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Noise equalization in Stokes parameter images obtained by use
of variable-retardance polarimeters
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An imaging variable retardance polarimeter was developed and tested by Tyo and Turner [Proc. SPIE 3753,
214 (1999)]. The signal-to-noise ratio (SNR) in the reconstructed polarization images obtained with this
system varied for the four Stokes parameters. The difference in SNR is determined to be due to differences
in the Euclidean lengths of the rows of the synthesis matrix used to reconstruct the Stokes parameters from
the measured intensity data. I equalize (and minimize) the lengths of the rows of this matrix by minimizing
the condition number of the synthesis matrix, thereby maximizing the relative importance of each of the
polarimeter measurements. The performance of the optimized system is demonstrated with simulated data,
and the SNR is shown to increase from a worst case of � ��� dB for the original settings to a worst case of
� ��� dB for the optimized system. © 2000 Optical Society of America

OCIS codes: 260.5430, 230.5440.
Stokes vector (SV) imaging polarimeters have been
developed for use in remote-sensing applications and
have been demonstrated to improve target contrast, 1,2

reduce clutter, 1 aid in the defeat of intervening scat-
terers, 2,3 and provide orientation information about
target features. 1,2 Polarimeters employ strategies
motivated by ellipsometry to measure components of
the Stokes vector at each pixel in a frame; however,
there are signif icant differences between ellipsometric
and imaging applications that place restrictions on
the design of SV polarimeters. First, ellipsometers
are often single-pixel (or few-pixel) devices, whereas
SV imaging polarimeters are designed to make
measurements at �� � �� � locations simultaneously.
Second, the signal-to-noise ratio (SNR) is often lower
for SV imaging polarimeters than for ellipsometers
because the illumination is usually passive for the
former. Third, the temporal resolution needed for an
operational SV polarimeter to image a moving target
limits the dwell time for each measurement. These
factors push the design of imaging polarimeters to
require as few measurements as possible.

The Stokes vector is a widely accepted means to de-
scribe the polarimetric signature of incoherent radia-
tion, and it is typically def ined as � � �� � � � � � � � � � ,
where � � � � are the Stokes parameters. Polarimetric
imaging systems have been developed to detect one-,
two-, three-, and four-dimensional polarization infor-
mation, and the number of measurements made must
be greater than or equal to the dimensionality of the de-
sired reconstruction. The Stokes vector is typically in-
ferred from data measurements by solution of a system
of linear equations for the unknown Stokes parame-
ters in a least-squares sense.

Variable-retardance (VR) polarimetry uses two
mechanically f ixed, variable retarders and a f ixed
linear polarization analyzer to make a set of mea-
surements from which the Stokes vector can be
reconstructed. 4 VR polarimeters have no moving
components, so they do not suffer from the image
wander that is seen in more-traditional rotating
compensator systems. The Mueller matrix for the
VR system is � � �� � � � � �� � � � 	 � � � � �� � � � 	 � � � ,
0146-9592/00/161198-03$15.00/0
where the three Mueller matrices on the right-hand
side correspond to the individual optical components,
� is the angle of the polarizer, and � � and � � are
the fast axis angles of the variable retarders, with
retardances � � and � � . Because square-law detectors
sense intensity, only the � � component of the output
Stokes vector can be measured. Taking the product
of the f irst row of � with input Stokes vector � 
�
yields � �	 �
� :

� � � �	 �
� � � �� � � � � �� � � � � �� � � � � �� � � � (1)

By choice of at least four combinations of �� � 	 � � � , a
system of linear equations that relate measured inten-
sity to the input Stokes vector is constructed. For the
purposes of this Letter it is assumed that the number
of measurements is equal to four. An analysis matrix
� can be created with � � 	 � � �

� � �
�	 � , where � �� � is the

Mueller matrix of the � th conf iguration. When � is
full rank, a synthesis matrix � � � � � can be calcu-
lated, permitting synthesis of the Stokes vector from
the intensity measurements at each pixel.

An example of an imaging VR spectropolarimeter
was presented in Ref. 4. That instrument had its
linear polarization analyzer at 0 � and the two retarders
at � � � ���� � and � � � �� � . Measurements were
made with �� � 	 � � � set to �� � 	 � � � , � � � 	 �� � � , � �� � 	 � � � ,
and ��� � 	 �� � � . These settings were suff icient to
permit unique reconstruction of the Stokes vector,
but the apparent noise level was different in each of
the four Stokes parameter images. This difference is
demonstrated with simulated data in Fig. 1.

I constructed the ��� pixel � ��� pixel simulated
images in Fig. 1 by setting the Stokes vector of the
��� pixel � ��� pixel central region to � � �

�
� � � � � � .

