
Calhoun: The NPS Institutional Archive
DSpace Repository

Faculty and Researchers Faculty and Researchers' Publications

1988

Knowledge-Based Support for Rapid Software Prototyping

Luqi

https://hdl.handle.net/10945/43602

This publication is a work of the U.S. Government as defined in Title 17, United
States Code, Section 101. Copyright protection is not available for this work in the
United States.

Downloaded from NPS Archive: Calhoun

Knowledge-Based Support
for Rapid Software Prototyping

Lu qi

The Naval Postgraduate School

S
oftware prototypes are executable initial ver
sions of software systems. Designers use
prototypes to clarify requirements by demon
strating selected aspects of proposed system be

havior to customers. To be useful in negotiations leading
to software development projects, prototypes must be
constructed and adapted to rapidly changing requirements.
PSDL' (our prototyping system description language) and
its associated computer-aided prototyping system2 make
this possible on a large scale as well as for embedded

systems with real-time constraints. PSDL can express
black-box descriptions of systems and decompositions into
networks of simpler operators communicating via data
streams. Associated prototyping methodology relies on
reusable software components. drawn from a software
base, to speed up prototype construction.' In addition to
the software base, the computer-aided prototyping system
contains (I l a translator for adapting and interconnecting
components. (2) schedulers for meeting real-time con
straints, and (3) interfaces for entering design decisions. 2

WINTER 1988 OXK5-91KKl/XX/l IOO-IKKl9 $I ,(Kl c 19XX IEEE 9

Figure 1. Using the computer-aided prototyping
system.

Focusing on the software base, we will discuss the
computer-aided prototyping system's knowledge base and
show how to apply expert system technology to the
software base management subsystem responsible for
finding reusable software components with specified prop
erties. We will apply rapid prototyping techniques to
enable the detection and correction of requirement errors
early in development. Prototyping is most useful in novel
or poorly understood problem domains where designers
find it impossible to anticipate every customer problem in
advance. To enable more effective planning and to ensure
that detailed design and implementation efforts will focus
on the most important features. the prototyping effort tries
to highlight unanticipated aspects of customer problems
early on. We seek to automate support for analyzing new
problem domains rather than automating the generation of
many similar systems in well-understood problem do
mains. For this reason, we will address a general-purpose
computer-aided prototyping system rather than specialized
application generators.

Effective application generators require prior analysis
of the problem domain to (l) develop a specialized
problem description language, and (2) identify algorithms
capable of solving all problems that language can express.
This process - the easiest for narrowly defined problem
domains - requires a substantial tool-building effort for
each new application. The investment required to create a
special-purpose application generator is justified if we plan
to construct many software systems for the same problem
domain. 4 The time required to construct application
generators precludes their use in rapid prototyping for
novel problem domains. The domain analysis required to
construct an application generator for a new domain will
benefit from prototyping with a computer-aided system.

IO

Because they apply to software development generally.
rather than to a fixed application area, computer-aided
prototyping systems are more difficult to build than
application generators. Consequently. we cannot anticipate
application area problems and provide ready-made
solutions (as is done in application generators). A com
pletely automated system must solve all problems express
ible in its problem statement language. Since automatically
generating programs for solving problems in uncon
strained domains is beyond the current state of the art.
interactive systems offer practical support for prototyping.

We have designed our computer-aided prototyping
system to assist human experts with software design. Our
system contains knowledge comprising software compo
nents and rules describing how these components can be
used and combined. Human experts provide guidance for
solving problems that cannot be handled by automatically
applying the expertise represented in the prototyping
system's knowledge base. This structure enables us to
build a useful system without requiring prior solutions to
all possible problems. and supports the system's evolution
ary development by allowing the addition of new compo
nents and rules to the knowledge base as we discover gaps
in the system's knowledge through practical use.

Our computer-aided prototyping system functions as
follows:

Designers obtain requirements from customers as
written documents, with extensions and clarifications
provided in response to designer questions and prototype
demonstrations.

Designers propose a system interface consistent with
these requirements, or make adjustments based on cus
tomer feedback, and record resulting specifications in
PSDL.

