past data the relative 

flows on the seven chains.  One can then estimate, for example, the effects 

of instituting a policy of not allowing a freshman to repeat a year.  Such a 

policy would eliminate chains 2, 5 and 7. 

Problem 2: Given the flows below calculate s(t)  for t = 1,2,3.  Use (1) 

and (3) to calculate s.(t;u)  and  s  (t)  for t = 1. 
1 3-K 

fflffi^lHiftifefa'tM ^''immtmr^aism^ aüfe.vtoa^a-..-(j-.!,-„^.^,---..i VAVäW,;,,. ^«WiiMUMiaJiÄvsii 
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Chain 

1 2 3 4 5 6 

0 

7 

1 g(-l) 7 1 4 1 2 

g(0) 6 1 3 1 1 0 2 

g(l) 7 3 1 0 2 1 0 

g(2) 6 1 2 1 1 1 1 

g(3) 8 1 1 3 0 1 0 

Problem 3:  (Continuation) 

Calculate the legacy at time t = 1,2,3. 

Problem 4:  (Continuation) 

r7 Calculate  ), , s.. (t)  for  i = 1,2,  and  t = 1,2,3.  How would you 
^=4  ik 

interpret the fraction £, , s..(t)/s.(t) ? 

Example 3:  Suppose that flows in chains 1, 2, and 3 (the cohorts that eventually 

graduate) and flows in chains 4, 5, 6 and 7 (the cohorts that eventually drop- 

out) are aggregated.  In the graduate group (aggregate chain 1) we assume that 

2/3 of the flow follows the path of the old chain 1 and that 1/6 follows the 

flow of both chains 2 and 3.  For the drop-out group (aggregate chain 2) we 

assume that 1/4 of the flow follows the same path as chains 4, 5, 6 and 7. 

Instead of seven chains feeding the system as depicted at the left 

g^t) 

g2(t) 

83 Ct) 

84(t) 

HM 

g6(t) 

87(t) 

-—0 

-—0 

g^t) 

g2(t) 

2/3 g^t) 
 c 

1/6 g, (t) 

1/6 g^t) 
•-0 

1/4 g2(t) 
*-0 

1/4 g2(t) 
*-0 

1/4 g2(t) 
•-0 

1/4 g2(t) 
~-0 

Wui '.' % £ i L' iii % .üVü lij&a ii tdtVij Liijiii^in^iiitiliiiliiii^iiiiiiiriiiiiiiiir i 
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we have the input scheme shown at the right. 

Under this aggregation, the new values of P become, 

P(0) 

P(l) = 

P(2) 

1 1 

0 0 

1/6 1/2 

5/6 1/4 

0 0 

1/3 1/4 

Problem 5:  (Based on Example 3) 

Calculate  s.ft), £,(t)  and  s.„(t)  for  i = 1,2 and  t = 1,2,3 given 
'1 w'  i 

the following flow data 

12 

Chain 

1   2 

g(-l) 

g(0) 

id) 

g(2) 

g(3) 

12 4 

10 4 

11 3 

9 4 

! 
10 4   j 

Example 4:  Consider the three class faculty example; nontenured  (N), tenured 

(T), and retired (R).  Suppose there are only seven possible career paths. 

We classify the paths according to the number of years individuals on that 

path spend in each manpower category. 



jppy^^^^^ .^ 

History 

Chain N T R 

1 4 0 0 

2 5 30 15 

3 5 20 20 

4 5 10 0 

5 0 25 15 

6 0 20 20 

7 0 10 0 

Chain 1 leaves after four years of nontenured  service.     Chains 5 through 7 

depict career paths  of  tenured appointments.     We assume that  individuals  in 

chains 4  and 7  leave or die after  ten years  of  tenured  service.    Those in 

chains 3 and 6 retire early, while  those in chains  2'  and 5 retire at age 65. 

Note  that    M= 49.     Thus  the    50     natrices P(0),...,?(49) which contain 

50 x  3 x  7    numbers are an inefficient way of  storing the information summarized 

in the table above. 

Example  5;     Consider a  four year undergraduate college with classes "eventual 

graduates"  and "eventual dropouts"  corresponding respectively to the indices 

1 and 2.     We assume  there are four chains;  eventual  graduates and  dropouts 

who  enter  as freshmen  and eventual graduates  and  dropouts who enter as juniors. 

The  four chains  are listed below along with the average nuinber of years a  person 

in that chain attends  the college. 

chain 
average number 

of years attended 

1 4.5 

2 2.3 

3 2.2 

4 0.8 

mstmm iZisXiLiiZJ.iiiiL mm ^»«(Mif^Maffi^rl^^^ 
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Here we can take    M = 4,  and construct  the    P    matrices 

12        3 4 

P(0)  = 

P(l)  = 

P(2)  = 

P(3) = 

P(4) 

1 0 1 0 

0 0 0 0.8 

" 1 0 1 o' 

0 1 0 0 
s 

1 0 0.2 0 

0 0.3 0 0 

' 1 0 0 0 

0 0 0 0 

0.5 0 0 0 

0 0 0 0 

Notice that the selection of  the matrices  is  arbitrary to  some extent.     A 

more  detailed specification of the model  is necessary to fix correct values 

of the    P(u).    For  instance,   if we assume, people  flow at a uniform rate  (over 

a period)   into the chains,  and that a person  in chain 2 stays  exactly 2.3  periods 

then the model is correct. 

If flow into  the  chains occurs on 15 September of each year ai'.d the inventory 

date  is 1 November,   then the model  is correct  if we  say that every person on 

chain 2 stays more than 13.5 months,  and that 30%  stay more than 25.5 months 

and none stay 37.5 months.    This gives an average of 2.3 years each.    However, 

if we say that only 90%  stay more  than 1.5 months,   60% more than 13.5 months, 

50% more than 25.5 months,  30% more than 37.5 months and 0% more than 49.5 

months,   then the expected number of years is still  2.3.     However the fractions 

p „(u)     change as  indicated below. 

HÜi mtammmämeim* äittäiLütf&AU^! .*•% •% � 
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P22(u) 

u=0 u=l u=2 u=3 u=A 

old 1.0 1.0 0.3 0 0 

new 0.9 0.6 0.5 0.3 0 

10 

Problem 6:     (Based on Example 5) 

Given the flows below,  determine    s(t)     and     Z(t)     for    t =  1,2,3,  and 4 

Chain 

12 3 4 

I i- 

g(-3) 

g(-2) 

g(-l) 

g(0) 

gd) 

g(2) 

g(3) 

g(4) 

10 4 3 1    1 

10 4 4 0 

i  11 3 2 2 

9 5 6 C    j 

11 3 5 1 

12 2 5 2 

14 4 4 1 

1    13 
4 5 1 

This section has defined  the longitudinal flow model,  equation  (4),  and 

presented several examples of  longitudinal flow processes.     Example 4  indicated 

that  longitudinal models may require a great deal  of  data,  and in Example 5, 

that  several sets of data can be consistent with  the specifications of  the 

model.     The next  section discusses a special application,  after which the 

concept of  equilibrium is  investigated. 

The reader might well question our basic assumption that    P1k(u)   is 

independent of the entering period     t    and  the number  of  individuals    g. (t) 

msmmmmmmii mMmmmäm^mmmmi^mkmiwiiv'^ mi^nuhmä il^iJiliitt)kM«aiüa^^ 
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who enter chain k.  We offer two sets of data, one supporting our assumption 

and one which to some extent violates it. 

The first set of data is given in tables 11.15, 11.16 and 11.17 in 

Chapter II.  A study of these tables will show that for freshman entering 

the Berkeley Campus at the University of California at Berkeley in the fall 

of 1955 and the fall of 1960, the flow fractions of the two groups were essentially 

the same. Note that not only was there a five year time span between the groups, 

but that the numbers in each group were significantly different (2067 to 3228). 

The second set of data is given in table III.l.  Five groups are shown, each 

one a group of people who enlisted in the Marine Corps for an initial period of 

two years in July and August 1967, and January, February and June 1968. The 

table entries give the percentages of the groups remaining at the end of the 

given month after entry.  For example, in January 1968, 4117 people entered 

the Marine Corps on a two year enlistment. After 12 months 89.6% of these were 

still in the Corps.  After 24 months the percentage remaining was 11.2. 

A close look at this data shows that for the first 17 months the percentages 

remaining are remarkedly similar between groups.  Starting at 18 months however, 

the percentages start to vary significantly. The reader might also be wondering 

why, since all the people had enlisted for two years, less than 30% stayed in for 

the full enlisted period.  The reason for both the significant attrition starting 

at about 18 months, and the instability between groups in the 18-30 month period, 

can be found by studying manpower policies used in the Marine Corps in the 

1968-9 period.  In that period the Marine Corps had problems manning overseas 

committments due to legal restrictions on personnel flows.  To obtain feasible 

flows of people to overseas billets they had to institute an "early-out" policy, 

which meant that although some enlisted men had contracts covering 24 months, 

many were forced out earlier than this. 

amät :^^.,i.-|flri||||. 
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)       Percent Remaii ling at End of Month After 

Entry Period (and Cohort Sizes) 

Month After Jul 1967 Aug 1967 Jan 1968 Feb 1968 Jun 1968 
Entry (1725) (1822) (4117) (3983) (4023) 

0 100,0 100.0 100.0 100,0 100.0 

1 97.9 98.1 98.2 97.9 97.2 

2 96.8 97.0 96.8 y6.7 95.4 

3 96.0 96.5 96.3 95.8 94.4 

A 95.6 96.0 95.9 95.4 94.0 

5 95.1 95.7 95.6 95.1 93.6 

6 94.4 95.2 94.8 94.3 93.2 

7 92.9 94.5 93.4 93.4   !   92.7 

8 92.0 94.0 92.5 92.5 92.0 

9 91.2 91.8 91.6 91.6 91.2 

10 89.2 91.2 90.9 91.0 90.6 

11 88.4 90.2 90.2 90.1 89.9 

12 87.5 89,6 89.6 89.1 89.3 

13 86.9 88.8 88.7 88.3 87.3 

14 86.0 88.5 87.5 86.8 85.6 

15 85.4 87.7 86.5 85.3 84.2 

16 84.5 87.3 82.8 82.4 82.0 

17 83.1 85.8 80.7 80.7 79.5 

18 76.1 80.3 72.1 73.9 65.9 

19 59.1 65.1 55.7 51.1 59.3 

20 52.6 51.5 44.2 45.5 47.3 

21 38.4 46.3 40.8 40.9 40.6 

22 30.6 34.9 37.7 37.1 32.8 

23 25.3 30.6 30.1 30.7 29.2 

24 9.4 8.4 11.2 10.3 7.4 
25 7.4 5.9 8.9 7.7 6.0 
26 5.4 4.9 7.8 6.4 5.1 
27 4.2 4.2 7.0 5.7 4.4 
28 3.7 3.6 6.2 4.9 4.1 
29 3.3 3.3 5.7 4.5 3.6 
30 3.0 3.2 5.2 4.1 3.4 

Table III.l 

1        ~ 7 
Cohort Data for Selecte d Groups of 2-vear enlis ted Marines. 
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The reason for including the data in table 1II.1 is to show not only 

that the stability assumption can be violated, but also that the fractions 

p.. (u) are in certain situations control variables.  In the example given, 

direct control of these fractions was used by the Marine Corps. Today, the 

problem is not to remove people early, but to retain them in an environment 

without a draft. To do this the fractions p  (u) are being controlled in- 

directly through payment of selective bonuses to people with skills or attributes 

which the Marine Corps requires.  In later sections in this report the longitu- 

dinal model is used in a number of ways.  It is important for the reader to 

recognize the difference between using the model to forecast using P-n,^ 

estimated from historical data, and using the model for planning, where either 

the effects of certain p., (u) values are analyzed, or the Pik(u) are 

determined to meet some objectives.  When using historical estimates in fore- 

casting it is important that the estimates can L/e expected to approximate actual 

future behavior.  The model user must therefore be aware of significant policy 

changes which might affect the future values of p  (u). 

fcau ^% ^i-^-;,, ,-,-..>.. 
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3.  A Special Case; One Class, One Chain. 

