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ABSTRACT

Anode sheaths impact the operation of many practical plasma devices. This

complex region is explored in detail for collisional, isothermal (identical specie

temperatures), low-temperature plasmas, where sheath dimensions are in the micron

range. The selected approach involves postulation of a specific electric field

distribution with two shape factors. Previous research regarding planar anodes is

verified and expanded upon using greater parameter ranges, 'z', a dimensionless

quantity specifying plasma composition and condition, groups diverse plasmas into

'families' exhibiting similar sheath characteristics. 'r\\ a nondimensional ratio of

electrical energy to thermal energy in the sheath, allows temperature effects to be

studied. The investigation focuses on three disparate plasma families that span a z

range of 1.1729 to 2.1493, at n. values defined by plasma temperatures of 6000°K,

3000° K, and 300° K. Results indicate that at lower temperatures, charge production

in the outer sheath is generic to the electric field distribution, and that the sheaths

themselves are nearly unaffected by substantial changes in temperature (i.e., n,).

Conversely, sheath density and extent are shown to vary significantly for differing z

values. Newly-derived equations governing cylindrical anodes generate sheaths that

are virtually identical to corresponding planar cases. It is shown that only those

anodes whose radii are comparable to the plasma's 'characteristic radius' (y) must be

treated with the cylindrical formulation; non-vacuous plasmas would require micron-

width anodes to be thus affected. Finally, an analytical approach yields solutions that

confirm the numerical results, and offers an algebraic approximation for high-n.

plasmas.
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I. INTRODUCTION

Various types of plasma devices have been in operation for over 30 years.

Marshall's coaxial plasma gun [Ref. 1] was successfully accelerating volumes of

hydrogen plasma as far back as the late 1950's. In the intervening years, the number

of applications for plasma devices has steadily increased to include

magnetohydrodynamic (MHD) power generation, laser pumping, strategic defense,

and electromagnetic propulsion for interplanetary spacecraft. However, due to their

somewhat complex nature, comparatively little is understood about the sometimes-

destructive sheath regions surrounding the electrodes in every plasma device. This

work attempts to further previous research efforts concerning description of the

anode sheath.

As stated by Biblarz [Ref. 2], completely satisfactory anode sheath solutions do

not exist for several plasma conditions; one such case involves steady, collisional,

low-temperature, isothermal discharges. He then goes on to derive an involved,

nonlinear differential equation that describes the entire plasma region affected by a

planar anode, from the surface to the undisturbed plasma. A presumed (but

'shapeable') function describing the electric field in that region, selected after much

deliberation [Ref. 2 and Ref. 3], ultimately allows charge production rates and

electron/ion populations to be plotted as a function of distance from the anode.

Nondimensional parameters make the solution profiles applicable to several families

of plasmas.

In this work, numerical techniques are employed to verify the one previously

solved case, and to explore planar anode solutions to several other plasma conditions.

This can be readily accomplished due to the generality of the formulation and the ease

with which the profiles can be produced. Sheaths and ambipolar regions are properly
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generated for all cases. The effect of nondimensional parameter variations on the

sheath is extensively investigated, and some general conclusions are hypothesized. In

addition, an analytical technique is presented that supports the numerical results and

allows for an accurate algebraic solution to low-temperature conditions. Finally,

similar derivations produce equations that treat the cylindrical anode sheath problem;

the equations and their profiles are then analyzed, and a comparison is made to planar

anode findings.



II. THE CARTESIAN PROBLEM

This section discusses and validates one previous anode sheath research effort

concerning steady, low-temperature collisional plasmas. In addition, several new

parameter cases are examined and analyzed. The geometry of the Cartesian problem

is illustrated in Figure 1

.

Figure 1 Cartesian Anode Geometry

A. DERIVATION REVIEW

Previous work by Biblarz [Ref. 2] treats the planar anode sheath problem in a

one-dimensional Cartesian fashion, and is reviewed here as it forms the starting point

for this work. Electric field intensity (E), electron and ion population densities ( n
e

and n, ), and all other relevant quantities are considered to vary only with linear

distance (y) from the flat anode surface. The applicable relations are Gauss' equation

and the two species continuity equations, as shown on the following page.
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subscripts e and i indicate electron and ion particles, the j's are the species

contributions to the total current density (i.e., J=j
e +Ji), the u's are the particle

mobilities, and the D's are the diffusion coefficients. Although this set does not fully

constrain the problem (as an equation describing plasma reactivity, ri
e , is absent), any

selection of a specific form for E(y) implicitly fixes that variable.. It is of interest to

explore the problem with 'guesstimates' of E(y) in order to facilitate solutions.

Reference 2 then introduces two new parameters, designated K +

and K , which

are defined by Equations (2a), (2b), and (2c). These K-terms are somewhat artificial

parameters, although they are related to the total current. More meaningful is the
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Manipulation of the previous six equations and the Einstein relation (which

relates the mobilities to the diffusion coefficients) yields the isothermal differential

equation below. Note that k is the Boltzmann constant, and that all primes denote

derivatives with respect to the variable y.

e

rK^
v ^ J

+ K
+
=

2J_

e~D

'«/
kX,

EE-
k l^. E'E"

Lv^^iy /J

(3)

Advanced knowledge of E(y) considerably facilitates the solution of Equation (3).

Biblarz' justification for the selected form of E(y) is detailed elsewhere [Ref. 2 and

Ref. 3]. This function meets several critical conditions inherent to the stated

problem, including the required distribution of E and the behavior of both K-terms at

the boundaries. The function is reproduced as Equation (4) below.

E(y) = E, exp
_(y+a) _

(4)

The parameters 'a' and 'A' are shape factors, where 'a' is of the order of the

sheath length, and 'A' relates to the physical parameters A(f)a and E, (as discussed on

pages 7 and 8).

Substitution of the chosen E(y) into Equation (3), followed by an order-of-

magnitude analysis, the nondimensionalization of the parameters in accordance with

Figure 2, and further simplification based on field and current properties at the

electrode and in the undisturbed plasma, all combine to yield the governing

differential equation and boundary condition of Figure 3.
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Figure 3 Simplified Nondimensional Differential Equation
and Boundary Condition Governing the 1-D Cartesian Problem

The introduction of the dimensionless parameters r) and z further generalizes the

problem, in that one solution to the above equation can be applicable to a large

number of specific dimensional cases. Their additional significance is discussed in a

subsequent section.

As will be seen, both numerical and analytical solutions to the equations of Figure

3 are possible, yielding profiles of K +

and (K
+

) that are a function of distance from

the planar anode.

Further manipulation of Equations (1) and (2) derives relations that produce

electron and ion population profdes [Ref. 2]. A more precise form of these equations

is given in Figure 4. Note that specific solutions for K +

are required to generate the

n -profiles. Several distinct cases in the next section yield population curves that



clearly illustrate the propriety of the sheath and ambipolar regions in the plasma near

the anode.
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Figure 4 Ion and Electron Population Equations

Reference 2 also presents two more useful relations from analysis involving

physical observations (Equations (5) and (6)). Recent analysis has proven that the

infinite series in Equation (6b) converges for all values of z. These are combined and

manipulated to yield the two important equations of Figure 5, which allow

determination of the parameters z and n,. The procedure is as follows:

• the type of gas defines the anode potential drop A(j> (which is essentially

equivalent to the ionization potential of the gas)

• the particular case or application specifies E^ and n„

• z is then found by iteration of the implicit equation at the top of Figure 5

• the choice of TJ, locks in r\ using the bottom equation in Figure 5

V

2e EM ] , ,—-— k exp(2z )

en

A(fe =E.VA f(z)

where f(z) = zV
-,(2m-l)m!

(5)

(6a)

(6b)
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Figure 5 Equations That Yield z and r|

Specific values of z and r\ allow computation of the electric field parameters A

and a (Equations (5) and (6)), which in turn yield the tailored form of the E

distribution (Equation 4), and ultimately permit the generation of K\ (K
+

) , and n
e ;

profiles in the plasma regions close to the anode (equations of Figure 3 and Figure 4).

B. NUMERICALLY SOLVED CASES

1. Procedure

Numerical solution of the governing differential equation (Figure 3) can be

achieved with a fourth-order Runge-Kutta FORTRAN program. First the dependent

variable is redefined and the equations are rewritten in accordance with Figure 6.

— [w] = 2n-ri
dy

w(0) = 1

V
Eoy

w-r)

where w(y)
E(y)/E

Figure 6 Modified 1-D Cartesian Differential Equation
and Boundary Condition for Numerical Solution



Application of the Runge-Kutta scheme computes the value of w at each y

.

The data for K +

is then recovered with the division of each w datapoint by the

corresponding value for E(y)/E . (K
+

)
data are extracted with the following steps

for each value of y

:

• compute w* using the defining differential equation (Figure 6)

• perform the operation below (derived from the Quotient Rule)

Jf*<*>l- w'
fEY ( E^

E

(E
(7)

Finally, the h
e ,

profiles are computed as a function of y using the available

information and the equations of Figure 4. A single computer routine can be made to

perform all of the required operations (see Appendix A); the resulting data are then

plotted.

Note again that this technique is substantially simpler than alternate methods

that do not presume a specific form of E(y). Ensuing discussions address the

advantages and disadvantages of this approach.

2. Case I: the Nitrogen Problem

The first specific case involves verification of an earlier example [Ref. 2]. A

planar anode in contact with nitrogen plasma was analyzed under the following

conditions (nitrogen is a common discharge gas with well-known properties):

• nitrogen's anode potential drop (A(}>
a ): 15.51 V (singly ionized)

• the electric field strength in the undisturbed plasma (E^ ): 12,000. V/m

• the particle density (nK ): 10
19 m" ?

• the temperature: 6000°

K



The expression used to approximate f(z) (Equation 6a) was truncated after 13

terms, producing an error in the calculation of z which is on the order of 1CT
5
%.

Using the given data, the following parameters result:

• z= 1.75626

• 11 = 99.12285

• a = 1.95421 *10 4 m and A = 1.17793 *10~ 7 m 2

. E = 262,265. V/m

The computed value for E (obtained using Equation 4) relates specifically to

all plasmas that are defined by the above values of z and n,; this includes nitrogen

plasma at the stated conditions. The normalized electric field E(y) for this case is

shown in Figure 7. Note that the field decreases monotonically and abruptly to a

constant value in the undisturbed plasma, as is required of the model.

The corresponding K +

, (K
+

) , and ri
e s

profiles are presented in Figure 8 and

Figure 9. Note that those Figures also represent all other plasma cases whose gas

composition, density, temperature, and electric field intensity are defined by

z=l.75626 and n,=99. 12285. Figure 9 clearly illustrates the distinct sheath and

ambipolar regions present for this general case.* The K-term profiles of Figure 8

likewise exhibit expected characteristics, with K +

rising roughly monotonically from

+ 1 to +2, while (K
+

) decreases to near-zero at the outer edge of the sheath. The

leftmost downturn of (K
+

) , while possibly correct, is quantitatively suspect since the

model of ionization by electron impact breaks down at the fringe of the collisionless

region (i.e., for y/a s ~10" 2

).

