
Calhoun: The NPS Institutional Archive
DSpace Repository

Faculty and Researchers Faculty and Researchers' Publications

1987

Normalized Specifications for Identifying
Reusable Software

Luqi
IEEE

https://hdl.handle.net/10945/43603

This publication is a work of the U.S. Government as defined in Title 17, United
States Code, Section 101. Copyright protection is not available for this work in the
United States.

Downloaded from NPS Archive: Calhoun

Normalized Specifications for Identifying Reusable Software

ABSTRACT

An approach to retrieving reusable ,. . 1 software com-
ponents by means 01 module specifications is
described. The approach depends on normalizing
specifications to reduce the variations in the
representation of software concepts. The concept
is illustrated in terms of both formal and informal
approaches to component specifications.

Luqi

Naval Postgraduate School Code 52
Monterey, CA 93943

Key Words

Reusable Software, Component Specification, Software
Base, Rapid Prototyping

1. Introduction

Reusable software has been identified as a promising
means for increasing software productivity [8,9]. Reusing
software is especially effective when used together with a
rapid prototyping approach to software development
[3,4]. An effective way to retrieval reusable software com-
ponents from a software base [2] is needed for this
approach. Two important problems must be addressed to
achieve effective component retrieval:

(I) Find all of the components in the software base
performing the function requested by the designer;

(2) Find adaptable components with similar functions
in cases where the software base does not contain
any components corresponding exactly to the
retrieval request. This paper is concerned with the
first of these problems. An approach to the
second problem can be found in [6,7].

The effectiveness of a retrieval scheme can be meas-
ured by the difference in effort between finding a reusable
component and designing, implementing, and testing a
new one for the same function. A proposed method is
using module specifications as a basis for retrieval [2].
This method should be effective because the module
specifications must be produced anyway in software
development projects of appreciable size. The normaliza-
tion of the specifications for software components must be
developed together with the retrieval techniques based on
those specifications [6]. None of the previously proposed
systems for retrieving reusable software is able to do so
based on semantic specifications. Such a facility is critical
for the application of reusable software to rapid prototyp-
ing, where designer time is restricted.

The essential problem in component specification is
to enable efficient retrievals based on specifications
without eliminating the expressive power needed for the
practical application of black-box specifications in design.
The limited’designer effort available in rapid prototyping
dictates that the same specification must be used both as
a design tool and as a basis for computer aided retrievals
of reusable components. Different designers think in
different ways, and they are likely to reject any notation
that allows a given concept to be expressed in only one
way, because the rigid thinking style imposed by such a
notation would be too cumbersome and unnatural for
most of them. However, information retrieval is made
much more complex by having many different representa-
tions for the same information. Existing methods for
information retrieval are based solely on the syntactic
form of the descriptions stored with each component,
rather than the semantics of the descriptions.

We propose to solve this problem by seeking
specifications with a normal form that can be generated
mechanically. If many different specifications with the
same meaning can be reduced to the same normal form,
then designer can have freedom of expression while allow-
ing the information retrieval system to have fewer syntac-
tically distinct forms for each semantically distinct
module that may appear in the software base, since they
can be unboundedly many syntachic forms for the same
semantic description, reduction to normal form is a more
practical approach than attempting to generate all varia-
tions and searching the software base for each variation.
Our approach requires normalized component
specifications to be stored in the software base along with
the implementations of the reusable components. Com-
ponent specification in queries must also be normalized
before being submitted to the software base management
system. Two kinds of normalization techniques for
specification are discussed respectively in section 2 and 3.

2. NormalizingInformal Specifications

Informal specifications are easy for people to use, but
they are difficult for machines to process. The normaliza-
tion transformations that can be applied to natural
language specifications are either shallow or require
automated understanding of natural language. The shal-
low approaches are not strong enough in the sense that
there are many equivalent descriptions that cannot be
reduced to the same normal form by means of syntactic
transformations. Programs for understanding natural
languages are very difficult to build. Standardizing termi-
nology is one way to normalize informal specifications.
This can be done by using a synonym table and a text
substitution tool (e.g. the sed stream editor of Unix). An

46

CH2468-7/87/0000/0046$0~ .OO 0 1987 IEEE

example of a fragment of a synonym table is shown
below.

+ ---------_--___-- +
] TERM] ALIASES

+ ----_---__L-___-_------------------------------------- - __-- - ___________ 4
] update] h g c an e, modify, refresh, replace, substitute]

+ __------------ - __________________ +
] read

+ --___--___-______--_--------------------------------------- - __-________ 4
] fetch, obtain, input, get, retrieve

The transformation defined by such a table simply
replaces all occurrences of the aliases by the associated
basic terms given in the table. For example, the sentence
“Fetch the order from the transaction file and modify the
inventory” would be transformed to “Read the order from
the transaction file and update the inventory” This kind
of approach has the virtue of being easy to implement. It
has the disadvantages of introducing subtle changes of
meaning and of still leaving many syntactically different
ways of expressing the same idea, lowering the probability
that a component in the software base will be found
based on an independently constructed description of its
function. This kind of transformation changes names, but
preserves the structure of the original statements, so that
individual stylistic differences will result in distinct nor-
malized specifications, even though they may be para-
phrased versions of the same statement. Nevertheless,
this simple approach may have some practical usefulness
in the early stages of requirements analysis where the
dominant representation is English text.