Designers submit specifications to the software base
management system, which attempts to retrieve or adapt
available reusable components to meet those specifica
tions. If this is impossible, then designers must decompose
the system into a network of simpler components using
PSDL, and repeat the process at more detailed levels until
the software base can provide all components.

Figure I illustrates this process. in which component
specifications have a dual role since they are used both for
documenting intended prototype properties and for
retrieving reusable components. Because this process is
difficult to automate, designers must propose abstractions
and carry out top-down design. The software base manage
ment system must find relevant components and fill in
details. This is analogous to the interaction between
mathematicians and an automatic theorem-proving
program in which mathematicians propose lemmas as

IEEE EXPERT

intermediate steps if the automatic procedure cannot solve
the main theorem in a reasonable time; the automatic
procedure takes care of fine-grained details that are tedious
for the mathematician.

Our approach differs from other knowledge-based
approaches to program construction by (1) the scale of its
knowledge base, and (2) its computer-aided retrieval of
reusable components based on specifications. The
Programmer's Apprentice project5 aims at speeding up the
programming process via a library of reusable compo
nents. Reusable components implemented in the KBEmacs
version of the Programmer's Apprentice - components
known as "cliches" - represent algorithm fragments
rather than complete modules. Using algorithm fragments,
KBEmacs focuses on supporting the assembly of a
module's implementation rather than assembling systems
from complete modules; the scale of examples reported is
a few hundred lines of code. We aim to produce software
system prototypes larger by several orders of magnitude,
and seek to avoid considering the internal structure of
reusable components.

Programmers using KBEmacs should be familiar with
library cliches (which are referenced by name) and will
obtain the best results if they think in terms of these cli
ches. This is not a very serious problem in the prototypical
version of KBEmacs, which contains only a few dozen
cliches, but indicates that hundreds or thousands of cliches
will probably be needed for serious applications.5

Leaming and remembering cliches can become
burdensome. Our approach uses specification-based
retrieval of reusable components to avoid this burden. The
software base management subsystem seeks to automate
the process of organizing, finding, and combining reusable
components in the software base via specifications
associated with components. Such capability is useful be
cause it frees designers from having to remember what
software components are currently available or from
having to browse through components to discover relevant
ones. This becomes especially important as available com
ponents increase in number (as they will in software bases
supporting broad problem domains).

Expert system technology is appropriate for realizing
the software base management system because the useful
software component set is unbounded in principle and can
be enormous in practice. We can view these components
as instances of general patterns, with many variations on
some of their properties. A practical approach is to store a
representative component subset and to provide rules for
generating related components (practical since it reduces
the effort required to enter components into the system,
conserves memory, and imposes structure on the software
base).

Retrieving for the software base requires finding or

WINTER 1988

constructing a program that realizes a given specification.
Retrieving reusable components from a software base is a
difficult search problem in a potentially infinite space. The
elements of this space are pairs consisting of a specifica
tion and a corresponding executable program in which the
elements of each pair are either explicitly stored or
effectively constructible from explicitly stored pairs. This
suggests using heuristic search methods, which are a
common expert system component. Complete algorithmic
solutions to the retrieval problem are unlikely because
specification equivalence is an insoluble problem if the
specification language is strong enough to be expressive.
Our system addresses retrieval by relying on a recogniz
able subset of the equivalence relation on specifications.

Retrieval strategies

The software base management system retrieves
reusable software components for meeting a given
specification, using less designer time than it would take to
code components manually. Since prototyping is most
important for large problems, designer throughput pro
vides a more appropriate measure than system delay to
realize each component. Perceived time delay - an
important factor in the effort required to use a system6

-

is valuable when producing answers with little perceptible
delay because it avoids disturbing the designer's thought
processes. Since searching a large space takes considerable
time, practical designs should incorporate several search
strategies ordered by speed. Those that the system can
apply with little perceptible delay should be applied while
the designer waits. If fast methods fail, retrieval should be
spooled (thereby allowing designers to work on different
aspects of the problem while the system pursues more
time-consuming background search strategies).

