“Lalhoun

Institutional Archive of the Naval Pastgraduate School

&DOKRXQ 7KH 136 ,QVWLWXWLRQDO $UFKLYH
'6SDFH 5HSRVLWRU\

7TKHVHY DQG 'LVVHUWDWLRQV 7KHVLVY DQG 'LVVHUWDWLRQ &ROOHFWLRQ

&RQILIXUDWLRQ WRRO SURWRW\SH IRU
&RPSXWLQJ ([HPSODU SURMHFW

'HOOLYHU 7HUUHQFH O

ORQWHUH\ &DOLIRUQLD 1DYDO 3RVWJUDGXDWH 6FKRRO

KWWS KGO KDQGOH QHW

'RZQORDGHG IURP 136 $UFKLYH &DOKRXQ

‘: D U DLE Y Calhoun is a project of the Dudley Knox Library at MPS, furthering the precepts and
ﬂ““ goals of open government and government transparency. All information contained

m“ KN Dx herein has been approved for release by the NP5 Public Affairs Officer.

LIBRARY Dudley Knox Library / Maval Postgraduate School
411 Dyer Road / 1 University Circle
Monterey, California USA 93943

hitp://www.nps.edu/library

RAESTANTIA PER SCIENTIAM

4

NAVAL
POSTGRADUATE
SCHOOL

MONTEREY, CALIFORNIA

THESIS

CONFIGURATION TOOL PROTOTYPE FOR THE
TRUSTED COMPUTING EXEMPLAR PROJECT

by
Terrence M. Welliver
December 2009

Thesis Advisor: Cynthia E. Irvine
Second Reader: Paul C. Clark

Approved for public release; distribution is unlimited

THIS PAGE INTENTIONALLY LEFT BLANK

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188

Public reporting burden for this collection of information iEreated to average 1 hour pespense, including the time foeviewing instruction,
searching existing data sources, gathering and maintaining theneeded, and completing andiesving the collection of infonation. Send
comments regarding this burden estimate or any other asp#us @ollection of information, including suggestions for redgdihis burden, tg
Washington headquarters Services, Directorate for Informétperations and Reports, 1215fdeson Davis Highway, Suite 120Arlington, VA

22202-4302, and to the Office of Management and Bu@ggterwork Reduction Project (0704-0188) Washington DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
December 2009 Master’s Thesis

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

Configuration Tool for the Tried Computing Exemplar Project
6. AUTHOR(S) Terrence M. Welliver

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
Naval Postgraduate School REPORT NUMBER
Monterey, CA 93943-5000

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
N/A AGENCY REPORT NUMBER

or position of the Department of Defense or the U.S. Government.

11. SUPPLEMENTARY NOTES The views expressed in this thesis are thogsheofuthor and do not reflect the official polify

12a. DISTRIBUTION / AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE
Approved for public releaseljstribution is unlimited

13. ABSTRACT (maximum 200 words)
The creation of a configuration vector file used ttialize the Least Privilege Separation Kernel (LPSK) of
Trusted Computing Exemplar (TCX) project to an initial sestiade is currently a manual process that is tedious

file is needed.

This thesis describes the first steps taken to designimplement a graphical userterface (GUI) configuratior
vector tool that enables a user to easilyate valid configuration vector files (both human-readable and binary)
tool allows a user to focus on the meaning of the configuraector rather than on tlsgntactic details of the file.

A prototype of the configuration vecttwol was successfully designed, implementend tested in this thesis. T
prototype provides the first functional GUI software application that creates configuration vector files. The
design of the toll will permit further extensions to be readily incorporated.

the
and

error prone. A software application that removes manh@fcomplexities of creating a valid configuration vedqtor

The

he
logical

14. SUBJECT TERMS 15. NUMBER OF
trusted computing exempldeast privilege separation kernel, giagal user interfaceyxpython, java,] PAGES
configuration vector, Ipsk, configuration vector tool, tcx, gui, skpp 119
16. PRICE CODE

17. SECURITY 18. SECURITY 19. SECURITY 20. LIMITATION OF
CLASSIFICATION OF CLASSIFICATION OF THIS CLASSIFICATION OF ABSTRACT
REPORT PAGE ABSTRACT

Unclassified Unclassified Unclassified Uu

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. 239-18

THIS PAGE INTENTIONALLY LEFT BLANK

Approved for public release; distribution is unlimited
CONFIGURATION TOOL PROTOTYPE FOR THE TRUSTED COMPUTING
EXEMPLAR PROJECT

Terrence M. Welliver
Civilian, Naval Postgraduate School
B.S., United States Air Force Academy, 2002

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
December 2009

Author: Terrence M. Welliver

Approved by: Cynthia E. Irvine
Thesis Advisor

Paul C. Clark
Second Reader

Peter J. Denning
Chairman, Department of Computer Science

THIS PAGE INTENTIONALLY LEFT BLANK

ABSTRACT

The creation of a configuration vector file used to initialize the Least Privilege
Separation Kernel (LPSK) of the Trust&bmputing Exemplar (TCX) project to an
initial secure state is currently a manual process that is tedious and error prone. A
software application that removes many of the complexities of creating a valid
configuration vector file is needed.

This thesis describes the first steps taken to design and implement a graphical user
interface (GUI) configuration \aor tool that enables a ersto easily create valid
configuration vector files (bbthuman-readable andnairy). The tool allows a user to
focus on the meaning of the configuration weatather than on the syntactic details of
the file.

A prototype of the comjuration vector toolwas successfully designed,
implemented, and tested in this thesis.e Tnototype provides the first functional GUI
software application that creates configuratieator files. The logial design of the toll

will permit further extensions to be readily incorporated.

THIS PAGE INTENTIONALLY LEFT BLANK

Vi

INTRODUGCTION. ...ttt ettt et e e e e e e e e e e e e e e e e s e s e s s ebbbebeeees 1
A. MOTIVATION oottt e e e e e e e e aeaaeaaaaaeeaseaaaannnes 2
B. PURPOSE OF STUDYuiitiiiiiiiiiiiiiiiiitt et eee e e e e e e e e e e 3
C. THESIS ORGANIZATION ...ciiiiiieee et e e e e e e e e e e e e e e 3
BACKGROUND ...ttt a ettt e e e e e e e e aaeeeeaaeas 5
A. TRUSTED COMPUTING EXEMPLAR PROJECTccceeeiiiiiiiieeeeee, 5

1. Trusted CompPUtiNg OVEIVIEWuuuuiiiiieieeeeeeeeeeeeeeiine e e e e e e e e 6

2. Separation KerNel ... 8

3. THE TCX LPSK ...ttt 10

4. Configuration Vector TOOI.........ccooiiiiiiiiiiiiiiie e 11
B. GRAPHICAL USER INTERFACES........otttiiiiiiiiiiiiieeeeeeee e 12

1. Model-View-Controller Paradigm ..o 13

2. JaVva anNd MVC......cooiiiiiiiiiie et 15

3. GUI TermMiINOIOQYoiieeeeeeeiieeeeee e 16
C. SUMMARY ettt e e e e e e 18
DESIGN ..cciiiiiiiiii et e et e bttt ittt et aaaaaaaaaaaaaaas 19
A. OVERVIEW OF DEVELOPMENT TOOLScutiiiiiiiiiiiiiiieeeeeeeeeeee 19

1. TOOI SEleCtiON PrOCESS.......cci i 19

2. Java Swing and NetBeaNScccceeviiiiiiieeiiiiicse e e e e e e e e 23
B. CONFIGURATION VECTOR FORMAT ..ot 24

1. 2 T (o1 PP PPPPPPRP 24

2. SEIUCTUIE OVEIVIEW.....ceiiiiiiiiiiiiiiie ettt e e e e e e e e eeeeeenes 25

3. MVC Model COMPONENT......ccoiiiiiieeeeiiieeeeeieire e e e e e e e e e 29
C. THE PRIMARY GRAPHICAL DESIGN ELEMENTcccooiiiiiiiiiiinnee. 29
D. DESIGN REFINEMENTuiiiiiiiiiiiiiiiiiieee et 30
E. CONFIGURATION VECTOR TOOL REQUIREMENTS............cceen. 38

1. BaSIiC REQUITEMENLSuuuiiiie i e eeeeee et e e e e e e e e 38

2. Detailed REQUINEMENTSccooiiiiiiiiieieieeiii e 41

3. Error Message ReqUIrEMENTSccoeeeiieeeiiieeeeeeeiicce s e e e e e e eeeeaneens 45
F. CONFIGURATION VECTOR TOOL FEATURE SETccvvvvvvviiiiiieeeen. a7

1. MiNIMUM FEATUIE Sel......ccoviiiiiiiiiiiiiiiei e 47

2. Features USers EXPECT ... 48

3. Graphical Interface Standardsccccceeeeeeeiiiieeiiiccr e, 49
G. CONCEPTUAL DESIGN OF THE CONFIGURATION VECTOR

TOOL ettt e e e 50
H. SUMMARY ettt ettt et et it e e e e e e e e e e e e e e e e e e rrrees 56
IMPLEMENTATION AND TESTINGciiiiiiiiiiiiiiee e 57
A. JAVA CLASS FILES ...ttt 57
B. PRIMARY GUI CLASSttt 59
C. PROTOTY PEttt e e e e e e e e e e aaaeaaeeas 62

1. SCIEENSNOLS ..t e e e e 62

TABLE OF CONTENTS

2. (@] aTel=T o] 0o] @] o<1 i[o] o R 67

D. TESTING ...t e et e et e e s e b e e s e b e e s st e e seaaeeeebans 69
1. Phase I: Error Checkingccoooviiiiieeeicee e 70
2. Phase I1: INPUY/OULPUL........oooiiiiieeee e 76
3. TEST SUMMAIY ..ttt eeaa s 80
E. SUMM ARY et e et e et e e et e e e et e e e aa e e e ab e raaa s 81
V. 1 1 S TR 83
A. PROBLEMS ENCOUNTEREDcoevtiiiieeeeeceeeee et 83
1. WXPYENON . ———————————— 83
2. NEetBeaANS TaDIBSuiiiii e 84
B. INCOMPLETE FEATURES.ot 84
C. FUTURE WORK ...ttt e e et e st e e s s s s e e s eaaa s 86
1. 101 (=] 7= (o1 T 86
2. AddItIoNal FEALUIESviie i 87
3. REINEMENTS ..ceei e aaas 88
4, D Lo To1 0 g a1=] g1 7= L] o [P 88
D. CONCLUSION ot e e e e e e s e e e e aaans 89
N od = N1 1 R 91.
S O] ol = o = N[O 97
INITIAL DISTRIBUTION LIST .eeeiii ettt e e et e e s e e s e e e s aaa s 99

viii

Figure 1.
Figure 2.

Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.

Figure 9.

Figure 10.
Figure 11.

Figure 12.
Figure 13.

Figure 14.
Figure 15.
Figure 16.
Figure 17.
Figure 18.
Figure 19.
Figure 20.
Figure 21.
Figure 22.
Figure 23.
Figure 24.
Figure 25.
Figure 26.
Figure 27.
Figure 28.
Figure 29.
Figure 30.
Figure 31.
Figure 32.
Figure 33.
Figure 34.
Figure 35.
Figure 36.

LIST OF FIGURES

An example of the allocation of subjects and resources along with the

information flow in a separation Kernel [4]ccooooiieees 9
lllustrates the lifecycle of the configuration vector from initial creation to the

initialization of the LPSK t0 @ SeCUre state..........cccuvuiiiiiiiiiiieeiieiiiieeeeee e 11
MVC interaction diagram [B]eeoeeiiirieieeee e s 14
Java Swing MVC based architecture diagram [7]cccceeeeviiiiiiiiniiiiieieeeeeeeeeeeeee, 16
GUI elements referenced in this thesis ... 17
Configuration vector excerpt frdpsk.n ..., 26
Configuration vector structure diagram based olpskenoovvvvinnnnns 28
lllustrates the transformation of thector struct attributes to table

COIUMN NBATEIS ...ttt e e e e e e e e e e e 30
lllustration depicting the incorporation of the tables\autior_struct

attributes into a main application WiNAOWcooiiviiiiiiiiiiiiiiiiiiie e 32
lllustration of the nesting child tables within parent tablesc.ccccevvvvviiiiinnnns 33
A refinement of the initial mdow design showing the addition of the

partition-to-partition table..............uuiiiii e 34
A refinement of the process and subject tables. The two tables are merged

INEO ONE WINAOW ...ttt e e e e e e e e e e e e br b e e e e e eaaaas 35
All permissions columns within each table is represented by a common

INEITACE WINAOW ... e e e e e as 36
Final table column headers as defined bipikeh filecccccciiis 37

A complete design concept of ¥Retor_Struct —ooeeeiiiiiiiiiiiiii, 38
Configuration vector tool state transition diagrameevvvevvvveiiiiiiiinnenneenn 40
Conceptual sketch of the partition table ..., 51
Conceptual sketch of the datafile table..............oeuvvviiiiiiiiiiiii 52
Conceptual sketch of the memory table...........ccccoeeviiiiii e 52
Conceptual sketch of the event counts table............cccceeee e 53
Conceptual sketch of the sequencers tableccccoeeeiiiiiiiiiii e, 53
Conceptual sketch of the partition-to-partition tableccccociiiiiiiiiieennnnn. 54
Conceptual sketch of the subject resource tableoovviiiiiiiiiiiiiiiiieeeee, 54
Conceptual sketch of the processes window and subjects table...............cc........... 55
Conceptual sketch of the permissions window and tablec..ooi. 55
Partition table view of the applicationcccciiiiiiiiii e 62
Datafile table ®w of the applicationeuvviiiiiiiiii s 63
Memory table view of the appliCationcccoeeeeeeei i 63
Eventcounts table view of the application.................iiiiiiiiiiii e, 64
Sequencers table view of the application.............ccccooeiiiiiiiiiieee 64
Partition-to-partition table view of the application..............cccccceeiiiiiiiiiiiiiiiiiieee, 65
Subject-resource permissions table view of the application.............cccccceeieeennnnn. 65
Process and subject window of the application ... 66
Permissions window and assecldtble view of the application 66

The vector attribute panel of the main Windowccooiiiiii i, 67
View of row zero of the partition table..........cccooeiiiiis 68

iX

THIS PAGE INTENTIONALLY LEFT BLANK

Table 1.
Table 2.
Table 3.
Table 4.
Table 5.

Table 6.
Table 7.

Table 8.
Table 9.

Table 10.
Table 11.
Table 12.
Table 13.
Table 14.
Table 15.
Table 16.
Table 17.
Table 18.
Table 19.
Table 20.
Table 21.
Table 22.
Table 23.
Table 24.
Table 25.
Table 26.
Table 27.

LIST OF TABLES

Candidate development language Criteria...........coouiiiiiiiiiiiiiiiiiieee e 20
Candidate dewgment languages CompPariSONcccovvvvveeeviviiiiiiiieieeeeeeeeeen 21
The possible output file tygaven a specific input file type ... 40
Constant values defined by fiigk.h file ... 41
Mapping of permissions from theman-readable format to the binary

FOMMAL ... e e e e e e e e e e e e e e e re e 42
Upper and lower bounds for all edig contained within every struct of

the VECIOT _SITUCT.....eeeii e e e e e e e e e eees 44
Dependency relationshigfsconfiguration vector fieldscccccevveeiieeennnn. 45
Minimum configut@n vector tool features..........cccoeeevviieiiiiiiiiiiee, 48
Java class files thfe configuration vector t00l..........cccoevveeieeeiiiiiiieiii, 59
List of the basic commanafshe configuration vector tool........................... 61
Vector attribes panel reStriCtionsccccuuvuiiiiiiiiiieeee e 70
Partitiotable reSIICHONSceiiiiiie e 71
Datafile table reStriCtioNScoooe i 71
Memory table reStriCtioNSuuueiiiiii e 72
Eventcounts table reStriCtioNSoovvveieiiiiiie e 72
Sequencer table reStriClIONSuuueiiiiii e 72
Partition-to-pation table restriCtionS..............eeevvviiiiiiiiiii e 72
Subject-resare table reStriCtioNSuuviiiiiiii e 73
Process WiNAOW reSIIICHONS.uiiiiiie e et e e e e e e 73
Permissions WindoW reStrCHONS.uvviieiiie e 73
Special testdlia for starred ENtriesS.uvveiiiiiiiiiiiii 76
Commands useduerify the CVDUMP t0O0l.........ccoeeiviiieieiiiiiicce 77
Verification o€VDump command line toolcccoovviiiiiiiiiiiiiii 77
Test results for cregj a new configuration VECtOr..........ccceeeeeeeieeeiiviiieeiinnn, 78
Test results for apag a configuration VECIOrccovvvvvveviiiiiiiiiinieeeeeeeee 79
Test results for\gag a configuration VECLOr.............coovvvviiiiiiiiiiiiiiee e, 80
Test results foxgorting a configuration VECtOr.............oovvvvviiiiiiiiiiiiieeeeeeeee, 80

Xi

THIS PAGE INTENTIONALLY LEFT BLANK

Xii

LIST OF ACRONYMS AND ABBREVIATIONS

Application Programming Interface
Abstract Window Toolkit

Common Criteria

Evaluation Assurance Level
Graphical User Interface

Information Assurance Directorate
Integrated Development Environment
Input/Output

Information Technology

Java Development Kit

Least Privilege Separation Kernel
Model-View-Controller

National Security Agency

Partitioned Information Flow Policy
Separation KeehProtection Profile
Sun Microsystems Developer Network
Special Tests

Trusted Computing Exemplar
Trusted Path Application
User-Interface

Xiii

THIS PAGE INTENTIONALLY LEFT BLANK

Xiv

ACKNOWLEDGMENTS

| would like to thank my advisor, Dr.y@thia Irvine, for her outstanding support
and guidance throughout the development ofttiesis. | would also like to thank Paul
Clark for his support and insigh#s a second reader. A spédienks to Valerie Linhoff
for supporting me during this whole proceds. addition, | would like to thank Lt Col
Joel Young for pointing me in the right diteon during the programing phase of this
thesis. Finally, | would like to thank mwife, Beth, for hersupport and patience

throughout the thesis process.

