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A multitude of physical and biological processes occur in the ocean over a wide 

range of temporal and spatial scales. Many of these processes are nonlinear and 

highly variable, and involve interactions across several scales and oceanic disci-

plines. For example, sound propagation is inß uenced by physical and biological 

properties of the water column and by the seabed. From observations and conser-

vation laws, ocean scientists formulate models that aim to explain and predict dy-

namics of the sea. This formulation is intricate because it is challenging to observe 

the ocean on a sustained basis and to transform basic laws into generic but usable 

models. There are imperfections in both data and model estimates. It is important 

to quantify such uncertainties to understand limitations and identify the research 

needed to increase accuracies, which will lead to fundamental progress.

There are several sources of uncertainties in ocean modeling. First, to simplify 

models (thereby reducing computational expense), explicit calculations are only 

performed on a restricted range of spatial and temporal scales (referred to as the 

Òscale windowÓ) (Nihoul and Djenidi, 1998). Inß uences of scales outside this win-

dow are neglected, parameterized, or provided at boundaries. Such simpliÞ cations 

and scale reductions are a source of error. Second, uncertainties also arise from 

the limited knowledge of processes within the scale window, which leads to ap-

proximate representations or parameterizations. Third, ocean data are required for 

model initialization and parameter values; however, raw measurements are limited 

in coverage and accuracy, and they are often processed with the aim of extracting 

information within a predetermined scale window. Initial conditions and model 

parameters are thus inexact. Fourth, models of interactions between the ocean and 

Earth system are approximate and ocean boundary conditions are inexact. For ex-

ample, effects of uncertain atmospheric ß uxes can dominate oceanic uncertainty. 

Fifth, miscalculations occur due to numerical implementations. All of the above 

leads to differences between the actual values (unknown) and the measured or 

modeled values of physical, biological, and geo-acoustical Þ elds and properties. 

From observations and conservation laws, 

ocean scientists formulate models that aim 

to explain and predict dynamics of the sea.
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To reduce uncertainties, the sources of 

information (the various data and dy-

namical models) are combined by data 

assimilation (DA) (Robinson et al., 1998; 

Robinson and Lermusiaux, 2002). Data 

assimilation is challenging and expensive 

to carry out, but optimal in the sense 

that each type of information is weight-

ed in accord with its uncertainty. Of 

course, should optimal estimates fail to 

be accurate, a priori assumptions about 

uncertainties are revised, and models 

and data sets improved. 

Any comprehensive ocean prediction 

(e.g., Mooers, 1999; Pinardi and Woods, 

2002) should include uncertainty esti-

mates. Predicted uncertainties consist of 

the integration in time of initial errors 

and of errors introduced during model 

integration. Uncertainty is deÞ ned in 

terms of the probability density function 

(PDF) of the error in the estimate. Error 

refers to the difference between the truth 

and the estimate. Uncertainties are often 

represented by low-order characteris-

tics of the error PDF (e.g., the moments 

or conÞ dence intervals). Because ocean 

Þ elds are four-dimensional, straightfor-

ward uncertainty representations are 

also Þ elds, with structures in time and 

space. Variability and uncertainty are 

related but different (e.g., Lermusiaux, 

2002). For any estimate, the portion of 

variability that contains errors contrib-

utes to uncertainty. The variability that 

is unresolved is purely uncertainty. For 

example, the historical temperature vari-

ability maps shown on Figure 1 are mo-

ments of a variability PDF. The standard 

deviations (Figure 1b) are uncertainty 

amplitudes for the mean (Figure 1a) if 

the historical data are the sole informa-

tion used to estimate this mean.

Although uncertainties have been at 

the heart of ocean investigations for a 

long time, realistic uncertainty predic-

tions are recent. Early attempts in the 

context of DA are described in Malan-

otte-Rizzoli (1996). The Þ rst real-time 

uncertainty predictions using an ad-

vanced DA scheme in a full-featured 

nonlinear model were carried out for 

the Strait of Sicily in 1996 (Lermusiaux, 

1999). The scheme utilized was Error 

Subspace Statistical Estimation (ESSE, 

Lermusiaux et al., 2002). Related Monte-

Carlo ensemble schemes (Evensen, 1994; 

Miller et al., 1999) are now being used 

in other regions. Generalized inverse 

schemes can account for all uncertainty 

sources (an excellent example is Egbert 

et al., 1994), but avoid computing uncer-

tainty Þ elds to gain computational speed. 