Another approach uses a natural language parser to
produce a frame-based representation of the objects and
relationships described by the informal specification. A
potential advantage of such an approach is to allow
different styles and sentence structures to be normalized
to the same representation. The disadvantages of this
method are that it is expensive, requires specialized skills
to implement, and is difficult to apply unless the subject
matter is restricted to a domain with a small vocabulary.
Furthermore, the ambiguities inherent in natural
language remain, resulting in the retrieval of components
that are not relevant to original specification.

A more practical approach is to give up trying to
model the precise meaning on the informal specification,
and to rely on keywords to try to capture an approximate
set of relevant components. A problem with this
approach is assigning keywords to modules. Manual
approaches to classification such as [7] are error prone and
may require a relatively large investment for assembling a
large software base. This has been avoided in [l] by using
a vector of term frequencies in the document instead of
manually chosen keywords. However, the resulting
uncontrolled vocabulary leads to more false retrievals and
requires an interactive session to adjust weighting factors
until a suitable ranking of candidate components can be
obtained. The effort required in both approaches for
weeding out false retrievals makes informal specifications
unattractive as a basis for component retrieval supporting
rapid prototyping.

3. NormalizingFormal Specifications

Formalized specifications are subject to stronger
transformations, which can reduce two specifications to
the same normal form even in cases where they have

different structures, reflecting different conceptual
approaches to describing the problem. We illustrate these
transformations by means of an example. A specific syn-
tax is needed in order to show the example. We use ordi-
nary mathematical notations here, to make the examples
easy to follow, and we do not intend to imply that the
same representation will be used by the programs for nor-
malizing specifications. Consider the two specification
fragments shown below, both of which record the require-
ment that the sequence REPLY must be sorted in increas-
ing order.

A: 1 <= i < j <= length(REPLY)
=> REPLY(i] <= REPLY[j]

B:REPLY=a@(x]@b@[y]@c=>x<=y

Specification A uses indices in the REPLY sequence to
describe the required ordering, while specification B
describes the same ordering in terms of subsequences and
the concatenation operator I’@“. Logical implication is
denoted by “=>” and the sequence of length one contain-
ing the element x is denoted by “(x]“. The REPLY key-
word is a constant with a special interpretation,
representing the output value of a software module.

The transformations and simplifications that can be
performed on such specifications depend on knowledge
about the the properties of the operations on the underly-
ing data types. These properties can be expressed as con-
ditional rewrite rules to make the simplification process
easier. For example, the relationship between indices and
the data value at a given position in a sequence is
described by the following rule.

RI: s = a @ [x] @ b => s[length(a) + l] --> x
This rule says that the index of x in the sequence s is
length(a) + 1, which follows from the convention that the
index of the first element of a sequence is one. The nota-
tion “a --> b” means a = b, with the additional directive
to substitute b for a in the simplification process, but not
vice versa.

Rule Rl can be applied to specification A under the
substitutions (s: REPLY, i: length(a) + 1) to give the
reduced specification

Al: REPLY = a Q [x) @ b
& 1 <= length(a) + 1 < j <= length(REPLY)

=> x <= REPLY[j]

Rule Rl can be applied again, to Al with the substitu-
tions (s: REPLY, j: length(c) + 1) to give

A2: REPLY = a @ [x] @ b
& REPLY = c @ [y] @ d
& 1 <= length(a) f 1 < length(c) + 1

<= length(REPLY)
=>x<=y

At this point, some more rules describing the properties of
the I’<” operator are needed.

R2:x<y+x-->O<y

R3:x<=y+x-->O<y

R4: 0 <= length(s) --> true

R5: true & p --> p 4. Conclusions

R6: p & true --> p

R7:x<=y<z-->x<=y&y<z

R8:x<y<=z-->x<y&y<=z
Rules R2 and R3 are facts about the standard ordering on

integers, while rule R4 is a theorem about lengths of
sequences, expressed as rewrite rules. Rules R5 and R6
are standard absorption laws of boolean algebra. Rules
R7 and R8 define repeated inequalities by the usual con-
ventions. The condition

1 <= length(a) + 1

is reduced to true by ruIes R2 and R4, and eliminated
from A2 using R7 and R5. The rules

Rio: REPLY --> c @ [y] @ d.

Rll: length(s @ t) --> length(s) + length(t)

R12: length([x]) --> 1

R13: x + y <= z + y --> x <= z

are relevant at this point. RlO is derived from one of the
other equations in the hypothesis of the implication. R11
and R12 are basic facts about lengths of sequences, and
R13 is another standard inequality law. The condition

length(a) + 1 < length(c) + 1

is simplified to

length(a) < length(c)

by R13. The condition

length(c) + 1 <= length(REPLY)

can be reduced to true by appIying rules RIO, RI1
(twice), R12, and then R3 and R4. The condition is elim-
inated from the implication entirely by R6. The result of
these simplifications is the following.