The sheath is that small region, extending away from the anode, where the

electron and ion populations are not equivalent; in the ambipolar region, the ratio

of oppositely-charged particles is 1:1, but the populations of both are less than those

that exist in the 'undisturbed plasma'

10



Electric Field (Case I)
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Figure 7 Normalized Electric Field (z=1.75626, n=99.1229)
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K-term Profiles (Case I)
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n-Profiles (Case I)
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As the parameter 'a' specific to Case I is known, it can be seen that the

nitrogen plasma sheath for the particularly defined discharge extends approximately

0.1 mm out from the planar anode. Similarly, the region of undisturbed plasma for

such a device begins approximately 6 mm from the anode surface. Both of these

results are in accordance with expectations, the generalities of which were obtained

after much deliberation [Ref. 4].

These numerically-obtained Case I results confirm the work of Reference 2.

Postulation of a suitable ionization/recombination mechanism is left to that discourse.

The remaining objectives of this work are as follows:

• investigation of the effects which are produced as the defining parameters are

varied over a wide yet practical range

• presentation of an analytical solution to the general Cartesian anode sheath

problem

• derivation and examination of the related Cylindrical anode sheath problem

3. Cases II and III: Varying Temperature in the Nitrogen Problem

Comprehensive investigation of the nitrogen plasma problem requires

consideration of temperature's effect on the anode sheath. Thus, while all other Case

I conditions are held constant , two somewhat more practical values for the isothermal

temperature are considered:

• Case II fixes % at3000°K

• Case III sets T^, at 300°K (this is representative of discharges in laser pumping)

Temperature-only variations impact n, exclusively; z and the normalized

electric field E(y)/E (including the inherent factors A and a) are unaffected. Since

r) is by definition inversely proportional to % (Figure 2), the decreased temperatures

of Cases II and III signify larger values of r\. As a result, the first-order derivative

term in the governing differential equation (Figure 3) becomes less influential at the

lower temperatures. Indeed, for the conditions of Case III, the contribution of the

14



derivative term is negligible (note, however, that this circumstance does not nullify

the validity of the formulation; the equation does not become degenerate).

Application of the lower equation in Figure 5 yields n, values of 198.246 and

1982.46 for Case II and Case III, respectively. The K-term profiles for these general

cases are presented in Figures 10 and 11. Both cases exhibit the same general K-term

tendencies that have been recognized previously, with minor variations that illustrate

the decreasing importance of the net-ionization term.

The effect of temperature variation (or, equivalently, n, variation) on a

plasma in the anode region is explored using Figures 12 and 13, which directly

compare the K +

and (K
+

)
profiles of the three cases. One significant observation.

contributed by Biblarz subsequent to Reference 2, hypothesizes that the asymptotic

behavior of the K-terms with decreasing temperature reflects the approach to

ionization that is generic to the electric field distribution; the overall results are thus

independent of the details of ionization and recombination. As an important practical

example, measurements of charge density would not reflect relevant details of the

ionization/recombination mechanisms.

Conversely, the ri
e

s

profiles for this general z=l.75626 case are nearly

unaffected by the changes in temperature. Figure 14 illustrates charged particle

curves that exhibit only a barely perceptible shift of position over the entire range of

temperatures tested. This unexpected result has substantial implications; the most

significant of these is the acceptability of the isothermal-particle assumption (i.e., the

assertion that T
e
=T; =T ). Though such a premise may be unrealistic, its validity

appears to be inconsequential to the population profiles. Electric- field effects

dominate any temperature effects in the cases examined. In fact, the physical

significance of r\ (stated in Reference 2 as a ratio of electrical to thermal energy)

predicts such dominance with its large magnitudes.

15
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K-term Profiles (Case III)

10"

2.0

K+

I I I

(y/a)

T ) I I T~T TT" 1.0

10
(

10'

Figure 11 K-term profiles (z=1.7S626, 11=1982.46)

17



Kplus Profiles for Varying Temperatures
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(Kplus) Profiles for Varying Temperature
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n-Profiles for Varying Temperature

Figure 14 nei
profiles (z=1.75626)
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C. EXPLORING THE ENVELOPE FOR z AND r)

The foregoing results include a preliminary investigation into the effect of r\-

variation on the planar anode sheath. This upcoming section more fully explores how

changes in the parameters z and r\ impact the sheath region.

1. Practical Extremes of z

The parameter z is a dimensionless representation of three basic variables

(A(|)
a , E^ , and n^) that specify the condition of a plasma; several different gases, at

differing densities and field strengths, can be related by their equivalent z values.

Various diverse plasmas belonging to the same 'z-family', at the same temperature,

would theoretically exhibit identical sheath characteristics. Using the technique

discussed previously, anode sheaths for plasmas defined by two limiting values of z

are examined.

Singly-ionized elements possess anode potential drops (A<t>a ) that range from

24.46 Volts (helium) down to 3.87 Volts (cesium), with the low values being

preferred. Common densities (nj for these type collisional plasmas vary

approximately from 10
1
* to 10

20
particles per cubic meter. Finally, reasonable field

strengths in the undisturbed plasma (E^) are somewhat arbitrarily set from 5000 to

30,000 Volts per meter. Application of the upper equation in Figure 5 yields the

following 'practical' extremes for z:

1.1729 s z s 2.1493 (8)

This relatively small numerical range represents an extremely diverse

grouping of plasmas; z is a decidedly sensitive parameter. Small z values represent

those plasmas with small potential drops and low densities that are subjected to very

high electric fields (e.g., low density cesium at 30,000. V/m). Plasmas with large z

values are characterized by gases with large potential drops, at conditions of high

21



density and low field strength (e.g., high pressure helium at 5000. V/m). By way of

comparison, the nitrogen plasma considered earlier in this work (median potential

drop and density, small field strength) has a slightly-larger-than-median z value of

1.7563.

Values for r) are required to completely constrain the problem, which entails

the choosing of one or more temperatures. To facilitate direct comparisons, the same

arbitrary quantities for 1^ that have been considered for the nitrogen case are

designated as the standard values (i.e., 6000°K, 3000°K, and 300°K).

Consequently, numerical sheath solutions are next generated and examined

for these forementioned limiting conditions:

• 'Small z' plasmas (z= 1.1729) at the three standard temperatures (n,= 16.4135,

32.8269, and 328.269 for i; at 6000°K, 3000°K, and300°K)

• 'Large z' plasmas (z= 2.1493) at the standard temperatures (r)= 257.563,

515.125, and 5151.25 as i; decreases to 300°K)

2. Sheath Solutions for 'Small z' Plasmas

K-term profiles for the 'small z' plasmas (at the three standard temperatures)

are depicted in Figures 15, 16, and 17. Qualitatively, each of these curves displays

the same previously noted characteristics inherent in the nitrogen plasma curves:

monotonically increasing and well-behaved K\ and a rate-of-charge-production term

(K
+

) that decreases and vanishes at the outer edge of the sheath. As before, the

leftmost downturn of (K
+

) is quantitatively suspect at the fringe of the collisionless

region.

These reassuring results extend to the composite curves of Figures 18 and 19,

which depict K-term profile variations as a function of temperature (i.e., n.) changes.

In particular, the charge production rate curves of Figure 19 again illustrate the

striking implication that charge production in the outer sheath is independent of the
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K-term Profiles, Low z, T=6000°K
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K-term Profiles, Low z, T=3000°K
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K-term Profiles, Low z, T=300°K
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Kplus Profiles, Low z, Various Temp.
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(Kplus) Profiles, Low z, Various Temp.
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temperature. Moreover, the inner sheath once again sees an increase in the net

production of charges as the temperature decreases.

Electron and ion population profiles for the 'small z' plasmas are given in

Figure 20. As with the nitrogen case (and other plasmas of that z-family), the sheath

and ambipolar regions are clearly visible and quite appropriate, while the population

curves themselves again appear to be nearly unaffected by large variations in

temperature.

Such qualitative observations for the 'small z' plasmas indicate that previous

impressions concerning 'median z' plasmas (e.g., nitrogen) are not limited to that one

category, but are possibly characteristic of aU collisional low-temperature plasmas.

The sheath profiles generated for the 'large z' cases of the next section further

confirm this hypothesis.

Quantitative deviations in the sheath due to the change of z are addressed in a

later section.

3. Sheath Solutions for 'Large z' Plasmas

The high density, small field 'large z' plasmas continue the trends established

by the other collisional plasmas, albeit with some minor differences. One such

difference is illustrated by the K-term profiles of Figures 21, 22, and 23. The curves

display the same general traits of the other plasmas, with the exception that the K +

curve no longer climbs monotonically. This small anomaly becomes more

pronounced at higher temperatures (Figure 21), yet does not appear to significandy

impact the charge production rate curves, which still behave as expected.

Similarly, there are no surprises in the composite curves of Figures 24 and

25. In fact, the (K
+

) curves of Figure 25 demonstrate even more strikingly the

generic, electric-field-dependent nature of ionization and recombination in the sheath.
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n-Profiles, Low z, Varying Temp
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K-term Profiles, High z, T=6000°K
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K-term Profiles, High z, T=3000°K
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K-term Profiles, High z, T=300°K
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Kplus Profiles, High z, Various Temp.
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(Kplus) Profiles, High z, Various Temp.
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The n-profiles of this class of plasmas are depicted in Figure 26. While there

are some yet-to-be-addressed differences from previous n-profiles, the sheath and

ambipolar regions are again evident, as are the profiles' theorized independence from

temperature changes.

4. The Effect of z on the Planar Anode Sheath

Results to this point have revealed some important and perhaps non-intuitive

concepts concerning the properties of planar anode sheaths, concepts which appear

applicable to aU low-temperature, collisional plasmas. However, sheath variations

attributable solely to changes in the parameter z have yet to be discussed.

Comparison of the n-profiles for each z-family (Figures 14, 20, and 26)

illustrates a subtle point: although all n-profiles have been shown to be nearly

independent of temperature, they do become slightly more sensitive to temperature

variations as the value of z decreases. This is possibly attributable, in part, to the

lower densities of 'small z' plasmas; the temperature-dependent kinetic energy

changes of the particles may produce a more observable effect on the total

ionization/recombination process in a plasma not already saturated with density-

driven collisions. Perhaps more contributory is the previously-discussed dominance

of electrical energy over thermal effects. The 'small z' plasmas exhibit smaller

magnitudes of E than other plasma families, decreasing such dominance. The

involvement of A<t>a in this phenomenon remains unclear. In any event, such n-

profile temperature shifts remain nearly negligible for all plasmas considered to this

point, which further validates the innocuous nature of the constant temperature

assumption.

Figure 27 depicts the K +

curves of three diverse z-families at the same

temperature (6000° K). As noted previously, all are well-behaved and do not differ to
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n-Profiles, High z, Varying Temp
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Kplus Profiles, 6000°K, Various z
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any significant degree. Contrastingly, the charge production rate curves of these

three plasma families (Figure 28) are somewhat disparate and very insightful. 'Large

z' plasmas show significant charge production throughout the entire sheath, in

contrast to the localized and decreased production rates depicted for the 'small z'

plasmas. This may indicate the fact that electric-field effects are more localized for

smaller z.

