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A multitude of physical and biological processes occur in the ocean over a wide
range of temporal and spatial scales. Many of these processes are nonlinear and
highly variable, and involve interactions across several scales and oceanic disci-
plines. For example, sound propagation isueficed by physical and biological
properties of the water column and by the seabed. From observations and conser-
vation laws, ocean scientists formulate models that aim to explain and predict dy-
namics of the sea. This formulation is intricate because it is challenging to observe
the ocean on a sustained basis and to transform basic laws into generic but usable
models. There are imperfections ioth data and model estimates. It is important

to quantify such uncertainties to understand limitations and identify the research
needed to increase accuracies, which will lead to fundamental progress.

There are several sources of uncertainties in ocean modeling. First, to simplify
models (thereby reducing computational expense), explicit calculations are only
performed on a restricted range of spatial and temporal scales (referred to as the
Oscale windowO) (Nihoul and Djenidi, 1998)ubites of scales outside this win-
dow are neglected, parameterized, or provided at boundaries. Such satipiib
and scale reductions are a source of error. Second, uncertainties also arise from
the limited knowledge of processes within the scale window, which leads to ap-
proximate representations or parameterizations. Third, ocean data are required for
model initialization and parameter values; however, raw measurements are limited
in coverage and accuracy, and they are often processed with the aim of extracting
information within a predetermined scale window. Initial conditions and model
parameters are thus inexact. Fourth, models of interactions between the ocean and
Earth system are approximate and ocean boundary conditions are inexact. For ex-
ample, effects of uncertain atmosphenx®&s can dominate oceanic uncertainty.

Fifth, miscalculations occur due to numerical implementations. All of the above
leads to differences between the actual values (unknown) and the measured or
modeled values of physical, biological, and geo-acoustici &nd properties.

Oceanographys, No. 1, Mar. 200681



To reduce uncertainties, the sources ofites to uncertainty. The variability that Carlo ensemble schemes (Evensen, 1994;
information (the various data and dy-  is unresolved is purely uncertainty. For Miller et al., 1999) are now being used
namical models) are combined by data example, the historical temperature vari-in other regions. Generalized inverse
assimilation (DA) (Robinson et al., 1998;ability maps shown on Figure 1 are mo- schemes can account for all uncertainty
Robinson and Lermusiaux, 2002). Data ments of a variability PDF. The standard sources (an excellent example is Egbert
assimilation is challenging and expensiveleviations (Figure 1b) are uncertainty et al., 1994), but avoid computing uncer-
to carry out, but optimal in the sense ~ amplitudes for the mean (Figure 1a) if tainty Pelds to gain computational speed.
that each type of information is weight- the historical data are the sole informa- In atmospheric studies, ensemble fore-

casting has been utilized for uncertainty
predictions for some time (e.g., Toth and

o Kalnay, 1993; Molteni et al., 1996; Ehren-
Although uncertainties have been at the heart dorfer, 1997) and realistic ensemble DA

of ocean investigations for a long time, has been carried out recently (Whitaker

realisti ncertaint rediction e r nt et al., 2004; Houtekamer et al., 2005; Szu-
eallStic uncertainty predictions are recent. nyogh et al., 2005). Climate uncertainty

forecasting has been initiated, often based
on simple perturbations of selected pa-

ed in accord with its uncertainty. Of tion used to estimate this mean. rameters and initial conditions (Murphy
course, should optimal estimates fail to ~ Although uncertainties have been at et al., 2004; Stainforth et al., 2005).

be accurate, a priori assumptions about the heart of ocean investigations for a The present study describes and illus-
uncertainties are revised, and models long time, realistic uncertainty predic-  trates the mechanics and computations
and data sets improved. tions are recent. Early attempts in the  involved in modeling and predicting un-

Any comprehensive ocean prediction context of DA are described in Malan-  certainties for ocean science and its mod-