This material is based upon wonkpported by the National Science Foundation,
under grant No. DUE-0414102. Any opinions, findings, and conclusions or
recommendations expressed in this mateare those of the author, and do not

necessarily reflect the views thfe National Science Foundation.

XV

THIS PAGE INTENTIONALLY LEFT BLANK

XVi

l. INTRODUCTION

Graphical user interfaces (GUI) hawkanged the way people interact with
computers. Unlike command line interfac&sUls do not requirea user to learn
complicated sequences of words and sysidol complete an operation. Thus, the
learning curve for a GUI application is sifjoantly less steep than for a command line
interface. A GUI also abstracts away sSwmetimes-complicated syntax necessary for
completing some task.

For instance, suppose a corporation wistesollect specific information from
several different users and analyze if'he corporation could request the required
information from each user by individually as§ieach user to prowda, b, and c. The
corporation could go even one step furthed request the information in a specific
format. While this approach may work, it is nary efficient. Users are prone to make
errors, especially when it comes to correfbiymatting data. Modtkely, the corporation
will receive the information it desires in a vayietf formats. If the corporation receives
the requested data in the wrong format, soreesauld need to trapose the da into
the correct format. This increases the ajstbtaining and analyag the required data.

Thus, a different approach is necessary.

Instead, the corporation coutdeate a GUI form and requitsers to enter data in
the form. The form graphically organizes théad@r the user. The eswill most likely
find this method of data collection much eadlean a simple requestr data from the
corporation. In addition, the underlying coofethe form will automatically ensure that
the data is in the correct format. This allows the corporation to collect the desired data
from the users more effectively and effidign Thus, the compration can spend the

majority of time analyzing the data.

The example above reflects goals similar to those presented in this thesis. In this
case, the goal is to easily create configurafil@s (for a particular kind of system) that
contain no syntax errors. The cigufration file for the system oterest is referred to as

a configuration vector. This file is in anairy format and is used to initialize an

1

instantiation of the system to an initial secure state. The configuration vectors contain a
substantial amount of data that must be retdoy a user. The configuration vector is
syntactically complex and requ#réhe user to be very meticulous during its creation. In
order to focus the user on the semantic nmgpaf the configuratin vector, the creation

of a GUI tool to assist inonfiguration vector definition wasroposed. It is expected that
such a tool would ensure that data enterethbyuser is exported in the correct format.
The next section describes the motivationtlfis research followely the purpose of the

study.

A. MOTIVATION

The Trusted Computing Exemplar (TC)j)oject provides an example of how
high assurance components are designed ailtd i@2ne of the main components of the
project is the Least Privilege Separation Kelh#1SK). The LPSK controls the flow of
information between resources by separagygtem resources into different subsets
calledpartitions The LPSK is initialized to an itnal secure statéhrough the use of a

binary configuration vector file.

Without a GUI, a trusted user initiallgreates a human-readable configuration
vector file. This human-reablle configuration vector would then be converted into a
binary file that the LPSK can consume. eTprocess of creating a configuration vector
file manually is likely to be a tedioustrer-prone, and time-consung process. This
process can be improved upon. One approadheate configuration vector files more
efficiently is to create a coiguration vector definition toathat allows trusted users to
enter data and review graphically.

The configuration vector toas an application that provides a GUI to the trusted
user to be used to createalid configuration vedr file. The confyuration vector tool
provides essential bounds checking in order suenthat a syntactdly correct binary
configuration vector file is geerated. This thesis describime creation of such a tool.

In order to accommodate fugichanges to either thetémface (view) or the data
structure (model) of the application, stardladesign guidelines that separate view
components from model components wereofeéd. This enab$e the configuration

vector tool to be easilynodified to enhance usability or add new features.

B. PURPOSE OF STUDY

The objective of this research was talgme the configuradin vector currently
used by the LPSK and to create an application that provides a GUI to the trusted user.
This graphical interface provides an additiolzyer of abstractiorto the trusted user,
who can then spend more time thinking aboutext configurations ther than worrying
about syntax details. This tool shouldiuee the time it takes to create a configuration

vector while also helping the usmiake fewer configuration mistakes.

C. THESIS ORGANIZATION

Chapter | contains a brief introduction thie work along with its motivation and
organization. Chapter Il provides the necessary background and foundation for
understanding the purpose of this research¢chvincludes a brief overview of trusted
computing and separation kernels as wellaasoverview of graphical user interface
design. Chapter Il contains the specific stégken to develop tHest prototype of the
configuration vector tool. Téchapter begins with thenguage and development tool
selection. Next, the configuran vector format is discusséal detail. The next portion
describes the thought process behind the irdgaign and the refinement of that design
including the requirements arfdatures for the configuration vector tool. Chapter IV
presents the implementation and testing a tlonfiguration vectortool prototype.
Chapter V presents the main problems encoadtas well as future implementation and

design ideas for the next versiontbé& configuration vector tool.

THIS PAGE INTENTIONALLY LEFT BLANK

. BACKGROUND

This chapter provides the necessary foutator this research in two sections.
The first section of the chapter discussesThusted Computing Exemplar (TCX) project
by first examining trusted computing and tllescussing separation kernels. The section
then discusses the TCX implementation cfegparation kernel. Ehsection concludes
with the introduction of the coigfuration vector tool, whiclmitiates the TCX separation
kernel to an initial secure state. Thecend section of the chapter discusses graphical
user interfaces (GUI). The section begmsh a paradigm discussion followed by the
Java implementation of the paradigm. Finathe section gives a brief overview of the

GUI terminology relevant to this thesis.

A. TRUSTED COMPUTING EXEMPLAR PROJECT

The TCX project is intended to beveorked example of how high assurance
components are designed and built. Not amly the TCX project provide components
for use in current architectures is intended to ensureghknowledge and technologies
associated with high assurance system dgweént are available for future generations
of developers and researchers [1]. eTdevelopment methodologies and technologies
from the TCX will be openly available andl\ill a void in knowledge and research left
by limited or closed development of trusted systems by the U.S. Government and
commercial entities, respectively. The X@bjectives, listed below, highlight the

project’s overall goal ofreating development methodgies and technologies.

X Creation of a prototype frameworfor rapid high assurance system
development;

X Development of a reference ifementation trusted computing
component;

X Evaluation of the component for high assurance; and

X Open dissemination of deliverables rethte the first three activities [1].
The next three sections provide an mw@w of trusted computing, a foundation
for the TCX platform (a separation kernednd a description of the TCX separation

kernel implementation.

1. Trusted Computing Overview

Trusted computing is an active area ofea@ch in computer science. Blindly
trusting a system by examining marketing doeats and user manuals, and listening to
vendors describe a product’s setyucontrols does not prade customers with sufficient
confidence that critical policies for the gbection of information in information
technology (IT) systems are ferced. Trusted computingssures customers that the
computer will behave in aordance with a given sedtyr policy. Thus, trusted

computing addresses securitytla most fundamental level.

In order to better understand trusted computtngst and trustworthy must be
clearly defined. Imprecise definitions dhese terms often leatb confusion or
misinterpretation. In addition, it is portant to understand what makes a system
untrustworthy and how a system can be madee trustworthy. In the information
security world, the terrtrustis sometimes used inconsistently; but, for the average user,
trust simply means that the user believessywem is secure and the user can confide
personal information in that system [2]. drder to understand tHe&CX project, a precise
definition of trust is required.

trust the degree to which the user or a component depends on the

trustworthiness of another componertor example, component A trusts

component B, or component B iuusted by component A. Trust and
trustworthiness are assumed tonbeasured on the same scale [2].

trustworthy the degree to which the securdghavior of the component is

demonstrably compliant with its stated functionalig.g(, trustworthy

component[2].

From these definitions, a component is only trustworthy if and only if its
functionality is exactly as described i gpecification and the component has no other
functionality. In other words, a highly ttugorthy component will only do exactly what
its specification states and hotg else [1]. Although thiss conceptually simple, the
implementation of such a component idfidult. Trusted systems enforce a given

security policy through hardware and software.

Today’s most popular operating systehmve hundreds of thousands, or even
millions of lines of code. Information security specialists and system designers are
unable to demonstrate that every componerithénsystem is trustworthy and therefore
can be trusted. Thus, attempting to design highly trustworthy systems without
understanding and meeting the requirements is futile. Systems that cannot be
demonstrated to be trustworthy are c¢desed untrustworthy. One approach to
developing more trustworthgystems involves creating sméiélative to other systems)
and analyzable components. By creating staponents, it is possible to create more

trustworthy systems.

Trusted system development is a desam engineering approach to develop
more trustworthy systems. Development psses need to address two different security
threats: operational and developmental [1A frontal attack is an example of an
operational threat. Frontal attacks are whataverage person associates with computer
security. These attacks camga from computer viruses and worms to Trojan horses to
denial-of-service attacks. Frontal attaakeploit flaws in system code, configuration
errors, and operator errors—thi2érom outside the system [1ln order to address these
operational issues, systems must have exploitable flaws, constrain access to
information, and isolate damage franalicious software execution [1].

A developmental threat can be much mdaegerous. A system is susceptible to
this threat during its development phase befihe system becomes operational. This
means that intentional exploits or malicious code inserted into the system during
development could still potentially be inetlsystem during the operational phase. An
example of a developmental threat is subeers Subversion is a malicious attempt to
undermine system security policies and priidds. Subversion manifests itself in the
form of artifices (seemingly useless or unnotiseibpets of code) placed in the system
anytime during the development lifecycle. spstem containing artifices may have some

or all installed security controls bypassed.

The assurance requirements of the Comr@oiteria (CC) [3] were created to
address developmental threats. The CCnésfiassurance requirements for developing,

implementing, evaluating, and maintainingstworthy systems. Vendors who develop
7

systems to meet the standards specifiedari@ can provide varying levels of assurance

to customers that the specification, implenagion, and evaluation of the product were
conducted meticulously and in a standard manrgnfortunately, it is not possible to
provide 100% assurance that no artifices teixisa system. However, the CC includes
evaluation assurance levels (EALS) that dein@ange of activities a vendor can employ
when developing a system, from those that result in a very low assurance product (EAL1)
to those that result in a very high asswce product (EAL7). Thus, insisting that
products are evaluated against the appatgrCC EALs provides a higher level of
confidence that assurance requirements ardghmaata product that has not complied with

CC EALs.

Trusted computing is an attempt to systematically minimize operational and
developmental threats. Because exampldsgif assurance development are not widely
available, the TCX project attempts to solve the operational and developmental issues
discussed above by creating an examplalbfelements of a high assurance system
development. The next section providesateat for the TCX Least Privilege Separation
Kernel (LPSK).

2. Separation Kernel

In June 2007, the Information Assuran®irectorate (IAD) of the National
Security Agency (NSA) published theU:S. Government Protection Profile for
Separation Kernels in Envirorents Requiring High Robustn&g$SKPP) in order to
define stringent requirements for high-assueaseparation kernels [4]. Any separation
kernel that conforms to tHeKPP will provide a high degree agsurance that the system

security policy is strictly enforced.

Separation kernels are diffetefrom typical securitykernels that dynamically
conduct all of the securityuhctions in a system. Basetw an input configuration, a
separation kernel enforces an informati@wflpolicy by allocatinghe subjects and other
exported resources of a system to partitigfjs By doing so, a separation kernel can
isolate subjects and othexxported resources from e@nanother and control the

information flows (if any) between subjectmd other resources. Subjects are the

8

individual active entities of the system [4Partitions are noactive entities, but each
may contain in its set of resources zero orergubjects. Thus, subjects in one partition
are completely isolated from subjects inother partition. Isolation means that the
subjects in one partition oaot be seen or communicatéa by subjects outside the
partition unless the information flow has been explicitly allowed. The separation kernel
itself is also both tamperproof and non-bypassable.

Figure 1 is a simple example of a sefiarakernel with three partitions, three
subjects, and six other expaiteesources. Each resourceb@ind to a single partition.
In this simple example, circles represemibjects, squares represent other exported
resources, and directed arrows represslowed information flow. A double arrow
means that a subject can read and writtheoresource. If an arrowhead points at a
subject, then the subject has the permissioretm from the object. Likewise, if an
arrowhead points away from a subject, thendhbject can write to the resource. Subject
3 of Partition B is permitted to read and wiiteResource 6, but can only read Resource
8 of Partition C. An inter-partition informian flow from one subject to another is
observed between Subject 2 and Subject 3. e8ufj is allowed to write to Resource 6
and then Subject 3 may read the written diaien Resource 6. Resources 7 and 9 show
the fine-grained control of the informatidlow because Subjects 1, 2, and 3 cannot read

from or write to them.

Partition A Partition B Partition C
-
4 5 6 7 8 9
Security Functions

Q Subjects Other Resources — Information Flow

Figure 1. An example of the allocation ofisjects and resources along with the
information flow in a separation kernel [4]

9

The configuration vector specifies the jgayhing of the system resources. In
addition, the configuration vector specifitise Partitioned Infonation Flow Policy
(PIFP), which is the allowed information flow between the partitions [4]. A
configuration vector is translated fromhaman-readable form to a machine-readable
format by the configuration function [4]The policy can be expressed in terms of a
partition-to-partition flow policy as well aa more granular subject-resource policy.
Each configuration vector contains the aygrate information to initialize the system
into a secure state. Only one binary cgafation vector from the set of configuration
vectors is selected to initialize the smwt The next secn describes the TCX
implementation of a separation keriight complies with the SKPP.

3. The TCX LPSK

The TCX project expands on the functional requirements outlined in the SKPP
and implements a LPSK that is complianth the SKPP. The LPSK provides hosted
applications a high-degree of assurance thatPIFP is strictly enforced. The LPSK

follows guidelines of the SKPP discussed in the previous section.

The PIFP for the LSPK is defined in tlkenfiguration data. Specifically, the
configuration data is the result of setting tplatform to an initial secure state from
information contained in a binary configuoat vector. Thus, a binary configuration
vector contains the binary information thaesifies the initial secure state of the LPSK.
Figure 2 shows the steps necessary to initidlizdPSK to a secure state from the initial
creation of the human-readabtonfiguration vector tothe creation of the binary
configuration vector to the initializain of the LPSK to a secure state.

10

Offline Initialization Environment Run-Time Environment

LPSK Platform

o
‘_ »_. ABCD [Human-readable
= -D' EFGH | configuration vector Initializer

Boot Loader

Trusted DX 7/_\
user / Q

Configuration
Vector Tool '\
\
3
| 10101 01111 00000 Configuration
Binary | 19101 7| 01010 | | 00001 | | 11011 data
configuration | n4540 ™~ . P

vector BRI 2 Configuration Vector Set

‘:‘ Configuration Vector O Software <> Configuration Data

Runtime

Figure 2. lllustrates the lifecycle of the configuiah vector from initial creation to the
initialization of the LPSK to a secure state

As shown in Figure 2, the initial cogfiration vector, which is human-readable,
is created offline by a trusted user. Thanfiguration vector is transformed from a
human-readable format to a machine-readabiary format by the configuration vector
tool. The resulting vector is transportedite LPSK platform. The LPSK Boot Loader
is the first software to execute on the LPSK platform. The Boot Loader presents the
configuration vector set to an authorized usBne configuration veot set is a collection
of binary configuration vectors (only three ateown in Figure 2) that is presented to an
authorized user during initialization. Thetlaorized user must select the desired binary
configuration vector from theoofiguration vector set. Aftehe authorized user selects
the desired configuration vector, the Boot Loader loads and starts the LPSK Initializer.
The Initializer sets the LPSK platform to timitial secure state based on the data in the
binary configuration vector. Once this is complete, the LPSK platform is able to enforce
the loaded configuration in order to maintairsecure state. The next section discusses
the first steps of this process—the converbthe human-readable configuration vector

into the binary configuration vector ke configuration veor tool application.

