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FINITE ELEMENT APPROXIMATION OF THE 
SHALLOW WATER EQUATIONS ON THE MASPAR 

Abstract 

Beny Neta 
Naval Postgraduate School 

Department of Mathematics 
Code MA/Nd 

Monterey, CA 93943 

Ilere we report. on development. of a high order fi­
nite clement code for the solution of the shallow water 
eqirntions on the nrn.ssively parallel computer \·1 P-
1104. \Ve have compared the parallel code to the 
one 3vailable on th e Amdahl serial computer. It is 
::;ugge::;Led t.lrnt. one use::; a. low order finiLe element. t.o 
reap the benefit of the massive number of processors 
3vailable. 

1. Introduction 

The shallow water equations arc first order non­
linear hyperholir: parti3 l difforenti3 l equations h av­
ing many applica.Liom; in l\fot.eorology a.nd o ceanog­
raphy. These equations can be used in studies of tides 
and ::;urface waler run-oIT. They ma.y a.bo be used t.o 
study large-scale waves in the atmosphere and ocean 
if terms representing the effects of the ~:arth 's rota.­
Lion are included. See review article by Nela (1992 ). 

Indeed, it had become customary, in developing 
new numerical met.hocb for wea.Lher predicLion or 
oceanography, to study first the simpler nonlinear 
::;hallow water equation::;, which pos::;e::;s Lhe ::;a.me mix­
ture of slow and fast waves as the more complex baro­
r:linir: three-dimension al primitive eqirntions. One of 
Lhe i::;sue::; a::;::;ociaLed with the numerical soluLion of 
the shallow water equations is how to t r eat the non­
lin ear advective terms (Cullen 3nd rvl orton , 1 D80, 
Navon , 1987). In this paper the two-stage Galcrkin 
method r:ombin ed with a high ar:r:urar:y comp3d ap­
proximation t.o Lhe first. deri vat.i ve is used. The 
method was developed by N avon ( 1987). Sec also 
N ;won ( 1 DI!),,, 1 D7Di, , 1 D:~::l). Om work here is to dis­
cuss porting issues of finite clement onto a massively 
par3 llel m3r:hine. Sed.ion '.! discusses the algorithm , 
::;ec Lion :1 discus::;e::; Lhe MasPar hardware a.nd soft.­
ware. In section 4 we detail our numerical experi­
ments and r:ompare the results to the <:ode running 
on the Amdahl serial computer. 

Rex Thanakij 
MASPAR Computer Corporation 

749 N. Mary Ave. 
Sunnyvale, CA 94086 

2. Finite Element Solution 
The barotropic nonlinear shallow-water equations 

on a limiLed-area. domain of a. rolat.ing earLh ( using 
the ;'.1-planc assumption) have the following form: 

ll t + 'U. 'U. :r + l'll y + 'fx - f V = () 
Vt + lll.' x + VVy + 'Py + f u ::-::: 0 

'P l + (:pit),, + (9v)y = 0 

0 :S; x S: L 0 :S; y :S; D, l > 0. 

Here 11 C1nd i.: are the velor:ity components in the .7~ C1nd 
.I/ directions respectively, f is the Coriolis parameter 
apprnximC1ted by the ,iJ plm1 e as 

where 3, .fo, arc constants and :.p ::-::: gh is the gcopo­
tenti al height. Periodir: boundary rnnditions are as­
sumed in Lhe ;c direct.ion and rigid boundary comli­
tions (v ::-::: 0) arc imposed in the .If-direction. The 
domain i::; a cylindrical channel ::;imulat.ing a lat.i­
tuclc belt around the earth (sec e.g . Hinsman, 1975). 
The finite element apprnximC1tion leads to systems of 
ODES which can be finite diITerenced in Lime (see 
e.g. Douglas and Dupont, 1970). In the two stage 
Ga.lerkin (originally proposed by Cullen, 197'1), we 
let any of the 4 derivatives in the nonlinear t erms 
be approximated by the r:ompad. \Jumernv sd eme, 
i.e . for 

