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Unsupervised classification methodology applied to remote sensing image

processing can provide benefits in automatically converting the raw image data

into useful information so long as higher classification accuracy is achieved. The

traditional k-means clustering scheme using spectral data alone does not perform

well in general as far as accuracy is concerned. This is partly due to the failure to

take the spatial inter-pixels dependencies (i.e. the context) into account, resulting

in a ‘busy’ visual appearance to the output imagery. To address this, the hidden

Markov models (HMM) are introduced in this study as a fundamental

framework to incorporate both the spectral and contextual information in

analysis. This helps generate more patch-like output imagery and produces

higher classification accuracy in an unsupervised scheme. The newly developed

unsupervised classification approach is based on observation-sequence and

observation-density adjustments, which have been proposed for incorporating

2D spatial information into the linear HMM. For the observation-sequence

adjustment methods, there are a total of five neighbourhood systems being

proposed. Two neighbourhood systems were incorporated into the observation-

density methods for study. The classification accuracy is then evaluated by means

of confusion matrices made by randomly chosen test samples. The classification

obtained by k-means clustering and the HMM with commonly seen strip-like and

Hilbert-Peano sequence fitting methods were also measured. Experimental results

showed that the proposed approaches for combining both the spectral and spatial

information into HMM unsupervised classification mechanism present improve-

ments in both classification accuracy and visual qualities.

1. Introduction

Remotely sensed imagery interpretation, or more generally the term ‘classification’,
is an important process, which translates the raw image data into more meaningful

and understandable information. Normally, the classification process can be

categorized into two broad categories known as supervised and unsupervised

classification, respectively (Mather 1999). Supervised classification requires training

data for each class selected in advance to train the classifier. The trained classifier is

then used to identify the pixels in the imagery. Unsupervised classification

mechanism automatically clusters the image data into several groups according to

some predefined criterion or cost function (for example, clustering data based on
minimum distance). Those groups are then mapped into classes. Unsupervised

methods are more attractive in the sense that it does not require as much
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intervention. As the data volume collected by a variety of air-borne and space

sensors increases dramatically, unsupervised classification can bring considerable

benefit in enhancing imagery processing speed to the extent that a stable and high

classification accuracy is achieved. Unfortunately, traditional unsupervised classi-

fication methodology, such as k-means clustering using imagery spectral data alone,

does not generally produce high classification accuracy (Tso and Mather 2001). This

is due to the fact that, in common and traditional clustering mechanisms, each pixel

in an image is treated as spatially independent. This, in turn, makes the output

image after clustering unlikely to form a patch-like and easily interpretable pattern.

In order to achieve better classification outcomes, the validity of such an inter-pixel

independency assumption should be concerned. More robust ways of modelling

pixel interactions are needed. The focus of this study is thus to deal with the spatial

modelling issue for unsupervised classification mechanisms.

In remotely sensed imagery, there are factors that cause neighbouring pixels to

exhibit some level of mutual characteristics. Examples of such factors can be

atmospheric interaction, the spatial and spectral resolution of a sensor, and the

mechanism of the pixels being generated (e.g. SAR multi-look imagery). Also, when

mapping the pixels to landscape patterns, if a pixel identified as ‘forest’, it will be

most likely surrounded by the same class of pixels. If such a spatial interaction is

well modelled, the classification accuracy can be improved (Tso and Mather 1999).

We may, in short, use ‘context’ to represent such spatial relationships, which can be

interpreted as how the probability of presence of one pixel (or pixels) is affected by

its (their) neighbours.

Incorporating contextual information into the classification process can be

achieved in different ways. One simple method of adopting context is to use so-

called majority voting within a prescribed window. In such a method, the central

pixel is forced to adopt the class that presents most frequently in the window.

However, there is a more robust way of modelling context. A class of contextual

model that is of particular interest is based on Markovian theory known as the

hidden Markov model (HMM) (Baum and Petrie 1966, Baum and Egon 1967,

Baum et al. 1970, Rabiner 1989). Since the development of the HMM, it has earned

popularity in speech recognition (Huang et al. 1990, Cole et al. 1995). Applications

of the HMM to image processing has been also growing (see, for instance, He and

Kundu 1991, Viovy and Saint 1994, Li et al. 2000a, b, Gader et al. 2001, Runkle

et al. 2001, Fjørtoft et al. 2003).

