
Calhoun: The NPS Institutional Archive
DSpace Repository

Faculty and Researchers Faculty and Researchers' Publications

1990

Rapid Software Prototyping

Luqi; Steigerwald, R.

https://hdl.handle.net/10945/43606

This publication is a work of the U.S. Government as defined in Title 17, United
States Code, Section 101. Copyright protection is not available for this work in the
United States.

Downloaded from NPS Archive: Calhoun

Rapid Software Pro t o t y ping

Luqi
R. Steigerwald

Computer Science Department
Naval Postgraduate School

Monterey, CA 93943

Abstract*
Rapid software prototyping is an iterative software
development methodology aimed at improving the analysis,
design, and development of proposed systems. This paper
describes rapid prototyping at the system and 'software
levels and reviews the characteristics of computeraided
prototyping. We then describe the state-of-the-art in rapid
prototyping and discuss technologies that improve the
future outlook for prototyping, such as prototyping
languages, software reuse, and designer interfaces. To add
some cohesion to the concepts, we describe the
characteristics of a computer-aided rapid prototyping
system. Finally, we provide summaries of the outstanding
papers that comprise the rapid prototyping mini-track.

1: Introduction
Prototypes are developed as an aid for analysis and

design of proposed systems. A prototype is a simplified
model of a proposed system that is built for a specific
purpose, such as:

1. Formulating and evaluating requirements,
specifications, and designs.

2. Demonstrating feasibility, system behavior,
performance, etc.

3. Identifying and reducing risks of system mis-
development.

4. Communicating ideas, especially among diverse
groups.

5. Answering questions about specific properties of
proposed systems.

Prototyping is a method for addressing problems in the
design and development of systems via prototypes [Tani89,
HICSW]. Prototyping is most useful for complex first-of-a-

*This research was supported in part by the National Science
Foundation under grant #CCR-9058453.

kind systems that must be reliable, such as aircraft control
systems, financial systems, medid systems, and military
systems.

1.1: System prototyping
Prototyping applies to all kinds of systems - software,

hardware, people, or any combination of these. Prototyping
is an accepted part of most branches of engineering, but has
been applied to software only in recent years.

Levels of prototyping: Prototyping can be applied at al l
levels of a system hierarchy. It applies equally well U, an
aircraft, to a radar system, to a mdar processor, to an ALU
or memory within a processor, to one or more circuit
boards, to logic modules, to hybrid circuits, and to
individual chips. It applies as well to non-physical things,
including software in particular, at all of its levels of design,
and the activities of humans, particularly as they interact
with and affect the behavior of systems of interest.

System Prototyping

Software Prototyping Hardware Prototyping
/ \

Prototyping is also useful at the highest system level, for
resolving questions regarding resource allocation relative to
the feasibility of timing constraints. There is a trade-off
between software functionality, required response time, and
hardware resources. Hardware and software is often
developed in independent efforts based on separate and
fixed requirements for each. To ensure proper system
integration at the end of the project, it is useful to explore
the hardware configurations required to support fixed
software functions and timing constraints as well as the
various combinations of software functions and response
times that are feasible on given hardware configurations
before committing to particular hardware or software
requirements. This is particularly important for systems that
will be using custom-built hardware. Simulations allow
various parameters of the hardware configuration to be
varied and optimized relative to the software design.

470

0073-1 129-1/92 $3.00 0 1992 IEEE

A prototype may be implemented, in part or in whole,
with the actual elements of a system (i.e., the most current
versions of the elements); a prototype of an aircraft may, for
example, include the current version of the actual airframe,
but not the real navigation system. Some elements of a
prototype may be implemented with lower level prototypes
or with models; a computer, for example, might be
implemented with prototype memory and logic that may or
may not be functional; signal processing algorithms may,
similarly. be modeled by software that simply approximates
their execution time, with no regard for function.
Models in prototyping: Models are used extensively in
prototypes. A model may be used to represent or describe
some aspect of a system that has not been actualized in the
real hardware, software, or human operators of a system or
to represent or describe some aspect of a system more
conveniently and efficiently than the actualized version. For
example, one would normally use a model of the sensor
input to a signal processing system prototype, rather than
use the actual sensors, because the models afford greater
flexibility and convenience in evaluating the prototype
characteristics.

Models are utilized in prototypes as they are appropriate
to the purpose of the prototype. Models may be
mathematical, logical, electrical, mechanical, software,
etc.; they take the form appropriate to the situation. For
example, a model of a computer in a prototype constructed
to evaluate cabin space requirements in a space ship may
simply be a cardboard box with specific dimensions. A
model of the same computer in a functional prototype of the
space ship might consist of 50,000 lines of VHDL code
describing its slructure, timing, and behavior at a micro-
architecture level.