we have 

1 

70 
[z;+£ + 1fL,+ 1 + ::102; + l 62,_ 1 + 2,_ 2] = 

1 

84
h [-rm,_ , - :n11.,_1 + :rzu;+1 + .511,+:d 

Simil3rly for z,,,,., 2 1111. and Zy.:·'l'he 3pproximation of 
~~ requires an interpolation of the boundary values 
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VN+l = 'it:,,,.· - firs-1 + ·'l-VN-2 - VN-3 

av I = -25v1 + 48v2 _ 36v:i + l6v4 _ 3v5 
Dy 1 1 '2h 

~~~I.,..... = :::1•,,_,_.1 - l ov,v-:1 + :::~~·~--2 - 48v,v-1 + '21'n:,,._. 

This stage will require a solution of a pcntadiagonal 
8Y8Lem. For Lhe 8econ<l st.age, we lel w be any of 
the four nonlinear terms and we solve a tridiagonal 
system. b'or 

'W = 'l' Z 

we have 

This two stage approximation yields 0 ( h8 ) approxi­
m!ltion to the derivatives 11;,,, 111/ ,·1\, !lnd ·1J'I. 

Now Lhe approx.imalion of Lhe i:ilrnllow waLer eq ua­
tions becomes 

'f(· n+1 , 11 )+ ,.\/[(· - .)* +(· )* f" ,xl - ,.\{ T.<' J I' .l!j -1).j L.)., /J.,cJJUJ .l'Zyu :i- J~:i - L.)..n31 

where 

i\4(.'P.',.1+1 - · ~"). - ~iitl( (··~n+1 +;,pJn)::::: 0 
't" ) 2 1 t-'3 

+ L jj \ii Vi, vZ c'~i'j dA 
k A y 

,. ;·;· . n +l D.\ij, r .. ~ ·/ 'l L 'Pk -.-1·, ( " 
le , A ch~ 

'If '11 +1 (:H•'k \/, dA L 'Pk ~i ~1 · 
k . , A vy . 

' ;·;· ' 1l D.Vi' F. l ·1 L 91, . ,., c . 
!· , , A ch~ 

'Jj . n ()\'),, , . L 'Pk-;:;-- I,; dA 
k A vy 

and where \·i are the finite element sh3pe fond.ions. 

and similarly for vx . 
Schuman (1957) filter was applied every 12 time 

steps to the l' component of velocity in order to re­
cover Lhe higher accuracy of Lhe melho<l. 

Since the two-stage Galcrkin method docs not con­
serve integral invariants (Cullen [1979]) we 3pply an 
a.posteriori technique using an augmented Lagrangian 
non linearly constrained optimi :>:at ion approach for en­
forcing U1e comervalion of integral invarianLs of Lhe 
shallow water equations (sec I\ avon and de Villiers 
( rns::l ) and I\ avon ( rns::l )). 

3. System Overview 
The Mas Par family of massively parn llel processing 

sy8Lem8 comist.8 of arrayi:i of lK t.o HiK procesi:iing ele­
ments (PE), a scalar control unit (ACT) and a UI\IX 
subsystem. :\ rd1itectllrnlly, P3ch PE is 3 custom 64-
bit RISC processor with 48 32-bit registers and 64 
I( H of dat!l memory. ;\ 11 P b:s execute instrudions 
which are broadcast. from t.he ACl: on dat.a 8Lored 
in their local memory. Although there is only a sin­
gle instrndion stream, the processors h3VP 3 mm1 ber 
of autonomics , including the ability to generate in­
dependent C1ddresses for indirect lo3ds and stores to 
memory. 

The PEs share data using two communication 
mechanisms: the xnet mid the router. The xnet 
is an eighL-way nearest. neighbor mesh Lhal ii:i Ui:ied 
for strndured comnrnnications such as stencil opera.­
Lions in finiLe <liITerence codei:i. The rout.er i8 a mulLi­
stagc circuit-switched network for global or random 
comnrnnication patterns. I /0 to !lnd from the P b:s 
is Lrarn;ferred via Lhe rouler t.o an ex.Lernal memory 
buffer called I/O RA:\I. From I/O HAM, data can 
asynduonoui:ily be Lrant;ferred Lo a wi<le varieLy of 
devices such as disk arrays, frame buffers, or other 
ma.chines. The Mas Par Disk ;\nay ( \·1 PI);\) provides 
up Lo 22 C I3 of formal t.ed capacily as a t.rue UI\IX 
file system. The UNIX subsystem provides the pro­
