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FINITE ELEMENT APPROXIMATION OF THE
SHALLOW WATER EQUATIONS ON THE MASPAR

Beny Neta
Naval Postgraduate School
Department of Mathematics

Code MA/Nd
Monterey, CA 93943

Abstract

[lere we report on developrment of a high order [i-
nite element code for the selution of the shallow water
equations on the massively parallel computer MP-
1104, We have comparcd the parallel code to the
one available on the Amdahl serial computer. It is
suggested thal one uses a low order linite element Lo
rcap the bencfit of the massive number of processors
available.

1. Introduction

The shallow water cquations arc first order non-
linear hyperholic partial differential equations hav-
g many applications i Meteorology and oceanog-
raphy. These cquations can be used in studies of tides
and surface water run-oll. They may also be used Lo
study large-scale waves in the atmosphere and occan
if terms representing the effects of the Karth's rota-
tion are wcluded. See review article by Neta (1992).

Indeed, it had became customary, in developing
new numerical methods [or weather prediction or
occancgraphy, to study first the simpler nonlincar
shallow waler equalions, which possess tlie satne mix-
ture of slow and fast waves as the more complex baro-
clinic three-dimensional primitive equations. One of
lhe issues associaled with the nuwmerical solution of
the shallow water equations is how to treat the non-
linear advective terms (Cullen and Morton, 1980,
Navon, 1987). In this paper the two-stage Galerkin
method combined with a high accuracy compact ap-
proximabion to the [irst derivalive is used. The
method was developed by Naven (1987). Sce also
Naven (1979,, 1979, 1983). Our waork here is to dis-
cuss porting issucs of finite clement onto a massively
parallel machine. Section 2 discusses the algorithm,
section 3 discusses the MasPar hardware and soll-
warc. In seetion 4 we derail our numerical cxperi-
ments and compare the results to the code running
on the Amedahl serial computer.

Rex Thanakij

MASPAR Computer Corporation

749 N. Mary Ave.
Sunnyvale, CA 94086

2. Finite Element Solution

The barotropic nonlincar shallow-water cquations
on a lirmited-area domain of a rolaling earth (using

the F-planc assumption) have the following form:

U+ vty +vtuy oy — fo =10
v+ uve fvvy + @y + fu=10
oo T lpu)e +prly =10

0<e<L, 0<y<D (>0,

Here 1 and © are the velocity components in the 2 and
y dircctions respectively, f is the Coriolis parameter
approximated by the 3 plane as

where 2, fi, are constants and ¢ = gh is the geopo-
tential height. Periodic houndary conditions are as-
suttted 1n the @ direction and rigid boundary condi-
tions (v = 0) arc imposed in the y-direction. The
domain is a cylindrical chaunel simnuolating a lati-
tude belt around the carth (sce c.g. Hinsman, 1975).
"I'he finite element approximation leads to systems of
ODLES which can be [finite dilferenced in time (see
c.g. Douglas and Dupont, 1970). In the two stage
Galerkin (originally proposed by Cullen, 1971), we
let any of the 4 derivatives in the nonlincar terms
be approximated by the compact Numerov scheme,
Le. [or

A

du

Zpy —

we liave

1

1

[Zign + 1655400 + 362 + 1651 + zi_y] =

[—Bu;—s — 32w 1 + 3201 + By

84h

S_'imﬂarly for zy.. 240 and z,,. . The approximation of
% requires an interpolation of the boundary values
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This stage will require a solution of a pentadiagonal
syalern.  Tor the second stage, we let w be any of
the four nonlinear terms and we solve a tridiagonal
system. Far

W=tz

we have
1
E(“’j_l + dwj + wit1) =
19 i-15-1 gizion vzt
Vil Fj T v 24+ Ui i + Buy)

This two stage approximation yiclds O (hg) approxi-
mation to the derivatives u.,u, v, and v,

Now Lhie approximation of the shallow water equa-
tions becomes

11;’[[.'{&?4_1 —u?)'i‘/—\-('[(u»?wu] +[U3yu) f; v ] = Alfﬁl

M [?)}""’1 —'r.l_,? JHAL (v ay. ); —I—-u;-""'1 (Zec )i+ ] ?.'.;-"+1] =

‘ 1
M(pit! — o) — AH\ (e + i) =0
where
1 n+l
!\;)1 = (I"\cjl +h”l)

Eai = (Kf;{“—i—f’” )

My = / | /1 V) Vi dA
Ky = Z;: / .l / 1 Vi Vi u:%dl
+Z / /A Vi luk%di
Knl = Z / / n+1m* 5o dA
i = ZA:[ /A gt ‘?; Vi dA

At

KD Z // ¥ da

Z// ()“ A

and where |, are the finite element shape functions.

e
K&

w® = ut = iu.” = lu”_l + O (At)z)
2 2
and sumilarly for ¢~

Schuman (1957) filter was applied cvery 12 time
steps to the » component of velocity in arder to re-
cover Lhie higher accuracy ol the method.