Prototyping of embedded systems: Many systems of
interest contain embedded software systems that must meet
real-time constraints to maintain control of the surrounding
system. These real-time constraints introduce a coupling
between the software design and the hardware design,
because the response time depends on the number or
instructions per second that can be executed by the
processor hardware and the number of bits per second that
can be transferred by the network and storage hardware, in
addition to the number of instructions that must be executed
and the amount of data needed to complete a software
algorithm. A context diagram for a software system,
together with models of the behaviors of the interacting
extemal systems and models of the host hardware for the
software form the basis for evaluation, optimization, and
acceptance of the entire system configuration. This
systems-level evaluation is especially important for
proposed real-time systems because the feasibility of the
entire system depends on all of these factors, and is in doubt

until all of the elements are fixed and their interactions can
be evaluated. System level prototypes are used to establish
rough feasibility assurances early in the design, to identify
the aspects of the design that have the w e s t impact on the
feasibility of the whole, and to track and focus attention on
the critical areas of the design as it becomes more solid,
more refined, and less risky.

This motivates the need for prototyping of entire
embedded systems, not just the hardware or the software, to
assess design decisions related to resource allocation and
performance. The result of such an effort is a hybrid
prototype, that can model different subsystems at different
levels of detail: parts of the system that are to run on
existing types of hardware can be prototypes on the actual
equipment, while parts that are to run on proposed new
types of hardware can be evaluated with respect to software
simulations of the hardware.

Hardware prototyping: Hardware prototypes are used
largely to measure and evaluate aspects of proposed designs
that are difficult to determine analytically. For example,
simulation is widely used to estimate throughput and device
utilizations for proposed hardware architectures. Although
software prototypes can be used in a similar way, to
determine time and memory requirements for proposed
designs, the focus of software prototyping is usually to
evaluate the accuracy of the problem formulation, to
explore the range of solutions possible, and to determine the
required interactions between the proposed system and its
partially unknown environment.

1.2: Iterative prototyping process
Software in general and the formulation of adequate

software requirements in particular have become limiting
factors in applications of computers. As systems get larger
and serve more diversified user communities, formulating
requirements that accurately represent the customers’ needs
becomes very difficult. Different people have partially
overlapping and sometimes contradictory views of different
aspects of the problem. Analysts must create precise, formal
models of unfamiliar problems, based on imprecise
communication with people who have a partial
understanding of what is needed. This is particularly
difficult because people with different backgrounds tend to
use the same words in different ways.

The transition from fluctuating informal views of the
problem to a fixed formal model is fundamentally uncertain.
It is difficult to synthesize all its requirements logically and
consistently all in one operation. Reasonably accurate
models can be created via an iterative system development
method that produces a series of related prototypes to
converge on a consensus about the requirements. An
iterative prototyping process can be defined to produce a
series of software prototypes

47 1

S[i], i = 1, ... , n , ...
which are increasingly accurate approximations to the

envisioned system S.
Information gained from analyzing and criticizing S[i] is

used to construct S[i+l]. Assume that the modification to
prototype S[i) is represented by AS[i]. we have

where S[i+l] is a better approximation of S than Sri] if we
can assume convergence of such a series based on human
cognitive ability, then

Sri] + AS[il = S[i+ll

S = limit S[i] when i -> 00.

n = N
Practically, resources are limited, and an integer

must be chosen such that S N approximates S and the
imperfectness or the difference AS [NI is small enough to be
acceptable relative to available budget and resources.

In the experiences gained from software maintenance
and development, the size of N does indicate how well the
system solves customer's problem. N represents the number
of times the system has been fixed. Of course, exceptional
random human error must be controlled to support
continual improvement. To be effective, prototypes must be
constructed rapidly and at low cost, and they must be easy
to change.Due to the fact that programming is a labor
intensive task, constructing the sequence Sri], 1, ... , N could
be an exhaustive process. If we apply the process at the
specification level and use S[il for the versions of the
specifications produced during the modification of
prototype series, we have a substantially reduced task for
the prototyping effort, but the difficult problem of how to
execute the specifications remains.

If a transformation function
T S a C

can be defined, where S is the specification and C is the
target programming language code, we have

where S is the specification of C. Such a function T can be
realized as a family of functions

For example, in our CAPS system, we define t[l] as a
translator, t[2] as a static scheduler. t[3] as a dynamic
scheduler, t[4] as a debugger generator, and t[5] as a
software base retrieval system.