4, Configuration Vector Tool

The configuration vector tool is the pringafiocus of this research. As mentioned

in the previous section, the configuratioector contains the pertinent information used
11

to initialize the LPSK platform to a securatst The format of the configuration vector
when loaded into the LPSK platform is binary. A binary format is neither easily created
nor easily understood by users. Thus, a hureadable configurationector is desirable

for human interaction. However, in ordir convert a humareadable configuration
vector to a binary configuran vector, the human-readabtenfiguration vector must
adhere to a precise format. Only a predisenan-readable format will allow a binary
converter tool to faithfully convert the file tobinary format. This requires an authorized
user to be very meticulous when creating ttuman-readable cogfiration vector. In

general, users are not always proficient whe@omes to completing these types of tasks.

To reduce the human errors that coutdwr when creating configuration vectors,
this research aims to take the initial stepgdastruct an interfacenat allows a trusted
user to create configuratiometors graphically. This grapfal tool would allow the user
to create a new configurationater, or read in an existinginary configuration vector,
and write out a binary comjuration vector. This toolvould also perform basic
consistency checking before the configuratioreated at the interface, is exported to a
binary format. This ensures that every binaector exported from the tool is in the
correct format and has no syntactic errorseriwvally, the tool shodlbe able to further
check the created configatron for undesirable or umiended configurations.

Thus, this research intends to implement the configuration vector tool for the
TCX project. The focus of the research iteate a user-friengliconfiguration vector
tool that gathers the required data froan user and generates a correct binary
configuration vector file. Aiser-friendly environment assumes the need to create a GUI
application. The next section explores tiraphical interface concepts relevant to the

creation of the initial cafiguration vector tool.

B. GRAPHICAL USER INTERFACES

GUIs have changed the way people wsenputers. Instead of having to
remember long sequences of strings, usars simply “point-and-click” their way to
accomplish the majority of tasks on today’s eyss. GUIs attempt to abstract away the

complexities of dealing with the commanddinvhere a user must remember specific

12

strings in order to accomplish tasks. Althougkere are many different tools to assist
users in constructing GUI applications, tirederlying paradigm used to construct a well-
designed GUI application has not changed muodhe last few decades [5]. The Model-
View-Controller (MVC) paradigm enables avedoper to create a flexible and robust
application [5]. The following section expta the concepts behind the paradigm and the
next section discusses the Java implementatfaihe paradigm. The final part of this

section outlines the basiameinology for discussing GUIs.

1. Model-View-Controller Paradigm

Most GUIs designed today follow, or attempt to follow, the MVC design
paradigm. MVC is a simple and eleganpagach to designing GUIs [5]. Smalltalk
developer Trygve Reenskaug originally coneeiithe MVC concept in 1979 at the Xerox
Palo Alto Research Center [5]. In 1979, GAfiplications were rare and the concept of
how to design one was virtually nonexisteMVC divides modeling the external world,
user input, and visual feedtk into three distinct compomis: the model, the view, and

the controller [5].

Themodelcomponent is concerned with thealaf the application, the access to
that data, and the manipulation of thatada The model is essentially a software
instantiation of the real-world process [6[he model maintains th#ata and responds to

requests to use the data.

The view component is concerned with mgiray and generating the GUIL. The
view specifies exactly how the informatidrom the model is displayed on the given
interface. It is important #t the view presents the dataa consistent and uniform
fashion in order to increasesability and reduce confusi. The view may query the
model for data. However, the view cannot dile change the model data. Instead, the

view sends events tbe controlle component.

The controller component listens for input from the view (via a mouse click,
keyboard input, or an other expand commands the modelwew (or both) to perform

a specific action [5]. The actions performydthe model are usually related to changing

13

the state of its data while the actions of Wew usually prompt the view to change the
state of its visual representation of data [6].

Although separated, each component mostintain contact with the other
components in order function properly. giie 3 shows the basic interaction between
each aspect of the MVC. In Figure 3, thdteld lines represent evisnor notifications
while the solid lines indicate spific method invocations. Ehsolid line from the view
to the model indicates a query of the model's data while the solid lines from the

controller represent actionsrédo the model or view.

—— > Method Invocations
——————— > Event Calls Model

Controller

Figure 3. MVC interaction diagram [6]

Although the MVC paradigm is quite simple, its consequences are profound. An
application that follows MVC is inherently ieflexible. MVC design allows for the re-
use of model components since the model aad are separate. This separation allows
developers to create multiple views that access the same data. Since the model contains
no complex GUI code, the model components are also much easier to maintain, debug,
and test. The application ha thbility to support differenterfaces as well as different
functionality by writing new viewand controller code. A negative consequence to MVC
is the increase of design complexity. ci@ased complexity introduces not only extra
code in order to separate the model, viemd aontroller, but it also increases the time
necessary to develop and impkmbhan application. Howevehe negative consequences

are minor relative to the advantaggsned by following the MVC guidelines.

14

2. Java and MVVC

Java uses the Swing architecturer ils GUI development. The Swing
architecture has its roots in MVC [7]. @ldesign goals of the $vg project were to
implement GUI components completely in Jdwaenable cross-platform compatibility,
provide a single application programming niéee (API) that supported multiple views,
enable model-driven programming, ensw@mponents behaved well in development
tools (i.e., IDEs), and provideackward compatibility witithe abstract window toolkit
(AWT) APIs [7].

The developers of Swing realized thia¢ MVC design was the most appropriate
paradigm choice as it met the design goals stated above. However, while the MVC is
conceptually the best structure, the devealsmpiickly discovered that a complete split
into the three components was impractical.simple example usg a Swing TextField
component illustrates this problem. A TextHiét used to display existing data and to
change data. Since a TextField displays,dataust be a view component. However, it
should also have the ability to change dattheamodel. Hence, it must be a controller
component. This means that the Tealfiis sometimes a view component and
sometimes a controller component. A Tegtd easily belongs to both categories.

The developers realized that a tighlatenship existed between the view and
controller components. Becauskthis relationship, writing generic controller that had
no knowledge of specific view items was vatifficult. To solve this problem, the
development team collapsed the view ammhtroller components into a single user-
interface (Ul), referred to as a delegate—shanvFigure 4 [7]. Collapsing the view and
controller components allows the compoemd efficiently communicate with one
another. The delegate component commuegatith separate model component as a

single component.

15

=5
/N

Delegate

[View Controller]

o

Figure 4. Java Swing MVC based architecture diagram [7]

Thus, Java Swing does not strictly folldhe MVC paradigm. Instead, Swing is
MVC based. This is usually referred to aseparable model architece [7]. Although
collapsing the view and controller into agle delegate may seem to present a problem
to developers wishing to embrace Swing for development purposes; the two collapsed
components (view and controller) of the dglte component may be treated somewhat
independently [7]. In other words, evdmough the delegate actuaklpntains both the
view and controller simultaneously, theve®per can access the view and controller

functions of the delegatadependently (in most cases).

3. GUI Terminology

This section briefly introduces terminologged to describe GUIs. Specifically,
this section provides the basierminology used throughout thisesis to describe the
GUI elements of the configuration vecttol. The main element of a GUI is the
window A window is referred to asfeamein Java, but for the pposes of this thesis, a
window (Java frame) will be referred to aswindow. A window is the element that
contains all other elements afGUI (i.e., a window is what seen on a display). Inside
a window, many different types of elements may exist. For this research, the primary
elements are panels, tahldabels, menus, buttons, cbm boxes, spinners, and text
fields. Panels are a way gfouping several elements togethed are usually positioned

16

directly on the window. Tables are used tgamize data in a tabular format and can be
either read-only or editable. Labels are maitable fields that provide the information

as to what type of data is required faspecific field. Menus and buttons provide a way

to execute events or actions for an appla@agsuch as opening or saving a file). Combo
boxes and spinners help restribe input a user enters intbe application. The final
element of importance to this thesis is a text field. A text field may be represented in a
variety of ways and can be readly or editable. Editable text fields allow users to enter
data into the text field just as an editablbleéaallows users to enter data into its cells.
There are many other types of GUI elemahist were not discussed in this section.
Figure 5 shows the basic GUI elements referenced by this thesis. The elements discussed

in this section are referenceadbghout Chapter Il and Chapter IV.

Figure 5. GUI elements referenced in this thesis

17

C. SUMMARY

This chapter presented a brief overvievthe TCX objectives, a discussion of
trusted computing, and then a discussiorthef TCX LPSK and, in particular, of the
configuration vector. The chapter thpresented the MVC design paradigm for GUI
development and the Java implementatiorihef MVC paradigm: Swing. The chapter
ended by introducing basic GUI terminologylThe next chapter presents the design

considerations for creating tidJI configuration vector tool.

18

Ill. DESIGN

LPSK developers and potential users @& tHPSK need a tool that will help them
create a binary configuratiorector. Here we examine tdesign process for creating the
configuration vector tool that eates the vector that specifies the initial secure state of the
LPSK. The first section discusses theesgbn of the most@propriate programming
language and associated tools necessarydesign and implement the tool. The
subsequent six sections discuss the thouglgesmoinvolved in reachiran initial design.
These sections begin with the breakdowrhef configuration vectostructure, followed
by the emergence of the MVC model and bdsisign element ideas, and conclude with a

final conceptual design sketchtbe configuration vector tool.

A. OVERVIEW OF DEVELOPMENT TOOLS

With many different programming langyes available, $ecting the most
appropriate language to implement the configanavector tool was eential. Many of
the most common programming languageovigle GUI toolkits or Integrated
Development Environment (IDE) GUI buildersThese toolkits or IDEs help both
professional and inexperienced developers dyicteate professional-style applications.
For the development of the configuratieector tool, the ftlowing languages were
examined: Microsoft .NET [8], Apple Cocoal§fective-C) [9], wxPython [10], and Java
[11]. Since every language has its pros antsca selection processs devised in order
to choose the most appropriate languagetiier configuration vector tool. The next

section outlines the selectignteria and considerations.

1. Tool Selection Process

Six criteria were used to selectetlilevelopment language: MVC compliance,
cross platform compatibility, online docemtation, online tutorials and examples,
available IDE GUI builders, and other deyao considerations. First, each potential
language was examined to see if it prodideframework for the MVC design paradigm.
The next criterion examined each language foalitfity to easily run on several standard

operating systems with no modifications to ertthe operating system or the application.
19

The third and fourth criteria ensured tithe language selected had sufficient online
documentation, tutorials, and examples in otdeguide and support the developer. The
fifth criterion looked at the ailable IDEs with an integratd GUI builder in order to
assist the developer in graphal design and implementationThe final criterion is the
developer’'s experience and familiarityithv the language. Table 1 summarizes the
criteria used to select the language.

MVC Compliance Does the language and esded IDE provide the library and togls
necessary to easily create a MVC interface?

Cross Platform Compatibility Can final application run on several standard operating systems
with no modifications to either the application or the operating
system?

Online Documentation Is the online documentation sufficient and easily understood by an
inexperienced developer?

Online Tutorials and Examples Are online tutoriatel examples readily available to the develgper
through both official and third party Web sites?

IDE GUI Builders Do the IDEs availabl for the specific language include|a
comprehensive and refined GUI builder?
Developer Considerations Is the developer familiar with this language?

Table 1. Candidate development language criteria

Table 2 shows a basic comparison of the&didate languagassing the criteria
described above. Based on the develspémited experiene and knowledge of
Microsoft .NET and Apple Cocoa (ObjeathC), these programming languages were
immediately removed from the selection gges. However, examination of both the
Microsoft and Apple tools pragted critical insights in d&gn style and implementation
methods that were used in future section¥he subsequent g@raphs detail the

comparison of the two remaining languages: wxPython and Java Swing.

20

Table 2. Candidate development languages comparison

21

As discussed in Chapter Il, SectiontBe MVC design paradigm is an important
consideration when selecting a design tod&imilar to the Java Swing discussion in
Chapter I, wxPython combines the view andtcoller component inta single delegate.
This allows a wxPython application to hatkee same flexibility as an application
developed with Java Swing.Thus, both wxPython and \l& comply with the MVC
paradigm by implementing a modified MVC model.

Both wxPython and Java are also ela@l candidates when cross-platform
compatibility is an issue. Each is able to run natively on all of the major operating
systems today (i.e., Windows, Macintoshdda.inux). wxPython is a wrapper for the
wxWidgets cross-platform GUI library1P]. wxPython leverages the underlying
operating system for graphical interfaceeation. This means that a wxPython
application running on a Macintosh will usesthMacintosh Aqua interface elements and
appear to be a native Maansh application. Likewisdhe same wxPython application
running on a Windows platform will use the Windows interface elements and appear to
be a native Windows application. JaSwing, on the other hand, does not rely on a
native operating system GUI component. Taiables Java Swing to render its own
components as necessary. Thus, the look esldof Java Swing is completely platform
independent; or stated differently, the Gidimponents rendered by Java Swing have the

same appearance on all platforms.

The online documentation, tutorials, ambailable examples are a critical
consideration for the selection of the dgsitool. The wxPython Web site [10] and
wxPyWiki [13] have excellent resource and exdas to help developers learn wxPython.
Java Swing information is found at tharSMicrosystems Developer Network (SMDN)
Web site [14]. On the SMDN site, thereearountless tutorials and examples to guide
developers in creating basic graphicapplications. Although the wxPython
documentation and support available onlie sufficient, Java has much more
information available from the official JawA/leb site as well athird party examples
across the Internet. The information providedlom official Java Web site is also more
refined than that found on the wxPython Wéb.sFor an inexperiered developer, Java
Swing provides more guidance.

22

The final major consideration is @havailable GUI builder development
applications. wxPython provides a developiegoplication called PyCrust [10] as well
as many examples of GUI components (R@E and examples are included with the
standard wxPython installation) [10].Unfortunately, PyCrust does not provide a
graphical GUI creation tool. The exammgemponents, although extensive, do not help
the developer in the placement of eacimponent. Two other Python development
applications are worth mentioning: wxGladé] and Boa Construat¢16]. wxGlade is
a pure GUI designer that generates only GUI d@é8¢ Thus, wxGlade is not a full IDE.
Developers looking for the traditional ID&pport (i.e., inline compiling) must find a
different tool. Boa Constructor fills thgap and is a complete Python IDE and wxPython
GUI builder [16]. Boa Congictor provides a Python develapeith visual creation of

GUI components (drag and drop).

The Java Swing IDE is NetBeans. NetBeans is a refined IDE that features a
Swing GUI Builder. The GUlbuilder allows the developer to create graphical
components (e.g. buttons, tables, labels, etc.) by dragging and positioning the
components on a canvas. This allows tiexeloper to quickly create professional
looking applications without spending the mréjoof time worrying about the “look and
feel” of the interface. Although Boa Constioicis a decent GUI builder for Python,

NetBeans for Java is more refined and intuitive.

Other considerations taken into accouiring the selection process were the
developer’'s knowledge and exfnce of each language asIwhas the eas of use of
each of the development applications. eTteveloper's experience developing GUI
applications was moderate and thus ghed heavily on the language selection.
wxPython was initially chosen due to its eas use in creatinpackend code for the
interface and for the Boa Constructor IDE. Hoere as will be discussed in Chapter IV,

wxPython was later dropped in favord#va Swing and the NetBeans IDE.

2. Java Swing and NetBeans

Java Swing was selected as the developtoehfor the configuation vector tool.

Specifically, the Sun Microsystems Java Development Kit (JDK) SE 6 Update 16 for
23

Mac OS 10.6 was selected as the development platform. Java was chosen for its
extensive libraries, excellent online suppant &utorials, cross-platform compatibility,
and its Swing GUI capabilitiesAs a result of its portalify, any system supporting the
Java Runtime Environment should be able to compile and run the configuration vector

tool.

While several of the Java files for the mbdemponent of this thesis were written
using a standard text editor, the viewdacontroller components (i.e., the GUI) took
advantage of the NetBeans IDE vers@éid [17]. The NetBeans IDE is a free open-
source IDE that runs on Wilows, Linux, Mac OS X, and #wis. The NetBeans IDE
features a Swing GUI Builder (formerly Projédatisse) that allows developers to create
professional looking applications. Leveragiiya as the development environment, the
next section outlines the configuration vecstnucture. Understanding this structure is

critical to implementing theonfiguration vector tool.