The fastest and most superficial search strategy uses
exact matches for component specifications. To facilitate
retrievals based on exact matching, the system normalizes
component specifications, transforming them into standard
form. 7 This reduces variations when representing equiva
lent specifications, making syntactic matching more effec
tive. The system normalizes specifications for retrieval
requests and for each component entered into the software
base. The system indexes components according to their
normalized specifications; consequently, exact match
searches can be performed quickly.

Retrieval strategies based on inexact matches and
transformations consume more time, and are best applied
off line. Checking for inexact matches and applying scribe
transformations can both diverge - and both can be
controlled by externally imposed time limits adjusted to

11

match available computational resources (we will discuss
transformations in detail below). Searching for inexact
matches involves checking implications. If QS represents
query specifications and CS represents specifications for
reusable component C, then C is an inexact match for the
query in case CS => QS. Checking implications is not a
decidable problem io general, but several partial decision
rules exist that will correctly detect successful implica
tions. Partial decision rules include shallow pattern
matching based on the identities

A and B =>A

A =>A or B,

a propositional implication checker (based on truth tables)
that ignores atomic predicate semantics and bounded
depth inference procedures sensitive to properties of
common data types (for example, integers and sets) and
common operations (including equality and orderings). To
save time, we should apply inexact match and transforma
tion strategies to relatively small portions of the software
base; consequently, we have partitioned the software base
according to the values of several categorical properties,
which we detail under the "category" slot below. This
structure resembles a hash table, in which categorical
property values correspond to the hashing function. We
identify the partition relevant to a given retrieval request
based on property values. and components in the partition
are subjected to a "best first" heuristic search that checks
for inexact matches and attempts to create matches by
applying various transformations. To realize the full
potential of software use, such processing is important;
exact matches can get you only so far. 8 The software base
management system can find more opportunities to reuse
software components created by human designers if small
modifications for adapting components to a new environ
ment can be made automatically.

An agenda mechanism resembling the one used in the
AM system9 can choose which component to analyze next.
AM generates new mathematical concepts, with the most
"interesting" concepts appearing first. The interpretation of
"interesting" relevant to the software base management
system's retrieval mechanism reflects the degree of simi
larity between component specification and the specifica
tion contained in the retrieval request. If a multiple-com
puter network is available, the system can process several
of the most promising components in parallel.

The computer-aided prototyping system's knowledge
base contains two kinds of information - descriptions of
reusable software components, and rules for combining or
adapting reusable components (the next two sections
describe this knowledge in more detail).

12

Declarative knowledge

Primarily, the knowledge base's declarative knowledge
contains reusable software components and can be organ
ized naturally into a frame system 10

- each frame corre
sponding to a software component. Such organization is
preferable to monolithic structures (Prolog databases, for
example) because the software base can become unwieldy.
The frames impose structure on the software base, which
the system can use for limiting searches and for organizing
secondary storage so that information units likely to be
needed together can be retrieved as a single unit.

Frames in a frame system have common slots that have
the same interpretation for each frame in the system. Each
slot can have several facets. Each facet contains a property
related to the slot. The following subsections describe slots
important for managing a set of reusable software compo
nents.

Specification. The specification slot contains a PSDL
specification of the software component. Retrieval is based
on the specification rather than on any attempt to analyze
implementation code.

Implementation. The implementation slot contains
code for software components. Consistent with our
principle of specification-based retrieval, we maintain only
one implementation for each elementary specification. If a
significant difference exists between two modules, module
specifications should describe that difference so that re
trieval mechanisms can be sensitive to it. If no significant
difference exists, keeping both modules wastes space.
Performance differences are sometimes important; hence,
specifications must reflect these differences. The imple
mentation slot of a nonelementary specification contains a
list of other modules satisfying the specification. Nonele
mentary specifications help the system avoid recalculating
common inexact matches, and do not affect the system's
computational power in the absence of resource limits.