13: Computer-aided prototyping
The key to rapid prototyping is computer-aided design.

Prototypes must lend insight into the proposed system.
Code that is manually created in a conventional
programming language is not the preferred way to create a
prototype rapidly, because in such a context quick
development often implies sloppy design and missing
documentation. Since the series of prototypes must undergo
frequent and radical changes, all of the usual problems of
maintaining software systems are intensified. and the results

T(S[i]) -> Ci and limit C, = C when i -> 00

T(tk], k=l, ..., m).

of such an approach can be quite disappointing.
The altemative is to use special prototyping languages

supported by extensive computer-aided design tools. These
tools automate many of the processes that are canied out
manually in conventional systems development, and
include support for system construction and modification
based on the specifications. This ensures that the
specifications remain current despite the rapid changes to
the prototype, helps designers and tools to determine and
analyze the intended behavior of the system, and provides
the basis for automated synthesis of code, real-time
schedules, and various details of the design. In order to
automate more of the design process, the system must have
formal representations of more information about the
design that is represented only in the minds of the designers
using conventional software development techniques.
These representations must be coupled with tools that can
use the representations to synthesize, analyze, and check
various aspects of the design.

To be effective, prototypes must be constructed and
modified rapidly, accurately, and cheaply. They do not have
to be efficient, complete, portable, or robust, and they do not
have to use the same hardware, system software, or
implementation language as the delivered system.
Automated construction of programs is useful in this
context ebren if the resulting programs are not very efficient.

2: Software prototyping
2.1: Current practice

Currently, the most effective systems for automatically
generating programs are focused on relatively narrow
problem domains. These systems gain their power from
generic solution strategies specific to the application
domain that are embodied in program generation schemes.
The best known systems of this type create database
applications based on graphical interactions with end-users
(non-programmers). Other examples include interactive
tools for creating graphical user interfaces, and amibute-
grammar tools for generating translators, syntax-directed
editors, and other language-based systems. [BuddW,
Reit84, Budg84, Lame841

22: Current research
A computer-aided prototyping system of considerable

power can be built by integrating application generators
covering several different domains and extending them with
tools for generating programs from general-purpose
problem speciflcations. The application generators can be
completely automatic while the general tools can be
interactive, can be supported by a software base of reusable
components, and can fall back on manual programming if
all else fails WSWC9 11.

Fundamental work on mathematical models of

472

applications and the complete redesign of existing
application generators will be required to achieve
integration because current application generators are based
on incompatible models. Clear and simple mathematical
models are required for successful automation. A standard
set of abstract data types forming the machine
representations of a standard prototyping language are also
needed. These data types should achieve persistence
through an object-oriented design database, that provides a
record of the evolution of the prototype. The persistent data
types should also provide a consistent set of tool interfaces,
where different tools can have different views of the data.
Development of object-oriented database systems that
support type hierarchies with multiple inheritance is needed
to fully realize this vision.

To produce deliverable software, prototyping tools must
be extended with optimization capabilities to produce
programs whose efficiency is comparable to the designs of
competent programmers. The beginnings of the required
technologies are visible: correctness-preserving
transformations and performance estimation techniques to
guide derivation strategies. Work on reasoning support and
methods for interactively supporting software engineers,
such as the Programmer's Apprentice effort Fich901, are
also critical for achieving the next level of automation.

23: Future effort
In the long run, a new kind of language[luqi91] may be

needed that combines the flexibility of an interpreted
language with a powerful set of features for selectively
declaring various kinds of compile-time constraints as
consistent refinements. Some critical aspects of such a
language are smooth integration of optional explicit storage
management policies with a default policy of garbage
collection, optional explicit synchronization policies with a
default of mutual exclusion on multiprocess interactions,
and optional explicit type declarations with defaults based
on type inference procedures. Realization of these goals
will enable the construction of flexible prototypes that can
be smoothly and consistently optimized by adding detailed
constraints.

3: Technologies for prototyping
Over the past 40 years computer hardware has become

dramatically cheaper, faster, and more reliable, but
advances in software technology have been relatively
modest compared to increases in demand. Compilers made
a major step in automating the programming process by
redefining programming as the design of algorithms and
data structures instead of the design of machine code. The
next major steps in automation will redefine programming
to become the formulation of requirements and the design
of system interfaces. Automated design of unrestricted

algorithms and data structures is extremely difficult. Before
complete automation in a general setting, partially
automated or computer-aided software design will be
applied to software prototyping.

The most important emerging technologies for
computer-aided prototyping include prototyping languages,
support for reuse, and designer interfaces that provide
decision support functions.

