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Knowledge-Based Support 
for Rapid Software Prototyping 

Lu qi 

The Naval Postgraduate School 

S 
oftware prototypes are executable initial ver
sions of software systems. Designers use 
prototypes to clarify requirements by demon
strating selected aspects of proposed system be

havior to customers. To be useful in negotiations leading 
to software development projects, prototypes must be 
constructed and adapted to rapidly changing requirements. 
PSDL' (our prototyping system description language) and 
its associated computer-aided prototyping system2 make 
this possible on a large scale as well as for embedded 

systems with real-time constraints. PSDL can express 
black-box descriptions of systems and decompositions into 
networks of simpler operators communicating via data 
streams. Associated prototyping methodology relies on 
reusable software components. drawn from a software 
base, to speed up prototype construction.' In addition to 
the software base, the computer-aided prototyping system 
contains (I l a translator for adapting and interconnecting 
components. (2) schedulers for meeting real-time con
straints, and (3) interfaces for entering design decisions. 2 
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Figure 1. Using the computer-aided prototyping 
system. 

Focusing on the software base, we will discuss the 
computer-aided prototyping system's knowledge base and 
show how to apply expert system technology to the 
software base management subsystem responsible for 
finding reusable software components with specified prop
erties. We will apply rapid prototyping techniques to 
enable the detection and correction of requirement errors 
early in development. Prototyping is most useful in novel 
or poorly understood problem domains where designers 
find it impossible to anticipate every customer problem in 
advance. To enable more effective planning and to ensure 
that detailed design and implementation efforts will focus 
on the most important features. the prototyping effort tries 
to highlight unanticipated aspects of customer problems 
early on. We seek to automate support for analyzing new 
problem domains rather than automating the generation of 
many similar systems in well-understood problem do
mains. For this reason, we will address a general-purpose 
computer-aided prototyping system rather than specialized 
application generators. 

Effective application generators require prior analysis 
of the problem domain to ( l) develop a specialized 
problem description language, and (2) identify algorithms 
capable of solving all problems that language can express. 
This process - the easiest for narrowly defined problem 
domains - requires a substantial tool-building effort for 
each new application. The investment required to create a 
special-purpose application generator is justified if we plan 
to construct many software systems for the same problem 
domain. 4 The time required to construct application 
generators precludes their use in rapid prototyping for 
novel problem domains. The domain analysis required to 
construct an application generator for a new domain will 
benefit from prototyping with a computer-aided system. 

IO 

Because they apply to software development generally. 
rather than to a fixed application area, computer-aided 
prototyping systems are more difficult to build than 
application generators. Consequently. we cannot anticipate 
application area problems and provide ready-made 
solutions (as is done in application generators). A com
pletely automated system must solve all problems express
ible in its problem statement language. Since automatically 
generating programs for solving problems in uncon
strained domains is beyond the current state of the art. 
interactive systems offer practical support for prototyping. 

We have designed our computer-aided prototyping 
system to assist human experts with software design. Our 
system contains knowledge comprising software compo
nents and rules describing how these components can be 
used and combined. Human experts provide guidance for 
solving problems that cannot be handled by automatically 
applying the expertise represented in the prototyping 
system's knowledge base. This structure enables us to 
build a useful system without requiring prior solutions to 
all possible problems. and supports the system's evolution
ary development by allowing the addition of new compo
nents and rules to the knowledge base as we discover gaps 
in the system's knowledge through practical use. 

Our computer-aided prototyping system functions as 
follows: 

Designers obtain requirements from customers as 
written documents, with extensions and clarifications 
provided in response to designer questions and prototype 
demonstrations. 

Designers propose a system interface consistent with 
these requirements, or make adjustments based on cus
tomer feedback, and record resulting specifications in 
PSDL. 

Designers submit specifications to the software base 
management system, which attempts to retrieve or adapt 
available reusable components to meet those specifica
tions. If this is impossible, then designers must decompose 
the system into a network of simpler components using 
PSDL, and repeat the process at more detailed levels until 
the software base can provide all components. 

Figure I illustrates this process. in which component 
specifications have a dual role since they are used both for 
documenting intended prototype properties and for 
retrieving reusable components. Because this process is 
difficult to automate, designers must propose abstractions 
and carry out top-down design. The software base manage
ment system must find relevant components and fill in 
details. This is analogous to the interaction between 
mathematicians and an automatic theorem-proving 
program in which mathematicians propose lemmas as 
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intermediate steps if the automatic procedure cannot solve 
the main theorem in a reasonable time; the automatic 
procedure takes care of fine-grained details that are tedious 
for the mathematician. 