When an HMM is implemented for unsupervised image classification, the most

straightforward method of incorporating pixels into HMM is by sweeping the image

line by line or column by column, or some alternative scan sequence can be applied,

such as the Hilbert-Peano scan (Abend et al. 1965, Skarbek 1992, Giordana and

Pieczynski 1997, Fjørtoft et al. 2003). It is noted that the original theory of HMM

assumes a one-dimensional linear dependent structure (Baum and Petrie 1966),

while an image is normally 2-dimensional in a contextual sense. The spatial

dependencies are thus not well modelled with the linear structure of HMMs, and

may result in restrictions to the enhancement of classification accuracy. There are

alternative strategies to build 2D HMMs, or so-called Markov meshes to pursue

better fitness for such 2D spatial dependencies (Abend et al. 1965, Devijver 1985, Li

et al. 2000a, b). However, using 2D HMMs requires developing more complicated

algorithms for searching optimal model states. This may require making additional

assumptions regarding models, and also may contribute heavier computational load
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(Devijver 1985, Li et al 2000a). To overcome such drawbacks, rather than making

changes to the HMM structure, we have developed methodology in terms of spatial

and feature space manipulation within a linear HMM to pursue higher accuracy

through unsupervised classification. In this way, the 2D information can be

embedded into HMM, while the original one-dimensional linear structure of an

HMM is still remained. The ways of converting 2D information of the remotely

sensed imagery into one-dimension HMM are thus the main interest of this study.

This paper is organized as follows. In §2, the fundamentals of HMM theory are

introduced. The methodology of converting 2D spatial information into one-

dimension HMM is detailed in §3. Two types of approaches, namely observation-

sequence-based methods and observation-density-based methods, are proposed. In

§4, several methods are compared and the encouraging experimental results along

with discussions are described. Finally, concluding remarks and the suggestions for

future researches are given in §5.

2. Hidden Markov model

A hidden Markov model (HMM) is distinguished from a general Markov model in

that the states in an HMM cannot be observed directly (i.e. hidden) and can only be

estimated through a sequence of observations generated along a time series. Assume

the total number of states being N, and let qt and ot denote the system state and the

observation at time t. An HMM, l, can be formally characterized by l5(A, B, p),

where A is a matrix of probability transition between states, B is a matrix of

observation probability densities relating to states, and p is a matrix of initial state

probabilities, respectively. Specifically, A, B, and p are each further represented as:

A~ aij

� �
, aij~P qtz1~j qt~ijð Þ, 1ƒi, jƒN, ð1Þ

where

aij§0,
XN

j~1
aij~1, for i~1, 2, . . . , N ð2Þ

B~ bj otð Þ
� �

, bj otð Þ~P ot qt~jjð Þ, 1ƒjƒN ð3Þ

p~ pi½ �, pi~P q1~ið Þ, 1ƒiƒN, ð4Þ

where

XN

i~1
pi~1: ð5Þ

For illustration purposes, an HMM model and related parameters, namely, A, B

and p, are shown in figure 1. The observation probability density bj(ot) for state j

given observation ot is generally modelled as Gaussian distribution (Liporace 1982,

Juang 1985, Linde et al. 1980, He and Kundu 1991) as:

bj otð Þ~
1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pð Þk Sj

�� ��
q exp {

1

2
ot{mj

� �X{1

j
ot{mj

� �’
� �

, ð6Þ

where prime denotes vector transpose and k is the dimension of observation vector

ot.
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Given an HMM l and observation sequence O5{o1, o2, … , oT}, one may estimate

the best state sequence Q*5{q1, q2, … , qT} based on a dynamic programming

approach so as to maximize P(Q*|O, l) (Rabiner 1989, Forney 1973). In order to

make Q* meaningful, one has to well set up the model parameters A, B and p. The

Baum-Welch algorithm (Baum et al. 1970) is the most widely adopted methodology

for model parameters estimation. The model parameters pi, aij, mean mi and

covariance Si are each characterized as:

p~c
1

ið Þ ð7Þ

a~

PT{1
t~1 jt i, jð Þ
PT{1

t~1 ct ið Þ
ð8Þ

mi~

PT
t{1 ct ið Þot
PT

t~1 ct ið Þ
ð9Þ

Si~

PT
t~1 ct ið Þ ot{mtð Þ’ ot{mtð Þ

PT
t~1 ct ið Þ

, ð10Þ

where ct(i) denotes the conditional probability of being state i at time t, given the

observations, and jt(i, j) is the conditional probability of a transition from state i at

time t to state j at time t + 1, given the observations.

Both ct(i) and jt(i, j) can be solved in terms of a well-known forward-backward

algorithm (Baum and Egon 1967). Define the forward probability at(i) as the joint

probability of observing the first t observation sequence O1 to t 5{o1, o2, … , ot} and

being in state i at time t. The at(i) can be solved inductively by following formulae:

a1 ið Þ~pibi o1ð Þ, 1ƒiƒN ð11Þ

atz1 ið Þ~bi otz1ð Þ
XN

j~1
at ið Þaij

� �
, For 1ƒtƒT , For 1ƒiƒN ð12Þ

Let the backward probability bt(i) be the conditional probability of observing the