Category. The category slot contains several properties
used for partitioning the software base into disjoint
subspaces. By limiting the knowledge base portion that it
must search, the system uses such partitioning to improve
performance. Categorical properties include the program
ming language used for implementation. the operating
system it runs under, the component type, and maximum
execution time. We have found component types of PSDL
(functions. state machines. and data types) convenient for
describing prototype software systems, since they provide
a clear criterion for defining disjoint categories. The
system uses maximum execution time to specify modules

IEEE EXPERT

with real-time constraints, which are restricted to execute
in a constant time frame. Therefore, maximum execution
time can be represented as a number used to limit retriev
als to only those modules capable of meeting a given real
time constraint. To efficiently generate subsets of compo
nents meeting a given bound on execution time, each
partition's components are threaded together in a list kept
sorted with respect to maximum execution time.

Alternatives. The alternatives slot contains (1) rules for
generating variations on a module, and (2) a list of related
modules. The next section describes filter rules that
exemplify rules for generating variations. Filter rules
contain prescriptions for synthesizing composite modules
by combining the current module with other modules that
satisfy specified properties~ Each related module is
associated with a description of conditions under which
the module is likely to be useful. For example, a module
that finds roots by Newton's method can have a module
for finding roots via the bisection method as an alternative,
with the conditions that (1) derivatives are not needed, but
that (2) end-points of an interval where the function
reverses its sign are required as additional inputs to the
module. Rules for generating variations are essential when
defining the search space, while the list of related modules
helps the system become more efficient by supplying
heuristic advice regarding where to look next.

Transformations

It has been difficult to reuse software in practice
because only rarely are two instances of the "same" soft
ware component exactly alike at a superficial level.
Instead, many small variations on a theme exist. The
number of small variations can be unbounded, and it can
be difficult to predict which variation will be needed next
(an extreme example is the set of array-sorting routines in
standard Pascal). Since Pascal requires that the procedure
header specify the type and bounds of the array, a different
sorting procedure is needed for each array type and size.

We can provide transformations that adapt or combine
components explicitly stored in the software base to ac
commodate a class of small variations, thereby alleviating
this problem. Systems performing such transformations as
part of the retrieval process have a much better chance of
successfully retrieving a specified component from the
software base than do systems that can only return
components explicitly stored in the software base. This ca
pability also reduces the need for designers to manually
adapt reusable components after retrieval - especially
important in rapid prototyping, where designer time is at a

WINTER 1988

PSDLis
the language of choice

when rapidly prototyping
real-time systems.

premium. The constructed implementation's efficiency is
less important in prototyping, where the primary purpose
is to discover system behavior acceptable to customers.
Once component specifications have stabilized, identifying
performance bottlenecks and reimplementing critical
modules more efficiently can be justified.

A well-known approach to the small-variations problem
defines parameterized generic components, thereby pro
viding a single representation for a whole class of related
components. Both the specification and implementation of
generic components have one or more formal parameters
that the matching process can bind to adapt components to
specific applications. The retrieval mechanism must
include a transformation that creates the corresponding
generic-code-template instantiation. This transformation
can involve some computation to expand substitutions in
line for programming languages (including Pascal) that do
not explicitly support generic units. Such transformations
may be needed even for languages supporting generic code
units (Ada, for instance) because the software base can
provide a more powerful or flexible parameterization
mechanism than that provided by the programming
language.

Another kind of transformation involves small local
rearrangements to the reusable component interface. These
transformations include permuting input and output
parameters, ignoring extra output parameters, and filling in
values for extra input parameters. Such transformations
embody general-purpose strategies encoded in knowledge
base rules. The transformation for filling in extra input
parameters resembles the process of determining an actual
parameter value for a generic module via the matching
process. For example, a query requesting a component to
calculate length (v) (where vis a three-dimensional vector)
can be satisfied by an operation magnitude (v,3) where
magnitude (v,11) calculates the length of an 11-dimensional
vector.

Other transformations yield building blocks for a
composite component. An important expert system
function for retrieving reusable components involves a
limited amount of bottom-up design, necessary if we are to
free designers from having to remember all reusable
components in the software base. If we limit this knowl
edge to the expert system, the expert system must steer

13

decomposition in directions that match available compo
nents. One way to achieve this uses composition rules
(heuristics indicating plausible ways to extend a module).
Some composition rules are applicable generally, while
others are associated with specific components or compo
nent classes in the software base. This kind of information
fits in a module's alternatives slot.