gramming and run-Lime environment. Lo ut;ers. 

3.1 MasPar Software 
The J\·fa.s P!lr system is progrm11med in either MP L, 

a parallel extension to A~SI C, or ~.fasPar Fortran, 
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an implementation of Fortran 90. In MasPar Fortran 
( \·1 Pb') parallel operations are expressed with the F'or­
Lran 90 (F90) array exLensiorn; which LreaL enLire ar­
rays as nrn.nip11 l atahle objects, rat her than requiring 
U1em Lo be iLerat.ed Lhrough one elemenL aL a Lime. 
F90 has also added a significant number of intrinsic li­
brnries; operations s11ch as matrix nrnltiplication and 
dot. produd are parl of U1e language. Since Fort.mu 
90 is a standard defined by the ANSI/ISO commit.­
Lees, programs are archit.edure independent. and can 
be transparently moved to other platforms. 

I'urlra.n 77 

doi = 1, 256 
do j = 1, 256 

a(i, j) = b(i, j) + r:(i , j) 
tnddo 

end do 

For/ran 90 

The forLran 90 code can be run on any compuLer 
with a F90 compiler. On a scalar machine such as a 
worbt.aLion, Lhe arrays will be added one elemenL a.La 
time; just as if it had been written in Fortran 77. On 
a vector machine, the n11mber of elements added at a 
Lime i:; based on Lhe vedor lengLh; a ma.chine wiLh a 
vector length of 64 will add 64 array clements at once. 
The \·hs Par machine acts like a vector rn a.chine >vi th 
a very long vector. On a 16K l\fasPar machine, 16384 
arrays elements are added simu ltaneo11sly. 

IVl as Par provides key rolltines in math , sign al, 
image, and da.La di8play libra.rie:;. The J-faU1 Li­
brnry (ivl P i'vl L) contains a num her of high-level lin­
ear algebra. :;ol vers, including a. general den8e solver 
with pa.rtial pivoting, a Cholesky solver, a conjugate 
solver with preconditioning, and an out-of-core solver. 
MPML abo includes a. :;eL of highly-t.uned linear al­
gebrn b11ilding hlocks, analogo11s to Kf..:\S on vector 
machine8, from which Lhe U8er can develop a.ddit.ional 
solvers. The Data Display Library provides a conve­
nient interface to graphically display data from within 
a program a8 iL i8 execuLing. 

The }IasPar Programming Environment (MPPE) 
is an integrnted, grnphical environment for develop­
ing, debugging, and Luning applicaLiom. MPPE pro­
vides a rich set of graphical tools that allow the user 
to interactively control and vis1rn li~e a program's be­
havior. The statement level profiler allows the user to 
quickly identify the cornp11te-intensive sections of the 
program while U1e machine viwalizer deLaib t.he use 
of hardware resources. Each of these tools arc con­
tim1ously availahle witho11t having to recompile, even 
if a program has been compiled with optimizations. 

4. Program 
The progrnm is mod11lar and is complemented with 

easily reachable switches conLrolling print. and ploL 
options. The Input to the program consists of a single 
line containing the following six parameters: 

DT - t.he Lime 8Lep in seconcb (Fi!.2) 

l\LnIIT - t.oLal number of Lime :;Lep8 (Ifi) 
}IF - number of time steps between printing solu­

tion (15) 
l\Ol:TU - t.o prinL (1) or noL Lo print. (0) Lhe 11-

component 

l\Ol~TV - to print (1) or not to print (0) the v­
componenL 

l\PHI.l\T- Lo prinL (1) or not. Lo prinL (0) Lhe global 