Figure 1. Illustration of HMM parameters A, B and p in the case of t 51 – 2.
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observation sequence Otto T5{ot+1, ot+2, … , oT} after time t given that the state at

time t is i. As with the forward probability, the bt(i) can be solved inductively as:

bT ið Þ~1, 1ƒiƒN ð13Þ

bt ið Þ~
XN

j~1
aijbj otz1ð Þbtz1 jð Þ, t~T�1, T�2, ::: , 1, 1ƒiƒN ð14Þ

The probabilities ct(i) and jt(i, j) are then solved by:

ct ið Þ~ at ið Þbt ið Þ
PN

i~1 at ið Þbt ið Þ
ð15Þ

jt i, jð Þ~ at ið Þaijbj otz1ð Þbtz1 jð Þ
PN

i~1

PN
j~1 at ið Þaijbj otz1ð Þbtz1 jð Þ

ð16Þ

By analysing the structure and major parameters in the HMM training algorithm

as described in equations (7) to (16), it is clear that the resulting hidden state

sequence is strongly dependent on the distribution of observations bi(ot), and

observation sequence O5{o1, o2, … , oT}. Specifically, one may sequentially deter-

mine the effectiveness of parameters through the following trace:

1. bi(ot) and O both affect at(i) and bt(i) as shown in equations (11) to (14);

2. at(i) and bt(i) make up ct(i) and jt(i, j) as shown in equations (15) and (16);

3. ct(i) and jt(i, j) determine pi, aij, and bi(ot) according to equations (7) to (10),

and eventually generate hidden states estimation Q*.

As a result, if both the observation density bi(ot) and observation sequence O5{o1,

o2, … , oT} are well managed, the revealed hidden state sequence will be closer to the

ideal situation (e.g. higher classification accuracy).

When implementing HMM for unsupervised image classification, the pixel values

(or vectors) correspond to the observations, and after the estimation for the model

parameter is completed, the hidden state then corresponds to the cluster to which

the pixel belongs. For incorporating imagery into an HMM, the most straightfor-

ward manner is sweeping the image line by line to fit the pixels into HMM.

Figure 2(a) shows an example of 464 image. The sweeping process visits each pixel

through left-right, strip-like, direction as shown in figure 2(b). It is observed that

such an arrangement uses only one-dimensional spatial dependencies. Each pixel

gains contextual effectiveness only from its preceding left-hand side pixel. According

to the characteristics of HMM, such an arrangement is likely to generate horizontal

strip patterns (as will be demonstrated in a later section). There is another method of

pixel sequencing known as the Hilbert-Peano sequence (Abend et al. 1965), which is

commonly seen in the Markovian-based image processing (for example, see Skarbek

1992, Giordana and Pieczynski 1997, Fjørtoft et al. 2003). An illustration of the

Hilbert-Peano sequence is shown in figure 2(c). In comparison to the strip-like

sequence fitting, Hilbert-Peano may provide more flexibility in involving multi-

direction neighbouring information.

It is noted that the Hilbert-Peano sequence is a kind of observation-sequence

adjustment method to fit the pixels into HMM. Other ways of manipulating the

observation sequence are certainly possible, and it will be worthwhile to investigate
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how those different observation adjustments affect the presentation of the hidden

states (i.e. clustering results). On the other hand, as demonstrated earlier, the

observation density can contribute to the change of hidden states. Thus, it is also of

interest to ascertain how the classification performs relating to different observation

densities. Triggered by the above concerns, two types of strategies of observation

adjustments, namely observation-sequence-based methods and observation-density-
based methods, are proposed in order to pursue the possibility of unsupervised

classification accuracy improvements to the remotely sensed imagery. The

methodology is stated as follows.

3. Methodology

3.1 Observation-sequence-based methods

Five approaches to observation sequence manipulations to fit HMM are proposed.

These methods can be further divided into two categories called pixel non-redundant

and pixel redundant schemes, respectively. For the pixel non-redundant scheme,
each pixel within an image presents only once in an HMM, while for the redundant

scheme, each pixel within an image may present multiple-times depending on the

fitting method being applied. Figures 2(d ) and (e) show two ways of incorporating

neighbourhood information, a ‘V’-like and ‘U’-like sequencing approach for a

‘pixels non-redundant’ sense. Figures 2( f ) and (g) show the same ‘V’-like and ‘U’-

like sequencing approach in terms of the pixel redundant scheme. Figure 2(h) shows

‘e’-like sequencing, which is also pixel redundant. These methods will be detailed

below. It is worthwhile to note that the pixels taken into concern are within the
scope of the first- and second-order neighbourhood systems as commonly seen in

Markov random fields theory (Tso and Mather 2001).

In following, we define pi,j as a pixel at location row i and column j. An image is
assumed to be of size I6J.