In atmospheric studies, ensemble fore-

casting has been utilized for uncertainty 

predictions for some time (e.g., Toth and 

Kalnay, 1993; Molteni et al., 1996; Ehren-

dorfer, 1997) and realistic ensemble DA 

has been carried out recently (Whitaker 

et al., 2004; Houtekamer et al., 2005; Szu-

nyogh et al., 2005). Climate uncertainty 

forecasting has been initiated, often based 

on simple perturbations of selected pa-

rameters and initial conditions (Murphy 

et al., 2004; Stainforth et al., 2005).

The present study describes and illus-

trates the mechanics and computations 

involved in modeling and predicting un-

certainties for ocean science and its mod-

ern applications. It is an outgrowth of the 

U.S. OfÞ ce of Naval ResearchÕs (ONR) 

Capturing Uncertainty in the Tactical 

Environment Initiative (ONR, 2001), 

which involved scientists from physical 

oceanography, ocean modeling, marine 

geosciences, ocean acoustics, signal pro-

cessing, and sonar engineering. Detailed 
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  Although uncertainties have been at the heart 

of ocean investigations for a long time, 

realistic uncertainty predictions are recent.
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mathematical and computational aspects 

are given in the references. ESSE is used 

to exemplify interdisciplinary data-assim-

ilative uncertainty estimation and predic-

tion, focusing on regional applications.

MODELING AND PREDICTING 
UNCERTAINTIES IN THE OCEAN
Uncertainty estimation begins with the 

identiÞ cation of signiÞ cant variability 

that is not represented. This is the in-

put or prior information. Uncertainty 

predictions can then be obtained from 

evolution equations (Jazwinski, 1970) 

for the error PDFs of the model state 

and parameters. When observations are 

made, these PDFs are combined with 

the new data and their PDFs. However, 

it is impractical to solve such PDF equa-

tions for discrete ocean-model variables 

because of the large number O(105-107) 

of grid points. Ocean uncertainty es-

timation has thus focused on: (1) the 

conditional mean, which is the mini-

mum error variance estimate, and (2) 

error variances and covariances, which 

are simple but essential components of 

the error statistics. (The variance is the 

square of the standard deviation, which 

measures the averaged deviation from 

the mean. Error covariances measure the 

extent to which errors in two variables 

vary together.)

The evolution of error covariances 

depends on four factors: (1) the initial 

error condition, (2) the deterministic 

dynamics that increase or reduce errors 

by internal advection, diffusion, or re-

action, and by external forcing, (3) the 

stochastic forcings that model errors in 

the deterministic model and increase er-

ror variance, and (4) the impact of data 

that reduces variance. Each of these fac-

tors is normally important. Care is thus 

required when approximate equations 

are used to evolve error covariances. For 

example, a passive tracer equation would 

only capture part of factor 2. 

Ocean uncertainty forecasts can be 

used to qualify the prediction, assimi-

late data, or estimate predictability lim-

its. Today, most uncertainty forecasting 

schemes are based on ensemble Monte-

Carlo approaches and reductions of the 

high-dimensional error space to a low-

dimensional subspace that contains the 

essential uncertainty. The schemes Þ rst 

aim to account for the largest uncer-

tainties in each source of information: 

dynamical model, measurement model/

data, initial and boundary conditions, 

and parameters. With these uncertainty 

inputs, they then predict the largest un-

certainties (the error subspace) of the 

dynamical state and reduce them by DA. 

Mathematically, it is the DA criterion 

that sets the choice of the subspace. The 

suboptimal truncation of errors in the 

full space is then optimal. For a mini-

mum error variance, the subspace is de-

Þ ned by dominant modes of the error 

covariance matrix. Computational com-

ponents involved in such modeling and 

prediction of uncertainties are outlined 

next and illustrated with ESSE.
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Figure 1. Measurement-based variability estimates for the summer season in the Mid-Atlantic Bight (MAB) continental shelf and slope region, within 
0-m to 15-m depths. (a) Mean of the temperature data, in °C. (b) Standard deviation of the temperature data, in °C. � e data used to compute these 
maps are historical raw temperature pro“ les from a variety of data sources (Linder and Gawarkiewicz, in press). � e maps are representations of the 
variability„the mean and standard deviation of a variability PDF. 
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Deterministic Models and Their 
Approximations
Most physical ocean models are derived 

from the classic Navier-Stokes equations 

for ß uid dynamics in a rotating frame of 

reference. These equations are determin-

istic: they always give the same output 

for a given input. Practical assumptions 

are used to limit the range of modeled 

scales. A common reduction, the Primi-

tive-Equations (PE) model (Pedlosky, 

1987), is used here within the Harvard 

Ocean Prediction System (HOPS, 2004). 