Our approach differs from other knowledge-based 
approaches to program construction by ( 1) the scale of its 
knowledge base, and (2) its computer-aided retrieval of 
reusable components based on specifications. The 
Programmer's Apprentice project5 aims at speeding up the 
programming process via a library of reusable compo
nents. Reusable components implemented in the KBEmacs 
version of the Programmer's Apprentice - components 
known as "cliches" - represent algorithm fragments 
rather than complete modules. Using algorithm fragments, 
KBEmacs focuses on supporting the assembly of a 
module's implementation rather than assembling systems 
from complete modules; the scale of examples reported is 
a few hundred lines of code. We aim to produce software 
system prototypes larger by several orders of magnitude, 
and seek to avoid considering the internal structure of 
reusable components. 

Programmers using KBEmacs should be familiar with 
library cliches (which are referenced by name) and will 
obtain the best results if they think in terms of these cli
ches. This is not a very serious problem in the prototypical 
version of KBEmacs, which contains only a few dozen 
cliches, but indicates that hundreds or thousands of cliches 
will probably be needed for serious applications.5 

Leaming and remembering cliches can become 
burdensome. Our approach uses specification-based 
retrieval of reusable components to avoid this burden. The 
software base management subsystem seeks to automate 
the process of organizing, finding, and combining reusable 
components in the software base via specifications 
associated with components. Such capability is useful be
cause it frees designers from having to remember what 
software components are currently available or from 
having to browse through components to discover relevant 
ones. This becomes especially important as available com
ponents increase in number (as they will in software bases 
supporting broad problem domains). 

Expert system technology is appropriate for realizing 
the software base management system because the useful 
software component set is unbounded in principle and can 
be enormous in practice. We can view these components 
as instances of general patterns, with many variations on 
some of their properties. A practical approach is to store a 
representative component subset and to provide rules for 
generating related components (practical since it reduces 
the effort required to enter components into the system, 
conserves memory, and imposes structure on the software 
base). 

Retrieving for the software base requires finding or 
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constructing a program that realizes a given specification. 
Retrieving reusable components from a software base is a 
difficult search problem in a potentially infinite space. The 
elements of this space are pairs consisting of a specifica
tion and a corresponding executable program in which the 
elements of each pair are either explicitly stored or 
effectively constructible from explicitly stored pairs. This 
suggests using heuristic search methods, which are a 
common expert system component. Complete algorithmic 
solutions to the retrieval problem are unlikely because 
specification equivalence is an insoluble problem if the 
specification language is strong enough to be expressive. 
Our system addresses retrieval by relying on a recogniz
able subset of the equivalence relation on specifications. 

Retrieval strategies 

The software base management system retrieves 
reusable software components for meeting a given 
specification, using less designer time than it would take to 
code components manually. Since prototyping is most 
important for large problems, designer throughput pro
vides a more appropriate measure than system delay to 
realize each component. Perceived time delay - an 
important factor in the effort required to use a system6 

-

is valuable when producing answers with little perceptible 
delay because it avoids disturbing the designer's thought 
processes. Since searching a large space takes considerable 
time, practical designs should incorporate several search 
strategies ordered by speed. Those that the system can 
apply with little perceptible delay should be applied while 
the designer waits. If fast methods fail, retrieval should be 
spooled (thereby allowing designers to work on different 
aspects of the problem while the system pursues more 
time-consuming background search strategies). 

The fastest and most superficial search strategy uses 
exact matches for component specifications. To facilitate 
retrievals based on exact matching, the system normalizes 
component specifications, transforming them into standard 
form. 7 This reduces variations when representing equiva
lent specifications, making syntactic matching more effec
tive. The system normalizes specifications for retrieval 
requests and for each component entered into the software 
base. The system indexes components according to their 
normalized specifications; consequently, exact match 
searches can be performed quickly. 