N Pixel non-redundant ‘V’-like observation sequencing (figure 2(d )). This incorpo-

rates pixels into HMM through a repeated ‘V’-shaped scan. For instance,

Figure 2. (a) A 464 image; (b) strip-like sequencing; (c) Hilbert-Peano sequencing;
(d ) proposed pixel non-redundant ‘V’-like sequencing; (e) pixel non-redundant ‘U’-like
sequencing; ( f ) pixel redundant ‘V’-like sequencing; (g) pixel redundant ‘U’-like sequencing;
and (h) pixel redundant ‘e’-like sequencing.
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Figure 2 (Continued).
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according to the sample image as shown in figure 2(a), this method arranges

pixels in terms of a ‘V’ shape sequence as setting o15p1,1, o25p2,1, o35p1,2,

o45p2,2, … to form a hidden Markovian chain. Figure 2(d ) presents the

illustration to this proposed pixel fitting method. After pixel arrangement

within row 1 and 2 is completed, one then switches to rows 3 and 4, and repeats

the process until all the rows within an image have been visited. In such a way,

all the pixels are uniquely introduced to the HMM, and we term this approach

pixel non-redundant. The resulting HMM will be of Markov chain I6J in

length.

N Pixel non-redundant ‘U’-like observation sequencing (figure 2(e)). Here, the pixel

fitting process follows the ‘U’-shaped scan by setting observation o15p1,1,

o25p2,1, o35p2,2, o45p1,2, o55p1,3, … to form a hidden Markovian chain as

shown in figure 2(e). After pixel arrangement within rows 1 and 2 are

completed, one then switches to rows 3 and 4, and repeats the process until all

the rows within an image have been visited. All the pixels are uniquely

introduced to the HMM. The resulting length of the Markov chain is again

I6J.

N Pixel redundant ‘V’-like observation sequencing (figure 2( f )). This approach is

similar to the non-redundant ‘V’-like method introduced above. Here,

however, after processing on row i and i + 1 are completed, the process is

switched to row i + 1 and i + 2, and the same fitting process is repeated. For

instance, in the case of i 5 1, after pixels in rows 1 and 2 have been

incorporated into the HMM, the fitting process is then switched to rows 2 and

3. The pixels incorporated into an HMM will be redundantly included, and the

process is therefore called pixel redundant. This kind of pixel sequence

arrangement (and with the other pixel redundant schemes) is intended to

increase the length of the Markov chain so as to pursue a more valid parameter

estimate within an HMM (Rabiner 1989). The resulting Markov chain will be

of 2(I21)J in length. It should be noted that, as in this ‘V’-like and later ‘U’-

like pixel redundant schemes, pixels may present more than once within the

HMM. It could result in one pixel holding various hidden states (i.e. belonging

to different clusters). In order to resolve such confusion, for each row pair, i

and i + 1, we will treat row i as the primary row and row i + 1 as the secondary

row. Only hidden states obtained from pixels within primary rows are

recognized. The reason is that, based on the spirit of our methodology design,

the secondary rows are just performing in the role of assistance for taking

contextual information into account.

N Pixel redundant ‘U’-like observation sequencing (figure 2(g)). This type of

sequencing is similar to the pixel non-redundant ‘U’-like observation

sequencing, except that, after processing on rows i and i + 1 are completed,

the process is switched to rows i + 1 and i + 2, and the same fitting process is

repeated. The resulting length of Markov chain is 2(I 21)J. As addressed

above, only hidden states belong to primary rows are concerned.

N ‘e’-like observation sequence arrangement (figure 2(h)). This ‘e’-like observa-

tion sequence arrangement attempts to incorporate all the first-order

neighbours of a pixel of interest into consideration. For a pixel pi,j of interest,

it starts from the upper neighbouring pixel by setting ot5pi21,j, then the left

neighbouring pixel ot+15pi,j21, followed by lower neighbouring pixel ot+25pi+1,j

and right neighbouring pixel ot+35pi,j+1, and finally set ot+45pi,j. The process
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then resumes from pixel ot+55pi21,j+1 and repeats the ‘e’-like tracking process

to ot+95pi,j+1. Figure 2(h) shows such pixel fitting process. The resulting

Markov chain will have a length of 5(I22)(J22). Please note that, for this ‘e’-

like observation sequence, only hidden states obtained at the locations where

the observations counts modulo 5 is zero (i.e. q5, q10, q15, q20, …) are

recognized, since according to such observations fitting methodology design,

the other observations are just playing assistance role for bringing contextual

information into account.

Once an HMM is formed and the number of states (i.e. clusters) are chosen, the

hidden states sequence is traced. Each pixel is then assigned to its corresponding

state. Figure 3 shows corresponding examples for pixels state assignments regarding

the pixel redundant ‘V’-like, ‘U’-like, and ‘e’-like fitting approaches. The

recognized states are shown in bold and marked with ‘*’ sign.

It can be seen that, for the methods described above, we alternatively arrange the

information relating to vertical and diagonal contextual dependencies to build up an

HMM. Although the HMM is still one-dimensional, the information contained

inside is, in effect, 2D. One may treat such HMMs as a kind of pseudo 2D HMM.