The special case of one manpower class and one chain allows  us to examine 

the longitudinal flow model more easily and closely.  This section presents 

several ways of visualizing the longitudinal stability of flow in a one class, 

one chain model. 

We begin by simplifying notation, and write g(t)  for g., (t)  and p(u) 

for p .. (u).  The basic formulae are, for stocks, 

M 
s(t) = I    p(u)g(t-u) , 

u=0 

and for legacies, 

ll(t) = 
/ M 

I    p(u)g(t-u)  if  t< M , 
u=t 

0 if t > M , 

where s(t) ,p(u) ,g(t)  and £(t)  are all scalars. As usual u measures the 

individual's length of service in the organization. The quantity p(u)  is called 

a survivor fraction.  It is the fraction of those with length of service u that are 

still in the organization.  For example, the entries in table III.l are survivor 

fractions x 100. 

Figure III.l shows a graphical method of computing p(u)g(t).  The graph 

is for the case M = 4,  and the particular values 

u 0 1 2 3 4 

p(u) 1.0 0.85 0.80 0.55 0.2 

The input value g(t)  is plotted on the horizontal axis and the various values 

p(u)g(t)  can be read from the vertical axis.  For example, when g(t) = 70, 
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100 

100 80 70 60 

Figure  III.l:     Graphical Method  of  Calculating 
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then we compute p(2)g(t) = 0.8 x 70 = 56 by following the dotted line in 

Figure III.l. 

Problem 7; Given the values of g(t) below, use Figure III.l to compute 

p(u)g(t)  for u = 0,1,2,3,4. 

t 

g(t) 

Figure III.2 shows how the stock at anytime is composed of groups according 

to the time period in which they joined the system. The number in each bar 

indicates the period in which they joined the system.  In periods -3, -2, -1, 

and 0 we have five groups present since M = 4. The legacy of these past 

inputs at times 1, 2, 3, and 4 is also known. Notice the legacy at time t is 

made up from the inflow in period 0,-1,. . . ,t-M. 

Figure III.3 presents a third way in which the longitudinal flow process 

can be visualized.  Reading across any row we have the size of th»3 cohort as 

time proceeds.  Reading down any column for t < 0 we have the contribution of 

each cohort to the system.  If t > 1 we have the legacy of inputs in period 

0,-1,... . 

Example 6; The faculty of a university can be considered a one class system. 

The one chain assumption is valid if all appointments are made in the lowest 

ranks. 

Example 7: The students at a two or four year college can be considered as a 

one class-one chain system particularly if almost all students enter as freshmen. 

Example 8; The enlisted personnel in a skill category (rating) of the U.S. 

Navy can be treated as a one class-one ;hain system since all inflow into this 

system is from new Navy recruits. 
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Example 9:  The students at a four year college may either be admitted as 

freshmen or juniors. We can construct two 1 class (students) and 1 chain models 

that operate in parallel. The total number of students is thus the sum of the 

stocks in the two models. I 

If we interpret the single chain and single class to be simply "still in the 

system," then p(u) takes on a special meaning.  If after having left a person 

cannot return to the system, then  p(u) must be non-increasing in u.  If L 

represents the lifetime of an individual in the system then 

p(u) = r[L>u] . 

v00 

From this and a well known result in probability theory r.hat E[L] = i _Q P[L > U] , 

one can interpret the sum of the pC^'s, i.e., I -n  p(u) >  as t^e  average 

lifetime in the system of an individual.  Also from (1), if the input in each 

period is equal to a constant  g,  then the stock at time t  is given by 

g E[L] .  This interpretation can oe extended to the multiclass, multichain 

case, and this is done in the next section. 

i^^^i^^^^^ia^^iit^^^. 
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4.    Equilibrium. 

This section  examines the longitudinal  models  at   equilibrium.     The most 

useful  result   is  In the constant  size system.     In this case we  find  the  data 

requirements  for specifying a longitudinal  model are  greatly simplifle'l  and a 

more  intuitive  interpretation is given Co  the coefficients of the model.     An 

analysis of geometric and arithmetic growth  reaffirms  the general principle 

that expansion allows  for more flexibility  in manpower systems while contrac- 

tion  restricts  the range of possible decisions. 

If    g(t)     Is a constant vector    g    then     s(t)  =   ()    nP(u))g.     Define L =  )"   „P(u), ^u^u '-u=U 

an    N  x K    matrix.     The  equilibrium cohort   model  is  thus 

(5) s = Lg . 

In addition,  we see  that the coefficient     I,,     of    L    is the lifetime in Ik. 

class     1    of  an  individual in chain    k.     Thus an equilibrium chain can be 

specified by  an    N    vector    i    =  [ ^JV.J^OV. »• • • >^MiJ     where    £,,      is the number 

of times an  individual on chain    k    will be  counted  in class    i.     Note  that 

several nonstatlonary models,     (P(0),P(1),...,P(M))   lead to the same stationary 

model  when these matrices add to the same matrix    L. 

Example  10:   (M = 3) 

Length of  Service     u 

0 12 3 

Case  1,   Pik(u) 

Case  2,   Pik(u) 

1 

1 

1/2 

0 

1/2 

0 

0 

1 

In both cases     i,,   = 2,    however,  in Case  2  the  Individual spends  the  first 

and  last  periods   in class  1.     In Case  1     ""he  individual spends  the  first  and 

one half of  the second and third periods  in     1. 

liMiiiiTii^i^^ • i %  ;—% '%  - % � % � 
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With this interpretation of the I it is possible to write down 

equilibrium model:? directly without specifying the matrices P(u). 

Example 11:  Consider the three class, seven chain example presented in 

Example 4.  It is obvious that 

L = 

1 2 3 4 5 6 7 

1 "4 5 5 5 0 0 0 

2 0 30 2.0 10 25 20 10 

3 0 15 20 0 15 20 0 

Problem 7:     Calculate    L    for   the  systems  described   in Examples  2   and  3.     Then, 

in  the  first   case,  calculate  the  equilibrium stock levels   if  the   input   is 

12 3 4 5 6 7 

12 1111 

If the input is changing geometrically in time g(t) = 0 g,  then the stock 

vM  t-u 
levels will change at the same rate.  From (4) we have s(t) = )  _0  P(u)g . Lu=U 

Let 

(6) 

The model becomes 

(7) 

L(8)   =     I    6 UP(u) . 
u=0 

0ts =   s(t)   =   O^CfOg . 

Note   that     L(l)   = I . 

Example  12:      (Continuation of  11) 

If     9  =  0.98,   then    1(9)     is 
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22 

0 0 0 

32.2 24.4        10.97 

28.74       36.54        0 

4.124        5.208        5.208 5.208 

0 45.17 26.99 12.14 

0 35.18 40.43 0 

Example 13:     For    6 = 1.03, L(9)     is 

'3.829 4.717 4.717 4.717 0 0 0       " 

0 17.41 13.22 7.579 17.94       15.32        8.786 

0 4.37 7.319 0 5.873       8.484      0 

An individual's view of the organization  is determined by the input     g    and 

the matrices    P(0),P(1), ,P(M) .      However,  the  total organization  is 

concerned with the matrix    L(6)  = [ _    9    P(u)     and  the input    g .   This  discrepancy 

between the organization's view and the  individual's view is extremely important. 

As we illustrate below it  also seems to be  sensitive  to quite small changes 

in growth rates. 

Example 14:     (Continuation of 11) 

Let the stationary input  per period  to  each chain be 

15 20 8 
1 

5    3 .1 1 

Then,  using the same values of    L(6),     the equilibrium    s = L(0)g    is 

= 0.98 234 1312 1150 

= 1.00 225 915 525 

= 1.03 213 570 172 

lifiliii'fiiiM'irir"'--'--"-' MMIT riniiii—-^ tt''W¥BM<i4lrt^^-'v"-"'-'J^'^ 
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It is a more meaningful comparison to contrast the number in each class with 

the number of active faculty, since the organization's budget and ability to 

generate retirement funds will most likely be closely tied to the number of 

active faculty. 

Fraction in each class . 

Nontenured   Tenured   Retired 

r. 

A small (3%) growth rate can make a significant difference over no growth and 

a very large difference over a 2% decay in input.  Note first how larger values 

of 0 , i.e. growth, shift the distribution of faculty toward the junior ranks 

and also keep the ratio of retired to working individuals low.  There is a 

third advantage of growth.  The 53 new appointments represented by g ,  are 

3.4% of the size of the declining faculty, 4.7% of the size of the constant 

size faculty and 6.8% of the size of the growing faculty.  The peACdntage.  of 

new faces in the growing faculty is twice as large as in the declining faculty. 

The reader should compare these results with those in Table II.5 of Chapter II 

to see that the longitudinal and cross-sectional models consistently lead to 

the same equilibrium behavior. 

Example 15:  Consider a university faculty with two chains.  On chain one people 

spend 8 years in the nontenure ranks and 36 years in tenure ranks. The individuals 

on chain two spend 8 years in nontenure and then leave the system. If in each 

period we have 1 person enter chain one and 2 people enter chain two, then the 

equilibrium stock vector i  s = [24,36]  which has 40% nontenured faculty.  These 

data are summed up below. 

iii^iit«iiiOT^^ rviiHrrffi^^^iitt^MrWlWh^^^         i^HhlJt'.^.ii^w.Ü.ti-A.^ 
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8 8 

36 0 

1 2 

= 1.04 .  If the 

Chains 

1   2 

nontenure 
lifetime 

tenure 
lifetime 

flow 

Now consider another university with 4% growth, i.e. 

chain flows are organized as follows 

Chains 

1   2 

nontenure 
lifetime 

tenure 
lifetime 

flow 

then the organization will retain 40% nontenure faculty. However, thr prospect 

for an average appointee in the second university is much brighter: b0%  of 

new appointments will eventually be promoted to tenure in 6 years.  In the no 

growth case 33% attain tenure in 8 years. 

The example above shows how growth gives the organization greater flexibility. 

The benefits of growth were passed on to the employees. Now suppose the organi- 

zation is growing with 6 = 1.04, and the promotion rules Implicit in the first 

university are followed; i.e., 8 years to a decision, and 1/3 are 

promoted.  In this case the growing university will have 58.5% nontenure faculty. 

The benefits of growth have been assumed by the organization.  The prospects 

for individuals in the growing university are the same as those in the constant 

size university. 

6 6 

38 0 

1.5 1.5 

iffiMiW^^w^^ llyjg^i^ll^jl^ft^^ 
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As a third (intermediate) case, assume the university and employees share 

the benefits of growth.  Let the chain flow be 

Chains 

1   2 

7 7 

37 0 

1.2 1.8 

nontenure 
lifetime 

tenure 
lifetime 

flow 

In this case 5/12 of the appointees are promoted in 7 years.  The nontenure/ 

faculty ratio will be 0.488. 

Example 16; Continuation of Example 15. 

Four policies from example 15 are examined:  8 and 6 year nontenure 

periods with 9=1 and  6 = 1.4 .  In each case we wish to determine the 

/Si 
equilibrium ratio of new appointments to total faculty size.  If g 

is the appointment policy, then this ratio is (using equation (7)) 
0 

_es_ 
eL(0)g 

In Figure III.4 the new appointments, as a percentage of the total faculty 

size, are plotted against the percentage promoted to tenure for each of the 

four policies. 

Points G and H on this graph represent a faculty with 40% nontenured. 

Point G corresponds to an 8 year nontenure period with a 33% promotion rate, 

while point H corresponds to a 6 year nontenure period with a 50% promotion 

rate.  Clearly the employers are better off at point H.  There is an additional 

,tTT1illl]1Tlll--iii iilini i 
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6 years without tenure, growth tactor 1.04 

8 years without tenure, growth factor 1.04 

6 years without tenure, no growth 

8 years without tenure, no growth 

G G 40% faculty without tenure 
8 years without tenure, no 
growth. 

O H 40% faculty withoo^tenure 
6 years without tenure,   growth 
factor 1.04. 

100 

%  Promoted to Tenure 

Figure J^L.t*:     New Appointments versus Promotion to Tenure 
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benefit to the organization dt H in the form of 7,2% new appointments per 

period. This should be contrasted with the 5% new appointments at point G. 