(e.g., Mooers, 1999; Pinardi and Woods, otte-Rizzoli (1996). Therbt real-time ern applications. It is an outgrowth of the
2002) should include uncertainty esti-  uncertainty predictions using an ad- U.S. Oflee of Naval ResearchOs (ONR)

mates. Predicted uncertainties consist ofvanced DA scheme in a full-featured Capturing Uncertainty in the Tactical

the integration in time of initial errors ~ nonlinear model were carried out for Environment Initiative (ONR, 2001),

and of errors introduced during model the Strait of Sicily in 1996 (Lermusiaux, which involved scientists from physical
integration. Uncertainty is deted in 1999). The scheme utilized was Error ~ oceanography, ocean modeling, marine
terms of the probability density function Subspace Statistical Estimation (ESSE, geosciences, ocean acoustics, signal pro-
(PDF) of the error in the estimate. Error Lermusiaux et al., 2002). Related Monte-cessing, and sonar engineering. Detailed
refers to the difference between the truth
and the estimate. Uncertainties are oftenPierre. F.J. Lermusia(pierrel@paci“c.deas.harvard.edu) is Research Associate, Har-
represented by low-order characteris-  vard University, Cambridge, MA, CI8Ag-Sang Chiis Professor, Naval Postgraduate

tics of the error PDF (e.g., the moments School, Monterey, CA, G¥% G. Gawarkiewiéz Associate Scientist, Woods Hole

or conkdence intervals). Because ocean Oceanographic Institution, Woods Hole, MA&Hi@4botis President, Ocean Acousti-
belds are four-dimensional, straightfor- cal Services and Instrumentation Systems, Inc., LexingtonAlldA,RJSebinsois

ward uncertainty representations are  Professor, Harvard University, Cambridge, MRoSHEIN. Millelis Professor, Oregon

also Relds, with structures in time and  State University, Corvallis, ORPd8i&k J. Haleig Project Scientist, Harvard University,
space. Variability and uncertainty are ~ Cambridge, MA, US¥ayne G. Leslis Senior Project Scientist, Harvard University, Cam-
related but different (e.g., Lermusiaux, bridge, MA, USBharan J. Majumdas Research Professor, University of Miami, Miami,
2002). For any estimate, the portion of FL, USAlex Pands Professor, University of California, Santa Cruz, CAn¢HBA.
variability that contains errors contrib- Lekienis Research Associate, Princeton University, Princeton, NJ, USA.
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(a) Summer mean surface (0515 m) temperature (b) Summer standard deviation of surface (0515 m) temperature
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Figure 1. Measurement-based variability estimates for the semsoem the Mid-Atlantic Bight (MAB) continental shelbpadegion, within
0-m to 15-m depths. (a) Mean of the temperature data, in °C. (b) Standard deviation of the temperature@dttains€d to compute these
maps are historical raw temperature pro“les from a variety of data sources (Linder and Gawarkiewiezmagsess)representations of the
variability,the mean and standard deviation of a variability PDF.

mathematical and computational aspectserror variances and covariances, which late data, or estimate predictability lim-
are given in the references. ESSE is usedre simple but essential components of its. Today, most uncertainty forecasting
to exemplify interdisciplinary data-assim-the error statistics. (The variance is the schemes are based on ensemble Monte-
ilative uncertainty estimation and predic- square of the standard deviation, which Carlo approaches and reductions of the
tion, focusing on regional applications. measures the averaged deviation from high-dimensional error space to a low-
the mean. Error covariances measure theimensional subspace that contains the
MODELING AND PREDICTING extent to which errors in two variables  essential uncertainty. The schemest b

UNCERTAINTIES IN THE OCEANMary together.) aim to account for the largest uncer-
Uncertainty estimation begins with the The evolution of error covariances  tainties in each source of information:
identibcation of signileant variability depends on four factors: (1) the initial  dynamical model, measurement model/
that is not represented. This is the in-  error condition, (2) the deterministic data, initial and boundary conditions,
put or prior information. Uncertainty dynamics that increase or reduce errors and parameters. With these uncertainty
predictions can then be obtained from by internal advection, diffusion, or re-  inputs, they then predict the largest un-

evolution equations (Jazwinski, 1970) action, and by external forcing, (3) the certainties (the error subspace) of the
for the error PDFs of the model state  stochastic forcings that model errors in  dynamical state and reduce them by DA.
and parameters. When observations arethe deterministic model and increase er- Mathematically, it is the DA criterion
made, these PDFs are combined with  ror variance, and (4) the impact of data that sets the choice of the subspace. The
the new data and their PDFs. However, that reduces variance. Each of these facsuboptimal truncation of errors in the

it is impractical to solve such PDF equa-tors is normally important. Care is thus full space is then optimal. For a mini-
tions for discrete ocean-model variables required when approximate equations mum error variance, the subspace is de-
because of the large number G{10") are used to evolve error covariances. FoiPned by dominant modes of the error