The n-profiles for the three z-families are depicted in Figure 29. Unlike

similar profiles for varying temperature (i.e., n,), these curves are decidedly affected

by changes in z. Most prominently, the magnitude of the charged particles changes

dramatically as z varies, especially in the sheath. This is a graphic indication of z-

induced changes in both E and current flow for diverse plasmas. Also noteworthy is

the fact that the sheath itself extends further from the anode surface as the value of z

decreases. In particular, the sheath of the 'small z' plasmas stretches over ten times

the distance occupied by the 'large z' sheath.

5. Some Final Thoughts on the Influence of n,

The effect of r) variations on the anode sheath has already been indirectly

addressed via the extensive consideration of temperature's influence on the problem.

The bottom equation of Figure 5 inversely relates these two parameters for fixed z

and A^ . Physical interpretation of r) as a ratio of electrical and thermal energy has

also been reviewed.

The purely numerical importance of r\ is apparent with a glance at the

governing differential equation (Figure 3); its reciprocal controls the influence of the

charge production rate term. Large values of n. reduce this term to near zero, the

consequences of which can be seen in every low-temperature case (i.e., 300°K). To

fully and completely explore this parameter's effect on the sheath, solutions are

presented for the original nitrogen plasma at artificially small values of n. (in
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n-Profiles as a Function of z, T=6000°K
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particular, rj is set equal to 25., 10., and 1.0). Note, however, that the validity of

these curves is questionable at best, since such small r) values equate to some

extraordinarily high temperatures for the nitrogen (up to 595,000°K!), the existence

of which contradicts the original assumption of low-temperature plasmas.

Nevertheless, the following curves may perhaps reveal some valid trends.

Despite the unusual and probably erroneous K +

plots for the small-rj

conditions (Figure 30), the (R
+

) curves of Figure 31 hearteningly retain some of the

familiar traits concerning charge production rate in the sheath. The corresponding n-

profiles are presented in Figure 32; remarkably, only the anomalous 'rpl' profiles

exhibit tendencies somewhat contrary to those already observed.

D. ANALYTICAL SOLUTIONS

In order to confirm the validity of the numerically-obtained solutions, an

analytical solution to the problem's governing relation (Figure 6) is presented.

1. Procedure for 'The Outer Expansion Method'

Reference 5 offers an approach which is ideally suited to the form of the

differential equation in Figure 6. The term (l/n,) is justly defined as a 'small'

parameter, and the equation is already in dimensionless form. A series solution for w

is presumed, approximate yet valid for 'non-small' values of y . Equation (9) depicts

the power series expansion for w:

w = £w
k

k=0

-T
k / . \ / . \2 • \3

= w +
n fiY
w +

v/
w, +

viy
(9)

Substitution of Equation (9) into the governing equation allows terms with

like powers of (l/n.) to be equated, which in turn allows each wk to be solved for

analytically. Because the solution for w is purely algebraic in this formulation, the
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Kplus Profiles, z for Nitrogen, Low eta 's

2.U

1.8-

1.6"

1.4"

1.2-

K+
i.o-

0.8-

0.6"

0.4-

0.2-

o.o-

10

:
^^^ / i

\^ / ' :

; .^j^^-^rrT.: / *...:

* ,*

/ : / / :

."

*

/ : *»*

*

' : /

/ : / : '

/ /

/ : / j /

/ '«•.
% /

;

......... j
?

.....
/ / '• /

/

• • *

V

: •. :

:

'•.
: eta-99.12

eta=25.

eta=10.

eta-1.0

2 10" 1

10° 10
1

10

(y/a)

2

Figure 30 K+

profiles (z=1.75626, Small n*)

42



(Kplus)
x
Profiles, z for Nitrogen, Low eta's

10

K^

10

eta=99.12

eta=25.

eta=10.

eta=1.0

1—

i

1—i—

i

*
i i i i

|

1 r "
i
~ r 1 ii i

j
' '

i
'

'

T
i
rf

"
r*"r

f

"rH

'

f
'

i

'

10" 1

10
l

(y/a)

10
1

Figure 31 (K*)' profiles (z=1.75626, Small n*)

43



n-Profiles, z for Nitrogen, Low eta's
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first-order derivatives in each of the subsequent wk
expressions can be evaluated

exactly (i.e., symbolically). The total solution w is thus an infinite summation of

exact expressions. Prevalent magnitudes of n, allow highly precise approximations of

w with the series truncated to only three terms.

Utilization of this technique produces the following approximate analytical

'outside' solution (wj to the governing differential equation of Figure 6:

w £ w, = wn +
fjY

\V
w, +

In
W-

w, =

where:

2.0

(
2.0 \ fE(y)/Ep

° lE(y)/E J \Jf^
w„ =

E(y)sO/ (E(y)/E
()

)'

l(E(y)/E ) I E )\ L(E(y)/E )(y + l)J L(y + l)
4

J

3.0

w„ =i
6.0

L(E(y)/E y

^E(y)^

LV ^o J J

2.0

_(E(y)/E )

4

_

^E(y)^
>-<

K o J

12.0

(E(y)IE )'\{E(y)IEj(y + l) + 3(E(y)IE )

(E(y)/E )(y + 1)

4

(E(y)/E )(y + 1)-

(E(y)/E )(y + 1)

>+

Figure 33 Three-Term Approximate Analytical Solution (wa )

The structure of the equations themselves offers insight. Note that each w
k

is

a function only of z and y ; they are completely independent of n, (i.e., temperature).

The contribution of r) to the total solution manifests itself solely in the series-

expanded expression for w
a

. Note also that the equation for w is identical to the

original governing differential equation for the case when r\ is allowed to increase to
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infinity. As a result, the partial solution w is itself a valid approximation for the

true solution (w) at large values of n,. This fact is also corroborated by the series-

expanded expression for w
a ; all terms beside w vanish for large r).

As before, plots of K +

can be recovered from the data for w (or, in this case,

w
a ). Using parameter values from the first nitrogen plasma case (z= 1.7563 and

n,=99.1229), K* profiles from both the 'Outer Solution' and the Fourth-Order Runge-

Kutta scheme are compared (Figure 34). Although the 'Outer Solution' does indeed

appear to diverge for extremely small values of y, the two curves are nearly

identical. Such correlation offers comforting evidence for the validity of the

numerical procedures and results presented in this work.

Figure 35 illustrates the soundness of using just w to recover data for large-

rj cases. The solid curve is from the Runge-Kutta solution for the 300°K nitrogen

case (z=1.7563 and n,=l 982.5); the dotted profile depicts data generated using only

the partial solution w .
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Kplus (Case I): Numerical vs. Analytical
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Kplus (High eta): Numerical vs. Analytical
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III. THE CYLINDRICAL PROBLEM

The following sections present detailed derivations and analysis for the

cylindrical anode sheath problem. As with the planar cases, the focus is limited to

steady, low-temperature collisional plasmas. Exploration of the cylindrical sheath is

desirable, as several functioning plasma devices contain or employ a cylindrical

architecture. In addition, these results can be compared and contrasted to the

previously-presented Cartesian results. The geometry of the one-dimensional

cylindrical problem is illustrated in Figure 36.

(distance from
the center)

Figure 36 Cylindrical Anode Geometry

A. DERIVATIONS

Attainment of a governing differential equation for the cylindrical case begins

with the re-derivation of the applicable relations (Gauss' equation and the two species

continuity equations) in cylindrical form. Reference 6 presents the following

differential form of Gauss' law:

VE = - (10)
£
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V is the del operator, E is the vector form of the electric field, p is the charge

density (which can be represented here in accordance with Equation 1 1 ), and e is the

permittivity of free space. The divergence (VE) of the electric field in cylindrical

coordinates is given in Equation (12) below:

P = e(n,-n
e ) (11)

- fV\ a, x (\ ve £eVE= - — (rE,)+ -h^ + -T^ < 12 >

vry dr ,rjae dz

For a one-dimensional electric field that varies only as a function of radius (r),

combination of Equations (10), (11), and (12) yields the following one-dimensional

cylindrical form of Gauss' equation

dE— +
dr

lV = ^( ni
- nJ (13)

Comparison of Equations (13) and (la) accentuates the appearance of a new term

which is the result of the cylindrical derivation.

The species continuity equations are derived from conservation equations [Ref. 7]

that can be manipulated into the form given below:

-Je
= -eu^

e
E-eD

e
Vn

e
(14a)

I =eu i

n,E-eDVn
1

(14b)

For a one-dimensional electric field, the previous relations are easily rewritten as

shown in Equations (15a) and (15b) on the following page; these are the 1-D

cylindrical species continuity equations .
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j =e(j/i
c
E + eD

j,
= eu,n

i

E-eD,

dn
c_

dr

dr

(15a)

(15b)

Note that these species equations are nearly identical to those for the planar case

(Equations lb and lc); only the independent variable has been renamed.

The procedure from this point is the same as that of Reference 2:

• Combine these forms of Gauss' equation and the species continuity equations

with the Einstein relation

• Incorporate the K-terms as defined by Equation (2)

• Assume isothermal conditions

• Derive a single nonlinear differential equation in K\ E, and their derivatives

The desired intermediate differential equation (the cylindrical counterpart to

Equation 3) is presented below. Note that all primes here denote derivatives with

respect to the variable r.

ki,ric
v

e l E
>

+ K +

=
2J

eD
e V

f*W
v e-

fE"E^ (E"} f B } f(E')

lrEyV E J V E 2

/ r^Ej

f(v\ 2>
\ f

rE2

\X )
(16)

In comparison to Equation (3), several new terms exist that are due solely to the

cylindrical nature of the derivation. However, the validity of the above expression is

demonstrated by letting r increase towards infinity, which causes the equation to

approach the planar case. In that limit, Equation (16) reduces exactly to the

corresponding Cartesian expression of Equation (3).

The next step calls for an 'educated guess' of the form for E(r), and substitution

of that function into Equation (16). For reasons stated previously, the basic form of
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the electric-field function given in Equation (4) will be retained, although in a form

modified for use with a cylindrical anode. The plasma electric field begins at the

anode surface, which for a cylindrical anode is at r^ (as opposed to r=0, the anode

center). Thus, the presumed electric field function is

E(r) = E, exp
B

L((r-0+b)-
(17)

where ^ is the anode radius, B and b are constants that give specific shape to the

field, and the range of r is from r^ to °°.

Following substitution of E(r) into Equation 1 6, the resulting lengthy expression

is made dimensionless through use of the relations and definitions given in Figure 37.

r =(Hi
I b

E/E
r„ =(£./£J exp

L(r + D-J
K\ =

_K_

f
eE

<

b^

. q s , Y-
( eE :

}

l
kT̂ en E .

^ ex, ex J

Figure 37 Cylindrical Nondimensionalized Parameters

Note that q is the cylindrical counterpart to z, and that f has a more conventional

range of zero to infinity. The new parameter y appears because the simplifications

that were previously employed (based on field and current properties at the electrode

surface and in the undisturbed plasma) in the Cartesian derivation [Ref. 2] cannot

eliminate all of the same constants when applied to the cylindrical case, y has units of

length, and can be thought of as a 'characteristic radius' of the plasma conditions and

anode width that define q and r)
c

.
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Further simplification of the differential equation is achieved with the derived

expression [Ref. 2]:

< J

]

fenE^

v
kx J

(18)

Finally, order-of-magnitude analysis reveals that some of the surviving terms

cannot be neglected unless the anode radius (r^ ) is sufficiently large. As a result, the

differential equation can take one of two possible forms; the appropriateness of either

is a function mainly of the anode's radial magnitude. Thus, the governing differential

equation and boundary condition for 'normal-sized' anodes (e.g., r^-10 mm) are

given in Figure 38, while the corresponding equations for a 'wire-thin' anode (e.g.,

r„ «0.1 mm) are given in Figure 39.