Problem 8:  If g(t) = g + th for t > 0  (g(t) grows arithmetically at rate h) , 

then when t > M show that 

M 
s(t)   = tLh + Lg - I    uP(u)h 

u=0 

Problem 9:  (Based on Example 11) 
M 

Show that the second and fifth columnc of  £ uP(u)  are given correctly 
u=0 

In the table below 

Column 

2         5 
t 

10 n   i 

585 300 

630 441 

mm IWf^f-i '-iiiinif WfnfiiiiiiniftilWftiHtiiTtiiffhriiiiriiiivii'i'- 
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5.  Probabilistic Interpretation of the Longitudinal Nodel. 

To this point in this Chapter we have avoided discussing models which depend 

on the detailed movement of Individuals.  In this respect, sections 1-8 of Chapter 

II and sections 1-4 of this Chapter are similar. But if one wishes to describe 

or explain unpredictable variations in personnel flow one must somehow introduce 

randomness into the model.  This can be done, in a number of ways.  The method 

described in this section follows that used in section 9 of Chapter II, and it 

allows us to use the longitudinal model already discussed. 

Consider the path that an individual takes as he moves through the. system. 

Assume he enters in period u on chain k.  In what class will he be at time 

(t + u)? Let p (u) be the probability that this individual is in class 1 

at  (t + u) .  Then P.Cu) = [P-ib.^'P2k^ '" ' *'PNk^U^  iS a vector of Proba" 

bilities which must be non-negative and sum to a number no bigger than 1 .  Note 

rN 
that ep (u) = i        P.JV(U)  is t^ie  probability an individual is still in the 

system u periods after entrance.  Since, by definition, once a person leaves 

the system he cannot return,  ep, (u) must be nonincreasing in u,  and ep, (0) = 1 

Let S.(t;u) be the number of people in class i at  t who entered the 

system in period  (t-u);  this is now a random variable.  Recall that 81.(t) 

is the number of people who enter the system on chain k at any time t . Then 

K 
(8) E[Si(t;u)] = I    pik(u)gk(t-u) 

k=l 

Also,   if    S-^Ct)     is the total  in class    1    at time    t,     then 

E[S  (t)|s   (t;u),u=0,l,...,M]  =    £    S1(t;u) 
u=0 

By unconditioning and using  (8) we have 

(9) 
M  K 

E[S1(t)] = I       I    pik(u)gk(t-u) 
u=0 k=l 

litekaäM^afei^e^^^v^....^ ^..„-^.^  .„ .. „ . ..;,;;..,..,;.^,.„ „,...„...,.      Mag 
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These are precisely the same equations as (1) and (2) in section 2, and if 

s(t)  represents the vector of expected values  s.(t) = E[S (t)], equation 

(4) holds.  Thus our probabilistic interpretation of the fractions p ,(u)  is 

consistent with the earlier model. 

This probabilistic model has a simple and logical interpretation in the one 

class, one chain case of section 3.  Let A be the (random) lifetime of an indi- 

vidual in the system. Then A > u if an only if an individual stays in the 

system at least u periods.  Thus 

p(u) = Prob [A > u] . 

The expected lifetime (in the system) of an individual is 

M 
E[A] = I    p(u) . 

u=0 

From equation (9) above, if g(t-u)  is the input flow in period (t-u) 

the expected stock level at time t  is 

H 
E[S(t)] = s(t) = I    p(u)g(t-u) . 

u=0 

In the equilibrium case where g(t) = g  for all t, then 

(10) t; = E[A]g for all t 

Equation (10) simply says that the expected stock levels are given 

by the input per period time the expected number of periods an individual 

stays in the system. 

Problf.m 10:  Show that element £.,  of the matrix L in section 4 can 
  ik 

be interpreted as the expected lifetime in class i of an individual on 

chain k. 

ateiMW^ 
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-N In a single class model, or in an aggregate model where Pv(u) = K, p  (u), 

it is possible to determine the variance of system lifetime for individuals on 

any chain.  If the random variable /l  represents system life on chain k , 

then 

Prob [A. > u] = Pk(u) ,  u = 0,1,2,,..,M. 

It follows from this that 

M M 
E[\] = I    Pk(u) ,  and E[A^] = £  (2u+l)p (u) . 

u=0 u=0 

These imply that  the variance  in system lifetime on chain    k    is 

M      N \   2 
Plk(u)  +    I       I    P.Ju)   -( 

u=0      i=l    1K u=0 i=l 

Example 17;  Suppose the matrices 

MN MN /MN       \ 
2 r u i P^(U) + i i p^(u)-(jo i pik(

u)) ik" 

P(0) = 

P(2) = 

P(4) = 

1 0 

0 1 

1 0 

65 .2 

0 0 

2 0 

P(l) = 

P(3) = 

P(5) = 

9 0 

0 .95 

0 0 ' 

65 .05 

0 0 

05 0 

describe the flow in a 2 class (lower and upper division) undergraduate college, 

and the two chains are admission to lower and upper division. Using this 

data, the mean and variance of system life (years in college) in each chain is 

Mean Variance Standard Div 

Chain 1 

Chain 2 

3.55 1.745 1.29 

2.2 0.36 0.6 

where the standard deviation is the square root of the variance. 

mmmm j^jgllgglBllifeiM^ 
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6.  A Student Enrollment Forecastins Model. 

This section presents an actual example of real cohort flow data for under- 

graduate students entering the Berkeley campus of the University of California 

in the fall (beginning of the academic year). After we present and analyze 

the data we discuss several institutional and behavioral problems that made it 

difficult to implement these models in a straight forward manner. Throughout 

the section the notation FXX refers to the fall quarter of year XX.  Thus F69 

refers to the fall quarter in 1969. 

We assume there are four classes of manpower:  freshmen, sophomore, junioi", 

and senior; and four chains:  those entering as freshmen, sophomores, juniors 

or seniors.  The time periods are taken to be 1 year and the entry data is 

given in Table III.2. Although students enter in other quarters in the academic 

year, by far the majority enter in the fall, and we concentrate on these cohorts. 

The matrices P(u)  for u = 0,1,...,6 are given in Table III.3. 

liven the data above we can calculate the stocks in F69 and the legacy 

of F^3-F69 entrants in F70-F74,  These results are shown in Table III.4. 

If we wish to keep the stock level of fall entrants at a constant level, 

then it is possible to calculate the new admissions necessary in F70-F74 in 

order to maintain F69 stock levels.  These are shown in Table III.5. 

The steady state admission levels can be found by solving s = Lg, where 

L = 

1.283 0 0 0 

0.835 1.137 0 0 

0.790 0.842 1.413 0 

0.525 0.554 .741 1.501 

The  system is obviously quite cloce  to equilibrium in F69.     (See Table  III.5). 

As we remarked earlier,   this data treats  only  those cohorts   that  entered   in 

fall.     Although  this  is  the  largest  source  of new students  a  sizeable  number  enter 

.ÄLluiiniim^ 
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g(t) 
1 

F63 F64 F65 F66 F67 F68 F69 

Freshman 

Sophoraores 

Juniors 

Seniors 

1883 2239 3303 3053 2579 3427 3620 

258 542 843 733 390 602 728 

817 1366 1662 1418 1042 1442 1569 

48 124 175 205 125 202 199 

Table III.2.  Student Enrollment Input in Fall Quarters 

F69 F70 F71 F72 F73 F74 

21 

F75 

11 Freshmen 4570 1010 96 55 32 

Sophomores 

Juniors 

Seniors 

3470 3040 906 147 50 22 12 

18 4780 3668 3120 1200 176 52 

3160 2980 2410 2020 753 187 64 

Table III.4.  Lefiacies of Entrant up to F69 

Freshman 

Sophomores 

Juniors 

Seniors 

F70 F71 F72 F73 

3560 

431 

1110 

183 

3570 

437 

1060 

118 

3569 

439 

1140 

160 

3560 

439 

1130 

140 

Steady State 

3560 

440 

1130 

143 

Table III.5.  Future Fall Admissions Required 
to Maintain F69 Stock Levels 
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P(u) 

1 0 0 

0 1 0 

0 0 1 

0 0 0 

254 

584 .118 

009 .622 .265 

.039 .493 

012 

210 .013 

454 .189 .138 

009 .337 .192 

007 

027 .003 

281 .022 .033 

318 .130 .042 

004 

008 .003 

033 .005 .005 

152 .031 .008 

003 

003 

009 .004 .001 

031 .010 .003 

003 

003 

004 .001 .001 

015 .007 .003 

395 

.046 

,029 

,016 

.015 

Table III.3:     The Matrices P(u)  Up to Six Years 
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in winter, spring and summer.  If the yearly accounting point is the fall, then 

the total inventory in, say, F75 would be made of winter, spring and summer 

cohorts entering in calendar years 70 through 75.  The matrices P(u)  that 

apply to fall cohorts would not be applicable to cohorts that enter in other 

quarters, thus the data requirements ."re roughly four times as large as is shown 

in Tables III.2 and III.3. 

We conclude this section with a discussion of the institutional difficulties 

involved in using the longitudinal model for the Berkeley campus.  In F66  this campus 

switched from a semester system to a quarter system with year-round, 4 quarter 

operation.  This caused problems in determining how to use data collected from 

a semester system, to predict enrollment in a quarter system. 

The Berkeley campus operated on a semester system until the fall of 1966. 

It is reasonable to assume that students entering in the fall or spring would 

behave similarly under a semester or quarter system.  However, the first 

winter and summer quarters ever to be offered were in 1967.  The fractions 

of students who entered in these quarters and were enrolled in F69 are now 

applied to cohorts entering in the winter and summer of 1968 when forecasting 

for F70.  It would certainly be expected that some students from the winter 

and summer quarters of 1967 would also be enrolled in F70, but how many? 

We have no fractions for winter or summer 1966 since there were no such quarters. 

These fractions have to be estimated in some reasonable way.  An average was 

taken of the fractions from F65 and Sp66, (here W. Sp, Su, refer to Winter, 

Spring and Summer of the given year)  for the winter quarter and from Sp66 and 

F66 from the summer quarter. 

Another problem arose when, in 1970, the summer quarter was discontinued. 

This was in deciding what fractions to apply to the students who entered in Si;69. 

These students had available only the winter and spring quarters of 1970 before 

lIMilttfi/lMl^M--^^-"-'*^^--^"'.'!% % '% ''^-n ^ % � rinrt-.-n.mt^-.^i^.i-» n-.Lj f'-iifiiiiViti'i^iii^Wi^ 
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F70.  The students who entered in Su68 could attend winter, spring and summer 

quarters before F69.  It was felt that larger fractions of Su69 entrants would 

attend the fall of 1970 than the fractions of Su68 students attending F69.  But 

how much larger?  To estimate attendance of Su69 entrants it was assumed that 

the same fraction of these would attend F69 as did Su68 entrants in F68.  Of 

these that enrolled in F69, they were then assumed to behave in the same way as 

new entrants in F69, 

Besides these particular and rather confusing problems, caused by institu- 

tional operational changes, the stationarity ot most of the fractions since the 

start of the summer quarter can be questioned.  With such a major change in 

campus operations one might expect that it would take a number of years for the 

system to settle down, even if there were no changes between 3-quarter and 

4-quarter operations.  In light of this observation the results in Table III.5 

are somewhat surprising. 
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7.  A UnJveralJzy Planning Model 

This section describes a university planning model that is based on an 

equilibrium manpower flow model.  The model relates the technology of the Institu- 

tion to the flows of students and faculty.  The student faculty flow process 

is central to the model. We have a system containing nineteen classes of manpower 

shown in Table III.6.  Notice that all abbreviations for stocks start with the 

letter S. 