nodal numbers of each triangular clements and the 
indices and node coordinates of the non~ero entries 
of the global matrix. 

The main program initializes all variables and then 
reads the only data card of the progrnm. It then pro­
ceeds to index and label the nodes and the clements, 
t h11s setting up the integration <lorn a.in. This is done 
by :;ubrouLine Nl:MDEIL 

Subroutine CORRES determine the nonzero loca­
tions in the glohal rn atrix and stores them in array 
LOCAT. The init.ial field:; of heighL and velociLy are 
set up by subroutine I~CO~D. The derivatives of 
the shape fonctions ( ~·~il are cak11lated in :\l~Y:\:\. 

A compad :;Lorage 8cheme for Lhe banded and 8parse 
global rn a.trices is implemented in s11 hrolltine J\ S­
SEJ-I. The meLhod i8 ba8ed on U1e fad UiaL Lhe max­
imum number of triangles supporting any node is six. 
Three different types of element rn a.trices (:) x :::) will 
be required for a88embly in Lhe global ma Lr ice:;. 

A switch, denoted ~S\VITCH is set for selecting 
between the different types of element matrices. :\ f­
Ler 8eL t.ing up U1e Lime irn.lependenL global ma.Lrice8 
the program proceeds to the main do-loop which per­
forrm Lhe t.ime-inLegrat.ion and which i8 execuLed once 
for every new time-step. 

As the solution of the nonlinear constrained op­
Limizat.ion problem of enforcing conservat.ion of U1e 
nonlinear integral invariants requires scaling of the 
variables, the scaling is performed in the main pro­
gram as well a8 in 8ubrout.ine I~CO~D. 

In the main integration loop the simulation time 
is set up and adj11sted and then the s11 broutines J\ S­
SEJ-I a.nd MAl\fl:LT set. up and a8semble t.he global 
matrices which then arc added up in a matrix equa­
tion, first for the continuity eq11ation and in a similar 
manner for the u and v-momentum equations. 

Subroutine SOLVER then is called to solve the rc­
s11 lting system of linear equations (of hlock tridiago­
nal form) by the conjugate gradient square. 
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The new field values for the geopotential and veloc­
ities, (Pij+ 1 

, uij+ 1 , t:i/ 1 respectiv81y, ar8 used imm8di­
aLely as obLained in solving t.he coupled shallow-water 
8cprntions system. For the u and t:-momentnm eqn a­
Lions, Lhe new L wo-sLage I\ umerov-G al er kin scheme 
is implemented. Separate routines arc set up for the 
:t and y-d8riv:itives advection terms, l)X and DY r8-
specLively. SubrouLine DX implemenLs Lhe Lwo-st.age 
Numerov-Galerkin algorithm described previously for 
Lhe adved.ive Lerrns in Lhe 11 and v-momenLum equa­
tions involving the ;1:-dcrivative. 

In the first stage it calculates the O(h8 ) accu­
rnLe generaliz.ed-spline approximation t.o Lhe (i'JH/c'h.:) 
first derivative by calling upon subroutine Cl:'CPJ'\T 
vvhid1 solv8s a p8riodic pent:idiap;on al system of lin8ar 
equaLions generaLed by Lhe spline approximaLion. 

In the second stage it implements the second part 
of th8 I\ i1merov-Galerkin algorithm for th8 non li1war 
ad ved.i ve Lenn 11 (ifu/ i.h) and solves a cyclic Lridiag­
onal system by calling upon subroutine CYCTRD. 
S11broutin8 DY implements the two-st:ip;8 l\1mwrov­
Galcrkin algorithm described previously for the ad­
v8dive terms in the u and lH11om8ntllm 8qnations 