B. CONFIGURATION VECTOR FORMAT

As discussed in the background sectior IHPSK configuration vector is the
crucial component for initializing the LPSKIn order to create a GUI application that
creates a binary vector, it is portant to examine the format the vector. By examining
the format of the vector, it is possibleftod natural divisions based upon the structure
and semantics of the configuration vectbat hint at possible GUI designs. The
remainder of this section will examine the vector structure and attempt to show the

natural divisions in the structutieat were used to create a GUI.

1. Basics

The binary configuration vectas defined in a C header filelpsk.h (see
Appendix). The header file outlines the cdete structure of the configuration vector.
The first portion of the header file is tliefinitions section. This section defines the
constants used throughout the file. After tledinitions section, the header file contains
many different C structsStructis short forstructure or user-defined data type. A struct
in the C programming languagelilse a class in Java but wibut methods. It is used to

24

logically bundle or package rédml data. A struct aggregatemny different data types
into a single user-defined data type. Thprogramming language does not limit the size
or type of any of the object®wtained in the struct. This means that a struct can package

other structs.

Another important element of the header file agays Arrays in the C
programming language are variables that stouétiple items of the same data type. A
one-dimensional array is ordered via the indegach item in the eay. Individual items
contained in an array can be read or writigmeferencing the specifindex of the array.

For example:
array_demol] ={a, b, c};
array_demol[1] = b;
A two-dimensional array is an array ideiof an array—a matrix. Thus, a two-
dimensional array contains rows and colurohdata. Similar t@ne-dimensional arrays,

values within two-dimensional arrays canread or written by referencing the specific

index of the array. For example:
array_demol][] ={{a, b, ¢}, {d, e, f} };
array_demol[1][1] = e;
For the purpose of this work, structs n@yntain any declared or standard data
type, such as integers anadting point variables. Witkhis basic knowledge of the

LPSK header file, the next&®n gives a detailed breakdowhthe configuration vector

structure into its basic components.

2. Structure Overview
The configuration vector is specifically located in tieetor_struct struct of
the header file. Thevector_struct struct (see Figure 6) contains the format

version, structure magic number, the numtfepartitions, the Trusted Path Application
(TPA) partition identifier,the number of evecounts, the number of sequencers, a
partition-to-partition permissions two-dimensional array, and six additional structures.

The six structures are the paoin definition struct, data ggnent struct, memory segment
25

struct, eventcount struct, sequer struct, and the subje®source permissions struct.
The exact names of the sttures are listed below:

X partition_struct partitions]]

X datafile_struct datafile]]

X memory_struct memory([]

X synchronization_struct eventcounts|]
X synchronization_struct sequencers]
X subj_res_perm_struct subj_perm|]

Figure 6. Configuration vector excerpt frotpsk.h

Several of these six structures contaiiditional structureembedded within
them. Thus, the larger structure is composkesimaller building blocks, which enhances
its analyzability and decreases its ultimate complexity. Figure 7 captures the top-level

structure (i.e., the configation vector) from thpsk.h file.

As seen in Figure %ector_struct is the base struct containing all the other
structs. Each sub-structure is a one-dinmradi array of structs. This means that one
sub-structure may have multiple structs caredi within it. Each sub-structure array

uses the constant values deflne the definitions section of the header file to set the

26

maximum number of structs for the given sthict array. For siplicity, the remainder
of this section will drop the constants from the discussion and only refer to the array of

structs as a struct.

From Figure 7, partition_struct holds process_struct and the
process struct holds thsubject struct . This figure also shows that the
eventcounts struct and sequencers struetsanply represented by a synchronization
struct. By looking at thisarle, one can see that the natim@aks in the overall vector

structure are the structs. Following this @ Java class can represent each struct.

Another important piece of the vector structure are peEms[] one-
dimensional arrays (see Appendix) and paet_perm(][] two-dimensional array.
These are important because they requgecial treatment when designing the GUI.
Fortunately, theperms[] arrays are very similar throughout tlspk.h file—only
differing with regard to the length of each grrarhis means that a single Java class may
be used to represent the arrays. For tleedimensional array, a separate Java class was

sufficient to handle it.

The final pieces of the puzzle are the déifoms of the constants that define the
number of elements of the varioaguctures (i.e., from Figure 8JAX_PARTITIONS
MAX_DSEGSetc.). These are defined in the definitions portion ofgble.h file (see
Appendix) and are omitted in Figure 7 for siiopy. A single Java class easily captures

these definitions.

27

Figure 7. Configuration vector staiure diagram based on thpsk.h

This section showed the vectstructure defined in thipsk.h file. The next

section expands upon this structuretaslates to the MVC paradigm.

28

3. MVC Model Component

By understanding the structure thfe specific sucts in thelpsk.h file, the
model component of the MVC paradigm eges. Using Figure 7 as a guide, the
structures of thépsk.h file can be translated into inddual Java classes. These Java
classes represent the model component ef MVC. Each of these Java classes is
discussed in detail later during the dission of the configation vector tool

implementation.

At this point, it is worth noting the imptance of the model component of a GUI
application. A robust model cable of containing data gatleer by a GUI is critical to
application success. In atidn, if the model component ireated correctly, then any
GUI could be used to captureetdata from the user. This allows any future changes to
the user interface, including a complete oeeithof it, to be accomplished relatively

easily without affecting the underlying model.

This section outlined basiknowledge for understanding tiesk.h file and
then showed the logical breakdown of thedividual components of the configuration
vector. Using the logical breakdown alsd e the emergence tfie model component
described by the MVC paradigm. The next section also will use Figure 7 to discuss the
primary graphical design element choicejahhprovides the foundation for the graphical
aspect of the configuration vectimol: the view/ontroller component.

C. THE PRIMARY GRAPHICAL DESIGN ELEMENT

Not only did Figure 7 help with the dgsi of the underlying model component of
the GUI, but it also provided a conceptual bosakn of the data for the view component.
Since the structs naturally divide theector_struct , a possible graphical
representation of the data is a table. lis tase, a table can graphically represent the
data from each structure. Since Yeetor_struct incorporates six structs, the main
application window was designed to point tdestst six different tables. Each of these
tables contains the attributes necessarydatereach struct. For instance, an eventcounts
table must contain at least the name, ij@ge level, and permissions attributes

corresponding to the attributes of thgnshronization struct. Figure 8 shows the
29

transformation of theector_struct attributes to the table column headers. The next
section shows the modifications to this taatel the incorporation dll elements from

thevector_struct defined in thdpsk.h file into the graphical representation.

Figure 8. lllustrates the transformation of thector_struct attributes to table
column headers

D. DESIGN REFINEMENT

This section refines the conceptual @re design to incorpate all attributes
from thevector_struct and its sub-structures. The jordty of this section will use

graphics to illustratéhe thought process behind the refinatse In the previous section,

30

Figure 8 showed the initigransformation of therector_struct sub-structs into the
individual table column headersThe next step incorporatéise main vector attributes

into this graphical concept.

The vector_struct attributes contain the tad described in Figure 8 and
seven additional attributes (i.e.,version , magic, tpa_partition ,
num_partitions : num_eventcounts num_sequencers and

part_perm[][]). Since the additional attributes are applicable for the entire vector
struct, all of these attributes weradded to a window panel. The entire
vector_struct became the main application windowhe tables from Figure 8 then
became a tabbed panel within a separate winuivel. Figure 9 depicts this evolution of
the conceptual design. In Figure 9, the éatblumn headers are placed inside a main
application window. Thus, the main dipption window represents the top-level
structure (i.e., thevector_struct). The table column headers represent the sub-
structures of thevector_struct and were collapsed into a tabbed panel with one
table per panel. The inddual attributes of theector_struct were incorporated

into the vector attributes pana the main application window.

31

Figure 9. lllustration depicting the inaporation of the tables anabctor_struct
attributes into a main application window

The next step involved addj the sub-structs of theartition_struct to
this design (i.e., thprocess_struct and thesubject_struct). Since both the
process_struct and subject_struct have features similar to those of other
structs previously described, lagical approach was to trieaach of these as a table
within its parent table. In other wordsetpartition table contaire process table and the
process table contains a subject table. Eidlrshows the addition ah extra column to
the partition table to accountrfthe linkage to the procesdta. Similarly, the process
table contains an additional table column neteldl in its struct for the subject table.
Figure 10 illustrates the nesting of one tabiside a parent table. Specifically, the
process table was linked in its parent (i.ertippan table) and the subject table was linked

in its parent (i.e process table).

32

Figure 10. lllustration of the nesting child tables within parent tables

Unfortunately, although the desigrseems to capture the complete

vector_struct , there are several instances where more refinement was necessary.
First, placing the part_perml][] two-dimensional array attribute of the
vector_struct in the vector attributes panel with other attributes of completely

different data types seemedvkward and inconsistent. A more elegant solution was
necessary. In order to refine thart perm[][] attribute, it was necessary to remove
it from the vector attributes panel. Since thart perm(][] attribute contains
partition-to-partition permissions for eachrfigon, it made sense to add it as an
additional table within the bibed table panel of the maapplication window. Figure 11
depicts this design decision blgaving similar data type objexin the vector attributes
panel and moving thpart_perm(][] two-dimensional array to be within the tabbed

table panel of the main application window.

33

Figure 11. A refinement of the initial windowlesign showing the addition of the
partition-to-partition table

Second, the subject and process embedd#dstaneeded to be refined to better
capture the required data. Thus, the attributes of piloeess_struct and
subject_struct , were combined into a single entity. Since phecess_struct
contains little information besides the assaasubject table, the table was transformed
into a process window. This new process windtaptures the necessary data similar to
the way the main application captures it¢éadaa window panel t@apture the process
attributes (i.e., identifier and number afbgects) in a processeattribute panel and
provides a table to capture the specifibject information. Figure 12 describes this

transformation.

34

Figure 12. A refinement of the process and subject tables. The two tables are merged
into one window

Finally, the permissions column of all thife main tables described in Figure 8 is
repeated in several tables. This tdm: among the tables requires special
consideration. In order to correctly capttine required data, a common interface across
all tables with the permissions column mbst created. Thus, this refinement to the
design involved creating a common permissions window interface for each of the
perms[] attributes of thevector_struct sub-structures. In this case, each of the
columns of each table is lind¢o a new window that contains a sub-table—a permissions
table. Figure 13 shows the relationshipnfr the table column headers to the new
permissions table. It is important to notatteach permissions column associated with
the various tables receives a new windopon request. Thus, a permissions window
originating from the evencounts table is tlié same as a window originating from the
sequencers table (this is true for all instanoEpermissions tables). Only the visual
representation of this new window is commacross all tables.€., a common interface

with different values for all tables).

35

Figure 13. All permissions columns within eadable is represented by a common
interface window

Figure 14 shows the completeewi of the tables and thieassociated attributes.
One minor refinement completed the desigdince each row of a table represents an
instance of the table’s struct (i.e., a singdev of a table represents a single element
contained in its struct array), it was usefubtid the appropriate label for each table that
signifies what each row for each table esmnts. For instance, a partition number
column was added to the partition tabBimilarly, a datafile number column was added
to the datafile table. This is consistent across all tables except the partition-to-partition
permissions table, subjects table, and p&sions table. The partition-to-partition
permissions table shows the inter-partition permissions. Figure 14 illustrates the addition
of the identification label columns (discussed\a) to each tableThe figure also shows
the hierarchical relationship ¢he tables. Since all ofeérhtables shown in Figure 14 are

subordinates of thevector struct , the tables with solid dots are considered
36

intermediate tables and the ttables at the end of arrowseagzonsidered leaf tables. The
object number of the permissions leaf tabi# ehange based on the intermediate table
from which it originated. In other words,p@rmissions leaf tableriginating from the

datafile table will show the datafile numhierplace of the object number. Finally, the
subjects table embedded in the process thhtea privilege level added to distinguish

between individual subjects within a particular process.

Figure 14. Final table column headers as defined byipks&.h file

The final figure in this section, Figurks, shows the complete design concept.
The main application window contains thectgr attributes paheand a tabbed tables
panel. The vector attributes panehtains all of theattributes of thevector_struct
except the sub-structures. The tabbed tapbe®el contains theub-structures of the
vector_struct . There are two other windows depicted in this figure that appear
upon selecting the appropriate column in tegpective main tables. A process window
appears when the process column is seletetthe partition table. The appropriate
permissions window of the originating tald@pears when the permissions column is

selected.

37

The figures in this section showed tteginement of the primary design element
(i.e., the table) as well as the overall desconcept for the comfuration vector tool
GUI. Once defined, it is necessary to detasrthe requirements for the configuration
vector tool. The next sectiodiscusses the specific remments for the configuration

vector tool application.

Figure 15. A complete design concept of thiector_struct

E. CONFIGURATION VECTOR TOOL REQUIREMENTS

As discussed in Chapter H,configuration veadr exists in twdormats: a human-
readable format or a binary format. The égufation vector tool isn application that
creates valid configurationectors (both human-readabésad binary) and converts a
configuration vector from one of these formdb the other. This is the overarching
requirement for this research. The remainder of this section outlines the basic

requirements for the caglration vector tool.

1. Basic Requirements

The configuration vector tool must be affline software application that is able

to execute on a standard operating system. tGdlemust have the dlty to take as an
38

input a human-readable configuration wectand produce thesquivalent binary
configuration vector. The tool must also hdate ability to take as an input a binary
configuration vector and produce the equimdlauman-readable configuration vector.
The user shall have the ability select the output file ne&e and destination for both the
generated file formats. All generated filethether binary or human-readable, must be

syntactically correct. The list beloshows these basic requirements.

X Remove underlying complexities asgded with configuration vector
creation

X Offline application (i.e., a staralone application that requires no
additional LPSK software)

X Executes on a standard operating system

X Reads syntactically correct bityaconfiguration vector file

X Reads syntactically correct human-rallé configuration vector file

X Writes a syntactically and semanticadigrrect binary configuration vector

file

X Writes a syntactically and semantically correct human-readable
configuration vector file or only ayntactically correct human-readable
configuration vector file

Before continuing, it is useful tdefine syntactically correct. Ayntactically
correctfile conforms to the ruleand structure defined for trenfiguration vector file.
A syntactically correct configuration vectanay fail a semantic (variable bounds case
only) check. If a file passes the syntaech but fails a bounds check, then the latter
check is considered a semantic failurehug, failing a semantic check means a variable
was outside the defined upper or lower limit. References to a semantic check refer only

to the bounds or limits of the variabledided in the configuation vector file.

Based on the requirements stated above and the definitions of both syntactic and
semantic correctness, Figure 16 shows tbefiguration vector tol state transition
diagram. The input and output configuratiorttees shown in the figure can either be in
binary or human-readable form. Tablerépresents the possgbbutput configuration

vector file types given a specific input capiration vector fileype. A human-readable

39

file read into the tool can write out a binay human-readable fileA binary file read
into the tool can write out a binary or human-readable file. ndmeinput in the table

refers to the creation af new file from the tool.

Figure 16. Configuration vector toadtate transition diagram

Configuration Vectors

Read In (Input) Write Out (Output)

Human-readable Binary
Human-readable Human-readable
Binary Binary
Binary Human-readable
None (new file) Binary
None (new file) Human-readable

Table 3. The possible output file typegn a specific input file type

A configuration vector inpufile read into tle tool must first enter the syntax
checker state. The syntax checker ersutigat the input file conforms to the
configuration vector file stadard. If the input file failghis check, the syntax checker
reports an error to the user. If the input plesses, it is sent to the GUI editor state. The
GUI editor state allows the user to make gemnto the vector file. Upon completion of
changes (if any), the user hago options: save or export thector file. If the user
chooses to save the vector fileis written toa human-readable fileithout applying a
semantic check (giving users the flexibildfsaving unfinished vects that are probably

not ready for any verification). If the usehooses to export the vector file, the tool
40

progresses to the semantic checker whiagtks the bounds of the nables contained in

the vector. If the file fails in this stateetlsemantic checker reports an error to the user
and sends the file back to the GUI editor state. If the file passes the semantic checker,
then a syntactically correct and semanticalbyrect configuration vector file may be
written to disk. In both cases, saving aperting, the editor prevents writing a vector

file with incorrect syntax to disk. Thust is not necessary to check for syntactic

correctness durinthe output phase.

The next section outlines the specifitetails of a syntactically correct
configuration vector file. The section alsatlines the semantic tests for each of the

objects contained within anfiguration vector file.

2. Detailed Requirements

The detailed requirements ftre configuration vectorobl are described in this
section. This section mostly contains listdaifles and valuesahoutline the upper and
lower bounds of all variablesurrently defined in thépsk.h file. The first table of this
section, Table 4, shows the description, naamel, value of the constants defined in the
Ipsk.h definitions section. These values maympe in the future and are listed only
as a reference for the remainder of the sectibmus, the configuteon vector references

the constant name rather than the value.