Class 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

Abbreviat ion 

SLA 

SLS 

SLD 

SUA 

SUS 

SUG 

SUD 

SMA 

SMS 

SMT 

SMG 

SMI) 

SDA 

SDS 

SDT 

SDG 

SDD 

SFN 

SFT 

Desciiption 

Lower division Admission 

Lower division Student 

Lower division Dropout 

Upper division Admission 

Upper division Student 

Upper division Graduate 

Upper division Dropout 

Masters Admission 

Masters Student 

Masters Teaching Assistant 

Masters Graduate 

Masters Dropout 

Doctoral Admission 

Doctoral Student 

Doctoral Teaching Assistant 

Doctoral Graduate 

Doctoral Dropout 

Faculty Nontenure 

Faculty Tenure 

Table III.6.  Stock Classification Scheme 

The model makes a distinction between students who are teaching assistants and 

students who are not.  Thus the entire class of masters program students is actually 

the sum of classes 9 and 10. 

iMiiiMiBiifltiraiWiWitf»tfirir-'t';',f';'--'fi Ma Mai 



HMIPIPiPP^PfüS Pi^JSfjj^iijp^^iffiSS^PP^iiW^^ 

37 

This is an equilibrium model, thus we have the advantage of being able to 

rearrange the actual schedule of persons in a cohort in order to make a model that 

is easy to deal with.  We illustrate this point with three examples. 

Example 18; Harry enters the lower division in September 1975. After one year 

as a lower division student, Harry drops out. 

Suppose our account period is one year, and the accounting date is April 1. 

Then Harry's history is summarized below: 

Time Class 

1975 

1976 

1977 

SLA 

SLS 

SLD 

Example 19: Tom enters lower division in September 1976 and graduates from 

upper division in June 1980.  Tom's history is: 

Time Class 

1976 

1977 

1978 

1979 

1980 

1981 

SLA 

SLS 

SLS 

SUS 

SUS 

SUG 

Example 20: Dick is admitted to the Ph.D. program and enrolls in September 1976. 

Dick spends two years as a student.  In one of those years he is a half-time 

teaching assistant.  After two years Dick drops out of the Ph.D. program, takes 

a masters degree and leaves the University.  Dick's history is: 

Class 1 ,..iae 

1976 

1977 

1978 

1979 

SDA 

SDS 

SDS (1/2) and SDT (1/2) 

SMC D 
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We assume our equilibrium flow model has 10 chains, 

are given in Table III.7. 

Chain Abbreviation 

1 

2 

3 

5 

6 

7 

8 

9 

10 

FLD 

FLG 

FUD 

FUG 

FMD 

FMG 

FDD 

FDG 

FFN 

FFT 

The chains and description 

Description 

Lower division Dropouts 

Lower division Graduates 

Upper division Dropouts 

Upper division Graduates 

Masters Dropouts 

Masters Graduates 

Doctors Dropouts 

Doctors Graduates 

Faculty Nontenure 

Faculty Tenure 

Table III.7.  Chain Definitions and Descriptions 

We assume that all lower division graduates enter the upper division, and that 

a certain fraction, see example 20, of the doctoral dropouts receive a masters 

degree.  In addition, we assume that a certain fraction of the masters graduate 

chain enter the Ph.D. program. 

The L matrix is given in Table III.8, where the entry in row i, column j, 

gives the number of time periods a person on chain j spends in class 1. For example: 

consider chain 3. The chain is FUD (upper division dropouts).  The students on 

this chain spend one year in SUA (upper division admission) , one year in SUS (upper 

division student) and one year in SUD (upper division dropout). 

i 
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\                       Flow Chain 

Stock   123456789    10 
Class \ 

1 

2 

3 

1 

1.2 

1 

1 

2 

4 

5 

6 

7 

2 

0.8 

0.2 

1 

1 

1 

1 

2 

1 

8 

9 

10 

11 

12 

1 

1.1 

1 

1 

1.8 

0.05 

1 0.2 

13 

14 

15 

16 

17 

0.16 

0.05 

0.05 

1 

1.5 

0.25 

0.8 

1 

3.2 

1 

1 

18 

19 

5 

7 25 

Table "II.8.  The L matrix for the University Planning Model. 
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Nineteen conservation relations between the nineteen variables    s,  and the 10 

variables    g ,    are given by 

(11) s = Lg 

! 

Example 21; Note that one simple use of the model is to choose the flows g, and 

calculate the stocks s. Three such calculations are presented below. 

For the first calculation, let the chain flows be given by: 

Chain 1 2 3 4 5 6 7 8 9 10 

8 200 600 100 400 75 200 50 200 40 
1 

5 j 

Using L in Table III.8, the resulting equilibrium stocks are: 

Lower    Upper    Masters    Ph.D. 

800 500 275 250 admission 

1440 2100 442.5 747 students 

200 220 75 40 dropouts 

- 880 210 210 graduates 

% ~ — 10 

Nontenure 

222.5 

Tenure 

teaching 

200 405    faculty 

To see if these figures are reasonable we can check some meaningful ratios. 

First, the ratio of teaching assistants to undergraduates, (sin + s1[.)/(s„ + s,.) 

is 0.066. The ratio of undergraduates to total students 0.71, the ratio of upper 

division to undergraduates is 0.59, and the ratio of students to faculty is 8.2. 

These ratios are reasonable except the student/faculty ratio.  Currently the 

input flow of faculty (gg and g-,n)   is 40 into non-tenure and 5 into tenure.  For 

tb0 second calculation we change gg and g1f. to be 15 and 2.  The same student 

results are obtained, but the faculty becomes: 

Iü_ilgt:i|ij:i^^ 
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% . 

Nontenure    Tenure 

75 155 

and the student faculty ratio is 21.6. 

Finally, for the third calculation, we shorten the lifetime of lower division 

dropouts in student status from 1.2 to 0.6 years, we lower the stock of lower 

division students to 1320.  Thus if we change g,  and g  to new values 218 and 

654, we would have the same student stocks. 

Example 22; An alternate use of the equilibrium model is to specify the 

stocks s and then calculate the flows g necessary '.o maintain these stocks. 

In general, there does not exist a g such that Lg = s.  However, we can calculate 

the g that gives stocks closest to s ,  in the sense of minimizing the inner 

product (s - Lg) (s - Lg).  Here  '  indicates the transpose operation. The g 

which minimizes this function is denoted g*,  and 

(12) L'Lg* = L's , 

where L1 is the transpose of L. If a weighted measure is desired, then define 

W as a 19 x 19 diagonal matrix. Then (12) will still hold with s replaced by 

Ws and L replaced by WL , g* minimizes (s - Lg)'W't^s - Lg). Two numerical 

calculations are shown below.  Suppose the desired stocks are given by 

ower Upper Masters Ph.D. 

1000 500 200 100 admissions 

1700 3400 350 350 students 

400 400 50 80 dropouts 

600 2500 150 220 graduates 

- - 25 

Nontenure 

50 

Tenure 

teacning assistant 

85 240 faculty 

lllll7^lllllm^iMii''^^•'"J:% ^•:^^^i^f^lliii% r^:^%  • % � • ---^-^ iHi&diii'i&ziutijii .;r.".: % � iW'.ll- " •-.i:- % ^^% >...^J-   % � � � % � � % ..        -.% .%  '.-.-:   -.^M^^J^ 



IPPPP^^^^^^ 

42 

The best  flow approximations,     g*,     (when    W    is an identity matrix)  give stocks 

Lower Upper Masters Ph.D. 

1010 847 209 115 admissions 

1850 3586 339 362 students 

210 -133 52 15 dropouts 

800 1780 160 104 graduates 

- - 8 

Nontenure 

109 

Tenure 

teaching assistant 

85 240 faculty 

Suppose  that  on seeing the resulting  input  flows we decide to  revise our desired 

stock plan  to 

Lower Upper 

500 

Masters 

200 

Ph.D. 

1000 100 admissions 

1750 2000 J50 350 students 

300 400 50 30 dropouts 

700 1200 150 120 graduates 

- - 10 

Nontenure 

100 

Tenure 

teaching assistant 

85 240 faculty 
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Now the best flow approximations,  g*, give stocks 

Lower Upper Masters Ph.D. 

996 480 209 110 admissions 

1726 2165 340 351 students 

333 254 52 12 dropouts 

663 889 160 102 graduates 

— — 8 

Nontenure 

106 

Tenure 

teaching assistants 

240 faculty 

Note that  this approximation  is  relatively close  to the desired  one.     The largest 

error appears  in the undergraduate degree category. % � 

We can also use  the basi-   flow model     (10)     in conjunction with other restrictions 

on the education process.     We list  several  possibilities. 

(i)     Let    A      be the desired  total  student body size.     Then 

s2 + s5 + s9 + sl0 + sl4 + s15 =  A1 . 

(ii)     Let     A„    be  the desired   total  faculty size.     Then 

s18 + S19 = A2 % � 

(iii)     Let    a,   be  the desired   ratio  of undergraduate students  to  teaching 

assistants.     Then 

sl0 + s15 = a1   (s2 + s5) . 

(iv)  Let a„ and a.  be the desired ratios of nontenure and tenure faculty 

to student.  Then 

s18 = a2 (s2 + s5 + s9 + s10 + s14 + Sl5) , 

s19 = a3 (s2 + s5 + sg + s10 + s14 + s15) . 

Illll^.^^^^^aii^ik^^  ....^..^^tteu^^ tä^^^iÜ^'^'i^^^^'K'*^^-^^'-*'"1''^ 
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(v)  Different categories of students present different workloads to faculty, 

and it is common to weigh the different categories to correct for this 

anomaly. Let w^.w^.w.,  and w,  be the weights assigned Lower division, 

Upper division, Masters and Ph.D. students respectively, and let  a, 

be the desired ratio of total raculty to weighted students.  Then 

(s18 + s19) = a4 [w1s2 + w2s5 + w3(s9 + s10) + w4(s14 + s^)]. 

(vi)  Let ^o»^* and ^r be the desired annual output of bachelor, masters 

and doctors degrees.  Then 

S6 = V Sll = V s16 = A5' 
(vii)  Let ac.OL-.oUjOL, be the desired fractions of lower division, upper division, 

masters, and doctoral students respectively who dropout.  Then 

(Sl + 82)as = h  ' 

(g3 + g4)a6 = g3 ' 

(g5 + g6)a7 = g5 , 

(g7 + g8)a8 = g-. . 

(viii)     Let    a.     be the desired ratio of  lower division  to total undergraduate 

students.    Then 

s2 = ag   (s2 + s5) . 

Let    a _    be the desired ratio of undergraduates  to total  students.     Then 

(s2 + s5)  = al0(s2 + s5 + s9 + S10 + S1A + S15) " 

Let    a        be the desired  ^atio of nontenured to total faculty.     Then 

S18 = ail   (S18 + S19) ' 

We see that  there are a great many possibilities and  that  all  "he  relations  are 

linear  in     s    and    g.     Suppose some  restrictions are  selected from the  list.     This 

leads to a  system of equations 

'.V:-.:-w-.-.' i;-.1 mm iitftiiaMitiittm^^  •";j"-v' -"- ^—'-'•- 
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(13) 
Is  - Lg = 0 , 

Hs + Fg  = L- , 

where     H and   F    are coefficient   matrices   for the  restrictions   in  question.     These 

equations may have one,   zero or an   infinite number of  solutions,   and we  are  interested, 

in   finding a single solution of   (13).     In   this  case we  would   try  to build a 29 x 29 

system of equations.     If  there   is  an   incouaistancy in   the requirements  put on  the 

system or if  some of the parameters     (a,A)     are unrealistic,   then we will obtain 

unrealistic  solutions of   (13);   for  example,   some values  of  stocks     s      and  the 

flows     g    might  be negative. 

Example  23:     We specify the  following  parameters     A,  u,     and     w. 

A1   = 26500 

A3   = 4251 

A4  = 2370 

A5  = 634 

^ =0.06 

% = 1/29 

o;5 =0.3 

a6 =0.3 

«7 =0.2 

ail = 0-35 

Wl =  1 

w2  = 1.5 

w3  = 2.5 

w4  = 3.5 

Under   these  conditions we  obtain  stocks 

Lower Upper Masters Ph.D 

3840 3000 2672 1700 

6761 10478 4^36 3789 

1172 1433 534 421 

- 4251 2373 634 

— - 106 927 

Nontenure Tenure 

607 1128 

admissions 

students 

dropouts 

graduates 

teaching assistant 

faculty 

The faculty input flows 
are 121 to nontenure, 11 to tenure. 
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If we  change the weights used  in the student  faculty equation to 

w    =  1, w.  = 1,  w3  = 1.5,  w.   = 2 

then the student stocks and flows remain unchanged; however the faculty stocks and 

flows become 

Nontenure    Tenure    Nontenure    Tenure 
80 7 

Flows 
404       750 

Stocks 
faculty 

Example 24;  Let X , a.., a,, a,., a,, OL , a....,  and w have the values originally 

presented in example 23.  In addition let 

a- = 0.4 ,  a 0 = 0.681 ,  and ctg = 0.3 

We will not specify degree output. 