3.2 Observation-density-based methods

As the descriptions in previous sections have shown, in addition to the observation

sequence, there is another parameter, bi(ot), i.e. the density of the observations that

can bring the effect of context to the hidden states estimation. Normally, in

constructing an HMM for image classification in terms of strip-like arrangement as

Figure 3. Illustrations of the selection of recognized states. See text for details.
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shown, the observation at each step of HMM is only based on the single pixel alone.

The estimated state (i.e. cluster) for a pixel of interest is thus highly correlated to the

pixel value observed and the spatial direction on which we use HMM to model the

contextual dependencies, respectively. Let the spatial direction applied to build up

an HMM remain as strip-like in direction. If, to each original observation ot0, two

more observations ot1 and ot2 are added to expand the observation vector into {ot0,

ot1, ot2}, the estimated hidden state is likely to be affected dependent on how the new

density being measured in terms of the observation {ot0, ot1, ot2}. This triggers the

following consideration.

If, to each observation within an HMM, one extends the scope of the observation

in terms of combining the pixel and its neighbouring pixels to form a new

observation vector, the contextual information can thus be incorporated according

to the neighbouring directions being involved. This newly formed contextual

information will affect the hidden states estimation.

Following such a consideration, to build up an HMM, we maintain the pixel

fitting direction aligned to the row direction (i.e. strip-like), but for each pixel of

interest, the vertical neighbouring pixel(s) are added in order to take the vertical

spatial dependencies into account. We have designed the HMMs with the

observation vectors formed in terms of one-side neighbour and two-side neighbours,

respectively (figure 4). The experiments are conducted and evaluated based on such

observation density adjustment schemes.

4. Experimental results and discussion

4.1 Study area

The study area known as Elkhorn Slough is located in the central California coast

about 160 km south of San Francisco, California (Silberstein and Campbell 1989).

The IKONOS satellite captured the study imagery for this scene on 23 October

2002. The Elkhorn Slough is an important natural reserve in a largely agricultural/

urban area. Satellite imagery can provide a convenient means of monitoring the

evolution of the area. More particularly, if the developed unsupervised classification

schemes can achieve higher accuracy in comparison to the k-means method, it will

be a benefit to facilitate the monitoring of the whole area. For experimental

purposes, a test area with 102461024 pixels was extracted from the IKONOS

multispectral imagery (containing 10,000 samples by 20 000 lines), and further re-

sampled to 2566256 pixels so as to facilitate the analysis of the classification

methodology. Each classified image was then evaluated in terms of its visual quality

and corresponding confusion matrix.

Figure 4. Observation-density-based manipulations according to figure 2(a).
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Figure 5 displays the test area in the form of false colour (IR) composite and

shows a variety of landscape types. The agricultural fields around the area are

planted with strawberries, broccoli, lettuce, and other similar crops. Many of the

fields are well covered with vegetation late in this harvest season, while others were

recently harvested or ploughed in preparation for planting. The planted fields have

colour spectra similar to that of the grassland and forest area in the lower portion of

the scene and along the river marsh. The region also contains some areas with plastic

cover, as part of the field preparation process, or as part of the normal growing

process.

Due to the fact that, when dealing with unsupervised real scene classification,

each class may contain more than one cluster, we thus conducted the extensive pre-

experimental k-means clustering experiments for detecting the relationship between

the clusters and the ground data so as to determine the suitable number of clusters

and the information classes, to facilitate further the classification accuracy

comparisons among the different methods. After tests, it was found that choosing

clusters of 10 were easily mapped into six information classes while accuracy was

also be achieved in the higher level. The total number of 10 clusters and six

information classes were then determined to serve the classification experiments.

The information classes are shown in table 1. Those information classes were

Figure 5. Study imagery of the Elkhorn Slough area in terms of false colour composite of
IKONOS multispectral data.

Table 1. Selected information classes for unsupervised classification clustering mapping.

No. Class name

1 Vegetation
2 Water
3 Marsh
4 Forest
5 Bare soil and living area
6 Dry grass and low sprout
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determined based on the land cover/land use class map provided by the Elkhorn

Slough Foundation (ESF). The map was the product of a compilation of

information from aerial photos and Global Positioning System assisted field

observations.

For each information class, the ground data map was referred, and the test

samples are then randomly drawn from the image (i.e. in the way of stratified

random sampling) (Hammond and Verbyla 1996). Somehow, in order to reduce the

bias in the accuracy analysis, the number of samples drawn in this study was related

to, though not critically proportional to, the areal extent of each information class.

For instance, the sample size was set to around 550–600 pixels for information class

1 to 3. Around 700 samples were obtained for information class 6 (dry grass & low

sprout), due to its larger extent relative to the other classes. As information classes 4

and 5 both hold smaller area comparing to the rest classes, fewer samples (around

500 and 400, respectively) were drawn. In total 3442 ground data pixels were

obtained for classification accuracy evaluation.

4.2 Results and discussion

The schemes for using HMMs to pursue higher classification accuracy in

unsupervised sense as described above have been implemented for the test imagery.