Maximum Constant Values

Description Name Value
Maximum length of description string MAX_DESC 32
Maximum length of exported object name MAX_ NAME 32
Number of privilege levels gported by the CPU NUM PLS 4
Maximum number of datafile segments MAX_DSEGS 64
Maximum number of memory segments MAX_MSEGS 32
Maximum path length for file names MAX_PATH 64
Maximum number of partitions MAX_PARTITIONS 8
Maximum number of processes (per partition) MAX_PROCESSES 1
Maximum number of subjects (per process) MAX_SUBJECTS T4
Maximum r_1um_ber of event counts MAX EVENTCOUNTS 32
(synchronization struct constant) —
Maximum _number of sequencers MAX_SEQUENCERS 32
(synchronization struct constant)

T (MAX_PARTITIONS * MAX_PROCESSES * (NUM_PLS - 1))

Table 4. Constant values defined by tlpsk.h file
41

The second set of requirements, showiiable 5, is simply a mapping table that
shows how the permissions are mapped from the human-readable format to the binary
format.

The permission mapping for allrpessions scattered ritughout the structs
reference this table.

Permissions
Human-readable

Description

Binary
format format
No Access NA 0
Read only
Read/await eventcount RO 1
Read and write
Signal subject RW 5
Read/await/advance eventcoun|
Ticket sequencer
Signal subject
Advance eventcount WO 3
Table 5.

Mapping of permissions from the human-readable format to the binary format

The third set of requirements is showy the structs bound requirements table,

Table 6. This table is a set of tableattbutlines the uppeand lower bounds for each

struct of thelpsk.h

vector_struct

Structs Bounds Requirements

The table is broken into theight structs that make up the

vector_struct
Description Name Type

The format version version unsigned int *0
The structure magic # magic unsigned int N/A (read-only)

The # of partitions num_partitions unsigned int (0, MAX_PARTITIONS]

The TPA partition tpa_patrtition int [0, MAX_PARTITIONS)

The # of eventcounts num_eventcounts unsigned int [0, MAX_EVENTCOUNTS)
The # of sequencers num_sequencers unsigned int [0, MAX_SEQUENCERS)

Partitions structs partitions partition_struct]] [0, MAX_PARTITIONS)

Datafile structs datafile ddtke_struct|] [0, MAX_DSEGS)

Memory structs memory memory_struct]] [0, MAX_MSEGS)
Eventcounts structs eventcounts synchronization_struct(] [0, MAX_EVENTCOUNTYS)
Sequencers structs seqguencers symghation_struct]] [0, MAX_SEQUENCERS)

Partition to partition
permissions two- part_perm unsigned int[][] Eg mxé—ﬁﬁggl:gmg
dimensional array ' -
SUbJeCt. resource subj_perm subj_res_perm_struct[] [0, MAX_SUBJECTYS)
permissions
partition_struct
Description

Name

42

Type

Bounds

Structs Bounds Requirements \

Description of the partition description char]] [0, MAX_DESC)
Partition identifier identifier unsigned int 0
Fixed schedullng time time_slice unsigned int [0, 100]
sliced
Maximum memory a . . 3
partition can use max_memory unsigned int 0
. . . . Active = TRUE
Active or passive partition active boolean Passive = FALSE
Number g;r;?[irggssses in the num_processes unsigned int [0, MAX_PROCESSES]
Process structs processes precssuct]] [0, MAX_PROCESSES]
datafile_struct \
Description Name Type Bounds |
Partition to load in partition unsigned int [0, MAX_ PARTITIONS]
Datafile identifier identifier unsigned int 0
Privilege levels to load in pl unsigned int [0, NUM_PLS)
Location of the datafile on
the disk path charf] [0, MAX_PATH)
Permissions for each perms unsigned intf] [0, MAX_PARTITIONS)
partition
memory_struct
Description Name Type Bounds |
Partition to load in partition unsigned int [0, MAX_PARTITIONS)
Datafile identifier identifier unsigned int *0
Privilege level to allog:ate ol unsigned int [0, NUM_PLS)
memory segment in
Size of the requested size unsigned int 10
memory segment
Permsspns for each perms unsigned int[] [0, MAX_PARTITIONS)
partition

Description
Name of object

synchronization_struct

(eventcounts and sequencers)

INET[E]

Type
charf]

Bounds
[0, MAX_NAME)

Privilege level of object pl unsigned int [0, NUM_PLS)
Permissions for each . .
partition perms unsigned int[] [0, MAX_PARTITIONS)
subj_res_perm_struct
Description INE[E Type Bounds |
Other subjects subj_perm unsigned int[] [0, MAX_SUBECTS)
Data segments dseg_perm unsigned int[] [0, MAX_DSEGS)
Memory segments mseg_perm unsigned int[] [0, MAX_MSEGYS)
Eventcounts evct_perm unsigned int[] [0, MAX_EVENTCOUNTS
Sequencers seq_perm unsigned int[] [0, MAX_SEQUENCERS)

43

Structs Bounds Requirements

process_struct

Description Name Type Bounds
Process identifier identifier unsigned int *0
Number of subjects in the num_subjects unsigned int [0, NUM_PLS]
process
Subject structs definition code subject_struct[] [0, NUM_PLS)
subject_struct
Description Name Type Bounds
Location of executable file ex path char[] [0, MAX_PATH)
Location of gate
information gate_path charf] [0, MAX_PATH)

" Limited by physical memory of the system

Table 6. Upper and lower bounds for all objectstained within every struct of the
vector_struct

The final set of requirements for the capuitation vector tooils captured in Table
7. The requirements in this table show thpestelencies of some of the objects contained
in the configuration vector. The table alsarifles some requirements from the previous
table. The next section outlines the mmhative message reported to the user upon
reaching an error state.

B Additional Requirements |

Applies to Name Requirement
All identifiers are greater than zero and unique relative to
a respective struct.

All Structs PI Always have the values 0of 0, 1, 2, or 3
Binary values always 0, 1, 2, or 3; corresponding to|the
human-readable values of NA, RO, RW, WO respectively

At least one partition in the set of partitions must be active
All active partitions must have must have 1 process
active A passive (inactive) partition cannot have any processes
(and thus no subjects)
A passive (inactive) partition must have a time slice of 0
Individual fields must be greater than or equal to O jand
less than or equal to 100

identifier

perms

Partition Struct

time_slice The total of all time slices across the partition set must

sum to 100
max_memory | Must be greater than 0
Datafile Struct partition Mugteference a defined partition
Memory Struct partition Must reference a defined partition
Can only be NA or RW (this supersedes the perms
Sequencer Struct perms :

requirement stated above)
PLO must contain the path to the LPSK kernel.

exe_path Unfortunately, there is currently no way to verify this

requirement. Thus, the exe_path is only checked to ensure
Subject Struct that the path is within the size constraints for a path.
PL3 must be empty. The gate_path is also checked to
Gate_path | ensure that the path is withthe size constraints for |a

path.
Valid subject_struct exe_ path is a subject. Thus,|the
Process Struct num_subjectsminimum number of subjects is always 1 (the RLO

subject) and the maximum is 4.
The tpa_partition must be an active partition as well as a
defined partition.

Vector Attributes tpa_partition

Table 7. Dependency relationships adrfiguration vector fields

3. Error Message Requirements

Since the configuration vectdool must ensure that it generates a syntactically
correct and semantically correct output fileformative error messages are necessary
when the user provides invalid values. Thestferror message that shall be reported to
the user occurs when reading an invalid (agtitally incorrect) inpufile (see Figure
16). Since this error is syntacin nature, the tool shouldnsply return anerror stating

the input file is syntacticallyncorrect and the line number tife first error encountered

45

by the tool. The tool will report this emr¢o the user as a popup window dialog. After
the user accepts this error message, the tdbload a blank vector and display the main

window.

The next error that could occur is a seti@a(out of bounds) error. Two specific
instances of this type of errogquire explanation. The firgtpe of error occurs when the
user attempts to open a syntaaliiy correct, but semantically, incorrect input file. In this
case, the tool will allow the input file to Bbeaded into the GUI editor with a warning
dialog pointing out the error(s)This will allow the user to edthis input file. After the
user finishes an editing session, the user hasctwices: save or export the vector file.
If the user chooses to save the vector, a humadable file is writte to disk with only
basic error checking (i.e., the bounds of tleéd are checked but the dependency of one
field to another are not checked). Saving aarefie allows the user to skip complicated
error checking and keep vector files that satjuire work. However, if the user chooses
to export to a binary format, the tool must check the values before writing out a
syntactically and semantically correct file. thfe file still has semantic errors, the tool
will report a semantic error message and theciéip item in the vector that failed the

check and return to the editor.

The second type of error is similar to fivst except the user does not attempt to
read-in an input file. If a user creates a new vector, the new vector cannot be written out
to disk as a binary output filentil it is error free. All steps for this case are the same as

the first case.

This section outlined the basic requirements as well as detailed requirements for
each individual struct. It also providedganeric state transition diagram showing the
progression of an input configation vector file through theoafiguration vector tool to
the final output configuration vector file. Finally, the section outlined the error messages
that should be reported to the user if tbenfiguration vectoris syntactically or
semantically incorrect. The next sectiosalisses the feature set of the configuration

vector GUI that meets these requirements.

46

F. CONFIGURATION VECTOR TOOL FEATURE SET

Feature cascadés a term used in the design of software applications where a
simple application can quickly become compdiie to the addition of many features that
are not relevant to the original intent oeétprogram [18]. Thedalition of features not
only increases the overall complexity of an laggtion, it also tend$o negatively affect
the application performance and make it maifécult to use. Applications with many
features are not necessarily the best appbns. Applications with the necessary,
sufficient, and appropriate features to miet original intent and requirements usually
are the most usable [18]. In order to avaifeature cascade, this section outlines two
different feature sets: a minimufeature set and a feature &t users expect. The final
section outlines graphical interface stamidathat should be applied to the GUI
applications in order tmmcrease ease of use [18].

1. Minimum Feature Set

A minimum feature set is the set of femds necessary for the application to
comply with an application’s basic requiremeniThese featuresearequired in order for
the application to function as expected, yetytdo not include featas that are intended
to increase usability (i.e., features users mgyect). Since the cdgliration vector tool
is an attempt to abstract away complexitibg, first feature that meets the requirements
is the main GUI application window. A Gldpplication ensures that a user does not
need to know the syntactical structure of tinelerlying configuratiovector file in order
to create a syntactically correct file.Since the GUI portion of the application
encompasses both the view and controllenponents, the GUI codecorporates the
code for syntax and semantic error checkiridne previous sectiondescribed the main
requirements for the configuration vectofable 8 lists the minimum requirements for

the application and the features o #ipplication that meet these needs.

47

Requirement Feature

Simplify configuration vector GUI
creation
Offline application that runs on
standard operating systems
Read in configuration vector file | Open dialog from the File menu of the application. A message
(syntactically correct only) is reported to the user if the input file is syntactically incorrect.
Save dialog from the File menu of the application. Allows|the
saving of a semantically inceet file to a human-readable
form only.
Save As dialog from the File menu of the application (allows a
copy of the vector to be saved). Allows the saving aof a
semantically incorrect file to a human-readable form only.
Export dialog allows the user to write out a syntactically correct
and semantically correct binagpnfiguration vector file only.
The syntax error check for an input file is accomplished
immediately after attempting to open a file.
Error checks The semantic error check iaccomplished when the user
attempts to export the current vector file. This check is @also
checked when theser presses the Check button.

Java application

Write out configuration vector file

Table 8. Minimum configuration ector tool features

2. Features Users Expect

Users expect features that increase theilityads¥ an applicdion. These features
vary from application to agigation but include items that most users normally take for
granted. A generic examplettse ability to cut, copy, and pee text. Most users expect
to find this feature as part of the applicatifeature set. However, while this type of
feature is a good addition to tbeerall list of features, it inot a feature necessary for the
application to function. Thus, it is not ammal feature. The list below outlines the
features that a typical useowld expect of the application.

X The ability to print a human-readahdenfiguration vectowithout saving
it to a file and opening ih another application

Drag and drop a configuration vectde onto the application to open it
Cut, copy, and paste for all the téields inside the application
Multiple instances of the application

The ability to create user-defined presets

The ability to load in default presets and user-defined presets

X X X X X X

Easy navigation between fields insithe application (i.e., tab goes to the
next field, enter goes the field below, etc.)

48

X The tables of the application adgnamic and only show the number of
rows required for the current configuiion vector instead of the maximum
number of rows per table.

X The text color of permissions tablehould be colored according to the
type (e.g., RW colored red, RO loced black, NA colored green, WO
colored blue)

X Sub-windows from the application (i.e., a process window or permissions
window) should be the only window theeuds able to focus on until the
apply or cancel button ahat window is clicked

X All primary functions of the applicatn are assigned a keyboard shortcut

X All dialog windows should be the only mdow the user is able to focus on
until the okay or cancel button for that dialog is clicked

X Text inside tables should be alignadpropriately based on the type of
information contained in the specific column

X Error checking should be accomplished on the fly without having to press
a check button

X Every field or button insie the GUI should hava tooltip that appears
when the user hovers the mouserdhe object for a period of time

The features users expect are niceties and not necessities for the application.
However, these features add to the ovel@k and feel of the application. These
features were incorporated into the application as time permitted. Many of these features
were not implemented in the prototymnd have been recommended for future
development. The next section briefly owtbngraphical standards that increase overall

usability of the application.

3. Graphical Interface Standards

Because the configuratiorestor tool was created ug the NetBeans IDE, it
automatically supplied many of the graphicaénface standards that should be applied to
GUI applications. However, it is importatat note the graphicalatdards followed [18]:

X Keyboard shortcuts adhere to tharstard keyboard shortcuts used by
modern day operating systems (i.e., Ctrl+S (windows) or Cmd+S (mac)
for saving a file)

X System font is used for text menus, dialogs, and full-sized controls

X Emphasized system font is used sparingly. The primary use is for the
message text in text alerts diod titles of group settings boxes.

49

X All text input boxes use the ajqation font as the default
X The font for labels is consistent across the application

X All sentences in the application aseparated by a single space (a single
space between the ending punctuatiommd sentence and the first word
of the next sentence).

X Labels for interface elements must be easy to understand and avoid
technical jargon as much as possible

X All words in titles are capitalized excepie following: articles (a, an, the),
coordinating conjunctions (and, or), and prepositions of four or fewer
letters except when the prepositien part of a verb phrase (e.g., Go
To...).

X The ellipsis (...) character signifies that additional information is required
before the operation can be performed.

This section outlined the requirements, features, and graphical standards that were
used to design and implementetbonfiguration vector todbUl application. The next

section shows the first conceptulgsigns of the application.

G. CONCEPTUAL DESIGN OF THE CONFIGURATION VECTOR TOOL

This section shows the initial concepsig diagrams used for the configuration
vector tool application. The graphics insttsection are the result of six iterations of
design. Throughout the iteratiomsany different aspects ofdtrapplication were refined

and improved in order to bettereet the initial needs ofelconfiguration vector tool.

The following set of figures show the fireed conceptual design sketch for the
initial version of the configuration vectoodl. Each figure is a translation from the

configuration vector structliscussed in the Section B.

Figure 17 shows the partitidable result after the tratation. Figure 18 shows
the datafile table. Figure 19 shows the megmable. Figure 20 shows the event counts
table. Figure 21 shows the sequers table. Figure 22ahis the partition-to-partition

table. Figure 23 shows the subject resotmbée. Figure 24 shows the process window

50

that becomes visible to the user when the alseks the processes column in the partition
table. Figure 25 shows the permissions windloat becomes visible to the user when a

permissions column is clicked by the user.

Figure 17. Conceptual sketch of the partition table

51

Figure 18. Conceptual sketch of the datafile table

Figure 19. Conceptual sketch of the memory table
52

Figure 20. Conceptual sketch of the event counts table

Figure 21. Conceptual sketch of the sequencers table
53

Figure 22. Conceptual sketch of thgartition-to-partition table

Figure 23. Conceptual sketch of the subject resource table
54

Figure 24. Conceptual sketch of the m®sses window and subjects table

Figure 25. Conceptual sketch of the permissions window and table

55

This section showed the transformation from lipgk.h file to the conceptual
graphical representation of a configuratiattor. The interface shown in the figures of
this section directly map to the actual imptartation of the configation tool described

in the next section.