We obtain the stocks 

Lower Upper Masters Ph.D. 

4106 2995 2375 1153 admissions 

7226 10839 3945 3406 students 

1232 1473 475 277 dropouts 

- 4395 1970 902 graduates 

- - 95 

Nontenure 

989 

Tenure 

teachir», assistant 

397 738     faculty 

If the lifetime of dropouts is shortened, we observe an increase in admissions. 

Let 

£21=0.6, ^3 = 0.7, V5 = 0.7, ^j7 = 1.0. 

Then we obtain the stocks 

mfifiliiTiiiiiti bBgai^v imtinimiiiii^^  - 
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Upper 

2755 

Masters Ph.D. 

4573 2628 1127 admissions 

7226 10839 4152 3200 students 

1372 1467 526 271 dropouts 

- 4490 2170 894 graduates 

— _ 105 

Nontenure 

396 

979 

Tenure 

735 

teaching assistant 

faculty 

Example  25:     Consider a univer sity which is  currently operating with stocks 

Lower Upper Masters Ph.D. 

4261 3108 2466 1197 admissions 

7498 11248 4094 3535 students 

1278 1529 493 287 dropouts 

_ - 2045 936 graduates 

- - 99 

Nontenure 

1026 

Tenure 

teaching assistants 

412 7 66 faculty 

and  faculty  flows  of  FFN 82,   and     FFT   8.     The   current   constraints maintain  40% 

of all  undergraduates  in  lower  division. 

We relax this constraint .hat 40% of undergraduates are in lower division and 

instead set s« = 0. The university then runs without a lower division, and the 

stocks  become 
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Lower Upper Masters Ph.D. 

11027 2466 1197 admissions 

18746 4094 3535 students 

3308 493 287 dropouts 

- 2045 936 graduates 

- 99 1026 teaching assistant 

Nontenure Tenure 

412 766 faculty 
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8.     Applications  of  the One Class.   One  Chain Model. 

This  section describes applications  of  the   single, class single  chain model 

presented   in  Section 3.     A flexible  package of   interactive computer programs 

based  on  that  model has been developed  and  used   by manpower planners   in  the  Navy 

and Marine  Corps.     This  section describes  a wide  range of  applications   for   these 

models.     We  assume  that   the organizations  can  be broken down into  separate  single 

class  systems.     For  example,   the enlisted   force  of  the  .J.S.  Navy  can be  classified 

by skill   rating.     There  are  approximately  90 of   these skill ratings  and,   with 

the exception  of   recruits,   each enlisted   person   is  identified with a  skill  rating. 

In general,   the models  in this paper  are  used  by   treating each  skill  rating 

independently.     However,  we  shall   indicate  how  interactions between  categories 

can be  handled.     These must   frequently   involve   the  transfer of  either  responsibility, 

(jobs,   assignments)   or  people b  cween   the  different   categories.     A second   organization 

we shall  examine  is a particular subset  of  the  Navy -  the group  of Navy captains. 

Within   this  group we can classify  individuals  according  to year  of   entry  in   the 

Navy.     Thus we  partition  the group  of  Navy  captains   into  approximately  10  subgroups 

according   to   year  of  entry. 

The  single  class,single  chain model   is  extremely   flexible and   leads   to  simple 

calculations.      In  special cases when we  are  sure  that   the model's  assumptions  are 

not  quite  correct,   the  flexibility of   the   simple model  can usually be used   to modify 

the assumptions. 

We   first  discuss  the data requirements  of  our model,   and then  show  several 

examples. 

Recall  that  the  index    u    measures  periods   of  completed  service  or   length 

of service   (LOS),   and  that     p(u)     is  a   survivor   fraction,   the  fraction  of   those 

who entered     u     periods  ago,   and  are   still   in  the organization. 

:>jnj.:.>:i*?-<*y-jj)^-<i^ i ....% _,.....•,,u^^^^^^i*ä^fe^:^^i/v^i^..^y^'^-.^--.- 
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(i) Data 

For each of the separate categories of manpower we need three blocks of data: 

the current stocks by length of service s(o;u) ,  the future requirements z(t) 

at some time t > 0 and the survivor fractions p(u).  In the motivating example 

of the 90 skill category Na\y enlisted force with a five year planning period, we 

would require 6,030 items of data.  For each skill category M = 30. Thus 

s(0;u) and p(u)  tcgether contain 62 elements.  In addition we must know z(t) 

for t = 1,2,...,5; this gives 67 elements for each category or 67 x 90 = 6,030 

in all. 

We shall, in general, only consider one skill category at any time so the 

variables s, p, and z will not  be indexed to indicate to which category they 

apply. 

The number  s(o;u^  and z(t)  are reasonably easy to obtain with some accuracy. 

The difficult problem is determining the survivor fractions,  p(u) .  The problem 

of estimating p(u)  from past data will be treated in Chapter 7. 

Example 26:  In what follows we present several numerical e' omples. Many of these 

will be based on the illustrative data shown below. We indicate the current stocks 

by length of service (LOS), survivor fractions, and future requirements for 3 

skill ratings; SM - signalman, QM - quartermaster, and BM - boatswain's mate, in 

the U.S. Navy 

0 

Current  Stocks by LOS,  s(o;u) 

12 3 4 

SM 2000 2200 1700 800 600 225 200 

QM 1200 1600 1400 1200 600 150 300 

BM 800 640 800 960 bOO 600 600 

iliMtiiiiiMWl^ " "   -'% % --% —"—"^'^^^^ -% % � � � % —-—  
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Survivor Fractions  p(u) 

12       3      4 

SM 

QM 

1.0 0.95 0.85    0.4    0.2  |  0.15 0.1 

1.0 0.90 0.90    0.6  j  0.3    0.1 0.1 

BM 1.0 0.8 
!     !     l 

0.8   ; 0.8  i  0.6    0.6 0.5 
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Requirements z(t) 

2       3 

SM 6000 5500 5000 4500    4500 

QM 6500 7000 7 500 8000    8000 
i 

BM 4700 4700 4700 4700 
i 

4700 

Example 27:  The manpower category Navy Captain can be considered as an aggregate 

of 10 manpower classifications, Navy Captains by year of entry In the Navy.  Each 

separate year of entry group will have a known inventory in the rank captain— 

and it is possible to break down that inventory by length of service in rank 

captain.  Some typical stocks are shown below. 

Entry 
year 
194 2 
1943 
1944 
1945 
1946 
1947 
1943 
1949 
1950 
1951 
1952 

Length of Service as Captain 

3 4 5 6 7 8 10 
1 2 

35 150 4 
14 30 170 12 
18 225 10 

14 200 20 
11 185 10 

1 17 120 19 
165 20 

22 190 44 
32 209 35 

215 18 5 

MM timmmmmmm liliiitiluiiiiiiiiiiiiiiiiliiiliiitiM^^ (i^«w;ai:,.i;,ia-^i;1'.^.i^',^i.:^,^;';^^«^,J1 
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The survivor fractions are assumed tc be the same for each entry year group. 

Survivor Fractions 

u 

P(u) 

0 1 2 3 4 5      6      7:8,9     10 

1.0 0.985 0.97 0.956 0.941 
1                            i             ' 

0.927  0.881  0.749 : 0.635  0.225 
i      i 

0.05x 
i 

The future requirements are for the aggregate of all entry year groups. 

Requirements z(t) 

t 12      3       4       5 

Captains 

1  

2000 1800 1700    1600  !  1600 
i 

1 

In general the gross requirements data is not actively stored.  It is more 

convenient to calculate the legacy of the current manpower stock and to store net 

requirements data, 

(ii)  Future Legacies 

Our first application of this model is to calculate the future legacy of 

our current stock of manpower.  This is accomplished by solving 

M 
£(t) = I    p(u)g(t-u). 

u=t 

The values of    g(t-u),   the  input  flows  in period   (t-u) ,   are not  explicitly known. 

However,    s(o;j)  = p(j)g(-j)     for    j   > 0.      Thus 

M-t M-t 

i( 

i    I    P(t+j)g(-j)  =    I    ^T^-SCO;:),       1ft 
t) J j=o j=o   pu; 

1° 
M, 

if t  > M. 

This calculation is in terms of the required data s(o;u)  and p(u) . 

Example 28:  The future legacies of the three enlisted ratings are given by: 

.-u^aüiiüwiasa i HinmimiilT- -"- a&isiäiiiUMite 
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SM    5668  !  3626 
i       { 

1763 947 
1 

531 

QM  | 4563    3013 1608 693 297 

BM '    3940  !  3180 2360 1460 880 

Example 29:  The future legacies of the Captains are given by: 

t      1      2      3       4       5 

1942 0 

1943 46 3 

1944 100 32 6 1.0 

1945 210 81 20 1.0 

1946 200 161 62 14.0 1 

1947 195 166 138 53 13 

1948 153 144 124 99 41 

1949 182 178 167 142 114 

1950 252 248 243 227 195 

1951 271 267 263 258 243 

1952 234 230 227 223 219 

Total 1845 1515 1252 1021 827 
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(iii)  Net Requirements 

It is only necessary to compute future legacies once and then store net 

requirements.  Let  y(t) = z(t) - £(t)  be the net requirements. 

Example 30: Four our three enlistpj ratings the net requirements are: 

t      1       2      3       4       5 

SM 331 1873 3236 3552 3968 

QM 1936 3986 5891 7306 7702 

BM 760 1520 2320 3240 3820 
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Example  31;     For  the Navy Capt   ins  the net requirements  are: 

t 12 3 4 5 

Capt. 154 284 447 578      !    772 

Problem 11;     Assume there  is  a  lower bound    g    on accessions.     Show that ntt 

requirements are given by 

y(tj   =  z{t}   -  utj   -I    )     plu))g ,(t)   =  z(t)   -  £(t)   -( I    p(u)Y 
\u=0 / 

Example 32;    Assume that  lower bounds of  700,   1000,   500 are  imposed on the ratings 

SM,  QM,   and  BM.     The net  requirements become: 

t 1 2 3 4 5 

SM -368 |  508 i 1276 
| 

1312 
| 

1588 

QM 936 2086 1 3091 3906 4002 

BM 
1       

260 
  

620 1040 1640 1920 

Note that a negative entry implies that the legacy plus the future guaranteed 

accessions will more than satisfy requirements. 

Example 33: If we assume a lower bound of 150 captains  per year then the net 

requirements for captains become 

t      12     3     4    5 

I         1         1 
Capt.    4    -13 j  4 -8 44 1 

(iv)  Future Accessions 

It is straightforward to calculate future accessions necessary to meet future 

requirements.  If y(t)  represents net requirements and  g(t)  accessions (with 

no lower bound on accessions) , then 

(14) 

p(0)g(l) 

p(l)g(l) + p(0)g(2) 

p(j)g(l) + 

= y(l) 

= y(2) 

+ ^)g(j) = y(j) 

»^vi«£i»^Äfei^i^%^^^XWÄ..'./-:,...:i/-..i^. 



In  general, 

or 

I    P(t-j)g(j)   = y(t) ,        t  =  1,2,..., 
3=1 

t-1 
I     p(u)g(t-u)   =  y(t) , t  =   1,2,..., 

u=0 
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Example  34:     The future  accessions  that  exactly meet   requirements  for the three  skill 

categories are: 

Future Accessions g(t) . 

t 1 2 3 4 5 

SM 331 1558 1474 694 
'%  1 

1365 1 

QM 1936 2243 2128 2209 1870 

BM 760 912 1002 1252 1012 

1233 

2051 

959 

The final column gives the equilibrium accessions if requirements remain at the 

5th period level. 