involving Lhe y- derivative. In iLs first. sLage it. cal­
culates the O(h8 ) accurate generalized-spline approx­
im:ition to th8 ( 011/ Dy) first derivativ8 by callinp; npon 
subroutine PE~TDG which solves the usual pcntadi­
:ip;onal syst8m of lin8:ir 8qnations p;8n8rnted by th8 
generaliz.ed-s pline a p proximal.ion. 

In Lhe second sLage subrouLine DY implements t.he 
second p:irt of th8 Num8rov-G:i l8rkin :i lp;orit hm for 
Lhe nonlinear ad vecLi ve t.erm ll (i.1-11/ dy) and solves t.he 
Galcrkin product by calling upon subroutine ~CTR.D 
to solve :i sp8ci:i 1 tridi:ip;onal syst8m. 

The boundary comlit.ions are implemenLed by sub­
routine BOUJ'\D. Periodically, a Schuman filtering 
procednr8 is implement8d for th8 t:-compon8nt of ve­
lociLy only, by calling subrouLine Sl\JOOTIL The in­
tegral invariants arc calculated at each time-step by 
calling subroutine LOOK. If t.he variaLions in Lhe in­
tegral invariants exceed the allowable limits J Jc', J11, 
or J .z, th8 _,\ up;m8nt8d- Lap;r:inp;ian non lin8ar con­
sLrained opt.imiz.aLion procedure is acLivaLed. The un­
constrained optimization uses the conjugate-gradient 
subroutine EHDDF oft.he J'\AC (1982) scienLific li­
brary. Subroutine E14DBF calls a user-supplied sub­
routin8 b'L \JCT which 8vahrnt8s th8 fondion valu8 
and it.s gradienL ved.or as well as subroutine MOJ'\IT 
whose purpose is merely to print out different mini­
mi~:ition par:im8ters. 

Aft.er a predeLermined number of sLeps, subroutine 
OUT is called, which in turn calls upon the sub­
routin8s LOO I\ to c:i kn lat8 th8 int8p;rnl inv:iri ants. 
Practically 4-5 augmented-Lagrangian minimization 

cycles were determined to be sufficient. 
\Ve ran the program under MPPE and the following 

table shows th8 CPL time i1s8d by som8 oft he ron­
Lines. All oLhers require less Lhan f)f){, each. Therefore 
we have decided to parallelize ASSEM, MAMl~LT, 

Routines CPU 

SOLVER 32% 

ASSEJ-'1 2fi% 

J-L.\J,HJLT 1'1% 

COltKES ,53 

BOUND 5% 

'l'a.bl8 1: CPU tim8 used by some rontin8s 

SO LV b: K (switching from Ganss Seid8l to Conjup;:ite 
Gradient. Square). 0Lher subroutines we parallelized 
arc: 

corm.ES, I~CO~D, LOOK, MONIT, ~lnmcn. 
and AREAA. 

AfLer Lhis, Lhe mosL Lime consuming routines become 
El4DBF and FUNCT. These arc required only if the 
integral consLrainLs are noL comerved. Therefore if 
the mesh is fine, these routines will not be called. 
Onr nnm8ric:il 8Xperim8nts confirm8d that thes8 two 
rouLines were called only in Lhe coarsesL grid case. 

The nexL set. include: DX, DY, CYCTHD, CY­
CP~T, J'\CTRD, PEJ'\TDG, TRIDG, and SMOOTH. 
W8 have d8cid8d not to try at this point to paral­
lelize these or BOUND. \Ve have ran this program 
on th8 \·1P-1104 (40D6 processors) on a vari8ty of 
grid sizes. The original program was also ran on Lhe 
Amdahl 5990/500 serial computer. All computations 
W8re p8rform8d in don bl8 precision. 'l'h8 domain is a 
red.angle ()()()() km by HOO km. The coarsesL mesh, 
.3..i: = .3.y = 400km. This m8:ins that th8 m1mb8r 
of grid poinLs in Lhe :t-dired.ion, KC, is lfi and Lhe 
number of grid points in the .If-direction, J'\RO\V is 
11. (fit will b8 :idjnsted for stability.) 'l'h8 m1m b8r 
of Lime sLeps, J'\LnIIT, is :10. 