of grid points. Ocean uncertainty es- example, a passive tracer equation wouldovariance matrix. Computational com-
timation has thus focused on: (1) the  only capture part of factor 2. ponents involved in such modeling and
conditional mean, which is the mini- Ocean uncertainty forecasts can be prediction of uncertainties are outlined
mum error variance estimate, and (2)  used to qualify the prediction, assimi-  next and illustrated with ESSE.
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Deterministic Models and Their Stochastic Forcing and Models Boundary Condition Uncertainties
Approximations of Uncertainties in Deterministic ~ Open boundary conditions in regional
Most physical ocean models are derived Dynamical Models modeling are a large source of uncertain-
from the classic Navier-Stokes equationsTo represent the dominant components ties, in part because their estimation is
for Buid dynamics in a rotating frame of of processes neglected or not well repre-not always well posed (Bennett, 1992,
reference. These equations are determinsented in deterministic models, stochas-and references therein). Moreover, ex-
istic: they always give the same output tic error models are starting to be used. changes between the ocean and atmo-
for a given input. Practical assumptions For example, Figure 2 illustrates statisti- sphere are often computed based on at-
are used to limit the range of modeled cal effects of sub-mesoscale processes mospheric forcing Bxes obtained from
scales. A common reduction, the Primi- not resolved in a mesoscale-resolution an independent atmospheric model.
tive-Equations (PE) model (Pedlosky, = PE model. The model errors are mod- Inaccuracies also arise in surface and
1987), is used here within the Harvard eled using unbiased random noise with coastal boundary conditions such as
Ocean Prediction System (HOPS, 2004).an exponential decorrelation in time. In parameterizations of boundary layers,
Acoustic models are also derived from space, the amplitude of the noise var- [Buxes exchanged at coastlines, or river
Navier-Stokes and are usually based on ies only in the vertical direction and has discharge inputs. Most boundary con-
a wave equation for the sound pressure about a two-grid point correlation in ev- dition uncertainties are modeled with
(Kuperman, 2004). Efffent acoustic ery spatial direction. For each prognosticsimple stochastic forcing and can be
model approximations include modal equation, the noise variance at a given underestimated to limit numerical insta-
decompositions (Chiu et al., 1996) and depth is set to be a small fraction (25  bilities. For example, ESSE currently uses
linearizations. Even though much prog- percent) of the amplitude of the terms  white noise models or time-correlated
ress has been made in marine ecosystermvolved in the dominant dynamical bal- noise models at boundaries. At the ocean
modeling (e.g., Hofmann and Friedrichs, ance at that depth. surface, more advanced atmosphens 3
2002), deterministic biological equations  What is modeled with a determinis-  uncertainty models are daltely needed,
as fundamental as Navier-Stokes are nottic or stochastic equation depends on  for example, to account forofv-depen-
yet available. For lower trophic levels, knowledge and on the scale window of dent uncertainties.
most models are based on advection-re-interest. Generally, processes that are well
action-diffusion equations. They differ in known in this window are modeled de- Parametric Uncertainties
their structure, the number of state vari- terministically. All other processes, insideTo motivate the need for representing
ables employed, and the parameteriza- or outside of the scale window, should bgarametric uncertainties, consider the
tions used. Details on the models used irmodeled with a stochastic component. bt of the mixing-layer depth in a param-
this manuscript are in Lermusiaux et al. These stochastic components can be ei-eterization of the transfer of wind stress
(2002) and Lermusiaux and Chiu (2002).ther additive (added as a new termto  to the oceanOs surface boundary layer
Deterministic physical, biological, or the deterministic model) or multiplica- (Lermusiaux, 2001). Figure 3 illustrates
acoustical models commonly compute tive (e.g., inside an original term of the such a Ibof the mixing-layer depth fac-
future conditions based on given initial model). Additive forcing, uncorrelated  tor to Seasoar data collected during the
conditions. They also play an important with the deterministic variables, is usefulshelfbreak PRIMER experiment and to
role in the prediction of uncertainties.  in ocean models, but it should be auto- atmospheric @xes obtained from ad-
They allow explaining the deterministic correlated in time and space because thgusted model blds (Baumgartner and
evolution of the initial errors. However, statistics of many natural processes can Anderson, 1999). Thetted factor varies

approximations to fundamental equa-  be approximated this way (Gardiner, in time (solid curve on top of Figure 3).
tions lead to errors in these models, 1983; Lermusiaux et al., 2002). Its uncertainty is represented by the his-
which need to be taken into account. togram around the meantiFigure 3,

bottom). As the top panel shows, in the
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