Since the two-stage Galerkin method docs not con-
serve integral invariants (Cullen [1979]) we apply an
aposteriorl technigue using an augmented Lagrangian
nonlinearly constrained optimization approach for en-
[orcing the conservation ol integral invarianls of the
shallow water cquations (sce Navon and deVilliers
(1983} and Navan (1983)).

3. System Overview

"The MasPar family of masgively parallel processing
sysletns consists of arrays of 1 Lo 16K processing ele-
ments (PE), a scalar control unit (AC[') and a UNIX
subsystem. Architecturally, each PE is a custom 64-
bit RISC processor with 48 32-bit registers and 64
KB of data memary. All PEs execute instructions
which are broadcast [rom the ACTU on data stored
in their local momory. Although there is only a sin-
gle instruction stream, the pracessors have a number
of autonomics, including the ability to generate in-
dependent addresses for indirect loads and stares to
LILeLIOry.,

The PEs share data using two communication
mechanisms: the xnet and the router. The xnet
is an eighl-way nearest neighbor rmesh that s used
for structured commmunications such as stencil opera-
tions in finile dilference codes. The router is a mulli-
stage circuit-switched network for global or random
communication patterns. 1/0 to and from the PEs
15 translerred via (hie router o an exlernal memory
buffer called T/0 RAM. From [/O RAM, data can
asynchronously be (ranslerred to a wide variely of
devices such as disk arrays, trame buffers, or other
machines. ‘I'he MasPar Disk Array (MPDA) provides
up Lo 22 GDB of lormmalted capacily as a true TTNIX
file system. The UNIX subsystem provides the pro-
gramming aud ruu-time environment Lo users.

3.1 MasPar Software

'I'he MasPar system is programmed in either M PI,
a parallel extension to ANSI C, or MasDPPar Fortran,
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an implementation of Fortran 90. In MasPar Fortran
(MPF]) parallel operations are expressed with the For-
bran 90 (T'90) array exlensions which Lreal entive ar-
rays as manipulatable abjects, rather than requiring
them Lo be ilerated thirough one element al a Lirne.
F90 has also added a significant number of intrinsic li-
braries; operations such as matrix multiplication and
dot product are part of the language. Since Torlran
90 is a stancard defined by the ANSI/ISO commit-
lees, prograrus are architeclure independent and can
he transparcntly moved to other platforms.

Forlran 77 Fortran 90

doi=1,2b6
dof = 1,256
0(13] = b[i:j) + c[i:j)

enddo

a=hb+r

cnddo

The Tortran 90 code can be run on any compuler
with a FO0 compiler. On a scalar machine such as a
workstation, the arrays will be added one element al a
tirne; just as if it had been written in Fortran 77. On
a vector machine, the number of elements added at a
Lime 18 based on e veclor length; a machine with a
vector length of 64 will add 64 array clements at onee.
"T'he MasPar machine acts like a vector machine with
a very long vector. On a 16K MasPar machine, 16384
arrays elements are added simultaneously.

MasPar provides key routines in math, signal,
unage, and dala display libraries.  The Math Li-
brary (MPMI.) contains a numher of high-level lin-
ear algebra solvers, including a general dense solver
with partial pivoting, a Cholesky solver, a conjugate
solver with preconditioning, and an out-of-core solver.
MPML also includes a sel of highly-tuned linear al-
gebra building hlocks, analogous to BLAS on vector
machines, [rom which the user can develop additional
solvers. The Data Display Library provides a conve-
nient interface to graphically display data from within
a program as 1l 18 execuling.

The MasPar Programming Environment (MIPPE)
18 an integrated,. graphical environment for develop-
g, debugging, and tuning applications. MPPE pro-
vides a rich set of graphical tools that allow the user
to interactively control and visualize a program’s be-
haxior. The statcment level profiler allows the user to
quickly identify the campute-intensive sections of the
prograw while the machine visualizer details the use
of hardware resources. Fach of these tools are con-
tinuously availahle without having to recompile, even
it a program has been compiled with optimizations.

4. Program

"I'he program is modular and is complemented with
easily reachable swilches controlling print and plol
options. The Input to the program consists of a single
line containing the following six paramerers:

DT - the time step in seconds (I75.2)

NLIMIT - tolal number of timme steps (I5)

MF - numnber of time steps between printing soln-
tion (15)

KOUTU - to print (1) or nol to print {0) the u-
component

NOUTY - to print (1) or not to print (0) the -
coponent

KPRINT - to priat {1) or not to print (0) the global
nodal numbers of cach triangular clements and the
indices and node coordinates of the nonzera entries
of the global matrix.