3.1: Prototyping languages
The goal of computer aided prototyping is to automate

the design effort at the early phases of software
development. The only way to reach this goal is to create
mechanically processable and executable documents at the
specification level. Prototyping languages combine the
functions and benefits of specification, design, and
programming languages. Fig. 1 illustrates the relationship
of prototyping languages to the prototyping process, and
compares it to the languages used in traditional software life
cycles.

Fig. 1 Software Language Hierarchy

Prototyping languages form a new category in the family
of computer languages. The purpose of a prototyping
language is to define an executable model of a system, using
both black-box and clear-box descriptions. A prototyping
language has no obligation to give detailed algorithms for
all components of the system as long as it is descriptive and
executable. We briefly compare prototyping languages to
specification languages, design languages, and
programming languages. Specification languages are used
for recording external interfaces in the functional
specification stage and for recording intemal interfaces
during architectural design at the highest levels of
abstraction. They are also used in verifying the correctness
and completeness of a design or implementation. Design
languages are used for recording conventions and
interconnections during architectural design and module
design.

47 3

The d@erence between specification and design
languages is the diffetence between interface and
mechanism: a specification says what is to be done, and a
design says how to do it. The evaluation criterion for both
specification and design languages is the ability to support
simple, concise, and humanly understandable descriptions
of complex behavior. It is useful for specification and
design languages to be executable, but simplicity of
expression takes precedence when the two considerations
conflict. Computer aid is desirable for determining the
properties of a specification and certifying that a design
realizes a specification. Execution can help attain these
goals, but it is not the only way to do so, and it is not
necessarily the most effective way.
The difference between a design and a program is the

difference between a plan and a finished product a design
records the early decisions that determine an
implementation strategy, while a program contains all the
details necessary to get an efficiently executable system.
The primary goal of a design is documentation rather than
execution, while the primary goal of a program is usually
efficient execution.

Common strengths of specification languages are
simplicity, abstraction, clarity of expression, and means for
rigorous logical reasoning. Common strengths of design
languages are expressiveness and support for recording
goals and justifications. A common weakness of
specification and design languages is lack of efficient
facilities for execution or lack of any effective means for
execution. The srrength of most programming languages is
supporting efficient execution, while common weaknesses
are the need for specifying many details and lack of
facilities for recording goals and justifications in a formal
way. The contribution of a prototyping language is to
integrate the functions of specification and design
languages with the capability for execution. However,
because of the wide range of goals for prototyping
languages, they may not be as effective for any of the
purposes mentioned above as a language optimized just for
that purpose.

3.2: Software reuse
Software reusability offers a tremendous advantage for

rapid prototyping, that of increased productivity. A rapid
prototyping paradigm that relies on a library of reusable
modules has the potential to generate software prototypes in
a much more rapid fashion than prototyping by manual
means. However, technological barriers impede the
progress of code reuse. Among them are component
classification, retrieval, and integration problems. To
confound the technical barriers, there exist managerial,
economic, and cultural barriers as well.

Classification and retrieval: Storing and maintaining a

large collection of software components, i.e. a software
repository, requires some sort of classification scheme to
support classifying, identifying, and retrieving components.
The problem is analogous to the document storage and
retrieval problem. Exercising this analogy, some
researchers have employed keyword and multi-attribute
paradigms [Pneglb, Brow901 while others have explored
natural language [Burt871 and expert system Wood881
techniques. These approaches all have merits but tend to
focus on descriptors of the software product rather than the
product itself. Thus, they have a broad applicability to
various forms of software products, not just source code.

Computer software, i.e. actual source code, has
characteristics that set it apart from the analogy with
technical documents. If we assume that the reusable
component is a subprogram or abstract data type, then we
are assured the component will have syntar and a
semantics.

The syntax of the component is its interface, that is, the
number and types of parameters in its specification. The
semantics of a component are the statements found in the
body. Some researchers have focussed on syntax alone
[runc & toyn] while others have exploited both syntax and
semantics [Stei92, Roll90, Honi861.

Taken a step further, a theorem proving methodology
could further refine the search for a component, using
formal specifications for representing the component’s
syntax and semantics. In fact, this may be a fundamental
requirement if the retrieval tool is to become fully
automated. From what we have seen, a general purpose
software classification and retrieval tool will need the
following features to be successful:

1. Abrowser
2. Keyword search
3. Multi-attribute (or faceted) classification and search
4. Syntactic and semantic search
5. Theorem prover

Component integration: Most of the retrieval mechanisms
described above require manual integration of the software
component with the user‘s system once the component has
been found. It seems feasible, however, given mapping
information for a candidate component that satisfies a
query, to build automatically a wrapper around the
candidate that provides the interface expected by the query.
While this may not be an efficient integration, it provides
the required functionality to the user and would be
acceptable in a rapid prototyping environment.