The initial condition for Lhe heighL field is given by 

h(x, y) = H 0 + 9(D/ 2 - y) 
H 1 t:inh ---'-----~ 

2D 
H2 . 27r;i: 

------Slil --

1 '.? e•(D / 2-y;, L 
cos l '.! TJ 

+ 
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DI\I D,.;i: D..t Amdahl :\'IP-1104 

lG x 11 ,100 18. l.H H 

,18 x /l;) 1:1:1~ G.Gl 1:1.G2 :n.:1 

6:) x 62 tl'.:l.75 4.22 24.8 44.:) 

88 x 85 51.76 3.03 48.32 80 

128 x 125 46.87 2.10 164 

Tahle 2: Tot:il CPL time in sec for seven1.l grids 

where 

H0 = 2000m, 

and 

This initial condition is given in Grammcltvcldt 
( 1D6D) and tested by several rese:irchers ( C11 llen and 
MorLon (HJ80), Cu::;La.fa::;on (HJ71), Navon (HJ87) eLc.) 
The initial velocity fields were derived from the initial 
heighL field via. the geo::;Lrophic relaLiomhip::; 

g ah 
u=---_-

f 0.11 

g Dh 
u = ----:-----. 

fax 

'l':i ble 2 gives the CPU time for ea.di grid. 
If we compare the CPl: time for Lhree of Lhe sub­

routines we parallelized (to avoid the difficulty that 
::;ome parL::; a.re ::;Lill running on Lhe front. end) we find 
that in :\'IA:\IULT and SOLVER we were able to cut 
the CPL time. The results are summ:iri :>:ed in Table 
:1. 

The code was ran under profiler and we found that 
now the CPU usage (in percenL of Lot.al CPU) 1::; as 
given in table 4. 

It is dear that one sho11ld p:ir-
alleliz.e DX,DY,PE)l"TDC ,THIDC and LOOK. The 
first four require that one parallelizes the subroutines 
NCTH..D,CYCTK.1) and CYCP\J'I'. This is not done 
since the tridiagonal and pentadiagonal systems to 
be solved are of order NC. \Ve feel th:it one sho11ld 
approach t.hi::; problem slighLly diirerenLly. ln::;Lead of 
trying to parallelize this code which is of high order, 
we sho11 ld par:i lleli'.i'.P a low order finite element code 
for the shallow water equations. The accuracy of the 

Subroutine Problem size Amdahl :\'IP-1104 
_,\SSUvl 48 by 45 :::.02 .).77 

fi:1 by ()2 ;).-'17 8.;)() 

88 by 85 10.4D 1.).2 
128 by 12G ;H.-'l 

l\JA:MULT 48 by 45 .42 .44 
6:) by 62 .74 .:)7 

88 by 8G l._,H .88 

128 by 125 1.53 
SOLVCH. '18 by ,1G 7.21 ;).97 

63 by 62 13.14 4.87 
88 by 85 2.).:)8 10.6 

128 by 12G 17.9 

Table:::: CPL tinw (sec) before :ind after par:illeli'.i'.:i­
Lion 

sol11tion will be obtained by 11sing an even finer mesh 
Lha.n il() km (NC= 128) we u::;ed above. IL will be in­
teresting to compare the accuracy and efficiency of 
the two codes on i'vl P-1104 m:ichine. 

Page 5 



References 
Subroutine 1~ :) x 11 44 x 45 88 x 85 128 x 125 
b'L \JCT '.)6 .. 8 
DX :1 .. 2 12 .. :1 17 .. 0 
l)Y :LZ 12 .. 8 16 .. 6 
ASSEJ-I 10 .. 2 17 .. 9 HUJ 
PENTDG 2 .. 5 12.0 13.7 
\'1,,\\'1 lJ[_.'[' 16 .. 2 1 :n 9 .. 8 
TIUDG 1.2 G .. fi tUJ 
LOOK 9.1 4.1 4.4 
1\CTHD .7 :1 .. 2 :u 
GYCPNT .7 3.9 3.2 
CYC'l"l-W .8 '2..() 2 .. 1 
SOLVER 8 .. 0 .. 1..() UJ 
SET STI 1.0 1.7 1.4 
DOUND 1.8 1.7 1..0 
VFEUDX 1.8 1.3 .6 
rest 2 .. 8 2 .. 1 2 .. 1 

Table ... 1: CPU Lime by :;ubrouLine afLer parallelization 

Conclusion 
"-'e have developed a high order finite clement code 

to solve the sh3 llow water eq11 at ions on the \'hs Par 
rria8sively parallel com put.er J-IP-1 HH. IL i::; believed 
that a low order finite clement code will be more ef­
ficienL on the J-IP-1 HH com put.er.. 
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