The main program initializes all variables and then
reads the only data card of the program. It then pro-
ceeds to index and label the nodes and the clements,
thus setting up the integration domain. This is dane
by subroutine NUMBITR.

Subroutine CORRES determine the nonzere loca-
tions in the glohal matrix and stores them in array
LOCAT. The initial fields of height and velocily are
sot up by subroutine INCOND. The derivatives of
the shape functions (V;] are calculated in AREAA.
A compact storage scheme [or the banded and sparse
global matrices is implemented in snbroutine AS-
SEM. The method is based on the fact that the max-
imnum number of triangles supporting any node is six.
'I'hree ditferent types of element matrices (3 x 3) will
be required [or assernbly in the global malrices.

A switch, denoted NSWITCH is sct for sclecting
between the different types of element matrices. Af-
Lter setting up the Lime independent glohal matrices
the program procecds to the main do-loop which per-
[orms the time-inlegration and which is executed once
for cvery now time-step.

As the selution of the nonlincar constrained op-
timization problem of enflorcing conservation of the
nenlinear integral invariants requires scaling of the
variables, the scaling is performed in the main pro-
grain as well as in subroutine INCOND.

In the main integration loop the simulation time
is seb up and adjusted and then the subroufines AS-
SEM and MAMULT sel up and assemble the global
matrices which then are added up in a matrix cqua-
tion, first for the continuity equation and in a similar
manner for the u and v-momentum cquations.

Subroutine SOLVER then is called to solve the re-
sulting system of linear equations (of hlock tridiago-
nal form) by the conjugate gradient square.
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The new ficld values for the geopotential and veloc-
ities, (f);fjj“ : ?.'.;ii“ : 1,:;;‘JH respectively, are used immedi-
alely as obtained in solving the coupled shallow-waler
equations system. For the » and v-momentum equa-
lions, the new (wo-slage Numerov-Galerkin scheme
18 implemented. Separate routines are set up for the
x and y-derivatives advection terms, DX and DY re-
spectively, Subroutine DX implements the two-slage
Numerov-CGalerkin algorithm described previously for
the adveclive terms in the v and v-momentum equa-
tiong involving the e-derivative.

In the first stage it calenlates the O{#®) accu-
rate generalized-spline approximation to the (fu/da)
first derivative by calling upon subroutine CYCPNT
which solves a perindic pentadiagonal system of linear
equalions generaled by the spline approximation.

In the sccond stage it implements the sccond part
of the Numerov-Galerkin algorithm for the nonlinear
advective Lerm u{du/Ox) and solves a cyclic Lridiag-
onal systcm by calling upon subroutine CYCTRD.
Subroutine DY implements the two-stage Numerov-
Galerkin algorithm described proviously for the ad-
vective terms in the # and »-momentum eqnations
nvolving the y— derivative, In its lrst slage it cal-
enlates the Q(A®) accurate generalized-spline approx-
imation to the (u/dy) first derivative by calling upan
subroutine PENTDG which selves the usual pentadi-
agonal system of linear equations generated by the
generalized-spline approximation.

[n the second stage subroutine DY nplements the
second part of the Numerov-Galerkin algorithm for
the noulinear advective term u{éu/Ay) and solves the
Galerkin product by calling upon subroutine NCTRD
to solve a special tridiagonal system.

The boundary conditions are unplemented by sub-
routine BOUND. Dericdically, a Schuman filtering
procednre is implemented for the s-component of ve-
locity only, by calling subroutine SMOOTIL. The in-
tegral nvariants arc calculated at cach time-stop by
calling subroutine LOOK. If ihe variations in the in-
tegral invariants cxceed the allowable limits dg, 8y,
or 4z, the Augmented-Lagrangian nonlinear con-
strained optimization procedure 1s activaled. The un-
constrained optimization nses the conjugate-gracicnt
subroutine EIADBI of the NAG{1982) scientilic li-
brary. Subroutine E14DBFE calls a nser-supplicd sub-
routine FUNC'" which evaluates the function value
and its gradienl vector as well as subroutine MONIT
whose purpose is merely to print ont different mini-
mization parameters.

Alter a predetermined number of steps, subroutine
OUT 1is called, which in turn calls upon the sub-
routines LOOK to calculate the integral invariants.
Practically 4-5 angmented-Lagrangian minirnization

cvcles were determined to be sufficient.

We ran the program under MPPE and the following
table shows the C'PU time used by some of the ron-
tines. All others require less (han 5% each. Therelore

we have decided to parallclize ASSEM, MAMULT,

Routines Ccru
SOLVER 32%
ASSEM 25%
MAMULT 14%
CORRES 5%
BOUND 5%

Table 1: CPL time used hy same rontines

SOLVER. (switching from Ganss Seidel to Canjugate
Gradient Square). Othier subroutines we parallelized
are:

CORRIES, INCOND, LOOI, MONIT, NUMBLER
and ARFAA.