The outside region was set to � � 	 . This Stokes
vector was operated on by the Mueller matrices cor-
responding to the system settings given above, 4 and
the resultant � � values were calculated. Zero-mean
white Gaussian noise with a variance of 0.10 was
added to each of the four intensity images ( 	 � � ���� ,
SNR of 15 dB). The Stokes parameter images were
then constructed by use of the synthesis matrix on the
noisy images.
© 2000 Optical Society of America
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Fig. 1. Simulated noisy data from the VR parameter set-
tings of Ref. 4. The actual image distribution has a Stokes
vector of �

�
� � � � � � in the central region and of 	 outside.

The gray-scale axes are stretched to maximize the dynamic
range. For A �� � � , the gray-scale range corresponds to re-
constructed values from � ���� to 4.13; for B, C, and D ( � � ,
� � , and � � ), the range is from � ���� to 5.53.

The nonuniform variance noted in Ref. 4 is evident
in Fig. 1. The mean Stokes vector in the central re-
gion is �� � � ����� ���� ���� ���� � � , where � � indicates
a spatial average, so the average performance of the
simulated system is accurate to within 3% but the
variance is var �� � � � ���� ���� ���� ���� � � , where
�var �� �� � � var �� � � � � . The maximum SNR is 6.9 dB
�� � � , and the minimum is � ��� dB �� � � .

We can understand the differences in SNR among
the reconstructed images (and the low SNR) by consid-
ering the properties of the analysis and synthesis ma-
trices. If the noise variance is 	 � in each of the four
intensity images, the variance in the reconstructed im-
ages is

var �� � � � 	 � � � � � � � �
� 	 (2)

where � � � � � � � is the Euclidean length of the � � � st
row of the synthesis matrix. For the synthesis matrix
corresponding to Fig. 1 the lengths of the rows are
�����	 ����	 ����	 ���� � , and the computed variances
are within 5% of the predicted values. To equalize
the noise in the reconstructed images one must also
equalize the lengths of the rows of the inverse matrix
(and minimize them to improve the SNR). In this
study I obtained the equalization by minimizing the
� � condition number of analysis matrix � .

The � 	 norm of matrix � is5

� � � 	 � sup

 � � � � �

� � �
 � 	 	 � 
 � 	 � 	 � � 
 � 	 � 	 �
�

�


 �
	 	

(3)

where � � � � is the domain of � . The interested
reader is referred to Ref. 5 for more information on
various matrix and vector norms. Because the image
variance is related to the Euclidean length of the rows
of the synthesis matrix, the � � matrix norm is chosen
for optimization in this study. Other def initions of
the SNR (in terms of other vector norms) would result
in different optimizations. 6

The condition number of a matrix is def ined as

 	 � � � � � � � 	 � � � � � 	 , and one evaluates the � �
condition number by taking the ratio of the largest
to smallest singular value of the matrix as computed
with the singular-value decomposition. 5 The higher
the condition number, the less linearly independent
are the columns of � , so the rows of � � � must have
large � � lengths for inversion to be accomplished.
Minimizing the condition number maximizes the
relative importance of each of the four measurements,
thereby increasing system stability and decreasing
noise variance in the reconstructed images.

The optimization was accomplished with the se-
quential quadratic programming method in the Matlab
(Ver. 5.3) Optimization Toolbox (Ver. 2). The angles
of the variable retarders were f ixed at 22.5 � and 45� ,
and the four pairs of retardance values were varied to
minimize 
 � � � � . The optimum settings obtained for
VR polarimetry are nonunique, and one set of optimum
retardances is given by �� � 	 � � � � � � ���� � 	 � ���� � � 	
� � ���� � 	 ��� � � 	 � ��� � 	 ���� � � 	 � ��� � 	 ��� � � . The lengths
of the rows of all numerically optimized synthesis
matrices are ��	

�
� 	

�
� 	

�
� � to f ive signif icant

f igures. For optimum configurations, the corre-
sponding singular values are ��	 � 	

�
� 	 � 	

�
� 	 � 	

�
� � .

These results imply that the first measurement
provides the most information about the polariza-
tion state and that each successive measurement
provides the same amount of additional informa-
tion. The sum of the squares of the singular values
is 2, and this is equal to the number of orthogo-
nal measurements that can be made with physical
components; i.e., each polarization state has exactly
one state that is orthogonal to it.

Simulated Stokes parameter images for the opti-
mized conf iguration above are presented in Fig. 2,
with �� � � � ���� ���� ���� ���� � � and var �� � �
� ���� ���� ���� ���� � � . The variance predicted
by the lengths of the rows of � is var �� � �
� ���� ���� ���� ���� � � . The maximum SNR has
been increased to 15 dB for � � , and the SNR’s for
� � � � have been nearly equalized to 5.1 dB.