Example 35:  For Navy Captains future accessions are: 

Future Accessions g(t) . 

t        12      3      4      5« 

Capt, 154    132 167 137 202 192 

The accession level that meets requirements exactly can be negative.  Typically 

this occurs when requirements are decreasirg more rapidly than can be accounted 

for by natural attrition from the system.  To find a simple accession policy that 

is nonnegative, we solve the recursive difference equation 

(15) g(t) = Max 0, 

t-1 
y(t) - I   p(t-j)g(j) 
_   .1=1  

P(0) 

lllllj^lllllglg^^  .- .;...... ;% � .:;^. ;;% % ..;;,.; V^-;,... 
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This accession policy guarantees that future requirements will be met.  They 

rM 
may be exceeded in certain time periods.  If s(t) = 2, _n s(t;u)  is the total 

stock level, then s(t) - z(t)  measures the number of redundant  personnel. 

Example 36;  Consider the net requirements for the three enlisted ratings when 

there are lower bounds on the accession levels.  From our last calculation we 

see that accessions  for QM and BM never drop below 1000 and 500 respectively. 

Thus the solution of (2) will agree with the equality solution of (1).  However 

in periods 1 and 4 the accessions for SM drop below 700.  The accession, stock, 

and redundancy levels for SM are shown below. 

t 12      3       4       5 

accession 
| 

700 1208 1493 826 
i 

1290 

( 
stock       | 6368 5500 5000 

t     ! 
4500 : 4500 

requirements 6000 5500 5000 l 4 500 ; 4500 

surplus 368 0 0 0 
i 

0 

We see there are 368 extra SM's in the first period, and also that the 

accessions in periods 2 through 5 are all above lower bound and are different 

from those calculated in example 34. 

Example 37:  A similar calculation can be made for Captains with a lower bound of 

150 per year. 

CAPTAINS 

12        3      4       5 

accessions 154 150 150 150 190 

stock 2000 1817 1700 1612 1600 

requirements 2000 1800 1700 1600 1600 

surplus 0 17 0 12 0 
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(v)    Transfers of Jobs 

A transfer of jobs  simply  is  a  change  in  the net   requirements. 

Example  38;     The rating QM has  increasing requirements while the rating SM has 

decreasing  requirements.     Suppose  some  of  the  functions  traditionally performed 

by the rating QM could be  transferred  to SM.     This  transfer of responsi- 

bility might   increase  SM requirements by  500 per period  and decrease  QM requirements 

by 500.     The future accessions needed  to meet  requirements after the  change are: 

Future Accessions g(t). 

t 1 2 3 4 5 

SM 832 1584 1526 925 1494 

QM 1437 2194 2124 2059 1691 

BM 760 912 1002 1253 1013 

(vi)     Transfers of Personnel. 

Let     r(t;u)    be the number of people with length of  service    u    who are 

transferred  out of  the  system at   time    t .      We must  have 

r(t;u)  . s(t;u)  = P(u)s(u -^o)   ^ 

If r(t;u) < 0,  then people are effectively transferred into the system, 

increase in net requirements at time t + k is given by 

The 

p(u + k)r(t;u) 
p(u) 

Example 39:  As pointed out above, the requirements for the QM rating are increasing, 

while those for SM are decreasing.  It is possible to retrain individuals in the 

SM group and transfer them to QM.  A typical retraining schedule is given below 

Time t 1 1 1 2 2 2 3 3 3 

LOS 0 1 2 1 2 3 2 3 4 

Number 150 150 150 100 100 100 
1 

50 50 50 

iiiMMifriFai^a*:^^ VI dlfrtMM _ 
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We will eventually transfer  300  people   from  each o;   the  three  youngest   cohorts. 

The  cransfers  are phased  over  time   to  provide  some  stability.     The new legacies 

for  SM and QM are: 

Legacy   £(t) . 

t 1 2 3 4 5 

644 

960 

SM 

QM 

5218 3046 

5013 3638 

1286 

2083 

403 

383 

The  future  accessions become; 

t 1 

Accessions g(t) 

2       3 4 

229b 

5 

i SM 
1 

781 1711    1433 134 6 

1858 QM 
1   ^,.- , , 

1486 2023    2256 

Example  40:     The number of   future  accessions   (promotions")   to   the  rank of  captain  is 

limited  by the  decreasing  future  requirements  and   the  large  legacy   that   is a  result 

of  large   requirements  in  the past.     One way   to deal   with   this  problem is  an  "early 

retirement"  program.     This would allow  for   a  smooth   input,   into  the  rank of  captain. 

A sample  retirement   schedule  is   shown  below. 

Time t 1 2 2 i 3 

9 

46 

40 

3 

8 

1 4 7 

' 

4 

5 

51 

50 

5 
- 

TIG 8 9    8 
1 

5 

52 YRGR 45 45   46 ' 

Number 35 30 30 30 

In  this  table     TIG     stand   for  time   in   grade.   I.e.,   the  number  of  years  as  a  captain, 

and  YRGR   is   for  year   group,   i.e.,   the   year   the   individual   started   his  career. 

With  these  changes  the   future  legacies   become: 
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YRGR 

42 

43 

44 

45 

46 

47 

48 

49 

50 

51 

52 

1 2 3 

1) 

4 5 

0 0 
i 

0 0 

46 2 !    o 0 0 

100 32 5 1       0 0 

@) G 1 (io) \Q 0 

200 (m) : 11) 
V 

1  ( V 0 

195 166 1 ^) G 
153 144 \   .124 i     99 

i 

41 

182 178 
t    '  % % % % % % � 
i   167 : 142 

i 
114 

252 248 241 [197) 
@ 

271 267 i   263 (2 08) © 
234 2 30 ; 223 

@> 

Total  1810  144 3 ; i 716 

The circled numbers show the changes d. u to our early retirement policy. 

The new future accessions are 

Access!.% ':!-. % -, (t ) 

t       12)45 

J76 Capt. 189 i /' U 186 187 

(vii)  Changes in Continuation Rates 

Let  q(0) = p(0)  and for u = 1,...,M, q(u) = p(u)/p(u-l) .  The numbers q(u) 

are the continuation rates, the fraction 01 people with LOS equal tn u - 1  that 

continue in the system and appear one per in.; later with LOS equal to u .  Changes 

in continuation rates imply changes in the survivor fractions.  For example, if 

we change  q(k)  to q(k) ,  then 

1)  if  u < k , 

if  u > k . 

(  p(u 

p(u) =/ 

q(k) 
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The changed survivor fractions can apply to either the current stock of 

manpower or to the future inflows of manpower, or to both. 

Example 41; To accelerate the release of SM we change q(3)  from 8/17 to 4/17 

The new survivor fractions are: 

Survivor Fraction n(u) . 

u01234     5     6 

SM ,95 .2 .1   .075 .05 

To increase the retention of our current stock of QM's we change  q(u)  from 

.5 to .8.  The new Survivor Fractions for QM are 

Survivor Fraction p(u) . 

u0123    4     5     6 

QM .9 .6  i .48 .16 ,16 

If these changes apply to the current stock of manpower we obtain a new legacy. 

Legacy lit) 

t      1      2       3       4      5 

SM 

QM 

5268 

4923 

2963 981 

3413    2142 

473    265 

1109  '   476 

Now assume the changed survivor fractions do not.   apply to future entrants. 

The future accessions become 

Accessions g(t) 

t      1       2       3       4       5 

SM 731 1841 1646 603 1377 

QM 1576 2167 1987 2204 1976 

If the alternate survivor fractions apply to the future accessions and  the 

current stock, then cur required accession schedule is 

^^^^^.^vxJii^^ 
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Accessions g(t) 

2       3 

•    SM 731 1841 1646 749 1680 

QM 1576 2167 1987 2204 1692 

Example 42:  Instead of an early retirement program for captains, we can change the 

survivor fractions by instituting a mid-oaptain  review. The value of q(5)  is 

currently 0.918.  If this is changed to 0.5 the legacies become. 

] 3 

42 0 0 0 
1 

0 o ! 

43 46 3 0 0 0 

44 100 32 6 0 0 

45 209 81 19 1 0 

46 200 161 62 .14 1 
1 

47 195 166 138 53 13 : 

48 94 80 69 52 21 
i 

49 182 90 85 72 58 

50 252 227 133 115 99 

51 271 267 247 146 123 

52 234 ; 230 225 213 111 

TOTAL      1772       1338 982 665        426 

The legacies in the bordered section have changed (compared with the table in example 

29). With these legacies and the new survivor fractions applied to future accessions 

we  get   the  following accession  schedule. 

Accessions  g(t) 

t j 2 3 4 5 ^ 

Capt, 227   237  , 262  ! 227  ! 254 241 
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9. A One Class. Many Chain Model. 

In the one class, one chain model it is assumed that all individuals enter 

the system with zero periods of completed service.  In the context of the Navy 

enlisted skill ratings discussed in section 8, this would mean that there are 

no significant flows between skill ratings, and that all accessions to the skill 

rating have zero length of completed service (LOS is 0) . This assumption is 

not always valid. There is a pool of non-rated enlisted manpower that is not 

assigned to any particular skill rating.  Individuals do move from the non- 

rated pool to the skill ratings with 1, 2 or more, periods of completed service 

in the Navy.  These movements are called "lateral accessions" to the skill rating. 

In general it is difficult to handle lateral accessions because of the large 

number of degrees of freedom created by a'lowing such movements.  However, we 

show how, under certain restrictions, lateral accessions can be treated as a one 

class, many chain model, and how this model can be reduced to a one class, one 

chain model similar to that in section 8. 

We say that individuals who enter the "system" (say a Navy enlisted skill 

category) with k periods of completed service are on chain k.  Thus we have 

11+1  possible chains k = 0,1,2,...,M.  Let  gi(t)  be the number of accessions 

in period  t  with LOS equal k.  Then the total accessions in period  t  are 

(16) 

H 
f(t) =  y  g, (t) = eg(t) , 

k=0 

where  g(t) = [g0(t) ^(t),. . . ^(t) ] . 

Recall that in the one class, one chain model in section 8 that p(u+l)/p(u) 

is the fraction of those with LOS u  in the skill rating who remain and complete 

(u+1)  periods of service.  We generalize this slightly and define 

(17) 
p, (u) = p(k+u)/p(k) rk 
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In the one class, one chain model  P, (u)  is Che fraction of those with LOS 

equal k who remain in service at least  u more periods.  In the  (M+l) 

chain model we assume that this fraction remains the same for individuals who 

enter with LOS less than k,  and for those who enter with LÖS equal  k.  Thus 

we assume that behavior affecting retention is the same for an individual with 

LOS k,  independent of how he came to have LOS  k. 

Let  s(t)  be the total stocks at time  t  (in the single class).  From the 

basic equation (2), 

(18) 
M  M 

;(t) = I       I     p (u)g (t-u) 
u=0 k=Ü K   k 

This equation shows that there are  (M+l)  input flow variables g.  To reduce 

this number we introduce the concept of a proportional input policy.  Let 

(19) r(k) = gk(t)/f(t) , 

independent of t.  Then r(k)  is the fraction of total input flow each period 

which enters on chain k,  and this is assumed constant from period to period. 

Clearly from (16) and (19),  V"  r(k) = 1. 

Example 43: Let M=2 and r(0) = 0.75, r(l) = 0.15, r(2) = 0.10. The maximum 

LOS is 2 periods, 75% enter with LOS 0, 15% with LOS 1 and 10% with LOS 2. The 

following table shows the total input flows in periods 1,2,3, and the breakdown 

of these flows by the chains 0,1,2 . 

Period Total Flow Chain Flows 

t f(t) 80(t)   g1(t) g2(t) 

1 550 412     83 55 

2 420 315     63 42 

3 470 353     70 47 
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By us-'ng the proportional input policy (19) in (18), and using (17) the 

stocks at time t are given by 

s(t)=  I  I    I$g^00f(t-u). 
u=0 k=0 PKk} 

Since p(u) = 0 for u > M, then 

Now let 

(20) 

M M-u  . ^ , 
'(t)= I       I    £^rr(k)f(t-u) 

u=0 k=0 PUJ 

M-u r ^ ^ 
^  = I ^TS1 ^k) 

k=0 p(k) 

Then    q(u)     is   a modified   survivor  fraction  and  the   stocks can be written 

M 
s(t)   =     I     q(u)f(t-..)  , 

u=0 

which is equivalent to the basic stock equation in section 3. Note that all that 

is required to calculate the q's are the p's  and the r's.  The modifxed sur- 

vivor fraction  q(u)  measures the fraction of accessions who entered the system 

in period t-u ,  regardless of length of service, who will be present in the 

system at time t. 