Figure 38 Simplified Nondimensional Differential Equation
and Boundary Condition, Governing the 1-D 'Normal Anode'

Cylindrical Problem

( 1 ^ K +

nJdfLE/E
ro _

K +

(0)=l

+ K + l +

(? + !)'

1
-r(tA )+l

= 2

Figure 39 Simplified Nondimensional Differential Equation
and Boundary Condition, Governing the 1-D 'Wire Anode'

Cylindrical Problem
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The equations of Figure 39 are actually appropriate for all magnitudes of i^, but

some of the terms become negligible for the larger anodes. In fact, the degree of

influence exerted by the extra terms of that differential equation (Figure 39) is

directly tied to the ratio v/r ; unless the cylindrical anode's radius is smaller than, or

within an order-of-magnitude of, the 'characteristic radius' (y), then those extra

terms are insignificant For this reason, the simplified differential equation of Figure

38 is also provided.

Note also that this 'normal anode' differential equation is identical in form to the

corresponding planar equation (Figure 3), which indicates that in spite of a tortuous

derivation, most cylindrical and planar anodes disturb the plasma in nearly the same

manner. Finally, as ^ in the expression of Figure 39 increases toward infinity

(approaching the planar case), the extra terms vanish and the planar differential

equation is recovered.

The parameters q and r\. have comparable meaning to their planar counterparts,

and their specific values are computed using similar techniques. It can be shown

through extensive manipulations that the cylindrical equivalents to Equations (5) and

(6) are as follows:

b =
2e Eo

_iU<l + Y/0_
q

:

exp(2q
2

) (19)

A(j>
a
=E ot ^f(q) (20a)

where f(q) = q£
,2k-:

J(2k-l)k!
(20b)
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Note that the infinite series converges for all values of q, and that the y/r,, term

in the denominator of Equation (19) is only relevant for the 'wire-thin' (and smaller)

anodes. The above equations are combined to generate the two important equations

of Figure 40, which are used to compute the parameters q and n, in accordance with

the following familiar procedure:

• the gas composition defines Ac^

• the particular case or application specifies E, and n x

• the device in use fixes the anode radius ij,

• q is then computed using the implicit equation at the top of Figure 40

• the plasma temperature % then yields n, via the bottom equation of Figure 40

• for the extremely thin anodes, v is computed from its definition and the value of

E(r = 0); both expressions are found in Figure 37.

en,x.A<|)

k
2£oE,

f

= q
1

f(q)exp(2q
2

)

f
A4>

a
^

^2^E
exp(2q

:

)

n,
=

>eA4>
exp(q

:

)/qf(q)

Figure 40 Equations That Yield q and r) c

As with the planar cases, specific values of q and r)
e
allow computation of the

electric field parameters B and b (Equations 19 and 20), which in turn yield the fitted

form of the E distribution (Equation 17), and ultimately permit the creation of K +

,

(K
+

) , and hei profiles in the plasma regions close to the anode. All that remains to

be derived are the cylindrical forms of the equations that compute those n-profiles,

which are produced through manipulation of Equations (2), (13), and (15). The

resulting elaborate expressions are presented in Figures 41 and 42.
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Figure 41 Ion Population Equation

n
e

r n ^

n L(f+i)- (f+^/b)j

Figure 42 Electron Population Equation

Gratifyingly, these n-profile equations produce their planar counterparts as r„

approaches infinity. Note also that the expressions for n
(

and h
e
are valid for all

cylindrical anodes. Unfortunately, only one term in Figure 41 could be neglected for

larger, 'normal-sized' anodes, which stifles the notion of a separate 'simplified'

equation for such cases.

B. NUMERICALLY SOLVED CASES

1. Procedure

The previous derivations allow detailed numerical analysis of cylindrical

anode sheaths in certain plasma conditions, using a procedure similar to that

performed on the planar problem. As before, the governing equation is rewritten in

terms of w, as defined in Equation (2 1 ). The resulting differential equations and

boundary conditions for both the 'normal-sized* anode (~5 mm radius and larger; this

form also applies when (v/r ) << and the 'wire-thin' anode (~0.5 mm radius and

smaller, or when {\It )~\) cases are presented in Figures 43 and 44. Note that the

56



form of the equations for the 'normal-sized' anode is identical to that of the

corresponding planar equations (Figure 6).

w(r) =
E(~r)/E

ro

(21)

<*
r

!

f
F>

—[w] =
2t)c ~nc

k>
w -t\

(^eJ
fr + 1)

3

w(0)=l

Figure 43 Modified 1-D Cylindrical Equations
for Numerical Solution ('Normal-Sized' Anode)

— [w] = 2r),-r|,
dr

V
E
,J

w - r\
c

1 S
\ **

(e/eJ
2

(f + 1)
3 n, {-

(e/eJ
:

f(b/r )
+

w(0)=l

Figure 44 Modified 1-D Cylindrical Equations
for Numerical Solution ('Wire-Thin' Anode)

As before, application of a FORTRAN Runge-Kutta algorithm (see Appendix

A), combined with the previously -outlined data manipulations, yield the numerical

profiles for K\ (K
+

) , and n
e

. for any desired plasma and anode width.

2. The Nitrogen Problem with a Cylindrical Anode

The nitrogen plasma conditions designated previously as 'Case I' for the

planar anode are now analyzed for both the 'normal-sized' and 'wire-thin' cylindrical

anodes. The Case I conditions are repeated on the next page:
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• nitrogen's anode potential drop (A4>
a

): 15.51 V (singly ionized)

• the electric field strength in the undisturbed plasma (E„ ): 12,000. V/m

• the particle density (n^): 10
19 m" 3

• the temperature (\): 6000°K

• the anode radii under consideration (ij)): 10.0 mm and 0.1mm

These specifications and the newly-derived equations produce the following

parameter values for their respective anodes:

TABLE 1 CYLINDRICAL PARAMETERS FOR CASE I CONDITIONS

Tq = 10. mm ^ = 0. 1 . mm

q
-> 1.75656 1.78774

n c
-> 99.1571 102.818

Y
-» N/A 3.9597x10" m

b - 1.953* 10~ 4 m 1.813xl0"
4 m

=,- 262,543. V/m 293,216. V/m

A comparison reveals that the parameter values for the 'normal-sized' (10.

mm) anode differ negligibly (only 0. 1 % and less) from their corresponding planar

values. This is not an unexpected result, in light of the cylindrical equations'

similarity to their planar counterparts for the bigger anodes. More surprising are the

values computed for the 'wire-thin' (0. 1 mm) anode; while their differences from the

planar values are not insignificant, only E
r

differs by more than $%. The extreme

sensitivity of the parameter q. however, implies that percentage comparisons may be

misleading.
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Direct comparison of the planar and cylindrical profiles best illustrates the

near-negligible differences in their respective sheath and ambipolar regions. Figures

45 and 46 present the Case I K-tenn profiles produced by the three anode types

(plane, 'normal' (10. mm) cylinder, and 'wire' (0.1 mm) cylinder), while Figure 47

depicts the n-profiles for each of those anodes. As can be seen, profiles for the

'normal' cylindrical anode are visually indistinguishable from the planar anode

profiles. Amazingly, even the 'wire' anode profiles are nearly identical to those of

the planar anode. This is a welcome result; despite many differences in the derivation

and appearance of the governing equations for each type of anode, it seems that for

this 'small y' family of plasmas those cylindrical anodes whose radius is greater than

that of a human hair can be treated to behave as planar . For such plasmas, only those

cylindrical anodes whose radii are on the order of the sheath thickness itself would

exhibit significant non-planar characteristics.

To further validate this hypothesis, the three anodes are also compared under

the lower-temperature 'Case III' circumstances, which represent the same conditions

as Case I except that \ = 300° K. Consequendy, the only parameter listed in Table 1

that changes is n, c ; its Case III values are 1983.14 for the 'normal-sized' cylinder, and

2056.36 for the 'wire' anode. Figures 48, 49, and 50 show the K\ (K
+

) , and nei

profiles (respectively) for Case III conditions. Once again, the planar and 10-mm-

radius anodes disturb the plasma in identical fashion, while the 0.1-mm-radius anode

exhibits nearly negligible variations.

It is worth noting that the ratio (v/r ) can theoretically become a meaningful

factor even for the 'normal-sized' anodes; extremely low-density plasmas could

possibly generate values of v in the millimeter range. Thus, the notion of sheath

characteristics being strictly a function of anode radius is valid only for the

conditions being considered in this work.
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Kplus, Cyl. Anode Comparison, Case I
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Figure 45 K* Profiles, a Three-Anode Comparison
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(Kplus/, Cyl. Anode Comparison, Case I
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n-Profiles, Cyl. Anode Comparison, Case I
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Kplus, Cyl. Anode Comparison, Case III
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(Kplus) , Cyl. Anode Comparison, Case III
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n-Profiles, Cyl. Anode Comparison, Case III
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Figure 50 n ei Profiles, a Three-Anode Comparison
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IV. CONCLUSIONS

The manner in which one-dimensional planar and cylindrical anodes disturb

collisional, isothermal plasmas has been explored in detail. Appropriate sheath and

ambipolar regions have been shown to develop, for a given specific and reasonable

electric field distribution, across a wide range of plasma types and conditions.

Numerical solutions of the nondimensional governing equations have allowed specific

and important observations to be made concerning:

• the effect of temperature variation on plasmas in the anode region

• traits that are characteristic of various plasma 'families', and traits that appear

to be common to all collisional, low-temperature plasmas

• the effect that differing anode radii have on the sheath for cylindrical anodes

• the degree of difference between sheaths of planar and cylindrical anodes

In addition, an analytical method has been presented that offers a simplified yet

accurate algebraic solution for the lower-temperature plasmas. .

The following briefly summarizes the specifics for each of these results.

Appropriate Sheath Existence : In each case considered, the (K
+

)
curves showed

that the net rate-of-charge-production decreases and vanishes toward the outer edge

of the sheath Moreover, each of the n-profiles clearly depicted sheath and ambipolar

regions which were reasonably located with respect to the anode surface.

Overall-Temperature Variation Effects : Results of this work indicate that at

lower temperatures, charge production in the outer sheath is generic to the electric

field distribution, and is thus independent of the details of ionization and

recombination. Additionally, the n
e

. profiles, and thus the sheaths themselves, have

been shown to be nearly unaffected by substantial changes in temperature. This

somewhat unexpected result, which held for every plasma case considered, reduces

any consequences caused by the isothermal-particle assumption (i.e., the assertion that
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T
e
= T

s

= T ). It is interesting to note that the large magnitudes and physical meaning

off) (the ratio of electrical energy to thermal energy in the sheath) actually predict

such independence from temperature variations.