Future of reuse: Widespread software reuse is elusive not
only because of the technical barriers but also because of
the absence of organizational structures to support the
process. Prieto-Diaz [Pnegla] argues that “the most
important issues influencing software reuse [are]

414

Fig. 2 CAPS

managerial, economic, legal, cultural, and social.” In
addition to conquering the technical barriers, we must strive
to build the proper organizational infrastructures. Success
can be achieved in the interim if we bound the scope
initially and work toward an ideal model incrementally.

3.3: Designer interfaces and decision support
The designer interface of a prototyping system should

match the prototyping method and model the designer’s
decision process. The interface should shield the designer
from the details of data management and the boundaries
between the tools in the environment. A graphical interface
is useful for providing summary views of the prototype,
especially for representing system decompositions.
Technologies for creating graphical interfaces such as
Interviews Lint891 and graphical editors such as Idraw
[Vlis88] are needed for building the tools to support these
aspects. It is important to build the user interface portions of
the system via toolkits or user interface generation systems
because the details of the prototyping method are likely to
change, both as more refined methods are developed and in
order to adapt to application-specific and organization-
specific differences.

The graphical interface and the associated text
annotations should be integrated by tools that provide
guarantees of consistency and automatic constraint
propagation. Attribute grammar technology is relatively
well developed for realizing constraint propagation and
consistency checking for text expressed in formal
languages. A remaining challenge is providing the
analogous capabilities across the boundary between the
graphics and the text.

Another important aspect of computer-aided prototyping
is technology for managing the evolution of the prototype
[Luqi90]. The prototype is expected to go through many
different versions, and configuration control is one of the

Components

areas where decision support for the designer is important
Such decision support can be based on a formal model of
software evolution such as Luqi901. Such a model provides
the basis for managing the evolution of a complex
prototype, coordinating the concurrent efforts of a team of
prototype designers, and exploring various combinations of
several design alternatives. Better high level models of
these processes are needed, coupled with tool support for
keeping track of the configurations, automatically
identifying various configurations in terms that make sense
to the designer, organizing the configuration structure
coherently, and automatically materializing new
combinations of existing configurations with consistency
checking.

4: A computer-aided prototyping system
The computer aided prototyping system (CAPS)

[Luqi88b] is an integrated environment aimed at rapidly
prototyping hard real-time embedded systems. It is
comprised of an integrated set of software tools that include
an execution support system, a rewrite system, a syntax
directed editor with graphics capabilities, a software base, a
design database, and a design management system. Fig. 2
shows the high level organization of CAPS.

Embodied within the CAPS software development
approach is a systematic design method for rapid prototype
construction Luqi88cI. System or subsystem descriptions
are stated at a problem-oriented, abstract level and
iteratively refined into a hierarchically structured prototype
using a uniform decomposition method that combines the
advantages of data flow and control flow. At each level of
the hierarchy, the designer focuses only on the details
important at that level.

CAPS is based on a prototyping language called PSDL
(Prototype System Description Language) lLuqi88al

415

designed to serve as an executable promyping language at
the specification or design level. PSDL is based on a
mathematical model [Luqi88a].

To generate a prototype, the designer of the prototype
uses the graphic editor to create a graphic representation of
the proposed system. The graphic representation is used to
generate part of an executable description of the proposed
system, represented in PSDL. PSDL descriptions are used
to search the software base to find reusable components
that match the specifications. A transformation schema is
then used to transform the PSDL into Ada and bind the
retrieved reusable components. The prototype is then
compiled and executed. The end user of the proposed
system evaluates the prototype’s behavior against the
expected behavior. Successive iterations of this process
should lead to a system that ultimately satisfies the user’s
requirements. [Cumm90]

CAPS is divided into three major subsystems. They are
the software database, the execution support system, and
the user interface. The following sections describe each in
turn.

4.1: Software database
The software database has two primary subsystems, the

design or engineering database and the repository of
reusable components, called the software base.

An engineering database should provide the following
facilities to support computer-aided software development
environments [Dwye91]:

Persistence
Concurrency control
Version control
Reuse of past design objects
Configuration control
A wide variety of data storage
Guarantees data will not be corrupted due to system

The engineering database of CAPS supports all of these
facilities using an object-oriented database management
system[Nestor86] supporting a graph model of software
evolution Puqi901.