Example 44: Let M = 4 and suppose p and r are given by 

p = [1.00, 0.85, 0.80, 0.55, 0.20] , 

r = [0.75, O.^S, 0.10, 0, 0] . 

Then the modified survivor fractions are 

q = [1,00, 0.85, 0.72, 0.45, 0.15] . 

Suppose that the proportional input policy is changed, and 

r = [0.20, 0.40, 0.30, 0.10, 0] . 

Thfn if  p remains unchanged, the modified survivor fractions become 

q =   [1.00,   0.79,   0.49,   0.20,   0.04]  . 
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In the set of equations (20) we calculate the modified survivor fractions 

q from the real survivor fractions p ,  and the given proportional inputs r. 

Suppose we are given desired survivor fractions  q  and real survivor fractions  p 

We can then ask. whether or not there exist fractions  r which satisfy (20). 

Example 45:  Let  M = 4 and 

p = [1.00, 0.85, 0.80, 0.55, 0.20] , 

q = [1.00, 0.80, 0.60, 0.40, 0.20] . 

On solving (20) for  r  we find that 

r = [1.00, - 0.64, 0.85, -0.09, -0.12] . 

Since r is uniquely defined by (20) there is no vector  r with nonnegative 

coefficients which gives the above q . _ 

To find the set of  q's that can be obtained by a feasible set of r's 

we simply calculate the  q that would result from putting all accessions in with 

a certain length of service.  If  r(k.) = 1 and  r(j) = 0 for j ^ k, we obtain 

p(u+k)/p(k)    if  u < M-k , 

q(u) - 

0 if  u > M-k. 

Any feasible  q must be a convex combination of the q's  selected in this 

way. 

Example 45:  Let  M = 4  and p = [1.00, 0.85, 0.80, 0.55, 0.20] .  By setting 

r(k) = 1  in turn for  h = 0,1,2,3,4,  we get the  q's as follows: 

Case 

r(0) = 1 

r(l) = 1 

r(2) = 1 

r(3) = 1 

r(4) = 1 

0 

1.0 0.85 0.80 0.55 0.2 

1.0 0.94 0.64 0.24 0.0 

1.0 0.68 0.25 n.o 0.0 

1.0 0.36 0.0 0.0 0.0 

1.0 0.0 0.0 0.0 0.0 

:v»jfc*w= 
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Note if we wish to make q(l) > p(l), then we must have r(l) > 0. This, 

in turn, will imply q(2) < p(2), and q(3) < p(3).  To be specific, suppose 

r(2) = r(3) = r(4) = 0.  Then 

q(0) = r(0) + r(l) = 1 

q(l) = 0.85 r(0) + 0.94 r(l) 

q(2) = 0.80 r(0) + 0.64 r(l) 

q(3) = 0.55 r(0) + 0.24 r(l) 

q(4) = 0.2 r(0) | 

The quantities q(u)  represent survivor fractions where u measures length 

of completed service in the skill rating.  The quantities p(u) represent the 

survivor fractions where u measures the length of completed service in the 

Navy. 

rM 
The sum £ -n  qCu)  IS the average lifetime of an accession in the skill 

vM \-M rating.  Note that  )   q(u) = h u=0 Lk=0 
,-M  p(.i+k) 

M  p(j+k) 
Zj=0 P(k) r(k) .  The expression 

H=0 r "(k^  % '% S s:f-mP:'-y the average remaining lifetime of an individual with 

length of service k. Thus we see that the average length of service of an acces- 

sion is a weighted average of the average remaining lifetimes. 

Example 46;  (Continuation of 45). 

4 
I    q(u) = 4.4r(0) + 2.82r(l) + 1.93r(2) + 1.36r(3) + r(4) 

u=0 

Problem 12:  Suppose instead of manpower we account for effective manpower. Let 

a(j) for j = 0,...,M measure the effectiveness of an individual with length 

of service j.  Show that the contribution to effectiveness of an individual 

who has length of service u in the skill rating is 

M 

j = u p(j-u) 
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Problem 13;     Continuation  of 12, 

Interpret  as an expected value  the effectiveness measure above. 

Problem 14;     Continuation  of  12. 

If    s(0)  =  [sn(0),s1(0),.. . ,s   (0)]     is the length of service distribution 

at time    0,     show that  the effectiveness  legacy at  time    t     is 

M    a(j)p(j)s._t(0) 

P(j-t) 

Compare this result with the formula in problem 12, 

iwiijaai ttii^.E^^..».*..,^--.^^-^^^ ... 
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10.  Longitudinal Conservation 

If the flow of manpower in the organization is conserved then we are not 

free to choose the parameters Pik(u)  in an arbitrary way.  This section 

examines possible restrictions on the choice of the p., (u)  and reveals the 
XxC 

connection between the general flow model described in Chapter I and the 

longitudinal model presented in this chaprer. 

First it is obvious that the p  (u)  should be nonnegative and not greater 
XK. 

than one.  If we define 

(21) 
N 

Pok(u) = 1 " \   pik(u) ' 
i=:l 

then p , (u)  is the fraction of the input on chain k in period t - u that 

has left the system before time t .  It is reasonable to assume that 

(i) 

(ii) 

pok(0) = 0 

0 ^ Pok(u) ^ Pok(u + D ^ ! • 

These imply that no one can leave before they enter, and that the fraction who have 

left the system at some time t increases as the length of service increases. 

Recall the basic flow conservation aquations (1.3). We are going to modify 

these equations to obtain a sharper understanding of the longitudinal model and 

to make our concept of longitudinal accounting md conservation precise. 

Let f(t)  be the vector obtained from f(t)  by omitting the terms f .(t) 

for all  i = 1,2,...,N.  Thus f(t)  is, in the general case, a N(N + 1) 

vector with components f  (t)  for i = 1,2,...,N and j = 0,1,2,..,,N.  Now 

define A and B as the matrices obtained from A and B by omitting the 

columns which correspond to flows f .(t). 
01 

Example 47:  For the faculty example in Chapter I (Example 1.4) the modified 

system is 

y 
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f(t)  =  [f10(t).f11(t),f12(t),f20(t),f22(t),f23(t),f30(t).f23(t)] , 

and 

B  = 

A = 

01000000 

00101000 

00000101 

11100000 

00011100 

00000011 

Now we examine the  evolution of  the manpower system under  three assumptions 

(i) es(0)  = 1,     s(0)   >  0 , 

(22) (ii) 

(iii) s(t) =0 for t > M . 

f . (t) =0 for i = 1,2,...,N,  t 2 1 , 

The first assumption states that stock levels at time zero are nonnegative and 

the total size is 1.  The second assumption insures there is no subsequent inflow 

into the system, and the third assumption says that all stock in the system at 

time zero leaves the system by time M + 1, The equations that describe this 

flow are 

es(0) = 1 

-Is (t - 1) + Af(t) = 0 

-Bf(t) + Is(t) =0        for t = 1,2,,..,M , 

s(0) :> 0, s(t) > 0, f(t) > 0    for t = 1,2,...,M . 

These network  flow equations describe all  the possible ways an initial  stock 

s(0)     can flow through the  system for    M    periods. 

It  is easy to  see that  a  solution of   (23)   is an extreme point  solution  if 

and only if  each component  of   the  solution,     s.(t)     (and   therefore    f..(t)) , 

(23) 

^fl^tl^^   ,% , -Tl|1|iriJrtiMmffniiir--i-rrf- % % % % � y-- iSU^l&AiftjU^jifiau^ 



mmmmmmiiß^^ 

70 

is either equal to zero or one.  Thus an extreme point solution of (23) is 

the same as a personal history.  The individual is in one and only one state 

at each accounting point. 

We now refine and sharpen our definition of a chain.  Let p* (u)  be the N 

vector Pj(u) = fPii(u)'Poj,^ ' • *' »PMV ^u) ^ '  t:he fraction in each class of those 

who entered on chain k u periods ago.  Chain k is defined by the sequence 

M 
of vectors {p. (u)} n .      Chain k is called feasible if rk   u=0   

(i) pk(u) ;> 0 . 

(24) (ii)     ep. (0)  = 1 ,      and     ep, (u)     is nonincreasing  in    u ^ 0 , 

(iii)     there exists a  solution of  (23) with    s(u)  = p, (u)     for 

u = 0,1,2,...,M  . 

Problem 15;     Interpret  each of  the conditions in  (24). - 

Notice,   that when    s(u)  = p, (u)     and   (i)  and   (ii)  hold,   then  (23)  reduces to 
k 

\f(t)  = pk(t - 1) , 

(25) Bf(t) = pk(t). 

f(t) > 0. 

These equations have a solution f(t)  for t = 1,2,...,M if and only if the 

chain is feasible. Notice that the equations are separable and easy to solve.  It 

is not difficult to construct infeasible chains as the following example indicates. 

Example 48: Recall the three rank university model example (1.4).  It is natural 

to assume that flows cannot occur from tenure to non-tenure.  Consider a chain k 

where p. (0),  P. (1)  and Pr.(2)  are given by 

"Trniir^^^ aai^a^tAuak^ataaat Ji'Jtti&Ü'lfli'tfliiiitiffri-'lfi -i'fi- -i--   Tu--'-'   % % % ,"% -% -% % -'--'% % %    % -% -' 
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Pk(0) Pk(l)  Pk(2) 

Nontenured 0 0 1 

Tenured 1 1 0 

Retired 0 0 0 

71 

A person on chain k moves from tenure to nontenure after two accounting periods. 

Figure III.5 below, shows t^ possible flows in this model.  When M = 2, note 

that (i) and t.ii) in (24) are satisfied, but (23) does not hold for t = 2. 

Example 49:  (Based on Figure III.5) 

Consider the chain flows 

Pk(0)  Pk(1)  Pk(2) 

tenured 1/2 1/4 1/8 

Tenured 1/2 1/2 3/8 

Retired 0 1/8 i/. 

A feasible solution of (25) is given by 

10  11  12 
Arc ij 

20  22 23  30  33 

f(l) 

f(2) 

0 1/4 1/4 1/8 1/4 1/8 0 
% � 

0 

0 1/8 1/8 1/8 1/4 1/4 1/8 0 

Another feasible solution of (25) is 

Arc ij 

10  11  12  20  22  23  30  33 

f(l) 

f(2) 

1/8 1/4 1/8 0 3/8 1/8 0 0 

1/8 1/8 0 0 3/8 1/8 0 1/8 

We see that in is not necessary to have a unique solution of (25) 
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We define a chain    k    to be puAc. if    p., (u)  = 0 ,      or     1    for all    i    and 
ik 

u .      If a chain is not pure  it will be  called (nixed.     A  pure chain  correspondn 

to a personal history in the organization,   and thus to  an  extreme point solution 

of  system of  equations   (23). 

Let     C    be  the set  of  all  possible  chains.     Then 

(26)   C = 

s(t)  t = 0,1,... ,M s(t), t = 0,1,...,M  and some  f(t) 

t = 1,2,.. .,M satisfy (23) 

A chain is feasible if and only if s(t) = p, (t)  is in C.  Pure chains correspond 

to extreme points of C ,  and as we saw above, for mixed chains it is possible 

there are several values of f (t)  that correspond to the chain. 

Let us assume for a moment that each chain in the model is pure.  Then for 

~k 
each chain k there is a ayvcque.  solution f (t) of (23) .  Now to make matters 

even simpler, assume that the only inflow is in period 0 .  Then the flows and 

stocks observed in periods 1  through M will be 

K 

I 
k=l 

f(t)   =     I    fk(t)gk(0)   , 

(27) 
K 

s(t) = y P, (t)g, (o) . 
k=l  k     k 

In  this case it  is  possible  to  reconstruct  the  flows  from the observed  inputs 

g ,      and chain descriptions    P     by using   (27).    When  the chains are mixed  it  is 

~k not   possible  to use  (27),  since  there  is no ayvcqiK.'. value of     f       corresponding 

to  chain    k. 