Retrieval strategies based on inexact matches and 
transformations consume more time, and are best applied 
off line. Checking for inexact matches and applying scribe 
transformations can both diverge - and both can be 
controlled by externally imposed time limits adjusted to 
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match available computational resources (we will discuss 
transformations in detail below). Searching for inexact 
matches involves checking implications. If QS represents 
query specifications and CS represents specifications for 
reusable component C, then C is an inexact match for the 
query in case CS => QS. Checking implications is not a 
decidable problem io general, but several partial decision 
rules exist that will correctly detect successful implica
tions. Partial decision rules include shallow pattern 
matching based on the identities 

A and B =>A 

A =>A or B, 

a propositional implication checker (based on truth tables) 
that ignores atomic predicate semantics and bounded
depth inference procedures sensitive to properties of 
common data types (for example, integers and sets) and 
common operations (including equality and orderings). To 
save time, we should apply inexact match and transforma
tion strategies to relatively small portions of the software 
base; consequently, we have partitioned the software base 
according to the values of several categorical properties, 
which we detail under the "category" slot below. This 
structure resembles a hash table, in which categorical 
property values correspond to the hashing function. We 
identify the partition relevant to a given retrieval request 
based on property values. and components in the partition 
are subjected to a "best first" heuristic search that checks 
for inexact matches and attempts to create matches by 
applying various transformations. To realize the full 
potential of software use, such processing is important; 
exact matches can get you only so far. 8 The software base 
management system can find more opportunities to reuse 
software components created by human designers if small 
modifications for adapting components to a new environ
ment can be made automatically. 

An agenda mechanism resembling the one used in the 
AM system9 can choose which component to analyze next. 
AM generates new mathematical concepts, with the most 
"interesting" concepts appearing first. The interpretation of 
"interesting" relevant to the software base management 
system's retrieval mechanism reflects the degree of simi
larity between component specification and the specifica
tion contained in the retrieval request. If a multiple-com
puter network is available, the system can process several 
of the most promising components in parallel. 

The computer-aided prototyping system's knowledge 
base contains two kinds of information - descriptions of 
reusable software components, and rules for combining or 
adapting reusable components (the next two sections 
describe this knowledge in more detail). 
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Declarative knowledge 

Primarily, the knowledge base's declarative knowledge 
contains reusable software components and can be organ
ized naturally into a frame system 10 

- each frame corre
sponding to a software component. Such organization is 
preferable to monolithic structures (Prolog databases, for 
example) because the software base can become unwieldy. 
The frames impose structure on the software base, which 
the system can use for limiting searches and for organizing 
secondary storage so that information units likely to be 
needed together can be retrieved as a single unit. 

Frames in a frame system have common slots that have 
the same interpretation for each frame in the system. Each 
slot can have several facets. Each facet contains a property 
related to the slot. The following subsections describe slots 
important for managing a set of reusable software compo
nents. 

Specification. The specification slot contains a PSDL 
specification of the software component. Retrieval is based 
on the specification rather than on any attempt to analyze 
implementation code. 

Implementation. The implementation slot contains 
code for software components. Consistent with our 
principle of specification-based retrieval, we maintain only 
one implementation for each elementary specification. If a 
significant difference exists between two modules, module 
specifications should describe that difference so that re
trieval mechanisms can be sensitive to it. If no significant 
difference exists, keeping both modules wastes space. 
Performance differences are sometimes important; hence, 
specifications must reflect these differences. The imple
mentation slot of a nonelementary specification contains a 
list of other modules satisfying the specification. Nonele
mentary specifications help the system avoid recalculating 
common inexact matches, and do not affect the system's 
computational power in the absence of resource limits. 

Category. The category slot contains several properties 
used for partitioning the software base into disjoint 
subspaces. By limiting the knowledge base portion that it 
must search, the system uses such partitioning to improve 
performance. Categorical properties include the program
ming language used for implementation. the operating 
system it runs under, the component type, and maximum 
execution time. We have found component types of PSDL 
(functions. state machines. and data types) convenient for 
describing prototype software systems, since they provide 
a clear criterion for defining disjoint categories. The 
system uses maximum execution time to specify modules 
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with real-time constraints, which are restricted to execute 
in a constant time frame. Therefore, maximum execution 
time can be represented as a number used to limit retriev
als to only those modules capable of meeting a given real
time constraint. To efficiently generate subsets of compo
nents meeting a given bound on execution time, each 
partition's components are threaded together in a list kept 
sorted with respect to maximum execution time. 

Alternatives. The alternatives slot contains ( 1) rules for 
generating variations on a module, and (2) a list of related 
modules. The next section describes filter rules that 
exemplify rules for generating variations. Filter rules 
contain prescriptions for synthesizing composite modules 
by combining the current module with other modules that 
satisfy specified properties~ Each related module is 
associated with a description of conditions under which 
the module is likely to be useful. For example, a module 
that finds roots by Newton's method can have a module 
for finding roots via the bisection method as an alternative, 
with the conditions that ( 1) derivatives are not needed, but 
that (2) end-points of an interval where the function 
reverses its sign are required as additional inputs to the 
module. Rules for generating variations are essential when 
defining the search space, while the list of related modules 
helps the system become more efficient by supplying 
heuristic advice regarding where to look next. 