Plasma 'Family' Characteristics : All low-temperature, collisional plasmas can be

partitioned into broad groupings based on their specific nondimensional 'z' or 'q'

value (z denoting a planar anode problem, and q signifying cylindrical anodes). Each

plasma 'family' thus exhibits its own characteristic electric field and sheath

properties, even though its members may be widely diverse in composition and

condition.

Plasmas with large z (or q) values show significant charge production throughout

the entire sheath, in contrast to the localized and decreased production rates depicted

for the 'small z/q' plasmas. This may indicate the fact that electric-field effects are

more modest and thus localized in those plasmas with smaller values of z or q. In

addition, the magnitude of the charged particles near the anode changes dramatically

as 'z/q' varies, especially in the sheath. The sheaths of 'large z/q' plasmas exhibit

charged-particle densities up to one order-of-magnitude smaller than those of the

'small z/q' sheaths. More importantly, the sheath itself extends further from the

anode surface as the value of 'z/q' decreases. In particular, the sheath of the 'small

z/q' plasmas stretches over ten times the distance occupied by the 'large z/q' sheath.

Cylindrical Anode Radius Effects : The sheath and the charge production rates

have been shown to vary as the anode radius varies; however, the differences are

almost negligible for all practical anodes and conditions. It appears that only

extremely low-density plasmas, or cylindrical anodes whose radii are on the order of

the sheath thickness itself, would exhibit significantly different characteristics.
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Planar and Cylindrical Anode Differences : In an extension of the previous

paragraph, the results of this work indicate that for the range of conditions explored,

all practical cylindrical anodes can be treated to behave as planar anodes.

Simple Analytical Approximations (Low Temperatures Only): Using the 'Outer

Solution' technique, an algebraic solution can be used to generate highly accurate

approximations to low-temperature anode problems. In addition, as long as

derivatives of the presumed electric field distribution exist, the sheath profiles for all

cases can be produced analytically to any desired accuracy.

One suggestion for further work involves researching the effects that other

electric field distributions would have on the anode problem. Such distributions may

be derived from empirical data or from other 'guesstimates', and may have three or

more adjustable parameters. The most prominent reason for this suggestion is the

need to corroborate the generic charge production rate observed at lower

temperatures.

Another area requiring further study is the exploration of two-temperature

plasmas and their anode sheaths. Results for such conditions could confirm the

assertion of sheath insensitivity to temperature changes.
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APPENDIX A

Applicable FORTRAN Programs
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THIS PROGRAM IS BUILT AROUND A GRAFkit 3.1 RUNGE-KUTTA
ALGORITHM PRODUCED BY SCO, INC.

DOUBLE PRECISION YA( : 1 ) , YN ( : 1 ) , EK ( : 4 , : 1 ) , Y ( : 1 ) , XA
DOUBLE PRECISION XP , XB , XM , H , HH , E , W , KPLUS , WPRM , KPLSPRM
REAL PI ,XL,XCHK, EINF, E0,Z, ETA
INTEGER NS,P1
PRINT *

PRINT *,' FOURTH ORDER RUNGE-KUTTA SCHEME '

PRINT *,' FOR THE CARTESIAN COMPUTATION '

PRINT *,' OF W, KPLUS, & KPLSPRM'

PRINT *, 'INPUT VALUES FOR EINF, EO, Z, AND ETA'
READ *, EINF, E0,Z, ETA

IM=1 ! Number of equations
Y(l) = 1.00 ! Initial condition for y~l at x=XP.
Y(2) = ! Initial condition for y~2 at x=XP (if nee)

PRINT *

PRINT *, 'INTERVAL OF X FOR PRINTING ?'

READ *,PI

PRINT *, 'INPUT THE STEP SIZE (delta-x)'
READ *,H

NS = NINT(PI/H)

PRINT *, 'MAXIMUM X TO STOP CALCULATION ?'

READ *,XL

PRINT *, ' H= ' ,H

P1 =

XP=0
HH=H/2
KPLUS=1.0

print *, ' HH= ' , HH
print *, ' NS= ' , NS
PRINT *

LI = ! Line no. initialization
PRINT*, 'LINE y/a KPLUS'
WRITE (*,98) LI,XP, KPLUS

LI=LI+1
DO N=1,NS

XB=XP ! Old time
XP=XP+H ! New time
XM=XB+HH ! Midpoint time

J=l ! This part computes k~l.
DO 1=1, IM

YA(I)=Y(I)
END DO
XA=XB
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CALL FUNCT (EK, J , YA, H , XA , EINF , EO,Z,ETA)

J=2 ! This part computes k~2.
DO 1=1, IM

YA( I )=Y( I )+EK(l,I )/2
END DO
XA=XM
CALL FUNCT( EK , J , YA , H , XA, EINF , EO ,Z,ETA)

J=3 ! This part computes k~3.
DO 1=1, IM

YA( I )=Y( I )+EK( 2,1 )/2
END DO
XA=XM

CALL FUNCT(EK, J , YA, H , XA , EINF , EO , Z , ETA

)

J=4 ! This part computes k~4.
DO 1=1, IM

YA( I )=Y( I )+EK( 3,1)
END DO
XA=XP
CALL FUNCT ( EK , J , YA , H , XA , EINF , EO , Z , ETA

)

DO 1=1, IM ! 4-th order Runge-Kutta scheme
Y( I )=Y( I )+(EK(l,I )+EK(2,I )*2+EK(3,I )*2+EK( 4, I ) )/6

END DO

W=Y(1)
You now have W( y/a ) — to get K+( y/a ) you must
multiply by { E( y/a ) / E(0) }

E=(EINF/EO)*DEXP( (Z**2. )/( (XP+1. )**2.
) )

KPLUS=W*E

To get the derivative of W [ W ( y/a ) ], just plug the
computed values of W back in the original lst-order ODE

J = 5

YA ( 1 ) =W
XA=XP
CALL FUNCT ( EK , J , YA , H , XA, EINF , EO , Z , ETA

)

WPRM=EK( 5,1)/H

NOW, to get d/dy [ K+ ] from d/dy [ K+/(E/E0) ] , must
perform the following operation:
KPLSPRM=(WPRM*(E**2. ) +KPLUS*E* ( -2 . * ( Z**2 . )/( (XP+1. )**3. ) ) )/E

To keep from generating unplottable 50,000 point data files,
the following will edit out data points depending on
'where' they occur

XCHK=(XP/H)
IF (XCHK .GT. 100000) GOTO 72
IF (XCHK .GT. 10000) GOTO 73
IF (XCHK .GT. 1000) GOTO 74
IF (XCHK .GT. 100) GOTO 75
GOTO 4 4

72 P1=P1+1 72



IF (

Pl =
GOTO
Pl = P
IF (

P1 =
GOTO
Pl = P
IF (

P1 =
GOTO
Pl = P
IF (

Pl =

PI .NE. 10000) GOTO 88

44
1 + 1

PI .NE. 1000) GOTO 88

44
1 + 1

PI .NE. 100) GOTO 88

44
1 + 1

PI .NE. 10) GOTO 88

WRITE (13,*)
WRITE (12,*)
WRITE (10*

XP,
XP,

) XP,

KPLSPRM
KPLUS
W

CONTINUE

END DO
WRITE (*,98) LI,XP, KPLUS
FORMAT(lX, 12, FlO.6, 2X, 1P4E16.8)

IF (XP .LT. XL) GOTO 28

PRINT*
PRINT*, 'TYPE 1 TO CONTINUE, OR TO STOP.'
READ * ,

K

IF(K.EQ.l) GOTO 1

PRINT*
END

***************************************

SUBROUTINE FUNCT ( EK , J , YA, H , XA, EINF , E0 , Z , ETA ) ! DEFINES SET OF EQS
DOUBLE PRECISION EK ( : 4 , : 1 ) , YA( : 10 ) , H , XA, PARTl ( : 4 , : 1 )

DOUBLE PRECISION PART2 ( : 4 , : 10

)

PARTI ( J,1)=DEXP( (2.*Z**2.)/( (XA+1. )**2.
) )/( (XA+1. )**3.

)

PART2( J,l )=(DEXP( (Z**2. )/( (XA+1. )**2.
) )

) * ( ETA*EINF/E0

)

EK( J,l )=(2.*ETA-PART2( J,l )*YA(1 ) - ( ETA* ( EINF/E0 ) **2
. )* PARTl ( J,l )

) *H
EK(J,2)= the second ode, if nee.
RETURN
END
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C THIS PROGRAM IS BUILT AROUND A GRAFkit 3.1 RUNGE-KUTTA
C ALGORITHM PRODUCED BY SCO, INC.

DOUBLE PRECISION YA( : 1 ) , YN ( : 1 ) , EK ( : 4 , : 1 ) , Y( : 1 ) , XA
DOUBLE PRECISION XP , XB , XM , H , HH , E , W , KPLUS , WPRM , KPLSPRM
DOUBLE PRECISION NI , NE , NI 1 , NI 2 , NI 3 , NI 2A, NI 3A, NEl
REAL PI,XL,XCHK,EINF,EO,Z,ETA
REAL EPSO,CHRG,K,TEMP,NINF,A
INTEGER NS,P1

EPS0=8.853742E-12
CHRG=1.602E-19
K=1.38054E-23

PRINT *

PRINT *,' FOURTH ORDER RUNGE-KUTTA SCHEME '

PRINT *,' FOR THE CARTESIAN COMPUTATION '

PRINT *,' OF NI AND NE

'

PRINT *, 'INPUT VALUES FOR EINF, EO , Z, AND ETA'
READ *, EINF, E0,Z, ETA
PRINT *, 'INPUT VALUES FOR TEMP. AND NINF'
READ *, TEMP, NINF
PRINT *, 'INPUT VALUE FOR a'
READ *,A

1 IM=1 I Number of equations
Y(l) = 1.00 ! Initial condition for y~l at x=XP

.

C Y(2) = ! Initial condition for y~2 at x=XP (if nee)

PRINT *

PRINT *, 'INTERVAL OF X FOR PRINTING ?'

READ *,PI

PRINT *, 'INPUT THE STEP SIZE (delta-x)'
READ * ,

H

NS = NINT(PI/H)

PRINT *, 'MAXIMUM X TO STOP CALCULATION ?'