The second subsystem, the software base, is a repository
for reusable software components. An object-oriented
database management system (OODBMS) [Onto911
provides the basis for the underlying component storage.
Tools have been built on top of the OODBMS to perform
browsing, syntactic search [McDo91], and semantic search
[Stei91] for components.

The key for the syntactic and semantic search
mechanism is a query written in PSDL augmented with an
algebraic specification language. A user’s query is a
requirement for the prototyping system being built. Using
syntactic and semantic normalization techniques, the

or media failure

search tool evaluates all components in the database to
determine which ones will satisfy the query. The syntactic
search mechanism quickly provides a set of candidates that
then pass through semantic matching for subsequent
ranking. The designer then selects the best candidate from
the ordered list. A future tool will provide support for
automatically integrating the retrieved component into the
PrOtOtype.

4.2: Execution support system
The execution support system gives the designer the

ability to execute the prototype. This support system
consists of four major components: a translator, a static
scheduler, a dynamic scheduler and a debugger. The
translator generates code, binding together the reusable
components retrieved from the software base. Its primary
functions are to implement data streams and control
constraints. The static scheduler allocates time slots for
operators with real-time constraints before execution
begins. If the allocation succeeds. all operators are
guaranteed to meet their deadlines even with worst case
execution times. The dynamic scheduler invokes operators
without real-time constraints in the time slots not used by
the operators with real-time constraints. The debugger
offers designer support for locating logical errors during
prototype execution. pala901

43: User interface
The CAPS interface provides a cohesive software

development environment integrating the tools of CAPS. A
pictorial representation of this environment is given in Fig.
3. At the core of the environment is the host operating
system. The windowing system, X-windows, is the next
layer. Interviews, the toolkit chosen to develop the user
interface, provides the interface between the upper layers of
the environment and X-windows. The CAPS tools sit on top
of Interviews and are surrounded by the tool interface. The
tool interface provides all communication between the tools
and the user interface. The outermost layer of the
environment is the user interface, This layer hides the
underlying implementation details from the designer.
[Cu”90]

5: Overview of the papers in the mini-track
Many excellent papers were submitted this rapid

prototyping mini-track. Nine of the papers were accepted in
their entirety and four as two-page research summaries.
This section gives a short synopsis of each of the papers. We
classify the papers into four groups. The first group of
papers are contributions to prototyping languages and
software synthesis. The second group focuses on support for
software reuse, an important aspect of rapid prototyping
systems. The third group of papers offer contributions to

416

interface c interface \

(Interface >
Fig. 3 CAPS Environment [CummSO]

computer-aided prototype evolution. The final group is a
forum of research summaries supporting rapid prototyping.

5.1: Prototyping languages and synthesis
“A Resolution Method for Predicate Logic SpecGCation

into Executable Code,” by Kouichi Ono and others,
introduces a resolution method for predicate calculus
specifications resulting in a method to synthesize
executable code. The main contribution is the introduction
of transformation and resolution techniques for the
predicate calculus formulae. Partial correctness of the
resolution process is verified.

“Update Plans,” by Hugh Osbome, discusses the syntax
and semantics of “update plans.” Update plans are based
upon lamda calculus. The author demonstrates how update
plans can be used to specify and prototype abstract
machines. Syntax and translation schemes are given in
appendices.

“Common Intermediate Design Language,” by Henson
Graves and Wolfgang Polak, introduces a language called
“Common Intermediate Design Language.” Concurrency
aspects of CIDL are based upon Hoare’s communicating
sequential processes (CSP). This language is a high level
system design language that can be executed directly or
translated into Ada, LISP, or C. CIDL is used to describe
“reactive” systems that involve “events” that may change
“stores” over time. The major contribution of this paper
includes a presentation of the key features of CIDL which

has been used in a reuse environment to synthesize laqe
real-time applications.

5.2: Support for sotrware reuse
“On a Fundamental relationship Between Software

Reuse and Software Synthesis,” by Ann Gates and Dan
Cooke, discusses language issues common to both software
reusability and synthesis environments. A small example
specification language is defined together with its synthesis
environment leading to a definition of ambiguity. Major
contributions include definition of inherent ambiguity and a
proposed architecture that would include both software
reusability and synthesis.

‘Wsing Hypertext to Locate Reusable Objects,” by R.
N. Robson, focuses on the use of hypertext links to locate
code in reusable software component libraries. The main
contribution of this paper is the introduction of a
specification language, DYHARD, which is used to specify
the automatic linking of reusable components for
subsequent retrieval.