H. SUMMARY

This chapter began with the selection process used to select the correct
programming language and associated dgveémt tools: Java Swing and the NetBeans
IDE. Next, the chapter focused on the comfggion vector formaas described by the
Ipsk.h header file. The breakdown of thesk.h file not only helped the developer
understand the configuratiorector structure, but thenodel component of the MVC
paradigm became apparent as did the pringaaphical design element (i.e., the table).
Next, the chapter described the table as the primary design element and then led the
reader through the thought pesses behind the table refinarteein the tool. The next
section focused strictly on the configuratioector requirements: reading a vector,
writing a vector, and checking a vector. Thesguirements were then fully discussed in
the features discussion dhe configuration vector tool These efforts led to the
conceptual design of the configdion vector tool. The conceml design was a series of
sketches of what an actualptementation of the tool mighbok like. Thenext chapter

discusses the implementation anstiteg of this conceptual design.

56

IV. IMPLEMENTATION AND TESTING

This chapter discusses the actual implementation and testing of the configuration
vector tool. It is important to note thdte tool that was impimented and tested, as
described in this chapter, is a prototyp&his chapter describes the underlying code
written to generate botlthe delegate and modalomponents by outlining the
functionality of each of thelava class files. The chapter then describes the main
functionality of the GUI. Then, the sectishows screenshots tife prototype followed
by a discussion of a concept of operation. Tihal section of thechapter presents the
results of the tests used tolidate the prototype. The tastvere split into two general

categories: error checking and input/output.

A. JAVA CLASS FILES

The Java class files that comprise tlfguration vector tool are divided into
four separate categories: command line2oGUI components, model components, and
additional controller components. The comméne tool category coains a single Java
class. The command line tool was used to check and verify the output of the
configuration vector tool. T&GUI component category comtaithe classes that create

the GUI, check the data input for errcaigd add data to the model components.

The model component category containscaimponents specific to the model.
The model component files are special beeahg files are completely independent of
any files in the othecategories. All of these classef the model component category
are direct translations of thipsk.h structs into Java-style representations. The
VectorStruct.java file contains referencestioof the other model eoponent files. This
means that in order to create a new antpty configuration vector, a developer only

needs to instantiate a new VectorStruct.

57

The additional controller component egbry contains additional controller
component files that were removed from thain GUI class file (i.e., CVToolGUl.java)
to enable reuse across the entapplication. This simplifies the code required by the
main GUI class. Table 9 shows a detaiedakdown for each filef the configuration

vector tool.

Java Classes
Category Name Description
This tool has the ability to read in |a
binary configuration vector file and
generate a syntactically correct binary
configuration vector file. This tool does
not do any error checking. If the readtin
configuration vector is incomplete, it wi
CVDump.java fill the blank fields with zeros upon
writing the file out to disk. The primary
purpose of this tool is to verify that the
configuration vector generated by the
configuration vector tol is correct. Thig
is discussed in more detail in the testing
section.

Command
line tool

This class is the Configuration Vector
Tool GUI class. This class is the main
class of the configuration vector tool (i.e.,
the view/controller component). Thjs
class creates the main window of the
application and contains the application’s
CVToolGUI java main method. The class accesses| all
other classes in order to display the data
to the user, allows the user to edit the
GUI data, and to save/export the data. The
component class also has the methods that
accomplish the primary error checking |of
a given configuration vector.
This class provides ¢hcode for the GUI
window used to define a process. This
ProcSubjGUl.java also provides error checking for the
subjects that it takes as input at its
interface.
This class provides ¢éhcode for the GUI
window for declaring permissions.

PermsGUI.java

Model
component

This class is the Java representation of|the
definitions section of thiosk.h file.
This class is the Java representation of|the
vector_struct of thelpsk.h file.
This class is the Java representation of|the
PartitionStruct.java partition_struct of thelpsk.h
file.

VectorDefs.java

VectorStruct.java

tatl td
resentatien-of'the

58

Category

Java Classes
Name

Description
datafile_struct of thelpsk.h
file.

MemoryStruct.java

This class is the Java representation of
memory_struct of thelpsk.h file.

the

SynchronizationStruct.java

This class is the Java representation of
synchronization_struct of the
Ipsk.h file. This file is used to create
the data structure for the eventcounts a
sequences.

the

PartPerm.java

This class is the Java representation of
part_perm[][] two-dimensional
array of thdpsk.h file.

the

SubjResPermStruct.java

This class is the Java representation of
subj_res_perms struct of the
Ipsk.h file.

the

ProcessStruct.java

This class is the Java representation of
process_struct of thelpsk.h file.

the

SubjectStruct.java

This class is the Java representation of
subject_struct of thelpsk.h file.

the

Additional
controller
component

PrintVec.java

This class contains methods that allow
developer to print the configuration
vector to the termal screen for
debugging and is also used by the user
create a human-readable configuration
vector file.

Utilities.java

This is a main controller class of the
application. It sets the defaults for all
tables and also assigns default values fj
every object in theonfiguration vector
tool.

Validator.java

The methods of this class are used to d

error exceptin checking.

Table 9.

B. PRIMARY GUI CLASS

Java class files of the efiguration vector tool

Similar to the VectorStuct class, the TabIGUI class is the primary Java class

for the view/controller component.

The CMAIGUI class contains the methods that

create the view component (i.e., the magplecation window as well as the tabbed panel

of tables). This class uses the two ottlasses in the GUI cgmonent category of Table

9 to gather additional data from the ugatditional view components). The CVToolGUI

class also contains the corleo code that adds data frothe view component to the

model component.

controller component before it is sent ttte model component data structures.

59

All data thered by the view componers error checked by the
The

following discussion explains ¢herror checking functionality as well as the reading and
writing of data from the CVToolGUI cts (Table 10 provides a summary of this

discussion).

The error checking for all the visible tables in the main window is accomplished
in the CVToolGUI class. All of the error checking is accomplished when the user presses
either the check button or the export buttorihg® main applicatiowindow. The tables
embedded within the intermediate tables. (itke subject table contained in the process
window of the partition table) are error chedkwhen the user e#h presses the check

button or the apply btdan of that window.

Live error checking within each table of the application (applicable to all
windows) is also applied as the user entets dl@o each table. However, this error
checking only restricts the type of information that may be entered into the specific cell
of the table. For instance, the time slicéuom of the partition table will only allow
integer values. If the user attempts tdeerother data typessuch as a string of
characters, the user is unable to move cantather cell before fixing the data. No error
message is displayed to the user in th#@ainprototype. Instead, the table cell border

turns red to notify the user thidiere is a data type problem.

If all data entered in #@CVToolGUI class passes the error checking methods of
the class, the data is passed intoMtbetorStruct when the user pressesedkgortbutton.
The exportbutton writes the binaryonfiguration vector file ta user-specified location
on disk. If the user wishes to bypass therechecking methods caihed in the export
button, the user must select $@veor save asnenu item from the file menu in the menu
bar. Savewrites the contents of the main #pation window as well as completed sub-
windows (i.e., a process window or pernoss window) to the same human-readable
file that was originally opsed by the user. If the usepened a binary file, thsave
command does not save the file in teary format. In this case, tsavecommand acts
like a save ascommand and writes a human-readalile to a user-specified location.
The save axommand enables the user to save a humadable file to a user-specified

location with a user-specified file name.

60

It is important to noticehe distinction between theaveandsave ascommands
and theexportcommand. Theaveandsave ascommands will only write a human-
readable file to disk. Thexportcommand creates the binary file that is used to initiate
the LPSK platform. These choices provide tiser with a great deal of flexibility. It
allows the user to create or open a vecter, 8ave the file to dk, exit the application,
and open the file later without Wiag to ensure the vector fiis error-free or complete.

In addition, this environment prevents the usem creating an invalid binary file. This
saves the user from attempting to bootLRSK platform with a syntactically or
semantically invalid binary configuration vector, which will only result in a halt of the
platform.

The final major requirement of the application is to read a previously created
vector file. As previously discussed, thgplication will only open syntactically correct
vector files. However, similar to treaveandsave axommand, the configuration vector
tool will allow a vector thahas incorrect semantic valueslie opened. This allows the
user the ability to correct any invalid data refexporting a binary file. As stated in the
previous section, the tool will not allow the user to export an invalid binary file even if

the file opened by the user has invalid values.

Command Action
New Creates a blank configuration vedita by instantiating a new VectorStruct.

Allows the user to write data from the Gtdla human-readable file only. The file|is
written to the same human-readable file that was originally opened by the user. If a

Save binary file was opened, theavecommand defaults to theave ascommand. The
data written to a file may be semantically incorrect but will be syntactically corrgct.
Save As Similar to thesavecommand except it allows the user to specify the location and file

name of the human-readable file to write to disk.

Check Applies all semantic error checks, ryartifj the user of any errors encountered.
Accomplishes the same tasks as ttheeck command but also writes a binary
Export configuration vector file to a user-specified location and file name if and only if all of
the error checks were passed.
Used in the sub-windows and applies all eafeecks, notifying the user of any errars
encountered.

Apply

Table 10. List of the basic commands thfe configuration vector tool

This section described the functionality of the primary CVToolGUI class. The

next section discusse<tfeatures not implemented in this prototype.

61

C. PROTOTYPE

This section details the implementation af tonfiguration vectotool prototype.
The section is broken into two subsecti@mmhtaining screenshots of all tables of the

application and detailed explanatiarfsall items of the application.

1. Screenshots

This section shows the actual impleménta screenshots of the configuration
vector tool. Each figure in this sectionrasponds directly to the conceptual designs
discussed earlier. Figure 26 shows the implatation of the partition table. Figure 27
shows the implementation of the datafilblea Figure 28 shows the implementation of
the memory table. Figure 29 shows the enpéntation of the eventcounts table. Figure
30 shows the implementation of the sewpers table. [gure 31 shows the
implementation of the partition-to-partitiorbla. Figure 32 showthie implementation of
the subject-resource permissions tablBigure 33 shows the implementation of the
process window and associated subject tabligure 34 shows an example of a specific

implementation of a permissions window.

Figure 26. Partition table viewof the application

62

Figure 27. Datafile table viewof the application

Figure 28. Memory table viewof the application
63

Figure 29. Eventcounts table view of the application

Figure 30. Sequencers table view of the application
64

Figure 31. Partition-to-partition tableiew of the application

Figure 32. Subject-resource permissions &hlilew of the application
65

Figure 33. Process and subject wio of the application

Figure 34. Permissions window and associatalle view of the application

66

2. Concept of Operation

The purpose of this section is to exipl how the configwation vector tool
operates. This section can be treated ase# totorial on how to create, edit, save, and
export a configuration vector using the tool'he section first describes each window
presented to the user and then proviakesic steps for accomplishing typical tasks.

After launching the configurain vector tool, the user esented with the main
application window (see Figure 26). Theimapplication window is broken into two
distinct areas. The top thiaf the window contains the vectattributes panel and the
bottom two-thirds contains the tabbed tables panel. The vector attributes panel includes
the six items discussed during theside phase of this research. TWersionandMagic
fields cannot be changed by the user and aeel fby the configuratiomector tool (or the
values of these fields are set upon openingegipusly created corguration vector). In
a future prototype, the version fieldll be updatable by the user througipreferences
window (see Chapter V, Section.B)The far right side of thgector attributespanel
allows the user to specify the number oftpians, eventcounts, or sequencers for the
configuration vector (see Figure 35). Becaassonfiguration vector must have at least
one active partition, the default value for tRember of Partitionds one. TheTPA
partition is a dropdown menu that includes the maxin number of partitions available.
The user must select the desired partitiosgbas the TPA partition (only one partition

may be set as the TPA partition).

Figure 35. The vector attribute peel of the main window

As stated in the design disssion, each table of the tadabtable panel represents
a specific configuration vector structureA single row of anytable represents an

individual item of a specific structure. Forstance, in the partitions table, row zero

67

represents the specific partition informatimn Partition O (see Figure 36). All tables
within the configuration veotr tool have this same relationship between the GUI

representation and the umiyéeng data structure.

Figure 36. View of row zero otthe partition table

The next step after opening the tool is tgibdilling in data. The user should fill
out all tables and fields witthe desired data. Thisdludes adding processes to a
specific partition or setting the permissions for the eventcounts, sequencers, and subject-
resource permissions. As previously statdmta types are validated on the fly. This
means a user attempting to enter a letterertithe slice or maximum memory column of
the partition table will not be able to exitetltell until the correct data type is entered.
The table does not check the boundsthe fly. Once data is tmed in the tables of the

tool, the user can do omd three things:

1. check the vector for errols/ pressing the check button,

2. save the current vector in a hur@adable format by selecting teave
or save asnenu item from the file menu, or

3. attempt to export a binary configui@ti vector file to a specific location.

If the user presses tlaeckbutton, the tool will error check all cells in all the
tables and report any errors to the usahvai popup dialog that provides the specific
error and recommendation for fixing the errdrhe tool will also reset the value of the
invalid cell to the default value. No fils saved or exporteby clicking the check

button.

If the user selects theave asnenu item, the current vas in the configuration
vector tool are written to &duman-readable file. Althougthis file is syntactically

correct, the values within the file may not emantically valid. Saving a vector file

68

allows the user to continue editing thie later. The only difference between thave
andsave axommand is that theave axommand allows the user to select the name and

location of the human-readable file.

If the user presses theport button, the vector is checked just as if theck
button was pressed. The exportlviail if the check encounteran error. The error is
reported to the user in treame manner as clicking tleheckbutton. If the check is
passed, the tool providése user a dialog box that allowse user to select the name and
location of the output file. Qe this is completed a binamector is exported to the

desired location.

The final main feature of the tool ipening a configuratn vector file and
creating a new vector file. The tool capen either a syntactically correct human-
readable file or a syntactically correct binary file. If the file is invalid, the tool reports an
error message with the location of the firsbe encountered to the user. Otherwise, the
file is opened, the data is read into the tmud the appropriate fields are filled. The user
opens a configuration vectéite by selecting th@penmenu item from the file menu in
the menu bar. A dialog window is presentedhe user allowing thaser to locate and
select the desired file. Once the vectoriBl®pened, the values may be edited and saved
or exported as desired. Creatia new configuration vector simply requires the user to
start the configuration vector tool or select tiesvmenu item from the file menu in the

menu bar.

This section outlined the main featureg the configuration vector tool and
provided a brief tutorial on how a user mighe uke configuration vector tool. The final
section in this chapter describes the tespmaredures that were performed against the

tool and the results of those tests.

D. TESTING

This section outlines the test plaand procedures used to validate the
configuration vector tool. Testing the caniration vector occurreith two phases. The
first phase tested the boundstioé data within the fields ville in the tool The second

69

phase tested the input/output abjlities of the tool. Theubsequent sections report the

testing plan and results of each testing phase.

1. Phase I: Error Checking

This phase tested the bounds error cheglability of the configuration vector
tool. All input fields of the configurationector tool were checked to ensure that each
complied with the respective bounlgged in the requirements section. The tool enforces
the bounds by restricting the useakility to input ircorrect data in atition to checking
the data when the user pressesdeck apply, or exportbutton. The following tables,
Table 11, 12, 13, 14, 15, 16, 17, 18, 19, and 20 shevaUI mechanism used to enforce
a restriction and the restrictidhat is enforced. Each ofdHfields listed in the tables
were checked using the following procedures:

X Launch the configuration vector tool

X Verify every table to ensure thall @alues in each field are set to the
default value

X Enter edge-case values in an individiiald (e.qg., if the field has a bound,
enter data that tests that bound). Ensure the value is set to the default
value before moving on to the next tested field.

Vector Attributes Panel

Field Name Restrlctl_on Enforced Restriction
Mechanism

Version Read-only text field Read-only
Magic Read-only text field Read-only
TPA Partition Dropdown selection Only_ one value may be sg[ected by the user (up to the
box maximum number of partitions)
Number of . : Only values greater than 0 and less than or equal to the
g Spinner text field . g
Partitions maximum number of partitions may be entered
Number of . ' Only values greater than or equal to 0 and less than the
Spinner text field .
Eventcounts maximum number of eventcounts may be entered
Number of . ' Only values greater than or equal to 0 and less than the
Spinner text field g
Sequencers maximum number of sequencers may be entered

Table 11. Vector attributepanel restrictions

70

Field Name

Restriction

Partition Table

Enforced Restriction

Mechanism

Integer only cell Ensures only integers may be entered
Identifier Ensures the identifier is unique to the partition table and
Check/Export buttor greater than zero
Ensures the length of the text entered is less than the
Description Check/Export buttonmaximum description length defined in the
VectorDefs.java file
Integer only cell Ensures only integers may be entered
Ensures individual time slice values are between 0 and 100
inclusive
Time Slice % Check/Export buttor *Se_t to .0 if the partitio_n_ is not active (dependent on the
active field of the partition table)
*Ensures the sum of all time slices across all defined
partitions equals 100
Max Memory Integer only cell Ensures only integers may be en_tered
Check/Export buttonn Ensures the maximum memory is greater than zero
Checkbox Ensures that only on or off can be checked
Active *Ensures that at least one partition of the defined partitions
Check/Export button . . .
is set to active and that partition has at least one process
Dropdown selection Ensures only values between 0 and the maximum number
of Processes box of processes may be sglected _
*Ensures that if the active box is unchecked, then the
Check/Export buttor] 4
number of processes is set to zero
Read-only & click
to launch processes n/a
Processes window
*Ensures that if the processes is set to zero then the
Check/Export buttor subjects defined in the presses window are cleared.