Guard rules and filter rules form two important compo
sition rule categories. Guard rules describe decompositions
induced by case analysis, and produce conditional state
ments by matching reusable component specifications
against part of a retrieval specification. If the retrieval
specification is S and the reusable component specifica
tion has the form G => S, the component can be aug
mented with a PSDL control constraint of the form

triggered if G

provided that the guard G can be expressed in a form
executable in PSDL. We generate guard rules by matching
parts of the retrieval specification against a component
specification. If the match succeeds, the guard rule
provides a partial implementation that can be completed
by providing other conditional implementations applicable
if G is false.

Figure 2 illustrates a typical decomposition produced
by the guard rule. PSDL control constraints below the
dataflow diagram give conditions under which each
operator is invoked. The "?" represents an unknown
operator that must be found or constructed to complete the
implementation. This operator must meet the specification

not G => S.

Guard rules are important because they enable retrieval
of partial operations that satisfy query specification under
a restricted set of conditions, thus providing some bottom
up guidance to designers about decomposing problems in a
way that matches available components. By reporting
conditions under which a known method will satisfy speci
fication, such rules also allow useful responses for
specifications not satisfiable in all cases. This helps expose
and correct conceptual oversights on the part of designers
who may be contemplating the most common case and fail
to notice that some circumstances exist under which
normally desired results cannot be achieved. Guard rules
that result in partial implementations covering normal
cases can help focus designer attention on abnormal cases,
possibly leading to the identification of missing exception
conditions or error messages in prototype design. For
example, searching for a component that calculates a set's
maximum element may result in a guarded operator that
fulfills the specification in cases where the set is not
empty. Such a response focuses designer attention on

14

whether the set can be empty and., if it can, on identifying
an appropriate response for the component being proto
typed. This represents cases where bottom-up guidance
from the knowledge base can identify specification faults
and suggest changes to prototype design.

Filter rules provide another way to suggest decomposi
tions based on bottom-up criteria. Filter rules factor speci
fications, enabling them to be met by two-component
dataflow decompositions in which (1) the first component
is a filter operation available in the software base, and (2)
the filter rule derives the second component's specification
from the query specification. For example, the filter rule
associated with a sorting operator matches query specifica
tions of the form

(x IN s <=> P(x)) & sorted(s).

Figure 3 illustrates decomposition produced by this
filter rule. The sorting-operator filter rule specifies that
operator"?" must produce output sequence "s" such that

x IN s <=> P(x).

As in the decomposition suggested by the guard rule,
"?" represents an unknown operator that must be found or
constructed. Filter rules, sensitive to filter operation
semantics, must be specified along with the filter operation
when it's added to the software base.

T
he need for computer-aided rapid prototyping of
software systems, particularly systems with real
time constraints, motivated our work on
methods for retrieving reusable software com

ponents. While reusable components can effectively
reduce designer effort, we must relieve designers of the
need to remember the contents of large component
libraries. We have outlined an expert system structure for
retrieving reusable software components from a knowl
edge base that uses component specifications. Rule-based
retrieval, combined with a limited ability to adapt and
combine available components, is essential for making ex
tensive software reuse practical in prototyping because
standard software components appear with widely ranging
variations in many practical applications. The likelihood of
being able to reuse components increases if the system can
provide many variations on each component that was
manually constructed and entered into the software base.
Rules for composing stored components are important for
reducing the designer's knowledge load. We can use such
rules to provide a limited amount of bottom-up design

IEEE EXPERT

bchui on :.iv;;i 1:1ble (:nn1poncnb uf \Vhidi dc:;ignc:r'i may
!"!01 ix; ;l\.\';H\:'.