53: Computer-aided prototype evolution
“Supporting System Maintenance with Automatic

Decomposition Schemes,” by Rajeev Gopal and others,
focuses on decomposition schemes to contend with
maintenance issues. A relational model that allows a
maintainer to project dependencies among variables and
program statements is the major contribution. Using the
resulting relational environment, the impact of a change can
be predicted to some extent.

“Design Structuring and Allocation Optimization,” by
Steven L. Howell and others, presents of an approach for
optimizing the design of large, complex, real-time systems
in distributed and parallel environments. The main
contribution is a method for defining and analyzing the
ways in which system components react with each other
through interfaces and through the sharing of global
resources. The approach fuses heuristic, probabilistic, and
deterministic methods to prototype resource sharing,
parallel systems.

“Object-Oriented Design of an Expandable Hardware
Description Language Analyzer for a High-Level Synthesis
System,” by Lian Yang and others, discusses the use of
object-oriented programming language techniques to
construct an expandable Hardware Description Language
Analyzer. The main contribution of this approach is that it
provides a better way to model high-level synthesis design
entities in that data and methods are organized through a
“class lattice.” This leads to improved expandability, and
active design entities at various design stages.

5.4: Forum
“Software Development with Trmformable Compo-

nents,” by M. G. Christiansen and others, describes an

environment wherein it is possible to capture, manipulate,
and integrate abstractions needed for software
development. The main contribution is the description of
an implemented system that assists a knowledge engineer in
the construction of generic abstract components and their
classification for subsequent reuse. They also describe
implemented, automated mechanisms to develop software
based upon the abstract components.

“Fast Static Timing Analysis of Real-Time Systems,” by
Albert MO Kim Cheng, presents a General Analysis
Algorithm (GAA) that performs a static syntactic and
semantic check of a rule base in order to determine if a
given program has a bounded response time. This program
can analyze a large class of de-based EQL programs to see
if they can be used in safety-critical environments. As such
the algorithm may provide a criteria for the reusability of
software in safety critical domains.

“Rapid Prototyping in an Object-Oriented Pictorial
Dataflow Language,” by Michael Nelson and Ronald
Byrnes describes an object-oriented approach to rapid
prototyping using an off-the-shelf pictorial, object-oriented,

dataflow language. The paper states that merging object-
oriented and dataflow methods is effective for prototyping
complex systems (such as the control software for an
Autonomous Underwater Vehicle).

“Assessing Industrial Prototyping Projects,” by
Antoinette Kieback and others, describes six case studies
that applied prototyping to software development. The
projects studied ranged from 240 person-years to 2 person-
years. The study differentiates between horizontal
prototyping (i.e., where a layer of the system is ptotyped)
and vertical prototyping (i.e., where an entire component is
prototypal). The results indicate that prototyping improves
the ability of developers to plan.

6: Conclusions
Rapid software technology is a critical and active area of

software engineering research. Aspects of computer-aided
prototyping such as prototyping languages, software reuse,
and decision support for prototype designers are some of the
critical issues in the area. The papers in the rapid software
prototyping track are representative of the current state of
the art in the area. The organization of the papers in the
track is listed in Table 1.

[Burt871

Brow901

Budd841

[Budg84]

[C u m ”]

[HICS90]

[Honi86]

References

Burton, Bruce A., Wienk, Rhonda, and others, ‘The
Reusable Software Library”, IEEE Software, v. 4,
pp. 25-33, July 1987.

Brown, James C., Lee, Taejae, and Werth, John,
“Experimental Evaluation of a Reusabilityaented
Parallel Programming Environment”. IEEE
Transactiom on Software Engineering, v. 16, pp.
11 1-120, February 1990.

Budde, R., and others, eds, Approaches to
Prototyping: Proceedings of the Working Confer-
ence, Springer Verlag, 1984.

Budgen, D., ‘The Use of Prototyping in the Design of
Large Concurrent Systems”, Approaches to
Prototyping, Springer-Verlag, 1984.

Cummings. Mary Ann, The Development of User
Interface Tools for the Computer Aided Prototyping
System, Master’s Thesis, Naval Postgraduate School,
December 1990.

Dwyer, Andrew P.. and Lewis, Gary W.. The
Development of a Design Database for the Computer
Aided Prototyping System Master’s Thesis, Naval
Postgraduate School, September 1991.

Rapid Software Prototyping Mini-Track, Hawaii
Intemational Conference on System Sciences, pp.
198-266, January, 1990.

Honiden, S., and others, “Software Rototyping with
Reusable Components”, JourruJ of Ir$ormatwn
Processing, v. 9, pp. 123-129, March 1986.