Acoustic models are also derived from 

Navier-Stokes and are usually based on 

a wave equation for the sound pressure 

(Kuperman, 2004). EfÞ cient acoustic 

model approximations include modal 

decompositions (Chiu et al., 1996) and 

linearizations. Even though much prog-

ress has been made in marine ecosystem 

modeling (e.g., Hofmann and Friedrichs, 

2002), deterministic biological equations 

as fundamental as Navier-Stokes are not 

yet available. For lower trophic levels, 

most models are based on advection-re-

action-diffusion equations. They differ in 

their structure, the number of state vari-

ables employed, and the parameteriza-

tions used. Details on the models used in 

this manuscript are in Lermusiaux et al. 

(2002) and Lermusiaux and Chiu (2002). 

Deterministic physical, biological, or 

acoustical models commonly compute 

future conditions based on given initial 

conditions. They also play an important 

role in the prediction of uncertainties. 

They allow explaining the deterministic 

evolution of the initial errors. However, 

approximations to fundamental equa-

tions lead to errors in these models, 

which need to be taken into account. 

Stochastic Forcing and Models 
of Uncertainties in Deterministic 
Dynamical Models
To represent the dominant components 

of processes neglected or not well repre-

sented in deterministic models, stochas-

tic error models are starting to be used. 

For example, Figure 2 illustrates statisti-

cal effects of sub-mesoscale processes 

not resolved in a mesoscale-resolution 

PE model. The model errors are mod-

eled using unbiased random noise with 

an exponential decorrelation in time. In 

space, the amplitude of the noise var-

ies only in the vertical direction and has 

about a two-grid point correlation in ev-

ery spatial direction. For each prognostic 

equation, the noise variance at a given 

depth is set to be a small fraction (25 

percent) of the amplitude of the terms 

involved in the dominant dynamical bal-

ance at that depth.

What is modeled with a determinis-

tic or stochastic equation depends on 

knowledge and on the scale window of 

interest. Generally, processes that are well 

known in this window are modeled de-

terministically. All other processes, inside 

or outside of the scale window, should be 

modeled with a stochastic component. 

These stochastic components can be ei-

ther additive (added as a new term to 

the deterministic model) or multiplica-

tive (e.g., inside an original term of the 

model). Additive forcing, uncorrelated 

with the deterministic variables, is useful 

in ocean models, but it should be auto-

correlated in time and space because the 

statistics of many natural processes can 

be approximated this way (Gardiner, 

1983; Lermusiaux et al., 2002).

 

Boundary Condition Uncertainties
Open boundary conditions in regional 

modeling are a large source of uncertain-

ties, in part because their estimation is 

not always well posed (Bennett, 1992, 

and references therein). Moreover, ex-

changes between the ocean and atmo-

sphere are often computed based on at-

mospheric forcing ß uxes obtained from 

an independent atmospheric model. 

Inaccuracies also arise in surface and 

coastal boundary conditions such as 

parameterizations of boundary layers, 

ß uxes exchanged at coastlines, or river 

discharge inputs. Most boundary con-

dition uncertainties are modeled with 

simple stochastic forcing and can be 

underestimated to limit numerical insta-

bilities. For example, ESSE currently uses 

white noise models or time-correlated 

noise models at boundaries. At the ocean 

surface, more advanced atmospheric ß ux 

uncertainty models are deÞ nitely needed, 

for example, to account for ß ow-depen-

dent uncertainties. 

Parametric Uncertainties
To motivate the need for representing 

parametric uncertainties, consider the 

Þ t of the mixing-layer depth in a param-

eterization of the transfer of wind stress 

to the oceanÕs surface boundary layer 

(Lermusiaux, 2001). Figure 3 illustrates 

such a Þ t of the mixing-layer depth fac-

tor to Seasoar data collected during the 

shelfbreak PRIMER experiment and to 

atmospheric ß uxes obtained from ad-

justed model Þ elds (Baumgartner and 

Anderson, 1999). The Þ tted factor varies 

in time (solid curve on top of Figure 3). 

Its uncertainty is represented by the his-

togram around the mean Þ t (Figure 3, 

bottom). As the top panel shows, in the 






