The HMM constructed by each method went through the parameter estimation

process and then the state for each corresponding pixel was extracted to form

classified imagery. As described earlier, a total of 10 states (clusters) were used for

an HMM to conduct classification. For all the HMMs, the original model

parameters, namely, A, B, and p, are randomly assigned as shown in Rabiner and

Juang (1986) and Rabiner (1989). The iterations of the model parameters

estimations are converged within six or seven runs. One exemplar graph of HMM

training taken within our experiments is shown in figure 6. The hidden state (i.e.

cluster) sequence Q* is then estimated using dynamic programming (Rabiner 1989,

Forney, 1973) so as to maximize P(Q*|O, l). The resulting clusters are then mapped

to the information classes according to the knowledge of ground data. It is

worthwhile to note that, as the resulting classified patterns generated by HMM

model are patch-like, the mapping from clusters to information classes can be quite

Figure 6. An exemplar HMM training graph.
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straightforward according to the ground data map. However, in the case of k-means

clustering, since the output clusters are normally in ‘busy’ look when mapped back

to the thematic map, one has to conduct several trials to assign the resulting clusters

to suitable information classes so as to make the overall classification accuracy as

high as possible. In this study, for each method, the classification experiments were

conducted five times. Among those, the results with higher classification accuracy

were then chosen for evaluation.

The resulting images for unsupervised classifications using HMM based on the

strip-like, ‘V’-like, ‘U’-like and ‘e’-like observation sequence manipulation schemes

are shown in figures 7(a) to ( f ). The corresponding confusion matrices are displayed

in tables 2(a) to ( f ), respectively. By observing figure 7(a), it can be seen that the

simple strip-like observation sequence results in clear horizontal spatial dependency

patterns. In particular, on the right part of the image, the class known as ‘water’

area has been broadly swiped by the class ‘marsh’. The upper part of the ‘water’

shape is hardly recognizable. Also within the image, some horizontal lines are quite

apparent, lowering the quality of the classification result. The proposed observation

sequence adjustments reveal improvement in both classification accuracy and visual

quality. It can be seen from figures 7(b) to ( f ) that the classification patterns are

more clearly in patch-like distributions. For those HMMs with pixel redundant

fitting schemes, some confusion appears within the ‘marsh’ so as to make the area

appear ‘busy’ in visual appearance (figures 7(c), (e) and ( f )). The pixel non-

redundant ‘V’-like and ‘U’-like schemes provide more patch-like patterns as shown

in figures 7(b) and (d ). One finds that the resulting ‘marsh’ area is much clearer than

the output obtained by pixels redundant sequencing.

Confusion matrices reinforce the conclusions obtained by visual inspection. The

matrices use output data as the rows and reference data as the columns. Here, in

addition to the overall accuracy, both producer’s accuracies (PA) and user’s

accuracies (UA) are also calculated to perform the omission and commission error

measure. Other statistical indices such as kappa or tau index (Ma and Redmond

1995) can be used to support accuracy measurement. However, those indices are not

of particular interest here. The simple strip-like approach with the HMM achieves

71.58% in overall accuracy. Among its corresponding PA and UA, the worst case

can be found to be as low as 0.48 and 0.41, respectively. An overall accuracy of

around 83% was achieved for the ‘U’-like and ‘e’-like sequencing approaches

(tables 2(d ) to ( f )), around a 10% enhancement compared to the strip-like method.

In addition, for the ‘U’-like scheme, the PA obtained was at least 0.66 (for both pixel

non-redundant and redundant cases), while UA achieved to at least 0.69 (for pixel

non-redundant) and 0.72 (for pixel redundant case). The ‘e’-like scheme holds at

least the value of 0.72 in both PA and UA. Compared to the ‘U’-like and ‘e’-like

schemes, the ‘V’-like scheme performed less ideally, with 81% in overall accuracy for

the pixel non-redundant case, with which the corresponding PA and UA can be as

low as 0.63 (table 2(b)); an overall accuracy of 79% was achieved in the pixel

redundant case and its corresponding PA can be as low as 0.62 and 0.67 for the UA.

For comparison purposes, results output by the traditional k-means clustering

and Hilbert-Peano scan are presented in figures 7(g) and (h), and confusion matrices

in tables 2(g) and (h). The image quality obtained by k-means clustering is poor, with

no patch-like patterns formed (see figure 7(h)). This again demonstrates the

drawback of failing to incorporate spatial dependencies information into classifica-

tion scheme. An overall accuracy of only 58.57% was obtained with k-means
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clustering. The HMM using Hilbert-Peano sequencing, in our experiments, achieves

around 79% in overall accuracy (table 2(h)). Such a value is lower than the accuracy

obtained by ‘U’-like (for both pixel non-redundant and redundant cases), ‘e’-like,

and pixel non-redundant ‘V’-like methods. In table 2(h), the corresponding PA and

UA values, in the worst case, appear to be as low as 0.66 and 0.52, respectively,

which are worse than the proposed U’-like and ‘e’-like schemes.