Transformations 

It has been difficult to reuse software in practice 
because only rarely are two instances of the "same" soft
ware component exactly alike at a superficial level. 
Instead, many small variations on a theme exist. The 
number of small variations can be unbounded, and it can 
be difficult to predict which variation will be needed next 
(an extreme example is the set of array-sorting routines in 
standard Pascal). Since Pascal requires that the procedure 
header specify the type and bounds of the array, a different 
sorting procedure is needed for each array type and size. 

We can provide transformations that adapt or combine 
components explicitly stored in the software base to ac
commodate a class of small variations, thereby alleviating 
this problem. Systems performing such transformations as 
part of the retrieval process have a much better chance of 
successfully retrieving a specified component from the 
software base than do systems that can only return 
components explicitly stored in the software base. This ca
pability also reduces the need for designers to manually 
adapt reusable components after retrieval - especially 
important in rapid prototyping, where designer time is at a 
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PSDLis 
the language of choice 

when rapidly prototyping 
real-time systems. 

premium. The constructed implementation's efficiency is 
less important in prototyping, where the primary purpose 
is to discover system behavior acceptable to customers. 
Once component specifications have stabilized, identifying 
performance bottlenecks and reimplementing critical 
modules more efficiently can be justified. 

A well-known approach to the small-variations problem 
defines parameterized generic components, thereby pro
viding a single representation for a whole class of related 
components. Both the specification and implementation of 
generic components have one or more formal parameters 
that the matching process can bind to adapt components to 
specific applications. The retrieval mechanism must 
include a transformation that creates the corresponding 
generic-code-template instantiation. This transformation 
can involve some computation to expand substitutions in 
line for programming languages (including Pascal) that do 
not explicitly support generic units. Such transformations 
may be needed even for languages supporting generic code 
units (Ada, for instance) because the software base can 
provide a more powerful or flexible parameterization 
mechanism than that provided by the programming 
language. 

Another kind of transformation involves small local 
rearrangements to the reusable component interface. These 
transformations include permuting input and output 
parameters, ignoring extra output parameters, and filling in 
values for extra input parameters. Such transformations 
embody general-purpose strategies encoded in knowledge 
base rules. The transformation for filling in extra input 
parameters resembles the process of determining an actual 
parameter value for a generic module via the matching 
process. For example, a query requesting a component to 
calculate length (v) (where vis a three-dimensional vector) 
can be satisfied by an operation magnitude (v,3) where 
magnitude (v,11) calculates the length of an 11-dimensional 
vector. 

Other transformations yield building blocks for a 
composite component. An important expert system 
function for retrieving reusable components involves a 
limited amount of bottom-up design, necessary if we are to 
free designers from having to remember all reusable 
components in the software base. If we limit this knowl
edge to the expert system, the expert system must steer 
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decomposition in directions that match available compo
nents. One way to achieve this uses composition rules 
(heuristics indicating plausible ways to extend a module). 
Some composition rules are applicable generally, while 
others are associated with specific components or compo
nent classes in the software base. This kind of information 
fits in a module's alternatives slot. 

Guard rules and filter rules form two important compo
sition rule categories. Guard rules describe decompositions 
induced by case analysis, and produce conditional state
ments by matching reusable component specifications 
against part of a retrieval specification. If the retrieval 
specification is S and the reusable component specifica
tion has the form G => S, the component can be aug
mented with a PSDL control constraint of the form 

triggered if G 

provided that the guard G can be expressed in a form 
executable in PSDL. We generate guard rules by matching 
parts of the retrieval specification against a component 
specification. If the match succeeds, the guard rule 
provides a partial implementation that can be completed 
by providing other conditional implementations applicable 
if G is false. 

Figure 2 illustrates a typical decomposition produced 
by the guard rule. PSDL control constraints below the 
dataflow diagram give conditions under which each 
operator is invoked. The "?" represents an unknown 
operator that must be found or constructed to complete the 
implementation. This operator must meet the specification 

not G => S. 