READ *,XL

PRINT *, ' H= ' ,H

P1 =

XP=0
HH=H/2
KPLUS=1

,

,0

print *,

print *
,

PRINT *

,
' HH=

,

' NS =

' ,HH
'

, NS

LI =
PRINT* , 'LINE
WRITE (*,98)

y/a
LI,XP,

• Line no. initialization
KPLUS'

KPLUS
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LI=LI+1
DO N=1,NS

XB=XP
XP=XP+H
XM=XB+HH

Old time
New time
Midpoint time

! This part computes k~l.J = l

DO 1=1, IM
YA(I)=Y(I)

END DO
XA=XB
CALL FUNCT (EK, J , YA , H , XA , EINF , EO , Z , ETA

)

J=2 ! This part computes k~2.
DO 1 = 1, IM

YA( I )=Y( I )+EK(l,I)/2
END DO
XA=XM
CALL FUNCT (EK,J,YA,H,XA,EINF,EO,Z, ETA

)

J=3 ! This part computes k~3.
DO 1=1, IM

YA( I )=Y( I )+EK( 2, I )/2
END DO
XA=XM

CALL FUNCT (EK, J , YA, H , XA , EINF , EO , Z , ETA

)

J=4 ! This part computes k~4.
DO 1=1, IM

YA( I )=Y( I )+EK( 3,1

)

END DO
XA=XP
CALL FUNCT (EK,J,YA,H,XA,EINF,EO,Z, ETA

)

DO 1=1, IM ! 4-th order Runge-Kutta scheme
Y(I)=Y(I) + (EK(1,I)+EK(2,I )*2 + EK( 3,1 )*2+EK( 4,1 ) )/6

END DO

W=Y(1)
You now have W( y/a )

— to get K+( y/a ) you must
multiply by { E( y/a ) / E(0) }

E=(EINF/EO)*DEXP( (Z**2. )/( (XP+1. )**2.
) )

KPLUS=W*E

To get the derivative of W [ W'( y/a ) ], just plug the
computed values of W back in the original lst-order ODE

J=5
YA( 1 )=W
XA=XP
CALL FUNCT (EK, J, YA, H , XA, EINF , EO , Z , ETA

)

WPRM=EK( 5,1 )/H

NOW, to get d/dy [ K+ ] from d/dy [ K+/(E/E0) ] , must
perform the following operation:
KPLSPRM=(WPRM*(E**2. ) +KPLUS*E* ( -2 . * (

Z* *2 . )/( (XP+1 .
)**3.

) ) )/E

75



AND NOW, to generate the non-dimensionalized n-curves
ne( y/a ) and ni( y/a )

just compute these equations:

NI1=(KPLUS/E)*(EINF/E0

)

Nl2A=(EPS0*K*TEMP)/( (CHRG**2. ) *NINF* ( A**2 . ) )

NI2=NI2A*( (6.*(Z**2.)/( (XP+1. )**4.))+(4.*(Z**4.)/( (XP+1
NI3A=( (EPSO*EO)/(CHRG*NINF*A) )*E
NI3=NI3A*(-2.*(Z**2. )/( (XP+1. )**3.

) )

NI=.5*(NI1+NI2+NI3)
NEl=( (E0*EPS0*(Z**2. ) )/( CHRG*NINF*A) )*E*(2./( (XP+1. )**3

NE=NI+NE1

)**6.)))

))

C

c
c
c

To prevent every data point from being written to the file
(resulting in unplottable 50,000 pt. data files), the following
edits out a percentage of the data depending on 'where' it
was generated.

XCHK=(XP/H)
IF (XCHK .GI'. 10 0000) GOTO 7 2

IF (XCHK .GI'. 10000) GOTO 73
IF (XCHK .GI'. 1000) GOTO 74
IF (XCHK .GI'. 100) GOTO 7 5

GOTO 4 4

72 P1=P1+1
IF (PI .NE. 10000) GOTO 88
P1 =
GOTO 4 4

73 P1=P1+1
IF (Pi .NE. 1000) GOTO 88
P1 =
GOTO 4 4

74 Pl=Pl+l
IF (Pi .NE. 100) GOTO 88
Pl =
GOTO 4 4

75 P1=P1+1
IF (PI .NE. 10) GOTO 88
Pl =

44 WRITE (10, *) XP, NI
WRITE (11, *) XP, NE

88 CONTINUE

98

END DO
WRITE (*,98) LI,XP, KPLUS
FORMAT(lX, 12, F10.6, 2X, 1P4E16.8)

IF (XP .LT. XL) GOTO 2l

200 PRINT*
PRINT*, 'TYPE 1 TO CONTINUE, OR TO STOP.'
READ *,Kl
IF(Kl.EQ.l) GOTO 1

PRINT*
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END

***************************************

SUBROUTINE FUNCT ( EK , J , YA , H , XA , EINF , EO , Z , ETA ) ! DEFINES SET OF EQS
DOUBLE PRECISION EK ( : 4 , : 1 ) , YA( : 1 ) , H , XA , PARTI ( : 4 , : 1 )

DOUBLE PRECISION PART2 ( : 4 , : 1 )

PARTI ( J, 1 )=DEXP( (2.*Z**2.)/( (XA+1. )**2.
) )/( (XA+1. )**3.

)

PART2( J,l )=(DEXP( (Z**2. )/( (XA+1 .
)**2.

) )
) * ( ETA*EINF/EO

)

EK( J,l )=(2.*ETA-PART2( J,l )*YA( 1 ) - ( ETA* ( EINF/EO ) **2
. )*PARTl( J,l) ) *H

EK(J,2)= the second ode, if nee.
RETURN
END
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C THIS PROGRAM IS BUILT AROUND A GRAFkit 3.1 RUNGE-KUTTA
C ALGORITHM PRODUCED BY SCO, INC.

DOUBLE PRECISION YA( : 1 ) , YN ( : 1 ) , EK ( : 4 , : 1 ) , Y( : 1 ) , XA
DOUBLE PRECISION XP , XB , XM , H , HH , E , W, KPLUS , WPRM , KPLSPRM
REAL PI ,XL,XCHK, EINF, ER0,Q, ETA
INTEGER NS,Pl
PRINT *

PRINT *,' FOURTH ORDER RUNGE-KUTTA SCHEME '

PRINT *,' FOR THE CYLINDRICAL COMPUTATION '

PRINT *,' OF W, KPLUS, & KPLSPRM'
PRINT *,'

( NORMAL-SIZED ANODE: rO = 1 cm )

'

PRINT *, 'INPUT VALUES FOR EINF, ErO, Q, AND ETA'
READ *, EINF, ERO, Q, ETA

1 IM=1 ! Number of equations
Y(l) = 1.00 ! Initial condition for wl at r~=XP. .

C Y(2) = ! Initial condition for w2 at r~=XP (if nee)

PRINT *

PRINT *, 'INTERVAL OF r~ FOR PRINTING ?'

READ *,PI

PRINT *, 'INPUT THE STEP SIZE (delta-r~)'
READ * ,

H

NS = NINT(PI/H)

PRINT *, 'MAXIMUM r~ TO STOP CALCULATION ?'

READ *,XL

PRINT * ,
' dr~ = ' ,H

P1 =
XP=0
HH=H/2

.

KPLUS=1 .

print *, ' NS= ' , NS
PRINT *

LI = ! Line no. initialization
PRINT*, 'LINE r~ KPLUS'
WRITE (*,98) LI,XP, KPLUS

28 LI=LI+1
DO N=1,NS

XB=XP ! Old time
XP=XP+H ! New time
XM=XB+HH ! Midpoint time

•Runge-Kutta Scheme-

J=l ! This is part 1.
DO 1=1, IM
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YA(I)=Y(I)
END DO
XA=XB
CALL FUNCT(EK, J, YA,H,XA,EINF f ER0,Q,ETA)

J=2 ! This is part 2.

DO 1*1, IM
YA( I )=Y( I )+EK( 1,1 )/2

END DO
XA=XM
CALL FUNCT(EK, J , YA , H , XA , EINF , ERO , Q , ETA

)

J=3 ! This is part 3.
DO 1*1, IM

YA( I )=Y( I )+EK(2, I )/2
END DO
XA=XM

CALL FUNCT(EK, J , YA, H , XA, EINF , ERO , Q , ETA

)

J=4 1 This is part 4.
DO 1*1, IM

YA( I )=Y( I )+EK( 3,1)
END DO
XA=XP
CALL FUNCT(EK, J,YA,H,XA,EINF,ERO,Q,ETA)

DO 1*1, IM ! 4-th order Runge-Kutta scheme
Y(I)=Y(I)+(EK(1,I)+EK(2,I )*2+EK( 3 , I ) *2+EK ( 4 , I ) )/6

END DO

W=Y(1)
You now have W( r~ )

— to get K+ ( r~ ) you must
multiply by { E( r~ ) / E(0) }

E=(EINF/ERO)*DEXP( (Q**2. )/( (XP + 1. )**2.
) )

KPLUS=W*E

To get the derivative of W [ W ( r~ ) ] , just plug the
computed values of W back in the original lst-order ODE

J=5
YA ( 1 ) =W
XA=XP
CALL FUNCT(EK, J , YA, H , XA, EINF , ERO , Q , ETA

)

WPRM=EK( 5,1)/H

NOW, to get d/dr~ [K+] from d/dr~ [ K+/(E/ErO) ] , must
perform the following operation:
KPLSPRM=(WPRM*(E**2 . ) +KPLUS*E* ( -2 . *(Q**2. )/( (XP + 1 . )**3. ) ) )/E

To keep from generating unplottable 50,000 point data files,
the following edits out some of the data points depending
on 'where' they occur

XCHK=(XP/H)
IF (XCHK .GT. 100000) GOTO 72 ?q
IF (XCHK .GT. 10000) GOTO 73



72

73

74

75

44

IF (XCHK .GT. 1000) GOTO 74
IF (XCHK .GT. 100) GOTO 7 5

GOTO 4 4

Pl == P1 + 1

IF (PI .NE. 10000) GOTO 8 8

Pl ==

GOTO 4 4

Pl == P1 + 1

IF (PI .NE. 1000) <30TO 88
Pl ==

GOTO 4 4

Pl ==P1+1
IF (PI .NE. 100) GOTO
Pl ==

GOTO 4 4

Pl ==P1+1
IF (PI • NE. 10) GOTO
Pl ==

WRITE (13, *) XP, KPLSPRM
WRITE (12, *) XP, KPLUS
WRITE (14, *) XP, W

88 CONTINUE

END DO

WRITE (*,98) LI,XP, KPLUS
98 FORMAT(lX, 12, F10.6, 2X, 1P4E16.8)

IF (XP .LT. XL) GOTO 28

200 PRINT*
PRINT*,' TYPE 1 TO CONTINUE, OR TO STOP.'
READ *,K1
IF(Kl.EQ.l) GOTO 1

PRINT*
END

C*****************************************

SUBROUTINE FUNCT ( EK , J , YA , H , XA , EINF , ER0 , Q , ETA ) ! DEFINES SET OF EQS
DOUBLE PRECISION EK ( : 4 , : 10 ) , YA( : 1 ) , H , XA, PARTI ( : 4 , : 10

)

DOUBLE PRECISION PART2 ( : 4 , : 10

)

PARTI ( J,1)=ETA*(DEXP( (2.*Q**2. )/( (XA+1. )**2. ) )/( (XA+1. )**3.
) )

PART2( J,1) = (DEXP( (Q**2. )/( (XA+1. )**2. ) )
) * ( ETA*EINF/ER0

)

EK( J,1)=(2.*ETA-PART2( J,l)*YA(l)-( ( EINF/ER0 ) **2
. )*PARTl( J,l) ) *H

C EK(J,2)= the second ode, if nee.
RETURN
END
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THIS PROGRAM IS BUILT AROUND A GRAFkit 3.1 RUNGE-KUTTA
ALGORITHM PRODUCED BY SCO, INC.