* Requires more complex testgmedures than discussed above

Field Name

Table 12. Partition table restrictions

Restriction

Datafile Table

Enforced Restriction

Mechanism

o Dropdown selection Ensures that the user may only select a partition numbgr

Partition : .
box from the defined partitions
Integer only cell Ensures only integers may be entered
Identifier Ensures the identifier is unique to the partition table and
Check/Export buttor greater than zero
Privilege Drode\k/)ngselectlon Only allows the selection of 0, 1, 2, or 3
Ensures the length of the text entered is less than the
Path Check/Export buttonmaximum path length defined in the VectorDefs.java file
Read-only & click
Permissions to launch n/a

permissions window

Table 13. Datafile table restrictions

71

Memory Table

Field Name Restrlcu_on Enforced Restriction
Mechanism
Partition Dropdown selection Ensures tha_t the user may only select a partition numbgr
box from the defined partitions
Integer only cell Ensures only integers may be entered
Identifier Ensures the identifier is unique to the partition table angd
Check/Export buttor greater than zero
Privilege Drode\l/)vSXselectlon Only allows the selection of 0, 1, 2, or 3
Integer only cell Ensures only integers may be entered
Size Ensures that the maximunzsidoes not exceed the
Check/Export buttor] X)
maximum physical memory of the system
Read-only & click
Permissions to launch n/a
permissions window

Field Name

Name

Table 14. Memory table restrictions

Eventcounts Table

Restriction
Mechanism

Check/Export butto

=)

Enforced Restriction

Ensures the length of the text entered is less than the
maximum path length defined in the VectorDefs.java file

Dropdown selection

permissions window

Privilege box Only allows the selection of 0, 1, 2, or 3
Read-only & click
Permissions to launch n/a

Field Name

Table 15. Eventcounts table restrictions

Sequencers Table

Restriction
Mechanism

Enforced Restriction

D

Name Check/Export bu,[tonEnsures: the length of the text entered is less than the
P maximum path length defined in the VectorDefs.java fil
Privilege Drode\l/)vSXselectlon Only allows the selection of 0, 1, 2, or 3
Read-only & click
Permissions to launch n/a
permissions window

Field Name

All cells

Table 16. Sequencer table restrictions

Partition-to-Partition Perms Table

Restriction
Mechanism

Dropdown selection
box

Enforced Restriction

Only one value may be selected:
NA, RO, RW, WO

Table 17. Partition-to-partition table restrictions

72

Subject-Resource Perms Table

Field Name Restrlctl_on Enforced Restriction
Mechanism
Read-only & click
All Cells to launch n/a

permissions windo

Table 18. Subject-resource tabrestrictions

Process Window

Restriction

Mechanism Enforced Restriction

Field Name

Value is unique to across all processes windows and
greater than or equal to zero

Read-only field n/a

Calculated by counting the number of subjects defined|in
the executable path field of the subjects table.
n/a n/a

Identifier Read-only field

Number of
Subjects Check/Apply button

Executable Path Check/Applv button Ensures the length of the text entered is less than the
PPy maximum path length defined in the VectorDefs.java fil

D

n/a n/a

Ensures the length of the text entered is less than the
Check/Apply Button| maximum path length defined in the VectorDefs.java file
Ensures the PL3 gate is always empty

Gate Path

Table 19. Process window restrictions

Permissions Window

Restriction
Mechanism

Field Name Enforced Restriction

Only one value may be selected:
Dropdown selection NA, RO, RW, WO

box (Permissions originating from the sequencers table mal
only be NA and RO)

Permissions

Table 20. Permissions window restrictions

Every field in the tool was verified to woas described by the restrictions listed
in the tables above except for the starrestrictions. These dlds required a more
complicated test procedure. For eachrrstd item, the testwere conducted by first
entering correct data into the tables. This redhat all data initiayl entered into the tool

was verified as correct before beginning a.t8ste information then was modified to test

each error case. The starred items are repted by the Special Tests (SPT) in the list

below:

73

SPT1 (Partition table — Time slice %): ttigeckexportbutton ensures that
the time slice is set to O if the ntiion is not active (dependent on the
active field of the partition table)

SPT2 (Partition table — Time slice %): ttieeckexportbutton ensures the
sum of all time slices acrosd dkfined partitions equals 100.

SPT3 (Partition table — Active): theheckexport button ensures that at
least one partition of the defidgartitions is set to active.

SPT4 (Partition table # of processes): theheckexport button ensures
that if the active box is unchecked, thitve number of processes field is
set to zero and all subjectealeared from that process.

SPT5 (Partition table — Processes): theckexportbutton ensures that if
the processes is set to zero then the subjects defined in the processes
window are cleared.

The test procedure for these starred itentescribed in Tablg1. For these tests,

the configuration vector tool was launched atefault values were verified across all

tables. After entering the spécitest data described rable 21, the check/export button

was pressed to activate the checking mechaisFinally, after eanfirming the expected

results, the configuration vexttool was closed and thexteset of tests was started.

Test

Name Test Procedure Expected Observed
Set the number of partitions to 2.
Set TPA Partition to Partition 0. - Error reported to user.
For Partition O: - Partition 0 is cleared of all data.
® set the time slice cell to 1. - The number of partitions field is
- . Same as
& uncheck the active checkbox. | corrected automatically. expected
For Partition 1: - A time slice error is presented to the
® set time slice cell to 99. user. All time slice %s across all actiye
& check the active checkbox. partitions must be equal to 100.
SPT1 Press the check/export button.
Set the number of partitions to 2.
Set TPA Partition to Partition 0.
For Partition O:
® set the time slice cell to 1. Same as
& check the active checkbox. No error reported.
g) expected
For Partition 1:
® set time slice cell to 99.
k=) check the active checkbox.
Press the check/export button.
SPT2 | Setthe number of partitions to 2. & Error reported to the user Same as
Set TPA Partition to Partition O. 2 Time slice % of defined partitions| expected.
For Partition O: exceeds 100. Please correct time
® set the time slice cell to 3. slice % across all defined
& check the active checkbox. partitions.
For Partition 1:
® set time slice cell to 98.

74

Test
Name

Test Procedure

check the active checkbox.
Press the check/export button.

e

Expected

Observed

Set the number of partitions to 2.
Set TPA Partition to Partition 0.
For Partition O:

® set the time slice cell to 1.
& check the active checkbox.
For Partition 1:

® set time slice cell to 98.

k=) check the active checkbox.
Press the check/export button.

& Error reported to the user.

& Time slice % of defined partitions
does not equal 100. Please corre
time slice % across all defined
partitions.

.
L

—~

Same as
expected.

Set the number of partitions to 2.
Set TPA Partition to Partition 0.
For Partition O:

® set the time slice cell to 2.
k=) check the active checkbox.
For Partition 1:

® set time slice cell to 98.

k=) check the active checkbox.
Press the check/export button.

No error reported.

Same as
expected.

SPT3

Load two complete partitions into th
table.

Set the number of partitions to 2.

Set TPA Partition to Partition O.
Uncheck all active checkboxes.

Press the check/export button.

e

Error reported to the user.
At least one partition must be
active.

8 8

Same as
expected.

Load two complete partitions into th
table.

Set the number of partitions to 2.

Set TPA Partition to Partition 0.
Uncheck all active checkboxes.

For Partition O:

& set the time slice cell to 100.
® check the active checkbox.
Press the check/export button.

e

Error reported to the user.

User is presented with an option {
clear additional information in the
table and automatically correct th
number of partitions to the value]

8 8

o

U

.

Same as
expected.

SPT4

Set the number of partitions to 2.
Uncheck all active checkboxes.

For Partition O:

® set the time slice cell to 100.
® check the active checkbox.
For Partition 1:

& set # of processes to 1.

Error reported to the user.

User is presented with an option {
clear additional information in the
table and automatically correct th
number of partitions to the value]

8 8

o

U

.

Same as
expected.

Set the number of partitions to 2.
Uncheck all active checkboxes.

For Partition O:

k2] set the time slice cell to 100.
& check the active checkbox.

No error reported.

Same as
expected.

SPTS5

Set the number of partitions to 2.
For Partition O:
&

® set the time slice cell to 50.

set all fields with correct values.

Error reported to the user.
User is informed that the partition
does not have subijects.

8 8

Same as
expected.

75

Test

Test Procedure Expected Observed
INE(E

check the active checkbox.
set number of processes to 1.
ensure that there are subjects.
r Partition 1:

set all fields with correct values.
set the time slice cell to 50.
check the active checkbox.
set number of processes to 0.
ensure that there are subjects.

T

Table 21. Special tests table for starred entries

2. Phase II: Input/Output

This phase tested the tool’s ability tarfioem input and output operations to disk.
The main functions tested were creating & wector, opening a vector, saving a vector
(to includesaveandsave ascommands), and exporting a hiparector. Since all files
created by the tool will be either human-reddady binary, it is important to discuss how
it was determined if the files written to disk were correct and valid. For a human-
readable file, manually verifyg the content in the generafdd was sufficient (although
tedious). The binary file, however, requiredifreation that is more complex. For this

reason, the CVDump command limt was developed and used.

The CVDump tool is a command line toolt reads in a binary vector file and
writes the same vector file to disk with dfelient name (appends _write to the original
file name) using the same methods employethbyGUI tool. This allows the two files
(original and generated) to be compared regfabne another. Before CVDump could be
used for verifying vector filegenerated by the tool, CVDunigself was verified to work
correctly. This was accomplished by aibing a known valid and correct binary
configuration vector file (tis vector was created by hand and used to successfully
initialize the LPSK to a secure state). eTknown binary file was read by the CVDump
tool. The CVDump tool thenreated a new binary file baken this known binary file.
The two files sizes and hashes were then ewatp If both the size and hash of the two
files were the same, then the CVDummlt@enerated a correadnd valid binary

configuration vector file. The known good hipaonfiguration vedir file obtained for

76

this test was vect_out. The commands usegenerate the outputs are listed in Table 22
and results of the comparison are shown in Table 23.

Description Command Results \
1. Obtain a specific File size of the desired
S P Is —I cvtffilename* file is printed on the
file size
screen.
5 Hash a specific The MD5 hash of the
fiI.e P md5 cvt/filename* desired file is printed on
the screen

Executes the CVDump
tool that creates a new
binary file:
filename_write

3. Execute CVDump| java cvt/CVDump -d -v cvt/filename

The MD5 hash of the
4. Hash the new file md5 cvt/filename_write desired file is printed on
the screen

Table 22. Commands used to vérithe CVDump tool

Version SENE Size MD5 Hash
Original vect out 35320 b9cd53d8d502be0a2482f3acdd0b358¢c
Generated vect out write 35320 b9cd53d8d502be0a2482f3acdd0b358¢

Table 23. Verification of CVDunp command line tool

The verification of the CVDump tool madepossible to use the tool to check the
output binary files generated by the configumnati@ctor tool. As long as a binary vector
file generated by the graphidabl and then processed digh the CVDump as described
above hashes to the same value, it was asbtiméthe graphicabol generated a correct
and valid binary configuration vector file With the CVDumptool verified, the

remainder of the section outlines the test procedures and results of those tests.

The test plan for checking the values tbe input fields is as follows (IO
represents Input/Output Test):
X IO1: Create a new configurati vector by opening the tool.

X I02: Create a new configuran vector by selecting theew menu item
from the file menu in the menu bar.

X I03: Attempt to open a valid and danvalid existing human-readable
configuration vectoffile by selecting theopen menu item from the file
menu in the menu bar.

77

X

104: Attempt to open a valid and amvalid existing binary configuration
vector file by selecting thepenmenu item from the file menu in the menu

bar.

IO5: Attempt to save an opened humaadable configuration vector by
selecting the save menu item from the file menu in the menu bar.

I06: Attempt to save an opened lbipaonfiguration vector by selecting
thesavemenu item from the file menu in the menu bar.

IO7: Attempt to save an opened humaadable configuration vector by
selecting thesave asnenu item from the file menu in the menu bar.

108: Attempt to save thopened binary configuration vector by selecting
thesave asnenu item from the file menu in the menu bar.

109: Attempt to expora valid configuration vetor by selecting thexport
menu item from the file menu in the menu bar or pressingexpert

button.

1010: Attempt to export an invalidoafiguration vector by selecting the
export menu item from the file menu in the menu bar or pressing the

exportbutton.

Capture the results oféle tests in a table.

The test results were captured in sevahles. These tables were divided based

on the attempted function performed (i.e., nepgn, save/save as, and export). Table 24

captures the test results after executingrtee command. Table 25 captures the test

results after executing thepen command.

executing thesave or save ascommands.

Table 26 captsréhe test results after

Table 27 captar¢he test results after

executing theexportcommand. All tables contain thema of the test (e.g. 101 as listed

above), the procedure used, thepected result,ral the observed results. For all binary

file comparisons, CVDump was used anc tresulting file sizes and hashes were

compared.
Name Procedure
101 - Launch the application

New
Expected
All fields of the tools are set
to defaults

Observed

Same as expected

102

- Launch the application
- Add data to fields
- Execute File > New

A message asking the use
if he is sure he wishes to
discard changes and creat
a new vector

11%

Same as expected

Table 24. Test results for creatingreew configuration vector

78

Open

Name Procedure Expected Observed
Human-readable

- Launch the application Application fills all fields
- Execute File > Open correctly Same as expected
- Select valid test file

103 Human-readable

L Application fails to open the
- Launch the application file and reports an error Same as expected
- Execute File > Open message to the user
- Select invalid test file 9
Binary

- Launch th(_a application Application fills all fields Same as expected
- Execute File > Open correctly

104 - Select valid test file

Binary
- Launch the application
- Execute File > Open
- Select invalid test file

Application fails to open the
file and reports an error
message to the user

Same as expected

Table 25. Test results for opening a configuration vector

Procedure

CSEVCINEVEYAS

Expected

Human-readable
- Launch the application
- Execute File > Open
- Select valid test file
- Change a value

The original human-
readable file should contair]

105 . the change added by the Same as expected
- Execute File > Save o
S application and should be
- Close the application ; . .
N viewable in a text editor.
- Open saved file in a text
editor and look for the
change
Binary
- Launch the application
) géfeccﬂtsamet;?fﬂin The application should ask
the user to specify the name
- Change a value . .
106 . and location of the file to Same as expected
- Execute File > Save
S save. The change should Ipe
- Close the application :) .
S viewable in a text editor.
- Open saved file in a text
editor and look for the
change
Human-readable
- Launch the application
- Execute File > Open The same as |05 with the
- Select valid test file addition that the application
107 - Change a value should ask the user to Same as expected

- Execute File > Save As
- Close the application

specify the name and
location of the file to save.

79

- Open saved file in a tex
editor and look for the
change

—_

108

Binary
- Launch the application
- Execute File > Open
- Select valid test file
- Change a value
- Execute File > Save As
- Close the application
- Open saved file in a tex
editor and look for the

The same as 106

—

change

Same as expected

Export

Table 26. Test results for saving configuration vector

Name Procedure Expected | Observed
Binary
- Launch the application S
- Execute File > Open The appllcatlon_shoulq
.) successfully write a binary
- Select valid test file .) .
109 file to disk. Using the Same as expected
- Execute Export Button
o CVDump tool, the hashes ¢
- Close the application the two files should match
- Use CVDump to verify
binary file.
Binary
- Launch the application
- Execute File > Open The application should
1010 - Select valid test file identify the error and not Same as expected

- Change a value so that t
vector is now invalid

heomplete the export

- Execute Export Button

phases. The first phase tested the bounds fi¢lal$ inside the condiuration vector tool.

The tests of that phase were completed updry e data into the tool and when the
checkor exportbutton was pressed. The second phase tested the input/output capability
of the tool. The second phase was comgleising the CVDump command line tool in

combination with MD5 hashing. Togethénese two phases provide a comprehensive

Table 27. Test results for exporting configuration vector

Test Summary

The tests completed in this section tested the configuration vector tool in two

test of the basic operations of trenfiguration vectotool prototype.

80

E. SUMMARY

This chapter discussed the prototypeplementation of the conceptual design
outlined in Chapter Ill. The chapter began watldescription of the Java files used to
implement the prototype. The next sentishowed screenshots of the implementation
along with the concept of operations. The [fis@ction in this chapter outlined the two
sets of tests (i.e., error chéuwlf and input/output) used ta@lidate the initial prototype.
The next chapter discussie results, problems encoargd, and recommendations for

future work on the configuration vector tool.