A3: REPLY = a @ [x] @ b
& REPLY = c @ [y] @ d
& length(a) < length(c)

=>x<=y

Further progress can be made by R14, the common prefix
law for sequences.

R14: length(s) < length(u) & s @ t = u @ v
=>u-->s@w

Under the substitutions (s: a @ [xl, t: b, u: c, v: [y] @ d)
this leads to

A4:REPLY=a@[x]@w@[y]@d =>x<=y

which is the same as specification B, up to renaming of
variables. Variable names can easily be standardized, by
picking them from a fixed list in order of occurrence in
the formula. The result of doing that to either A4 or B is
shown below.

AS: REPLY = xl @ [x2] @ x3 @ [x4] Q x5
=> x2 <= x4

A5 may be less readable to a human than A4, but is quite
suitable as a basis for automated retrieval.

Formal specifications appear to be more suitabIe as a
basis for the retrieval of reusable software components
than informal specifications. Formal specifications are
free from the ambiguity inherent in natural language
specifications because formal languages used have been
expressly designed to avoid ambiguity. Using predicate
calculus as the formal language has the advantage of
bringing to bear a well studied area of mathematics,
namely logic and the theory of term rewriting systems.
These systems bring with them more powerful transfor-
mations that preserve the meaning of a sentence while
dramatically affecting its form. Since many formal
specification languages are close to predicate calculus, it is
relatively straight forward to map such a specification
into first order logic. The specification for the reusable
components in a software base can either be written
directly in predicate calculus, or they can be written in
some other formal specification language and mechani-
cally translated into predicate calculus. The latter
approach has the advantage of enabling the same software
base management system to accept components with
specifications in a variety of formal languages, allowing
more effective use of existing module specification. In
such an approach, each module would have an implemen-
tation and two different specifications, one for human
consumption, and a mechanically derived normalized
form that would be used only by the component retrieval
system.

More work is needed to develop simplification rule
systems that are strong enough to standardize many com-
mon ways of expressing the same concepts, while still
remaining disciplined enough to allow a uniform guaran-
tee of termination. Such simplification systems are
needed for all of the data types commonly used in
specifications. A uniform approach to constructing such
systems is needed to properly handle user defined data
types, since the set of types used in practice is extensible.
Since the general word problem in algebra is undecidable,,
it is not reasonable to expect a perfect solution to the
problem, which would be a system that reduces two
specifications to the same normal form whenever they
have the same meaning. However, a normalization tech-
nique does not have to be perfect to be useful for
component retrieval. It suffices to be able to reduce com-
monly occurring variations of a specification to the same
normal form most of the time. Furthermore, many of the
data types in common use do have simplification systems
that lead to unique normal forms. It is reasonable to
expect to be able to find normalization systems that are
strong enough to be useful for specification based retrieval
of reusable software components. This approach is espe-
cially useful as a practical aid to rapid‘prototyping [5].

Another subject that deserves further attention is the
development of heuristics that allow some transformations
that expand a term rather than simplify it under some
circumstances, but still guarantee termination of the
simplification process. An example of such a situation is
the application of RlO in going from A2 to A3 in the pre-
vious section. Such steps appear to be necessary to enable
reductions of substantially different approaches to specify-
ing a concept to the same normal form.

48

2.

3.

4.

5.

6.

7.

8.

9.

C. Landauer and C. Mah, “Message Extraction
Through Estimated Relevance”, in Proc. of the
Second International Conf. on Znformation Storage
and Retrieval, ACM, Dallas, 1979, 64-70.

Luqi, “Rapid Prototyping for Large Software
System Design”, Ph.D. Thesis, University of
Minnesota, 1986.

Luqi and V. Berzins, “Rapid Prototyping of Real-
Time Systems”, Revised for IEEE SOFTWARE,
1987.

Luqi, V. Berzins and R. Ych, “A Prototyping
Language for Real-Time Software”, to appear in
IEEE TSE, 1987.

Luqi, “Research Aspects of Rapid Prototyping”,
NPS 52-87-006, Computer Science Department,
Naval Postgraduate School, 1987.

Luqi and V. Berzins, A Knowledge Base for
Retrieval Reusable Software, To be submitted to
ACM-IEEE 1987 Fall Joint Computer Conference,
Dallas, Texas, October 1987. not written yet.

R. Prieto-Diaz and P. Freeman, “Classifying
Software for Reusability”, IEEE Software 4, 1 (Jan.
1987)) 6-16.

R. T. Yeh, R. Mittermeir, N. RoussopouIos and J.
Reed, “A Programming Environment Framework
Based on Reusability”, Proc. Znt. Conf. on Data
Engineering, Apr. 1984, 277-280.

R. T. Yeh, N. Roussopoulos and B. Chu,
“Management of Reusable Software”, Proc.
COMPCON, Sep. 1984, 311-320.

49