Guard rules are important because they enable retrieval 
of partial operations that satisfy query specification under 
a restricted set of conditions, thus providing some bottom
up guidance to designers about decomposing problems in a 
way that matches available components. By reporting 
conditions under which a known method will satisfy speci
fication, such rules also allow useful responses for 
specifications not satisfiable in all cases. This helps expose 
and correct conceptual oversights on the part of designers 
who may be contemplating the most common case and fail 
to notice that some circumstances exist under which 
normally desired results cannot be achieved. Guard rules 
that result in partial implementations covering normal 
cases can help focus designer attention on abnormal cases, 
possibly leading to the identification of missing exception 
conditions or error messages in prototype design. For 
example, searching for a component that calculates a set's 
maximum element may result in a guarded operator that 
fulfills the specification in cases where the set is not 
empty. Such a response focuses designer attention on 
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whether the set can be empty and., if it can, on identifying 
an appropriate response for the component being proto
typed. This represents cases where bottom-up guidance 
from the knowledge base can identify specification faults 
and suggest changes to prototype design. 

Filter rules provide another way to suggest decomposi
tions based on bottom-up criteria. Filter rules factor speci
fications, enabling them to be met by two-component 
dataflow decompositions in which ( 1) the first component 
is a filter operation available in the software base, and (2) 
the filter rule derives the second component's specification 
from the query specification. For example, the filter rule 
associated with a sorting operator matches query specifica
tions of the form 

(x IN s <=> P(x)) & sorted(s). 

Figure 3 illustrates decomposition produced by this 
filter rule. The sorting-operator filter rule specifies that 
operator"?" must produce output sequence "s" such that 

x IN s <=> P(x). 

As in the decomposition suggested by the guard rule, 
"?" represents an unknown operator that must be found or 
constructed. Filter rules, sensitive to filter operation 
semantics, must be specified along with the filter operation 
when it's added to the software base. 

T 
he need for computer-aided rapid prototyping of 
software systems, particularly systems with real
time constraints, motivated our work on 
methods for retrieving reusable software com

ponents. While reusable components can effectively 
reduce designer effort, we must relieve designers of the 
need to remember the contents of large component 
libraries. We have outlined an expert system structure for 
retrieving reusable software components from a knowl
edge base that uses component specifications. Rule-based 
retrieval, combined with a limited ability to adapt and 
combine available components, is essential for making ex
tensive software reuse practical in prototyping because 
standard software components appear with widely ranging 
variations in many practical applications. The likelihood of 
being able to reuse components increases if the system can 
provide many variations on each component that was 
manually constructed and entered into the software base. 
Rules for composing stored components are important for 
reducing the designer's knowledge load. We can use such 
rules to provide a limited amount of bottom-up design 
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Intellipro1s OPS-2000™ 
'The Intelligent Products Company's Knowledge Reasoning Environment" 

OPS-2000 is the first knowledge reasoning environment to fully embrace the C++ programming language. Its design philosophy 
was: think C++, incorporate the functionality of ART-IM and OPS/83, address knowledge base complexity, and create a 

language that can run on sequential and parallel architectures. 

OPS-2000 Features 

Small C++ interpreter Rules Rule Sets OPS-2000 Example: Function & Rule 
real Absolute(real value) { - Operating Environment - Active/Inactive 

- Multidimensional Arrays 
- Pattern conditions are fully 

typed. 
- Class Patterns can be 

nested. 

return( (value >- 0.0)? value : -value); - Dynamic Runtime Priorities 
Expert Objects - Function Prototypes 

- C++ Classes 
• Constructors/Destructors - Forward Chaining 
• Inheritance • Confidence Factors 

- Knowledge Sources 
- lnterobject communication 

channels 

defrule PrintMessage { 
match mesg; 

• Friends • Fuzzy inferencing 
- Backward Chaining 

- Localized inference engine 
Inference Engine 

$mesg < - {mesg •status unprocessed} 
Direct ·c· interface 
- Can pass integer, real, 

char, (integer"), (real"), and 
(char"). 

- Relational Data 
• Data elements are fully 

typed 
• Input/Output Formats 

- Control function library 
- User defined and default 

printf("Mesg=%s\ n·. $mesg->value); 
$mesg->status • processed; 
reassert $mesg; 
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• Transitive/Reflexive/ 
Symmetric 

Student Version: up to IOO rules: $45; Personal Version: up to 300 rules: $95 

Professional Version: unlimited rules: limited technical support: $295 
Shipping & Handling: SS; outside USA $20; Texas Residents add 6% sales tllX; VISA/MC/Drafts on U.S. Banks 

Sales: I-800-4-INTELL(IPRO): I-800-446-8355: I-713-332-5993: 7am to 7pm CST (M-F) 
Intellipro, P.O. Box 580056, Houston, Texas 77258-0056 

Trademarks: OPS/83/Production Systems Tech., ART-IM/Inference Corporation 
OPS-2000 & Intellipro/The Intelligent Products Company 
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IEEE EXPERT 