Table 1 - Sesslon Schedule

478

[Lame841

[Lint891

[Luqi88al

[Luqi88bI

[Luqi88cI

[Luqi891

[Luqi901

[Luqi9 11

[McDo91]

[NSWC9 11

[Nest861

[Onto911

[Pala901

[hie9 1 a]

[Rie9 1 b]

[Reit841

[Rich901

[Roll901

Lamersdorf, W.. and Schmidf, J.. “Specification and
Prototyping of Data Model Semantics”, Approaches
to Prototyping: Proceedings of the Working CouJer-
encc, Springer Verlag, 1984.

Linton, MA., Vlissides. J.M.. and Calder, P.R.,
“Composing User Interfaces with Interviews”,
IEEE Con~uter, February 1989.

Luqi, Berzins. V.. and Yeh, R.. “A Prototyping
Language for Real-time Software”, IEEE
Trmactiotw on Sojiware Engineering, pp. 1409-
1423, October 1988.

Luqi, + Ketabchi, M., “A Computer Aided
Rototypmg System”, IEEE Sofrware. pp. 66-72,
March 1988.

Luqi, and Berzins. V., “Rapidly Prototyping Real-
Time Systems”, IEEE Sojiware. pp. 25-36,
September 1988.

Lu i, “Software Evolution via Rapid Prototyping”,
IEjE Computer 22,5 (May 1989), P. 13-25.

Luqi, “A Graph Model for Software Evolution”,
IEEE Trans. on Software Engineering 16, 8 (Aug.

Luqi, “Computer-Aided Software Prototyping”,
IEEE Computer 24,9 (Sep. 1991), p. 111-112.

McDowell, John K., A Reusable Component
Retrieval System for Pmtotyping, Master’s Thesis,
Naval Postgraduate School, September 1991.

Report of the NSWCDNT Workshop on Systems
Evaluation and Assessment Technology, NSWC,
Silver Spring, MD, Aug. 1991.

Nestor, J., ‘Toward a Persistent Object Base’,
Advanced Programming Environments, Springer

Ontologic. Inc., Ontos Object Databare
Documentation Releare 15, Burlington, MA, 1991.

P a l m , Frank V., Integration of the Execution
Support System for the Computer-Aided Prototyping
System (CAPS), Master’s Thesis, Naval
Postgraduate School, September 1990.

Prieto-Die Ruben, “Making Software Reuse Work
An Implementation Model”, ACM Sojiware
Engineering Notes, v. 16, pp.61-68, July 1991.

Prieto-Diaz. Ruben, “Implementing Faceted
Classification for Software Reuse”,
Convnunications of the ACM, v. 34. pp.88-97. May
1991.

Reitenspieb, M., and Men, G.. “Automatic
Generation of Prototypes from Formally Specified
Abstract Data Types”, Approaches to Prototyping:
Proceedings of the Working Conference. Springer
Verlag, 1984.

Rich, C. and Waters, R., The Programmer‘s
Apprentice. Addison-Wesley, 1990.

Rollins. Eugene I., and Wing, Jeanette M.,

1990). p. 917-927.

LNCS 244, 1986, p. 372-394.

[Runcl391

[Stei91]

[Stei92]

[Tani89]

mood881

“Specifications as Search Keys for SW Libraries: A

159. Camegie Mellon University, 26 September
1990.

Runciman, Colin, and Toyn, Ian, “Retrieving Re-
usable Software Components by Polymorphic
Type”. in Proceedings of the International
Conference on Functional Programming and
Computer Architecture (FPCA’89). New Orleans,

Steigerwald, Robert, Retrieving Reusable S m w e
Components via Normalized Algebraic Spec@ca-
tiom, Ph.D. Dissertation, Naval Postgraduate
School, December 1991.

Steigerwald, Robert, Luqi, and Berzins. Valdis, “A
Tool for Reusable Software Component Retrieval
via Normalized Specifications”. Proceedings of the
25th Hawaii Internutional Conference on System
Sciences, Koloa, Hawaii, Jan 7-10, 1992.

Tanik, M. and Yeh, R., ‘The Role of Rapid
Prototyping in Software Development”,
Proceedings of the Hawaii International
Conference on System Sciences-22, pp. 337-338,
January 1989.

Wood, Murray, and Sommerville. Ian, “An
Information Retrieval System for Software
Components”, SIGIR Forum, v. 22, pp. 11-28,
Spring/Summer, 1988.

C a ~ e Study using Lambda Prolog”. CMUCS-W-

1989, pp. 166-173.

419