\\',:'. dc-;c:dx:<i our approach w the ~utonntcd

n·tri<:'.vai '·;f n::m.abk •-othvarc compuncnh in L::rTih uf rhe
pro1myping Lnguagc PSDL because_, i.1 •;uppons a corn.·

pu!i:;r..;.tided pro101yping c;ystcm and contains <>end
fcaWrt>. !h:it rnaL:' our :ipjFO<<h Chier In rc:·arixc ······-
e,:.,;.p!.ic~r b!~i(:k-~bn\ ~:.pec~f[t:~.tTirn1s for t~ach cornpnnc:nt~ for

i ions :-;ubje(:t to no11procc-dt1r~il contro1 constrai11ts, Our
;tpprcnch c:rn ap]<ciJ !O f1!hcr i:mguagc:; {including

by c·subi i<i ng \uirnbL: uwvcntirnv, and usage

l:mf;tLtp.;.:'.:;, Jlo\\•;;:'V''', <rnx ii contains foci !iiies for ex

pn:~ssi ng ·t itning C.H1.::;Hain~::-~i ~~nd sinct~ the assocL.th::d ex~>
c:ufr>n suppon 'o:y:;rcrn. c;nuins f~tc:ifoic:: for rediting ~;uch

<.·,.wy.<r;;.ims. FSDL !;, ih: Lu:p;agc.' of' chni.cc f,1r the rapid

prU!Ulyping o!' "''''; rime ;,:ystern\. Pnc;hi!vn;;n' i•; c·-;peciali)
im.portani f{>r thi;,
rn.en!s are diffk·uit tu and tmckrsumd.

Dcveiopin\';; c;;;npkk' cnmp;Ucr--aided proloiyping

::~:y:-;,1.frn i~: }t)ng-,range rt:search projccL \Vt~ have tksjgned
;u1d ::uniaUy in!pkmenru.i tile first HTsi.nn of such a

:·;y-;1ern. The cornpu!Cr··aidcd sy:.tern \ ;;;ubpn>
grant for r~·trievin; rcu~able componenh :sirn in the
(c,;ign <;;gci vvi 1 ffquire subsuntiai t'fton to irnpk'ment

and evahute bt~causc inu\~ a::~~~onbh:: an effec1ive sci of
rl:usab1e stlft=..:vare c:orn.pon1:~nts rl:finc l·he propos.ed

for fume re:;;;u;rc]i induck fr1ding more e1f;:c1ive :ransfor··
;n:.niun ';e!s ;md more e!feicnt mat1.iiing d:;orithrns. We
rnust .aho a.~~-~~ernbk: ~m t~ff~~~~ti.vc set of ro.v:;able suft\\,.nre
cornpnnent;; for the .'<dhvarc [:;a;;c. Existing componc11s
niuH he ::enerai ized. spc.:cific, and vnified 1.or ihoroughiy

ie~~ted" a!· 1ea~"'t) bcfr;r~~ 1h;~:y {_~an hecorne useful rnenibers of
the sufrv,«m' bnsc.:, ·ro bu: ld up a comprdwn::,ivc ;rnd

effective :;of!\Vd\' \:use. an extended in(:f't'rne;rn;] pn:JC('SS is
ncui,:d; c"pe:ricnv: wi1h U'iing iniiiai vu·si(ns of !he

ba'·:e \\ill rnzfa:;;v !he most imporun: direuions
for gJO\VTh.

Science Fuimddion
1hank Henry .i\yiing
Plieditis .. Jack :\ios1.t;v~1 , 'Yub-~Jeng Let:~ Roberi H.erndon,,
and Vakfr; ikrxins for i!wir comments and sugge~Jinn:; on
enrb:r drnrt~: of this ;utide.

F!gme 2. A guard rule decomposition.

V, Berzin~-- and R. Y~~ll" ":\ Protdypin.~,: "'""U""c•-"-
Time Soft\,,'ate, - IEEE rn.ms. ,\; ff\1'ca-c 1··npm,,,, .. ,.""'

CkL 1988 .

. , Luqi ;wd M. K;'.ubchi, "A Cornpurcr··i'<idcd Fn1toi:\1Jrnr
Sys.tern, IF .. EL' S'r.{n1·art, lVh1r. l 988, PP- (6-

Luqi and v_ E.crzins, ''j~~LifJldiy Pr<i!DlVpir\l; R;::;J i""irn~~

System~;~~ JEE'E S<:jh.·arc, St.TL pp. 25-:~t;,

5. R. Waters, "The Programmer's Apprentice: A Session with
KBEmacs," IEEE Trans. Software Engineering, Nov. 1985,
pp. 1296-1320.