Example 50;  Suppose there are only five extreme point solutions of (23). Then 

all solutions of (23) are a convex combination of the extreme point solutions. 

In Figure III.6 we have depicted the set  C in an idealized situation. The flow 

in chain 1 can be expressed as a convex combination of pure chains a, (3, and e 

^g^g^lgliliSIISlälMMgitmamamiima 
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Let x , Xg,  and x  be nonnegative numbers that sum to one. A unit inflov 

to chain k can be considered as being partitioned; x  goes to pure chain 

a, xR to pure chain 3 ,  and x  to pure chain e .  However, chain k. can 

also be described in terms of pure chains a,  6, and K .  Let y , y,.,  and 

y   be the fraction of each unit inflow that goes into pure chains a, 6,  and 

Example 51:  (Continuation of Example 50) 

Suppose we have four chains. The. points of C that are obtained by taking 

convex combinations of the solutions are shown in Figure III.7. _ 

In general, the normalization s(0) = ),   8n(0) = 1 »  does not hold.  Then 

we must consider C, (26), as the cross section of a cone,  of possible solutions, 

and the chains as generators of a subcone of allowable solutions.  Thus Figure 

III.6 is the cone's cross section.  Notice how the longitudinal model restricts 

flow to a subset of possibilities.  The cones are demonstrated in Figure III.8. 

The general flow solution is obtained by superimposing a sequence of systems 

exactly like (23), save the normalization  es(0) = 1.  One system starts at time 
K K 

t = 0 ,  with es(0) = £   SL^0) »  another at time 1 with es(l) = ^ 1g(l) , 

The stocks and flows in each of these systems are then added to obtain the total 

stocks and flows. 

Example 52:  (Continuation of Example 3, section 2) 

Here we have K = M = 2 .  The chains are 

time 

k = 1 

k = 2 

0 1 2 

'1 1/6 0" 

0 5/6 2/6_ 

4/6 2/6 0 ' 

_0 1/6 1/6. 

^^»^...«^.^.^%º^^     i ,„.„„.......... .. 



>^^w"wiftm'!»mwwj'''^ii.'f < ."% � % % '"vtmmwm'm 
% � -^r^^% *% ^% '% !• % ':;•;% % � T>-% % � -^'H:'! 

75 

Period 0 1 2 3 

Chain 1 2 1 2 1 2 1 2 

Input 72 32 78 28 66 32 84 36 Totais 

3^0) 72 32 104 

s2(0) 0 0 0 

s1(l) 12 16 78 28 134 

s2(l) 60 8 0 0 68 

s1(2) 0 0 13 14 66 32 125 

s2(2) 24 8 65 7 0 0 104 

s1(3) 0 0 11 16 84 36 147 

s2(3) 26 7 55 8 0 0 96 

s1(4) 0 0 14 18 32 

s2(4) 22 8 70 9 109 

s1(5) 0 0 0 

s2(5) 28 9 37 

Table  III.6.     Stocks Obtained  in Example   52, 
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Period 0 1 2 3 

Chain 1 2 1 2 1 2 1 2 

Input 72 32 78 28 66 32 84 36 Totals 

f10 0 8 8 

fll 12 16 28 

t=l f12 60 8 68 

f20 0 0 0 

f22 0 0 0 

fio 12 16 0 7 35 

fll 0 0 13 14 27 

t=2 f12 0 0 65 7 72 

f20 36 0 0 0 36 

f22 24 8 0 0 32 

f10 13 14 0 8 35 

fll 0 0 11 16 27 

t=3 f12 0 0 55 8 63 

f20 
39 0 0 0 39 

f22 26 7 0 0 33 

fio 11 16 0 9 36 

fll 0 0 14 18 32 

t=4 f12 0 0 70 9 79 

f20 33 0 0 0 33 

f22 
22 8 0 0 30 

f10 
14 18 32 

fll 0 0 0 

t=5 f12 0 0 0 

f20 
42 0 42 

f22 
28 9 37 

Table III.7.  Flows Obtained In Example 52, 
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Figure   II1.6:     The  Set     C _ Wi_LJi_ Five   Pure  Chains   in  Example   50. 

Figure   111.7: he   Sei   C.   i"or   Fxnm^'le   r)I 

raa 



mmmmmmmimmm mim^vmmmmiimmmmmmmm 

at 
X 
u 

-a 
c 
a 
V) 
c * 
0 0) 

•H C 
4J 0 
a •H 

rH j-i 

0 a 
% ~r. r— 

0 
D LT. 

i— 

X s 
• H Ü 
tr 1-1 
M u- 
0 

Pu c 
•H 

u- n3 
0 JZ 

u 
i) 
C u^ 

:) 
Z/ r- 

r~ 0 
H u 

0) 

•H 
tu 

78 

imi,|ii-frilirffiniTrlniiwrrmifiitf---i i^iiliVmitilitrfliriTri inTi'jri •• r ' % " •    •'     ifiitftfdil 



!r^WSlv^5*K iPPiPPP 

Solutions of   (25)   corresponding  to chains  1  and  2  are 

k=l 

k=2 

10 11 "12 20 22 

f^l) 0 .167 .833 0 0 

^(2) .167 0 0 .50 .333    ' 

f2(l) .25 .5 .25 0 o 

f2(2) .5 0 0 0 .25 

Now consider the following inflows into each chain each period. 

g^t) 

g2(t) 

Using Equation   (23),   and  overlapping  the  sequence  of  stocks we obtain 

Table   III.6. 

Periods  0 and  1  form a start up of the  system.     Times 2  and  3 are  typical; 

the  stock is  composed  of   individuals who  entered 0,   1,   or 2  periods before. 

The  stocks at   times  4 and  5  can either be  considered  as  a  legacy,  or  the   stocks 

that  would result  if no   future inflows were allowed. 

A similar  calculation  is  carried out   for  the flows  which are given  in Table 

III.7. 

Problem 16:  The chains in Example 52 were obtained by a specific mixture of pure 

chains described in Example 3, section 2.  The values of  f(t)  presented in 

Example 52 are not consistent with the aggregation scheme described in Example 3. 

Find alternate values of  f(t)  that are consistent with the aggregation scheme 

and recalculate, if necessary, the total stocks and flows. 
i 
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Problem 17:  (Based on section 6). Verify that the matrices P(u) given in section 

6 satisfy conditions (i) and (ii) of (24). 

Problem 18:  (continuation)  Construct A and  B for the student flow model 

of section 6, and check condition (iii) of (24). 
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11.  Systems Without Conservation 

Frequently we encounter systems in which the normal conservation laws do 

not seem to apply. This section points out some of the ways in which models 

of this type arise and discusses their uses and possible pitfalls. 

Nothing said about longitudinal conservation affects the model described 

in Equation (2.4).  The discussion of longitudinal conservation was intended 

to introduce an additional degree of consistency into the model and to explain 

the relation of the longitudinal flow model to the earlier general flow model. 

The examples below point out some anomalies which can occur if the model does 

not accurately represent real flows, or if the model is measuring the flow of 

some nonphysical commodity.  As we shall point out these models can be redesigned 

to be more consistent with our sensibilities.  However, such a redesign might 

make the model more complicated and no u.-jYt    .seful. 

Example 53:  In the one class, one chain model that describes the separate ratings 

(skill categories) for the en! ..sted force in the U.S. Navy, in general,  p(0) = 1, 

and p(u) 2 p(u+l) .  Table III.8 lists p(u),  u = 0,1,...,24  for the ratings 

"Boatswain's Mate"  (BM) and "Electronics Technician" (ET).  We find p(0) = 1, 

p(l) = 3.43 ,  p(2) = 6.28 , etc. for the BM rating.  The source of the difficulty 

is that u measures length of service in the Navy.  For most skill categories 

length of service in the Navy and skill category roughly coincide.  However, for 

the BM skill category, length of service in the skill category is generally 

equal to length of service in the Navy minus 3.  That is, most new "Boatswain's 

Mates" have completed 3 years of Navy duty in another skill category or as unrated 

personnel.  Notice that for the ET rating the inequalities  p(u) ^ p(u+l) hold. 

Example 54:  In another one class,one chain example let the single manpower 

classification be Navy pilots.  Inputs into the Navy pilot system are not capable 

aiiiüiü --—-^ - 
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Length 
Service, 

Years 

of        Boatswains 
u .         Mate 

(BM) 

Electronic 
Technician 

(ET) 

0 1 1 
1 3.43 0.71 
2 6.28 0.66 
3 1.32 0.56 
4 1.18 0.51 
5 1.04 0.32 
6 0.97 0.27 
7 0.92 0.22 
8 0.85 0.]8 
9 0.74 0.16 

10 0.70 0.15 
11 0.68 0.14 
12 0.66 0.14 
13 0.63 0.13 
14 0.62 0.]? 
15 0.60 0.12 
16 0.57 0.12 
17 0.57 0.12 
16 0.39 0.09 
19 0.20 0.02 
20 0.12 0.01 
21 0.10 0.01 
22 0.07 0.01 
23 0.05 0.01 
24 0.04 0.01 

Table III.8: Fractions + ;>(u)  for two U.S. Navy Ratings 

Calculated   from the enlisted  force master   files,   Bureau  of  Naval  Personnel 
dated  6-30-71 and  6-30-72. 
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of tlying planes; let us assume that It takes two years for each pilot trainee 

to qualify to fly.  Thus  p(0) = p(l) = 0, and, p(2) = 1.  In later periods, 

the pilot may undergo retraining or be assigned to a nonflying job, thus p(u) 

will depend on both the individual being still in the system and upon the individual 

being assigned to a flying job. 

It is even possible to imagine  p(0)  and  p(l)  as negative.  If it takes 

one qualified pilot to train two pilot trainees, then an increase in the number 

of trainees (those individuals in their first two years of service) will actually 

draw off qualified pilots from the stock available for assignment to flying 

units.  With this interpretation we could have  p(0) = p(l) = -.5 . 

Example 55:  Many universit:.es and other large organizations are governed by 

internal decision rules based on weighted measures of the student and faculty 

populations.  Typical of these is that tho ratio of full time equivalent faculty 

(FTE Faculty) to fuii time equivalent students (FTE Students) should be 29. 

The concept of an FTE Faculty member Is straightforward.  It accounts for 

the convention that a great many faculty members have time off for research and 

leaves of absences, sabbaticals, etc.  The concept of FTE Students is similar, 

accounting for light credit loads, quarters of vacation, etc.  However, the 

concept of FTE Student is further complicated by a weighting scheme that counts 

masters and doctoral students as respectively i.5 and 2.5 the weight of bachelor 

students.  Attempts to model the manpower system using the classification FTE 

Student will run into difficulty. g 

These examples have only shown how nonconservation difficulties can arise. 

It is necessary that the model builder be aware of these problems.  At the same 

time  an imperfect model can sometimes be useful in answering some questions. 
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12.  Notes and Comments 

Longitudinal or cohort models are a traditional tool of actuarys, demographers, 

and health scientists. Much of Chapters 6, 7, and 8 of Bartholomew [1973] are 

devoted to models with a longitudinal aspect. 

The treatment in this chapter was stimulated by Oliver [1969b].  Applications 

of these ideas can be found in Hopkins [1969], Oliver and Hopkins [1971], Grinold, 

Marshall and Oliver [1973], Grinold and Oliver [1973], and Marshall [1973]. The 

formal treatment of longitudinal models in secions 2, 4, 5, and 10 are the out- 

growth of these papers. This tie^.tment is novel and the framework should allow 

model builders to understand the power and limitations of longitudinal models. 

The applications in sections 3, 8, and 9 are based on Grinold, Marshall, and 

Oliver [1973] and Grinold and Oliver [1973]. 

The data in section 6 is from Marshall, Oliver, and Suslow [1970].  The 

university application in section 7 is based on Oliver, Hopkins, and Armacost 

[1972], Oliver and Hopkins [1971], and Oliver [1973]. 
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