The proposed observation density adjustments for HMM produced even better

accuracy achievements compared to the methods described above. The image

outputs by unsupervised classification using HMM based on observation density

adjustments are shown in figures 8(a) and (b), and confusion matrices in tables 3(a)

Figure 7. Classification images output by (a) HMM with strip-like observation fitting;
(b) HMM with pixel non-redundant ‘V’-like observation fitting; (c) HMM with pixel
redundant ‘V’-like observation fitting; (d ) HMM with pixel non-redundant ‘U’-like
observation fitting; (e) HMM with pixel redundant ‘U’-like observation fitting; ( f ) HMM
with ‘e’-like observation fitting; (g) HMM with Hilbert-Peano scan fitting; and (h) traditional
unsupervised k-means clustering methods.
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and (b), respectively. The overall classification accuracies for both one-neighbour

and two-neighbour observation density methods are 88% and 87%. The PA and UA

also achieved at least 0.77 for the one-neighbour case. In the two-neighbour scheme,

the UA obtained a value of at least 0.77, while at least 0.74 was achieved among PA.

Both methods reveal improvements in comparison to the k-mean clustering, Hilbert-

Peano scan, and strip-like fitting methods, respectively. There is also an

enhancement of about 10% of overall classification accuracy relative to the ‘V’-

like scheme, and 5% classification accuracy improvement relative to ‘U’-like and

‘e’-like schemes. The images generated by this method also reveal ‘clean’ (especially

within class ‘marsh’ area) and patch-like visual appearance.

Figure 7 (Continued).
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Table 2. Classification confusion matrices for observation sequence manipulations and
traditional k-means clustering.

(a) Strip-like.

Class no. 1 2 3 4 5 6 UA

1 463 2 75 24 0 35 0.77
2 0 422 11 0 0 0 0.97
3 77 108 401 225 4 152 0.41
4 0 1 0 257 0 0 0.99
5 0 0 0 1 360 0 0.99
6 44 20 112 28 59 561 0.68
PA 0.79 0.76 0.67 0.48 0.85 0.75 0.7158

(b) Pixel non-redundant ‘V’-like.

Class no. 1 2 3 4 5 6 UA

1 501 3 8 121 20 1 0.76
2 0 505 33 8 2 17 0.89
3 29 30 554 45 6 209 0.63
4 0 15 0 342 0 0 0.95
5 6 0 0 3 380 4 0.96
6 48 0 4 16 15 517 0.86
PA 0.85 0.91 0.92 0.63 0.89 0.69 0.8131

(c) Pixel redundant ‘V’-like.

Class no. 1 2 3 4 5 6 UA

1 464 6 78 26 9 30 0.75
2 0 347 0 0 0 0 1
3 0 107 452 8 4 65 0.71
4 12 93 69 474 2 53 0.67
5 10 0 0 4 394 13 0.93
6 98 0 0 23 14 587 0.81
PA 0.79 0.62 0.75 0.88 0.93 0.78 0.7896

(d ) Pixel non-redundant ‘U’-like.

Class no. 1 2 3 4 5 6 UA

1 391 2 0 14 10 31 0.87
2 0 416 5 0 0 0 0.98
3 0 62 581 16 7 95 0.76
4 118 73 13 479 6 0 0.69
5 3 0 0 1 372 2 0.98
6 72 0 0 25 28 620 0.83
PA 0.66 0.75 0.96 0.89 0.87 0.82 0.8306

(e) Pixel redundant ‘U’-like.

Class no. 1 2 3 4 5 6 UA

1 461 5 106 23 8 36 0.72
2 0 495 29 2 2 10 0.92
3 0 20 400 4 0 63 0.82
4 10 33 64 471 1 0 0.81
5 9 0 0 4 400 7 0.95
6 104 0 0 31 12 632 0.81
PA 0.78 0.89 0.66 0.88 0.94 0.84 0.8306
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Through the above demonstration of the proposed methods, namely observation-

sequence-based and observation-density based approaches, higher classification

accuracies are obtained. The accuracy and the output imagery performed by each

method have been shown. The proposed schemes for incorporating neighbouring

pixels into an HMM unsupervised classification process invoke a more conceptual

2D sense, in contrast to attempting to modify the linear HMM structure into 2D

style (or so-called Markov meshes). The latter approach complicates the

computational algorithm and makes the search for optimum states more bother-

some.

One final issue worth our concern is the computational loading related to an

HMM. So long as the calculation for the observation density bi(ot) remains a

constant, Rabiner (1989) showed that the computation involved in an HMM is of

order N2T where N denotes the number of states and T the length of an HMM. The

main elements here are the forward and backward calculations for a and b as shown

in equations (11) to (14). More precisely, for either forward or backward calculation,

it requires N(N + 1)(T 2 1) + N multiplications and N(N21)(T21)) additions.