6. S. Card, T. Moran, and A. Newell, The Psychology of
Human-Computer Interaction, Lawrence Earlbaum
Associates, Hillsdale, NJ., 1983.

7. Luqi, "Normalized Specifications for Identifying Reusable
Software," Proc. ACM-IEEE Fall Joint Computer
Conference. IEEE Computer Society, 10662 Los Vaqueros
Circle, Los Alamitos, Calif., Oct. 1987.

8. J. Mostow and M. Barley, "Automated Reuse of Design
Plans," Proc. Int' I Conf. Engineering Design, American
Society of Mechanical Engineers, Boston, Mass., Aug. 1987,
pp. 632-647.

9. R. Davis and D. Lenat, Knowledge-Based Systems in
Artificial Intelligence; McGraw-Hill, New York, N.Y., 1982.

10. M. Minsky, "A Framework for Representing Knowledge," in
Readings in Knowledge Representation. R. Brachman and H.
Levesque, eds., Morgan Kaufmann, Los Altos, Calif., 1985,
pp. 245-262.

Luqi (pronounced lew-chee) has been an assistant professor of
computer science at the Naval Postgraduate School since 1986.
Her research interests include software development tools, rapid
prototyping, real-time language, and design methodology. She
received her BS in computational mathematics from Jilin
University (PRC) and her MS and PhD in computer science from
the University of Minnesota, where she taught and performed
software research and development. Before joining the Naval
Postgraduate School, she worked for International Software
Systems, Inc., and did research for the Science Academy of
China in Beijing.

Luqi can be reached at the Computer Science Dept., Naval
Postgraduate School, Monterey, CA 93943-5100.

Intellipro1s OPS-2000™
'The Intelligent Products Company's Knowledge Reasoning Environment"

OPS-2000 is the first knowledge reasoning environment to fully embrace the C++ programming language. Its design philosophy
was: think C++, incorporate the functionality of ART-IM and OPS/83, address knowledge base complexity, and create a

language that can run on sequential and parallel architectures.

OPS-2000 Features

Small C++ interpreter Rules Rule Sets OPS-2000 Example: Function & Rule
real Absolute(real value) { - Operating Environment - Active/Inactive

- Multidimensional Arrays
- Pattern conditions are fully

typed.
- Class Patterns can be

nested.

return((value >- 0.0)? value : -value); - Dynamic Runtime Priorities
Expert Objects - Function Prototypes

- C++ Classes
• Constructors/Destructors - Forward Chaining
• Inheritance • Confidence Factors

- Knowledge Sources
- lnterobject communication

channels

defrule PrintMessage {
match mesg;

• Friends • Fuzzy inferencing
- Backward Chaining

- Localized inference engine
Inference Engine

$mesg < - {mesg •status unprocessed}
Direct ·c· interface
- Can pass integer, real,

char, (integer"), (real"), and
(char").

- Relational Data
• Data elements are fully

typed
• Input/Output Formats

- Control function library
- User defined and default

printf("Mesg=%s\ n·. $mesg->value);
$mesg->status • processed;
reassert $mesg;

18

• Transitive/Reflexive/
Symmetric

Student Version: up to IOO rules: $45; Personal Version: up to 300 rules: $95

Professional Version: unlimited rules: limited technical support: $295
Shipping & Handling: SS; outside USA $20; Texas Residents add 6% sales tllX; VISA/MC/Drafts on U.S. Banks

Sales: I-800-4-INTELL(IPRO): I-800-446-8355: I-713-332-5993: 7am to 7pm CST (M-F)
Intellipro, P.O. Box 580056, Houston, Texas 77258-0056

Trademarks: OPS/83/Production Systems Tech., ART-IM/Inference Corporation
OPS-2000 & Intellipro/The Intelligent Products Company

Reader Service Number 4
IEEE EXPERT