There is an elegant graphical construct f irst
proposed in Ref. 6 that helps to clarify the results
described above. The two retarders and the linear
polarizer together form an elliptical diattenuator.
The intensity of one elliptically polarized state is
unattenuated on transmission; the intensity of the or-
thogonal polarization state is completely extinguished.
The unattenuated state has a unique Stokes vector
that is termed here the principal direction of the
system. As the system parameters are varied,
the principal direction traces out a trajectory on
the Poincaré sphere. The optimization procedure is
equivalent to choosing a best set of four locations from
that trajectory. Ambirajan and Look 6 hypothesized
that an optimal configuration inscribes a regular
tetrahedron inside the Poincaré sphere. Although
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Fig. 2. Simulated data for the optimized settings given in
this study. Actual image distributions are the same as in
Fig. 1. The gray-scale ranges maximize dynamic range
and are different from those in Fig. 1. The gray-scale
range corresponds to reconstructed values from � ���� to
2.79. For B, C, and D ( � � , � � , and � � ) the range is from
� ���� to 2.98. The optimization is not restricted to this
particular Stokes vector, as the system condition is inde-
pendent of the input.

Fig. 3. Regions accessible by the VR polarimeter with
� � � ���� � and � � � �� � . These are polar projections
with left- and right-elliptically polarized (LEP and REP)
states in the north and south hemispheres, respectively.
The straight lines actually form coaxial circles on the
Poincar é sphere. The common axis bisects the angle
between the � � and � � axes. The points form inscribed
regular tetrahedrons and are optimal configurations.
Crosses, ���� � 	 ���� � � , � ��� � 	 � ��� � � , � ���� � 	 � ���� � � ,
and ������ � 	 ��� � � . Circles, ���� � 	 ���� � � , � � ���� � 	 ��� � � ,
� ���� � 	 � ��� � � , and ����� � 	 � ���� � � . Triangles, values in
the text.

they were unable to achieve the optimization, the
results presented here and in Ref. 7 verify the
hypothesis.

For rotating compensator systems, there is only one
degree of freedom (angle of the retarder), so the tra-
jectory forms a curve on the Poincar é sphere. There
are exactly two ways to inscribe a regular tetrahe-
dron whose corners lie upon the trajectory when the
compensator has a retardance of ���� � .7 The VR sys-
tem has two degrees of freedom (retardance values), so
the trajectory maps out a surface, as shown in Fig. 3.
The hatched areas indicate the parts of the Poincar é
sphere that can be reached by the polarimeter, and
three sets of optimal retardance are indicated. There
is a continuum of optimal configurations that f it in-
side this region. For the optimization presented here,
� � � ���� � and � � � �� � because of the relation to the
research presented in Ref. 4. These are not the only
angles that will produce at least one optimum, and not
all angle pairs are guaranteed to produce even one op-
timum. For example, the best configuration possible
with � � � �� � and � � � ���� � is suboptimal �
 � � ���� � .
For VR systems with � � � �� � , optimal configurations
exist for � �� � � � � � �� � .

The minimization procedure performed here is
equivalent to that performed by Sabatke et al. ,7

for which the total noise power (summed over all
Stokes parameter images) was minimized for rotating
compensator polarimeters. Ambirajan and Look 6

considered the � � and � 
 condition numbers and the
magnitude of the determinant in optimizing rotating
quarter-wave-plate systems. Tyo 8 examined the
correlation between the individual measurements of
a rotating analyzer system to determine the condi-
tions for optimum information reconstruction. These
analyses produce equivalent results and are funda-
mentally related.

The methods described here can be extended to any
dimensionality of polarimeter with any number of mea-
surements used to select an optimum conf iguration.
There is no evidence that indicates that one optimal
configuration is preferable to another, but experimen-
tal considerations, background polarization biases, and
the effect of instrumental error may provide a reason
to select a particular optimal solution.

The author ’s e-mail address is tyo@ieee.org.

References

1. L J. Cheng, J. C. Mahoney, and G. Reyes, Proc. SPIE
2237, 251 (1994).

2. J. S. Tyo, M. P. Rowe, E. N. Pugh, and N. Engheta, Appl.
Opt. 35, 1855 (1996).

3. M. P. Silverman and W. Strange, Opt. Commun. 144, 7
(1997).

4. J. S. Tyo and T. S. Turner, Jr., Proc. SPIE 3753, 214
(1999).

5. G. H. Golub and C. F. van Loan, Matrix Computa-
tions (Johns Hopkins U. Press, Baltimore, Md., 1983),
Chap. 2, pp. 11 –29.

6. A. Ambirajan and D. C. Look, Jr., Opt. Eng. 34, 1651,
1656 (1995).

7. D. S. Sabatke, M. R. Descour, E. Dereniak, W. C. Sweatt,
S. A. Kemme, and G. S. Phipps, Opt. Lett. 25, 802 (2000).

8. J. S. Tyo, J. Opt. Soc. Am. A 15, 359 (1998).