Table 4 shows the computational loading (running time in minutes calculated by

seven training iterations) for the proposed methodology, written in MATLAB 6.5

running on a PC with Intel Pentium III CPU.

( f ) ‘e’-like.

Class no. 1 2 3 4 5 6 UA

1 458 6 96 26 14 36 0.72
2 0 515 43 7 1 24 0.87
3 4 7 433 65 0 2 0.84
4 7 25 2 396 0 0 0.92
5 13 0 0 2 386 3 0.95
6 102 0 25 39 22 683 0.78
PA 0.78 0.93 0.72 0.74 0.91 0.91 0.8341

(g) k-means clustering.

Class no. 1 2 3 4 5 6 UA

1 350 13 114 242 9 32 0.46
2 0 491 32 23 2 11 0.87
3 26 18 374 176 10 160 0.48
4 0 31 56 72 2 133 0.24
5 143 0 8 4 342 25 0.65
6 65 0 15 18 58 387 0.71
PA 0.59 0.88 0.62 0.13 0.80 0.51 0.5857

(h) Hilbert-Peano scan.

Class no. 1 2 3 4 5 6 UA

1 450 0 0 12 0 0 0.97
2 0 424 7 0 2 27 0.92
3 8 108 471 24 11 60 0.69
4 95 19 103 484 9 153 0.52
5 9 0 0 4 391 7 0.95
6 22 2 18 11 10 501 0.88
PA 0.77 0.76 0.78 0.90 0.92 0.66 0.7905

Table 2 (Continued).
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If one would like to measure the performance of the HMMs based on the overall

accuracy alone, it is determined that the proposed one-neighbour observation-

density method is relatively ideal scheme (a classification accuracy of 88% was

Figure 8. Classification images output by (a) HMM using observation-density based
method with one-neighbour added; and (b) HMM using observation-density based method
with two-neighbour added.

Table 3. Classification confusion matrices for observation density manipulations.
(a) One-side neighbourhood.

Class no. 1 2 3 4 5 6 UA

1 475 0 0 5 0 0 0.98
2 0 427 1 0 0 0 0.99
3 0 103 598 69 0 1 0.77
4 20 23 0 435 0 0 0.91
5 4 0 0 8 421 71 0.83
6 85 0 0 18 2 676 0.86
PA 0.81 0.77 0.99 0.81 0.99 0.90 0.8808

(b) Two-side neighbourhood.

Class no. 1 2 3 4 5 6 UA

1 487 0 0 65 0 8 0.86
2 0 410 0 0 0 0 1
3 0 95 599 40 1 38 0.77
4 3 48 0 412 0 0 0.88
5 1 0 0 3 419 28 0.92
6 93 0 0 15 3 674 0.85
PA 0.83 0.74 1 0.77 0.99 0.90 0.8718
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achieved and the method also results in better visual quality) to be applied to

remotely sensed imagery classification. However, when the computational loading

specified in table 4 is also taken into consideration, where the dimension of

observation vector is large, one may make some compromise, and choose the pixel

non-redundant ‘U’-like HMM as an alternative.

5. Conclusions

New schemes of incorporating 2D spatial information into a one-dimensional linear

HMM have been proposed and demonstrated in terms of accuracy analysis and

visual quality through unsupervised classifications to the remotely sensed imagery.

The traditional k-means clustering approach using spectral data alone is not

sufficient so long as higher classification accuracy and clear visual interpretation are

pursued. However, by adopting a one-dimensional linear HMM accompanied with

proposed observation-sequence-based and observation-density-based methods, both

spectral and 2D spatial information can be combined. The results as shown in this

study have revealed success in achieving higher accuracy and more patch-like

patterns compared to spectrally k-mean clustering and, to a certain extent, are better

than another common observation sequence arrangement known as Hilbert-Peano

sequencing. The proposed approaches may simplify the efforts of quoting 2D spatial

information in the case of applying an HMM to scene classification in remotely

sensed imagery. Among the proposed approaches, it is found that the observation

density based methods perform better as far as the classification accuracy is

concerned. However, one may choose pixel non-redundant ‘U’-like sequencing as an

alternative if computational burden is also of importance. Future works may focus

on the issue of incorporating hyper-spectral data and including multiscale

information into HMM.
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Table 4. The running time resulting from different pixel arrangement schemes with HMM.

No. Pixel fitting scheme

Computational time
approximated in

minutes

1 Strip-like 8
2 Hilbert-Peano sequencing 8
3 Pixels non-redundant ‘V’-like 8
4 Pixels redundant ‘V’-like 19
5 Pixels non-redundant ‘U’-like 8
6 Pixels redundant ‘U’-like 19
7 ‘e’-like 26
8 Observation-density-based method One-side neighbour 14
9 Observation-density-based method two-side neighbour 17

*Please note that the running time is obtained by using MATLAB 6.5 program running on
Intel Pentium III CPU with training iterations set to 7.
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