Aller this, the most tirme cousuming routines becorne
E14DBF and FUNCT. These are required only if the
integral constrainls are not conserved. Therelore if
the mesh 18 fine, these routines will not be called.
Onr numerical experiments confirmed that these twao
routines were called only 1n the coarsest grid case.

The nexi sel include; DX, DY, CYCTRD, (Y-
CPNT, NCTRD, PENTDG, TRIDG, and SMOOTH.
We have decided not to try at this point to paral-
lelize these or BOUND. We have ran this program
an the MP-1104 (4086 processors) on a variety of
orid sizes. The original program was also ran on the
Amdahl 5990/500 serial computer. All computations
were performed in double precision. 'I'he domainis a
rectangle 6000 km by 4400 km. The coarsest rmesh,
Ax = Ay = 400km. 'This means that the number
ol grid points in the e-direction, NC, is 15 and the
mumber of grid points in the y-direction, NROW is
11, (At will he adjusted for stability.) The number
of time steps, NLIMIT, 15 30.

The 1nitial condition lor the height feld 1= given by

QD2 -
hix.y)= Hy + Hitanh %
Ha L 2me
* cosh® 49(1)»/;_3” - L
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DIM Aw At Amdahl  MP-1104

15 = 11 400 18. 1.114 11
48 % 15 133% AL 13.52 1.3
63 % 62 93.7h 422 24.¥ 44.3
88 = 8 51.76  3.03 48.32 80

128 = 125 46.87 2,10 - 164
Tahle 2: ‘I'otal CPL time in sec for several grids

where

H(] = 20007’7?, H1 = 7220?]’)’: Hg = ]-“l-“l?T.‘

and

fo=10"%sec™1, 8=15x10"Hsee tm™ L.

This initial condition is given in Grammeltvelds
(1969) and tested by several researchers (Cullen and
Morton (1980}, Gustalsson (1971}, Navon (1987) elc.)
The initial velocity ficlds were derived from the initial
height field via the geostrophic relationships

g h
Y =i =
e
a dh
v==—,
[ dx

Table 2 gives the CPLU time for each grid.

Il we compare the CPT time [or three of the sub-
routines we parallelized {(to avoid the difficulty that
sornte parts are still running on the front end) we lind
that in MAMULT and SOLVER we were able to cut
the CPU time. The results are summarized in 'I'able
3.

The code was ran under profiler and we found that
now the CPU usage (in percent of tolal CPU) is as
given in table 4.

It is  clear  that one  should par-
allelize DX, DY PENTDCG, TRIDG and LOOK. The
first four require that one parallelizes the subroutines
NCTURDCYCTRD and CYCPN'T. 'This is not done
ginee the tridiagonal and pentadiagonal systems to
be salved are of order NC. We feel that one should
approach this problemn slightly diflerently. Instead of
trying to parallelize this code which is of high order,
we shonld parallelize a low order finite element code
tor the shallow water equations. The aceuracy of the

Subroutine  Problem size Amdahl  MDP-1104

ASSEM 48 by 45 3.02 2.77
63 by 62 5.7 8.56

8% by &5 10.49 15.2

125 by 125 4141

MAMULT 48 by 45 42 A4
63 hy 62 T4 A7

88 by 85 141 88

128 by 125 = 1.33

SOLVER 18 by 15 T.21 5.97
63 by 62 13.14 4.87

85 hy &5 2538 10.6

128 by 125 17.9

Table 3: CPU time (sec) before and after paralleliza-
Lion

solution will be abtained by using an even finer mesh
than 46 ki (NC=128) we uged above. Tl will be in-
teresting to comparc the accuracy and cfficiency of
the two codes on MP-1104 machine.
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Subroutine 15 x 11 44 < 45 88 x 85 128 x
FUNCT 36.8 = =
DX 3.2 12.3 17.0
Y 3.2 12.8 16.6
ASSEM 10.2 17.9 16.0
PENTDG 2.5 12.0 13.7
MAMULD 16.2 13.7 9.8
TRIDG 1.2 6.5 (.9
LOOK 9.1 4.1 4.4
NCTIRD i 3.2 i
CYCPNT T 3.9 3.2
CYCTRD it 2.6 2.1
SOLVLER 8.0 1.0 1.9
SET STI 1.0 1.7 1.4
BOUND 1.8 1.7 1.0
VFEUDX 1.8 1.3 .6
rest, 2.8 2.1 2.1

Table 4: CPU time by subroutine aller parallelization

Conclusion

We have developed a high order finite clement code
to solve the shallow water equations on the MasPar
massively parallel computer MP-11041. It 1s believed
that a low order finite clement code will be more of-
ficient on the MP-1101 compuler.
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