81

THIS PAGE INTENTIONALLY LEFT BLANK

82

V. RESULTS

The initial implementation of the conceptudesign of the configuration vector
tool, as described in this thesis, is the finsh possible series pirototypes. In creating
this prototype, this research has demaitstt that it is possible to build a GUI for
creating configuration vectorsThe prototype is successfully able to read and write valid
binary configuration vectors. A valid cogtiration vector is one where all fields pass a
bounds check as well as a semantic checle prototype can also read and write human-
readable configuration vemts. The human-readablédet only pass a bounds check
allowing a user to save a configuration vector that may be incomplete. This allows the
user to complete a configuration vectoraatater time. However, the prototype still
requires substantial work before it should besidered to be a fullfunctional product.
The four main reasons for its incompleteness are discussed in this chapter and are
summarized in the conclusion. This chaptartstwith a discussion of two significant
problems encountered by the developer, folldwg a discussion of incomplete features.
Finally, the chapter ends with a discussioin suggestions for future work and the

conclusion.

A. PROBLEMS ENCOUNTERED

During the development of the configticea vector tool prototype, two major
problems were encountered. These hindehed development of more user-friendly
features that were discussed in ChapteiSiéiction F. The following two sections discuss

these problems in detail.

1. wxPython

The first problem encountered duringvdpment was the initial choice of
wxPython as the preferred language. Althougi?ython provides a caplete feature set
for the creation of GUIs, the developer'sxperience with wxPyton was considerable.
wxPython provides no support for easy placen@@nGUI elements in desired locations
on an interface canvas. itially, the interface was desigdeompletely by hand without

the use of a GUI builder. This proved to be more time-consuming and difficult than
83

expected. Thus, the search for a GUI buikgjglication was started. During this search,
the Boa Constructor IDE (see Chapig Section A) was discovered.

The developer found the Boa ConstarcIDE unpolished and cumbersome.
Since the majority of the wk to this point was compled in wxPython, the developer
was reluctant to change programming langgageThis reluctance resulted in a
considerable loss of time. Since Boa Gamgor was not found tbe user-friendly, a
search for another GUI builder begarJnfortunately, the other Python-based GUI
builders did not provide any adidinal help. Thus, the choice was made to move to Java
and use the NetBeans IDE for developmddévelopment went quickly after this choice

was made.

2. NetBeans Tables

The NetBeans IDE Swing GUI builder made the creation of simple GUIs quite
easy. However, it was not without its problems. For the most part, the objects of the
GUI can be graphically placed on a canvas. Unfortunately, the ability to highly
customize the graphical objects was not asphk. Specifically, customizing the table

object was quite difficult.

In order to customize alike object in NetBeans,developer must go through the
NetBeans table builder interface. Unfortuhgtéew customization options are presented
to the developer. Thus, creating a custaditable that can be displayed in complex
ways (e.g., only showing a certain number afspis difficult. Because of this difficulty
in table customization, the tables in the prgpet configuration vectotool were kept as
simple as possible. Thus, customized fesgusuch as controlling the number of rows
visible to the user or more elegant erommtrols, were not implemented. The next
section discusses a possible solution totétide customization pblem encountered in

NetBeans as well as additional future work.

B. INCOMPLETE FEATURES

The initial prototype of tb configuration vector tooineets all of the basic

requirements by implementing the basic featse¢ This prototype of the tool has

84

several issues with the basic feature setrthadt be mentioned. Before discussing these
issues, it is important to note that thisesse of the tool doesot address any of the

features users expect (¥€bapter Ill, Section F).

The tool lacks complete and elegant erraakting. The tool is able to verify and
check the bounds on all attrilest in the tables as wedls provide dependency error
checking between cells of the tables. Tbel turrently checks that the values for the
attributes are within the defined limits wheither the check button is pressed or when
the export button is pressed. A more elegahttion is to check thbounds as the user
enters each value and not allow the usechange from one cell to another without
correcting the identified error. Dependencioes should still be checked when the user

clicks a check button ottampts to export a vector.

Another incomplete feature is associatethvtine way the tool displays the tables
to the user. The tool only displays the nmaxxm number of attributes available to the
user. The maximum number of attributeath table is displayed regardless of whether
or not the user requires all of thdtrdutes. For instance, according to the
MAX_PARTITIONS value stored in the VamDefs.java file, thenaximum number of
partitions is eight. Thus, the configurationcia tool displays eight partitions in the
partition table. However, in the vector attrigsippanel, there is an attribute to specify the
number of partitions defined in the vectorThus, creating a table that dynamically
changes as the number of partitions fielcaraes is desirable. For this prototype,
changing the number of partitions does not change the view of the table. A user must
specify the number of partitions in the vacattributes panel and then complete the
correct number of partitions in the partitiomlia The same is true for eventcounts and
sequencers. A similar issue exists witke tiumber of processd®ld and the process
field of the partition table. A user must ag@lgingle process and then ensure that at least
one subiject is filled out in éhprocess window. Fortunatelyhen the vector is checked
(either by the user clicking theheck button or attempting &xport the vector), the tool

will notify the user of such errors and prompt the user to fix these errors.

85

C. FUTURE WORK

Although there will probably be multiple changes, enhancements, and refinements
made to the design of the configuration vedtml in the future, this section focuses on
the suggested next steps with regardseartterface, features, and documentation. Thus,
this section is divided into four sections address the interface, additional features,

refinements, and documentation.

1. Interface

The current interface for the configuratioector tool is baed on tables. As
discussed in Section A of this chapter, thbles implemented for this prototype were
constructed by taking advantage of the NetBs GUI builder. Unfortunately, tables
implemented using the NetBeans GUI builder are quite basic and lack advanced
customization features. This hindered the t#pa’s ability to finely control the display
of individual tables. Thus, the firstecommendation for the next version of the
configuration vector tool is a complete rewridbf the code used to create the tables.
Perhaps a new Java class sHolk created that createbles. This would allow for
maximum code reuse and allow future depetent of tables to be easier. With a
customized tables class, the developer should tze ability to cret® advanced features
such as hiding rows that are not specificalgfined by the user of the configuration

vector tool.

Another addition that should be addedthe interface is a message panel below
the tables. This panel would bead-only to the s of the configuration vector tool and
display only informational messages. The mgssalisplayed in this area of the interface
would contain information specific to the fieselected by the user. This would display
the bounds (as necessary) for the specific feddwell as a brief description of the
selected field. This additiowould increase the user's aemness of the data required in

order to create aoafiguration vector.

The final interface enhancement that should be addedisfarences window

The preferences windowhould allow the user to speciigfault directories for exporting

or saving configuration vectdiles (both binary and humamadable). In addition, the
86

preferences windowhould allow the user to set the diglthat are read-only in the main
interface. These items include the versmmd path to the LPSK kernel file (PLO

executable path of the subject table).

2. Additional Features

Many additional features could be addedh® configuration vect tool. For the
next version of the tool, the human-readal#etor file generated by the tool should be
converted to an XML format, preset configtion vectors should be added, and a visual

representation of the vectoreated by the tool shoule displayed to the user.

A vector file formatted in XML is an easyay to create a vector file that is both
human-readable and machine-readable. fulig an XML standard would allow a more
streamlined approach to savingesflic configurations for future use. The first step is
creating an XML schema for a vahector file. Then, the curresavésave afunction
in the tool should be emged to save the fil® the XML format. Theopenfunction
should also be changed to ondad in valid XML vector files.

The next additional feature @esets Presets allow the esto create a valid
configuration vector quickly and easily. Presets also enable the user to start from a
known template and modify the data as neagss@here should b&vo types of presets
implemented in the next version. The firstiset of default presets. These presets are
those that ship with the configuration vectool. The second typef presets are those
that are defined by the user. Similar tomipg a pre-existing cordguration vector, user-

defined presets allow the user tes@ustom presets for future use.

The final feature that should be added t® tlonfiguration vectotool is a visual
representation of the cureconfiguration createth the tool. In other words, the visual
representation would display aaghical picture of the comfuration vector the user has
created. This feature shoute invoked by default when theheck button is pressed.
When the export button is pressed, the weuld be given the option of graphically
displaying the configuration vector or procewg directly to exporting the file. This
would enable the user to actually "see" whas been created and to visually verify the

configuration.
87

3.

Refinements

Aside from the interface changes and ttiditional features previously discussed,

the configuration tool also requires minmgfinements in order to make it a more

complete product. All of these items increts® usability of thedol. These refinements

are listed below.

X
X

X

4.

Center column values in all tables
Increase the text size of the tables

Add color-coding to permissions window (e.g., NA colored red, RW
colored green, etc.)

Add color-coding to identiferrors in table cells

Add tooltips to all fields and buttons

Tooltips for a partition should contaill eelevant data for that partition
Refine error messages

Add the capability to create a messagghentication code for an input
configuration vector

Refine selection behavior of the tables
Refine resizing of the main window

All sub-windows (i.e., process wdow and permissions window) must
restrict focus and not allow a uger click on the main window without
completing the current sub-window

Documentation

The configuration vector tool requiréwo types of documes: a configuration

vector reference manual and a configuratiootametool user guide The configuration

vector reference manual should contain infdramaspecific to the configuration vector.

This reference manual should contain the dpsons and bounds for all variables of the

configuration vector. Itlould also provide several exples of valid configuration

vectors and should describe how those veatopdement a particular policy. This will

allow a trusted user to better understand exaweligt he or she is trying to create. The

configuration vector tool useguide should contaithe instructions on how to correctly

use the configuration vector tool taeate or manipulate a configuration vector.

88

D. CONCLUSION

The prototype configuration vector definitidool was designed to meet the need
for a better way to create thenfiguration vectors used ioitialize the LPSK. Although
the prototype needs more work before hbgld be considered ogaional, the initial
design is complete. Before the prototypan be considered fully functional, four
problems need to be addressed. First, thiesecreated using the NetBeans GUI builder
need to be rewritten to allow the developer complete control of all cells in the table.
Second, the human-readable configuration veateated by the tool should be converted
to XML, which will provide more flexidity. Third, a visual representation the
configuration allowing the useép visualize the configurain before exporting a binary
configuration vector file is needed. Finallto increase the usability of the tool, the
refinements discussed should be implemgénté&ince the prototype follows the MVC
design paradigm (see Chapter IlI, Section BB backend of the tool is completely
separate from the GUI front-side. Thus, nfiedtions to the tool's GUI do not affect the
underlying data structures. This allows for the development of GUI improvements as

necessary.

This research developed the initial desgjrthe LPSK configuation vector tool
and created a partially functional prototypkhe goal of creating a graphical interface for
the configuration vector tool was achievetHowever, the protgpe must be refined
before becoming operational. The prot&ypas designed to be robust enough to handle

such changes without significant effort.

89

THIS PAGE INTENTIONALLY LEFT BLANK

90

APPENDIX

The following four pages contain the code for thek.h file for the Least
Privilege Separation Kernel (LPSK). Allrsttures as well as all constants were

referenced from this file to criathe configuron vector tool.

91

92

93

94

95

THIS PAGE INTENTIONALLY LEFT BLANK

96

LIST OF REFERENCES

[1] C. E. Irvine, T. E. Levin, T. D. Nguyen, and G. W. Dinolt, “The Trusted
Computing Exemplar Project,” ifroceedings of the 5th IEEE Syste(Mi]itary
Academy, West Point, NY), pp. 109-115HE Computer Society Press, June
2004.

[2] C. E. Irvine and K. Levitt, “Trustetlardware: Can It Be Trustworthy?” in
Proceedings of the 44th Annuaésign Automation ConferendeAC '07, ACM,
2007.

[3] Common Criteria for Information&chnology Security Evaluation, Part 3:
Security assurance requirementsysion 2.1, CIMB-99-033, August 1999.

[4] U.S. Government Protection Profiler Separation Kernels in Environments
Requiring High Robustness, Version 1.03ptmation Assurance Directorate,
2007.

[5] S. Burbeck, “Applications Programng in Smalltalk-80(TM): How to use
Model-View-Controller (MVC),” 4 Mach 1997. Available: http://st-
www.cs.illinois.edu/users/smarch/st-ganvc.html (accessed 8 October 2009).

[6] Java BluePrints Model-View-Comtler, Sun Microsystems, Inc., 2002.
Available: http://java.sun.com/blueprints/patterns/MVC-detailed.html (accessed
15 October 2009).

[7] A. Fowler, “A Swing Architecture Carview,” Sun Microsystems, Inc., 2009.
Avalilable: http://java.sun.com/products/isc/articles/architture/ (accessed 8
October 2009).

[8] Microsoft. NET, Microsoft, 2009. Avkable: http://www.microsoft.com/NET/
(accessed 3 August 2009).

[9] Cocoa, Apple Inc., 2009. Availablettp://developer.apple.com/cocoa/ (accessed
3 August 2009).

[10] wxPython. 22 May 2009. Availabléttp://www.wxpython.org/ (accessed 2
August 2009).

[11] Java SE Downloads, Sun Develppetwork (SDN), Sun Microsystems, 2009.
Available: http://java.sun.com/javadeivnloads/index.jsp (accessed 3 October
2009).

[12] What is wxPython?, wxPython, 2009. Available:
http://mwww.wxpython.org/what.php (accessed 2 August 2009).

97

[13]

[14]

[15]

[16]

[17]

[18]

wxPyWiki. 25 Nov 2009. Availabléhttp://wiki.wxpython.org/ (accessed 2
August 2009).

SDN: A Community for Sun Develope Sun Microsystems, 2009. Available:
http://developers.sun.com/ (accessed 18 October 2009).

wxGlade: a GUI builder for wX/idgets, 13 October 2009. Available:
http://wxglade.sourceforge.tidaccessed 14 October 2009).

Boa Constructor, 2003. Availablettp://boa-construck.sourceforge.net/
(accessed 14 October 2009).

NetBeans IDE 6.7 Connects Deweérs, NetBeans, 2009. Available:
http://www.netbeans.org/index.html (accessed 17 October 2009).

Introduction to Apple Human Intex€e Guidelines. Apple Inc., 20 August 2009.
Available:
http://developer.apple.com/mac/library/documentation/UserExperience/Conceptu
al/AppleHIGuidelines/XHIGIntro/XHGIntro.html (accessed 10 August 2009).

98

10.

INITIAL DISTRIBUTION LIST

Defense Technical Information Center
Ft. Belvoir, Virginia

Dudley Knox Library
Naval Postgraduate School
Monterey, California

Susan Alexander
OASD/NII DOD/CIO
Washington, DC

George Bieber
OsD
Washington, DC

Kris Britton
National Security Agency
Fort Meade, Maryland

Ed Bryant
Unified Cross Domain Management Office
Maryland

John Campbell
National Security Agency
Fort Meade, Maryland

Deborah Cooper
DC Associates, LLC
Roslyn, Virginia

Grace Crowder
NSA
Fort Meade, Maryland

Louise Davidson

National Geospatial Agency
Bethesda, Maryland

99

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

Vincent J. DiMaria
National Security Agency
Fort Meade, Maryland

Rob Dobry
NSA
Fort Meade, Maryland

Jennifer Guild
SPAWAR
Charleston, South Carolina

CDR Scott Heller
SPAWAR
Charleston, South Carolina

Dr. Steven King
ODUSD
Washington, DC

Steve LaFountain
NSA
Fort Meade, Maryland

Dr. Greg Larson
IDA
Alexandria, Virginia

Dr. Carl Landwehr
National Science Foundation
Arlington, Virginia

Dr. John Monastra
Aerospace Corporation
Chantilly, Virginia

John Mildner
SPAWAR
Charleston, South Carolina

Dr. Victor Piotrowski

National Science Foundation
Arlington, Virginia

100

22.

23.

24,

25.

26.

27.

28.

29.

30.

31.

32.

Jim Roberts
Central Intelligence Agency
Reston, Virginia

Ed Schneider
IDA
Alexandria, Virginia

Mark Schneider
NSA
Fort Meade, Maryland

Keith Schwalm
Good Harbor Consulting, LLC
Washington, DC

Ken Shotting
NSA
Fort Meade, Maryland

Dr. Ralph Wachter
ONR
Arlington, Virginia

John Santos
CERDEC S&TCD Information Assurance Division
Fort Monmouth, New Jersey

Ernie Brickell
Intel
Hillsboro, Oregon

Dr. Cynthia E. Irvine
Naval Postgraduate School
Monterey, California

Paul C. Clark
Naval Postgraduate School
Monterey, California

Terrence M. Welliver

SFS students: Civilian, NavRostgraduate School
Monterey, California

101