DOUBLE PRECISION YA( : 1 ) , YN ( : 1 ) , EK ( : 4 , : 1 ) , Y ( : 1 ) , XA
DOUBLE PRECISION XP , XB , XM , H , HH , E , W, KPLUS , WPRM , KPLSPRM
DOUBLE PRECISION NI , NE , NI 1 , NI 2 , NI 3 , NEl
REAL CC1,CC2,CC3,S2,S3,S2A,S2B, S2C
REAL PI ,XL,XCHK, EINF, ER0,Q, ETA
REAL EPSO,CHRG,K,TEMP,NINF,B,RO
INTEGER NS,Pl

EPS0=8.853742E-12
CHRG=1 .602E-19
K=1.38054E-23
R0=.01

PRINT *

PRINT *,' FOURTH ORDER RUNGE-KUTTA SCHEME '

PRINT *,' FOR THE CYLINDRICAL COMPUTATION '

PRINT *,' OF NE AND NI

'

PRINT *,'
( NORMAL-SIZED ANODE: rO = 1 cm )'

PRINT *, 'INPUT VALUES FOR EINF, ErO, Q, AND ETA'
READ *, EINF, ER0,Q, ETA
PRINT *, 'INPUT VALUES FOR TEMP. AND NINF'
READ *, TEMP, NINF
PRINT *, 'INPUT VALUE FOR b'
READ * ,

B

IM=1 ! Number of equations
Y(l) = 1.00 ! Initial condition for wl at r~=XP.
Y(2) = ! Initial condition for w2 at r~=XP (if nee)

PRINT *

PRINT *, 'INTERVAL OF r~ FOR PRINTING ?'

READ *,PI

PRINT *, 'INPUT THE STEP SIZE (delta-r~)'
READ *,H

NS = NINT(PI/H)

PRINT *, 'MAXIMUM r~ TO STOP CALCULATION ?'

READ *,XL

PRINT *, ' dr~ = ' ,H

Pl =
XP=0
HH=H/2.
KPLUS=1.

print * ,
' NS= ' , NS

PRINT *

LI = ! Line no. initialization
PRINT*, 'LINE r~ KPLUS'
WRITE (*,98) LI,XP, KPLUS

fi
.



28 LI=LI+1
DO N=1,NS

XB=XP ! Old time
XP=XP+H ! New time
XM=XB+HH ! Midpoint time

C Runge-Kutta Scheme

J=l ! This is part 1.

DO 1=1, IM
YA(I)=Y(I)

END DO
XA=XB
CALL FUNCT(EK, J , YA, H , XA, EINF , ERO , Q , ETA

)

J=2 ! This is part 2.

DO 1=1, IM
YA( I )=Y( I )+EK( 1,1 )/2

END DO
XA=XM
CALL FUNCT(EK, J, YA , H , XA , EINF , ERO , Q , ETA

)

J=3 1 This is part 3.
DO 1=1, IM

YA( I )=Y( I )+EK( 2,1 )/2
END DO
XA=XM

CALL FUNCT(EK, J , YA , H , XA , EINF , ERO , Q , ETA

)

J=4 ! This is part 4.

DO 1=1, IM
YA( I )=Y(I )+EK( 3,1)

END DO
XA=XP
CALL FUNCT( EK , J , YA, H , XA, EINF , ERO , Q , ETA

)

DO 1=1, IM ! 4-th order Runge-Kutta scheme
Y( I )=Y( I )+(EK(l,I )+EK(2,I )*2+EK( 3,1 )*2+EK( 4,1 ) )/6

END DO

W=Y(1)
c You now have W( r~ ) — to get K+( r~ ) you must
c multiply by { E( r~ ) / E(0) }

E=(EINF/ERO)*DEXP( (Q**2. )/( (XP+1 .
)**2. )

)

KPLUS=W*E

c To get the derivative of W [ W ( r~ ) ] , just plug the
c computed values of W back in the original lst-order ODE

J=5
YA ( 1 ) =W
XA=XP
CALL FUNCT( EK , J , YA , H , XA, EINF , ERO , Q , ETA

)

WPRM=EK( 5,1 )/H
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NOW, to get d/dr~ [ K+ ] from d/dr~ [ K+/(E/ErO) ] , must
perform the following operation:
KPLSPRM=(WPRM*(E**2. ) +KPLUS*E* ( -2 . * (

Q* *2 . )/( (XP+1. )**3.
) ) )/E

AND NOW, to generate the nondimensionalized n-curves
ne( r~ ) and ni( r~ )

compute the following equations

NIl=(KPLUS/E)*(EINF/ERO

)

CC2=(K*TEMP*EPS0)/( (CHRG**2. ) *NINF* (
B* *2 . )

)

S2A=(6.*(Q**2. ) )/( (XP+1. )**4.
)

S2B=(4.*(Q**4.))/( (XP+1. )**6. )

S2C=(1/(XP+(R0/B) ) )*( (-2.*(Q**2. ) )/( (XP+1. )**3.
) )

S2=S2A+S2B+S2C
NI2=CC2*S2
CC3=(EPS0*ER0)/(CHRG*NINF*B)
S3=( (-2.*(Q**2. ) )/( (XP + 1. )**3.

) ) + (l./(XP+(R0/B) )

)

NI3=CC3*E*S3

NI=.5*(NI1+NI2+NI3)

CC1=(EPS0*ER0 )/(CHRG*NINF*B)
NEl=CCl*E*( (-2.*(Q**2.))/( (XP+1. )**3. ) + ( 1 ./( XP+ ( RO/B ) ) ) )

NE=NI-NEl

To keep from generating unplottable 50,000 point data files,
the following edits out some of the data points depending
on 'where' they occur

XCHK=(XP/H)
IF (XCHK .GT
IF (XCHK .GT
IF (XCHK .GT
IF (XCHK .GT
GOTO 4 4

100000) GOTO 72
10000) GOTO 7 3

1000) GOTO 74
100) GOTO 7 5

Pl = P
IF (

Pl =
GOTO
P1 = P
IF (

P1 =
GOTO
P1 = P
IF (

P1 =
GOTO
Pl = P
IF (

P1 =

1 + 1

Pi .NE. 10000) GOTO 88

44
1 + 1

PI .NE. 1000) GOTO 88

44
1 + 1

PI .NE. 100) GOTO 88

44
1 + 1

Pi .NE. 10) GOTO 88

WRITE (10,*) XP, NI
WRITE (11,*) XP, NE

CONTINUE
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END DO

WRITE (*,98) LI,XP, KPLUS
98 FORMATCLX, 12, F10.6, 2X, 1P4E16.8)

IF (XP .LT. XL) GOTO 28

200 PRINT*
PRINT*, 'TYPE 1 TO CONTINUE, OR TO STOP.'
READ *,K1
IF(Kl.EQ.l) GOTO 1

PRINT*
END

C*****************************************

SUBROUTINE FUNCT ( EK , J , YA, H , XA , EINF , ERO , Q , ETA ) ! DEFINES SET OF EQS
DOUBLE PRECISION EK ( : 4 , : 1 ) , YA( : 1 ) , H , XA , PARTI ( : 4 , : 1 )

DOUBLE PRECISION PART2 ( : 4 , : 10

)

PARTI ( J, 1 )=ETA*(DEXP( (2.*Q**2. )/( (XA+1. )**2.
) )/( (XA+1. )**3.

) )

PART2( J,1) = (DEXP( (Q**2. )/( (XA+1. )**2.
) ) ) * ( ETA*EINF/ER0

)

EK( J,l )=(2.*ETA-PART2( J,l )*YA(l)-( ( EINF/ERO ) **2
. )*PARTl( J,l) ) *H

C EK(J,2)= the second ode, if nee.
RETURN
END
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THIS PROGRAM IS BUILT AROUND A GRAFkit 3.1 RUNGE-KUTTA
ALGORITHM PRODUCED BY SCO, INC.

DOUBLE PRECISION YA( : 1 ) , YN ( : 1 ) , EK ( : 4 , : 1 ) , Y ( : 1 ) , XA
DOUBLE PRECISION XP , XB , XM , H , HH , E , W , KPLUS , WPRM , KPLSPRM
REAL PI , XL, XCHK, EINF, ER0,Q, ETA, R0,G,B, EPS 0,CHRG
INTEGER NS,P1
PRINT *

PRINT *,' FOURTH ORDER RUNGE-KUTTA SCHEME '

PRINT *,' FOR THE CYLINDRICAL COMPUTATION '

PRINT *,' OF W, KPLUS, & KPLSPRM'
PRINT *,'

( WIRE-THIN ANODE: rO = 0.1 mm )'

PRINT *, 'INPUT VALUES FOR EINF, ErO, Q, AND ETA'
READ *, EINF, ERO, Q, ETA
PRINT *, 'INPUT VALUES FOR GAMMA AND B'
READ *,G,B

R0=.0001
EPS0=8.853742E-12
CHRG=1.602E-19

IM=1 ! Number of equations
Y(l) = 1.00 ! Initial condition for wl at r~=XP.
Y(2) = I Initial condition for w2 at r~=XP (if nee)

PRINT *

PRINT *, 'INTERVAL OF r~ FOR PRINTING ?'

READ *,PI

PRINT *, 'INPUT THE STEP SIZE (delta-r~)'
READ *,H

NS = NINT(PI/H)

PRINT *, 'MAXIMUM r~ TO STOP CALCULATION ?'

READ *,XL

PRINT * ,
' dr~ = ' ,H

Pl =
XP=0
HH=H/2.
KPLUS=1.

print *, ' NS= ' , NS
PRINT *

LI = ! Line no. initialization
PRINT*, 'LINE r~ KPLUS'
WRITE (*,98) LI,XP, KPLUS

LI=LI+1
DO N=1,NS

XB=XP ! Old time
XP=XP+H I New time

fi

_



XM=XB+HH ! Midpoint time

Runge-Kutta Scheme

J=l ! This is part 1.
DO 1 = 1, IM

YA(I)=Y(I)
END DO
XA=XB
CALL FUNCT(EK, J , YA , H , XA , EINF , ERO , Q , ETA, G , B

)

J=2 ! This is part 2.
DO 1=1, IM

YA( I )=Y( I )+EK(l,I )/2
END DO
XA=XM
CALL FUNCT ( EK , J , YA , H , XA , EINF , ERO , Q , ETA , G , B

)

J=3 ! This is part 3.

DO 1=1, IM
YA( I )=Y( I )+EK(2,I )/2

END DO
XA=XM

CALL FUNCT (EK, J , YA , H , XA, EINF , ERO , Q , ETA, G , B

)

J=4 ! This is part 4.
DO 1=1, IM

YA( I )=Y( I )+EK( 3,1)
END DO
XA=XP
CALL FUNCT (EK, J , YA, H , XA , EINF , ERO , Q , ETA, G , B

)

DO 1=1, IM ! 4-th order Runge-Kutta scheme
Y( I )=Y( I )+(EK(l,I )+EK(2,I )*2+EK( 3,1 )*2+EK(4,I ) )/6

END DO

W=Y(1)
c You now have W( r~ ) — to get K+( r~ ) you must
c multiply by { E( r~ ) / E(0) }

E=(EINF/ERO)*DEXP( (Q**2. )/( (XP+1. )**2.
) )

KPLUS=W*E

c To get the derivative of W [ W ( r~ ) ] , just plug the
c computed values of W back in the original lst-order ODE

J=5
YA ( 1 ) =W
XA=XP
CALL FUNCT ( EK , J , YA, H , XA, EINF , ERO , Q , ETA, G , B

)

WPRM=EK( 5,1)/H

C NOW, to get d/dr~ [ K+ ] from d/dr~ [ K+/(E/ErO) ] , must
C perform the following operation:

KPLSPRM=(WPRM*(E**2. ) +KPLUS*E* ( -2 . * (
Q* *2 . )/( (XP+1. )**3. ) ) )/E

C To keep from generating unplottable 50,000 point data files,
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the following edits out some of the data points depending
on 'where' they occur

XCHK=(XP/H)
IF (XCHK
IF (XCHK
IF (XCHK
IF (XCHK
GOTO 4 4

GT. 100 000) GOTO 7 2

GT. 10000) GOTO 73
GT. 1000) GOTO 74
GT. 100) GOTO 75

Pl = P
IF (

P1 =
GOTO
Pl = P
IF (

Pl =
GOTO
Pl = P
IF (

P1 =
GOTO
Pl = P
IF (

P1 =

1 + 1

PI .NE. 10000) GOTO 88

44
1 + 1

PI .NE. 1000) GOTO 88

44
1 + 1

PI .NE. 100) GOTO 88

44
1 + 1

Pi .NE. 10) GOTO 88

WRITE (13,*) XP, KPLSPRM
WRITE (12,*) XP, KPLUS
WRITE (14,*) XP, W

CONTINUE

END DO

WRITE (*,98) LI,XP, KPLUS
F0RMAT(1X, 12, F10.6, 2X, 1P4E16.8)

IF (XP .LT. XL) GOTO 28

PRINT*
PRINT*, 'TYPE 1 TO CONTINUE, OR TO STOP.'
READ *,Kl
IF(Kl.EQ.l) GOTO 1

PRINT*
END

if**************************************

SUBROUT
DOUBLE
DOUBLE
REAL R0
R0=.000
C2=ETA*
PART4(

J

C1=ETA*
PART3(

J

PART2(

J

EK( J,l)

INE FUNCT(EK, J , YA , H , XA, EINF , ER0 , Q , ETA, G , B ) ! DEFINES ODES
PRECISION EK(0:4,0:10),YA(0:10) , PART2 ( : 4 , : 10

)

PRECISION PART3( 0:4,0:10) , PART4 ( : 4 , : 10 )
,H,XA,Cl

G*( (EINF/ER0)**2.

)

,1 )=C2*(DEXP( (2.*(Q**2.))/( (XA+1. )**2.
) ) )/(XA*B+R0)

( (G/R0)+1. )*( (EINF/ER0)**2.

)

,1)=C1*(DEXP( (2.*Q**2. )/( (XA+1. )**2. ) )/( (XA+1. )**3. ) )

,1) = (DEXP( (Q**2. )/( (XA+1. )**2. ) )
) * ( ETA*EINF/ER0

)

= ( 2 . *ETA-PART2 ( J , 1 ) *YA( 1 ) -PART3 ( J , 1 ) +PART4 ( J , 1 )
) *H
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EK(J,2)= the second ode, if nee.
RETURN
END
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THIS PROGRAM IS BUILT AROUND A GRAFkit
ALGORITHM PRODUCED BY SCO, INC.

3.1 RUNGE-KUTTA

DOUBLE PRECISION YA( : 1 ) , YN ( : 1 ) , EK ( : 4 , : 1 ) , Y ( : 1 ) , XA
DOUBLE PRECISION XP , XB , XM , H , HH , E , W , KPLUS , WPRM , KPLSPRM
DOUBLE PRECISION NI , NE , NI 1 , NI 2 , NI 3 , NEl
REAL CC1,CC2,CC3,S2,S3,S2A,S2B,S2C,S2D
REAL PI ,XL,XCHK,EINF,ERO,Q,ETA
REAL EPS 0,CHRG,K, TEMP ,NINF,B,G,R0
INTEGER NS,P1

EPS0=8.853742E-12
CHRG=1 .602E-19
K=1.38054E-23
R0=.0001

PRINT *

PRINT * ,

'

PRINT * ,

'

PRINT *,

'

PRINT *,

'

FOURTH ORDER RUNGE-KUTTA SCHEME '

FOR THE CYLINDRICAL COMPUTATION '

OF NE AND NI

'

( WIRE-THIN ANODE: rO = 0.1 mm )'

PRINT *, 'INPUT VALUES FOR EINF, ErO, Q, AND ETA'
READ *, EINF, ERO, Q, ETA
PRINT *, 'INPUT VALUES FOR TEMP. AND NINF'
READ *, TEMP, NINF
PRINT *, 'INPUT VALUES FOR GAMMA AND b'
READ *,G,B

IM=1 ! Number of equations
Y(l) = 1.00 ! Initial condition for wl at r~=XP.
Y(2) = ! Initial condition for w2 at r~=XP (if nee)

PRINT *

PRINT *, 'INTERVAL OF r~ FOR PRINTING ?'

READ *,PI

PRINT *, 'INPUT THE STEP SIZE ( del ta-r~ )

'

READ * ,

H

NS = NINT(PI/H)

PRINT *, 'MAXIMUM r~ TO STOP CALCULATION ?'

READ *,XL

PRINT *, ' dr~ = ' ,H

P1 =
XP=0
HH=H/2.
KPLUS=1

.

print *, ' NS= '

PRINT *
NS

LI =
PRINT* , 'LINE
WRITE (*,98)

Line

LI,XP, KPLUS

no. initialization
KPLUS'
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28 LI=LI+1
DO N=1,NS

XB=XP 1 Old time
XP=XP+H ! New time
XM=XB+HH ! Midpoint time

C Runge-Kutta Scheme

J=l ! This is part 1.
DO 1=1, IM

YA(I)=Y(I)
END DO
XA=XB
CALL FUNCT(EK, J, YA, H , XA, EINF , ERO , Q , ETA, G , B

)

J=2 ! This is part 2.
DO 1=1 ,IM

YA( I )=Y( I )+EK(l,I )/2
END DO
XA=XM
CALL FUNCT(EK, J, YA , H , XA, EINF , ERO , Q , ETA, G , B

)

J=3 ! This is part 3.
DO 1=1, IM

YA( I )=Y( I )+EK(2, I )/2
END DO
XA=XM

CALL FUNCT(EK, J, YA, H , XA , EINF , ERO , Q , ETA , G , B

)

J=4 ! This is part 4.
DO 1=1, IM

YA( I )=Y( I )+EK( 3,1

)

END DO
XA=XP
CALL FUNCT(EK, J, YA , H , XA , EINF , ERO , Q , ETA, G , B

)

DO 1=1, IM ! 4-th order Runge-Kutta scheme
Y( I )=Y( I )+(EK(l, I )+EK( 2,1 )*2+EK( 3,1 )*2+EK( 4,1 ) )/6

END DO

W=Y(1)
c You now have W( r~ )

— to get K+( r~ ) you must
c multiply by { E( r~ ) / E(0) }

E=(EINF/ERO)*DEXP( (Q**2. )/( (XP+1. )**2.
) )

KPLUS=W*E

c To get the derivative of W [ W ( r~ ) ] , just plug the
c computed values of W back in the original lst-order ODE

J=5
YA ( 1 ) =W
XA=XP
CALL FUNCT(EK, J, YA, H , XA , EINF , ERO , Q , ETA, G , B

)

WPRM=EK( 5,1 )/H
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NOW, to get d/dr~ [ K+ ] from d/dr~ [ K+/(E/ErO) ] , must
perform the following operation:
KPLSPRM=(WPRM*(E**2. ) +KPLUS*E* ( -2 . * (

Q* * 2 . )/( (XP+1. )**3.
) ) )/E

AND NOW, to generate the nondimensionalized n-curves
ne ( r~ ) and ni ( r~ )

compute the following equations

NI1=(KPLUS/E) *( EINF/ERO)
CC2=(K*TEMP*EPS0)/( (CHRG**2. ) *NINF* (

B* *2 . )

)

S2A=(6.*(Q**2. ) )/( (XP+1. )**4. )

S2B=(4.*(Q**4. ) )/( (XP+1. )**6. )

S2C=(1./(XP+(R0/B) ) )*( (-2.*(Q**2.
) )/( (XP+1. )**3.

) )

S2D=(l./( (XP+(R0/B) )**2.
) )

S2=S2A+S2B+S2C-S2D
NI2=CC2*S2
CC3=(EPS0*ER0)/(CHRG*NINF*B)
S3=( (-2.*(Q**2. ) )/( (XP+1. )**3.

) )+(l./(XP+(R0/B) )

)

NI3=CC3*E*S3

NI=. 5MNI1+NI2+NI3 )

CC1=(EPS0*ER0)/(CHRG*NINF*B)
NEl=CCl*E*( (-2.*(Q**2.))/( (XP+1. )**3. ) + ( 1 .

/( XP+ ( RO/B ))

NE=NI-NE1

To keep from generating unplottable 50,000 point data files,
the following edits out some of the data points depending
on 'where' they occur

XCHK=(XP/H)
IF (XCHK .GT . 100000) GOTO 72
IF (XCHK .GT . 10 000) GOTO 7 3

IF (XCHK .GT . 1000) GOTO 7 4

IF (XCHK .GT . 100) GOTO 7 5

GOTO 4 4

P1=P1+1
IF (PI .NE. 10000) GOTO 88
Pl =
GOTO 4 4

P1=P1+1
IF (Pi .NE. 1000) GOTO 88
P1 =
GOTO 4 4

Pl=Pl+l
IF (Pi .NE. 100) GOTO 88
P1 =

GOTO 4 4

P1=P1+1
IF (PI .NE. 10) GOTO 88
P1 =

WRITE (10,* ) XP, NI
WRITE (11,* ) XP, NE
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88 CONTINUE

END DO

WRITE (*,98) LI,XP, KPLUS
98 FORMAT(lX, 12, F10.6, 2X, 1P4E16.8)

IF (XP .LT. XL) GOTO 28

200 PRINT*
PRINT*, 'TYPE 1 TO CONTINUE, OR TO STOP.'
READ *,Kl
IF(Kl.EQ.l) GOTO 1

PRINT*
END

C*****************************************

SUBROUTINE FUNCT( EK , J , YA, H , XA, EINF , ERO , Q , ETA, G , B ) ! DEFINES ODES
DOUBLE PRECISION EK ( : 4 , : 1 ) , YA( : 10 ) , H , XA , PART2 ( : 4 , : 10

)

DOUBLE PRECISION PART3 ( : 4 , : 10 ) , PART4 ( : 4 , : 1 )

REAL R0,KK4,KK3
R0=.0001
KK4=ETA*G*( ( EINF/ER0 ) **2

.

)

PART4( J,1)=KK4*(DEXP( (2.*(Q**2.))/( (XA+1. )**2.
) ) )/(XA*B +R0)

KK3=ETA*( (G/R0)+1. )*( ( EINF/ER0 ) **2
.

)

PART3( J,1)=KK3*(DEXP( (2.*Q**2. )/( (XA+1. )**2.
) )/( (XA+1. )**3. ) )

PART2( J,l )=(DEXP( (Q**2
. )/( (XA+1 . )**2 . ) )

) * ( ETA*EINF/ER0

)

EK( J,l )=( 2. *ETA-PART2( J, 1 )*YA( 1 )-PART3( J, 1 )+PART4( J,l )
) *H

C EK(J,2)= the second ode, if nee.
RETURN
END
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