Wave optics simulation of atmospheric turbulence and reflective speckle effects in CO2 lidar

Nelson, Douglas H.

http://hdl.handle.net/10945/44144
Wave optics simulation of atmospheric turbulence and reflective speckle effects in CO₂ lidar

Laser speckle can influence lidar measurements from a diffuse hard target. Atmospheric optical turbulence will also affect the lidar return signal. We present a numerical simulation that models the propagation of a lidar beam and accounts for both reflective speckle and atmospheric turbulence effects. Our simulation is based on implementing a Huygens–Fresnel approximation to laser propagation. A series of phase screens, with the appropriate atmospheric statistical characteristics, are used to simulate the effect of atmospheric turbulence. A single random phase screen is used to simulate scattering of the entire beam from a rough surface. We compare the output of our numerical model with separate CO₂ lidar measurements of atmospheric turbulence and reflective speckle. We also compare the output of our model with separate analytical predictions for atmospheric turbulence and reflective speckle. Good agreement was found between the model and the experimental data. Good agreement was also found with analytical predictions. Finally, we present results of a simulation of the combined effects on a finite-aperture lidar system that are qualitatively consistent with previous experimental observations of increasing rms noise with increasing turbulence level. © 2000 Optical Society of America

OCIS codes: 010.1130, 030.6140, 010.3640.

1. Introduction

Lidar is the subject of a vast literature describing the advances that have occurred over the past three decades. Long-range CO₂ lidar is of interest for many reasons including the identification of natural and man-made gaseous constituents, ground-cover identification and mapping, and atmospheric characterization. In these lidar systems, the beam propagates several kilometers through the atmosphere. To enhance the lidar return signal, the lidar beam is often reflected from a topographic or other diffuse hard target back to the transmitter and receiver, where the return signal is detected. In efficient detection and monitoring applications that use diffuse hard-target reflections, the path-integrated properties of chemical concentration are measured instead of the range-resolved concentration found with aerosol backscatter techniques.

The geometry for a diffuse hard-target reflection scheme is shown in Fig. 1. As the laser beam propagates toward the target, density fluctuations in the atmosphere cause phase distortions in the transverse electric field distribution. By the time the laser beam reaches the target, its spatial intensity distribution has been modified compared with what would be observed in propagating through a vacuum. At the target, light is scattered backward toward the transmitter. The light scattered back toward the transmitter and receiver passes through essentially the same turbulent atmosphere that modified the outgoing beam (because the atmosphere is considered frozen during the transit time of the pulse for our typical lidar geometries). The return signal amplitude will be reduced by any chemical absorbers in the path in a manner consistent with Beer’s law. Absorption will also occur from natural atmospheric constituents.

The atmosphere alone can introduce variations in the measured return signal. Figure 1 illustrates the degrading effect that atmospheric optical turbulence has on the spatial profile of the laser beam. These degradations result from the variations in the phase
The target surface also plays an important role in determining the nature of the return signal. A surface that is rough on the scale of the laser wavelength scatters the coherent laser pulse in all directions, producing a complex interference pattern. This interference pattern is granular in appearance and is commonly referred to as a speckle pattern. The correlation area of these speckles is one parameter that is used to describe the pattern’s statistical properties. Consider the case in which the receiver subtends a single speckle and an independent speckle pattern is observed in each measurement. In this case, the normalized standard deviation of intensity for a sequence of such measurements has a value of one normalized standard deviation of intensity for a single speckle and an independent speckle pattern is being sampled. Ensemble averaging of independent speckle patterns will reduce the noise variance.

The front of the propagating beam introduced by spatial fluctuations in the index of refraction is the transmitted energy and

\[y_N = \exp \left(\frac{-2C_N \alpha_i}{\sqrt{N_S N_p}} \right), \]
The exponential term in Eq. (1) denotes absorption by a chemical species of concentration \(C_\text{a} \) and absorption coefficient \(\alpha \) within a uniform plume through which the beam propagates a distance \(l \). We separated the absorption by the chemical species from the atmospheric transmission, contained in \(f(T_i, R_i, \ldots) \), to reflect that the chemical plume is present over only a small part of the propagation distance. \(Q_i \) is a system-dependent constant for lidar returns at wavelength \(\lambda_i \), and includes the effect of varying the receiver area as well as other system parameters. In general, the variables on the right-hand side of Eq. (1) have a time dependence and can cause fluctuations in the return signal \(U_i \).

The function \(f(T_i, R_i, \ldots) \) expresses the round-trip transmission that includes the propagation effects of atmospheric absorption and atmospheric optical turbulence (indicated by \(T_i \)), target effects such as reflective speckle and albedo (denoted by \(R_i \)), as well as other effects. Other representations of the lidar equation have the components of \(f(T_i, R_i, \ldots) \) separately.\(^{10,28,29}\) In general, however, these terms are interdependent and therefore we did not isolate them. A key factor in this interdependence, for example, is that both atmospheric optical turbulence and reflective speckle affect the phase of the propagating electric field. Atmospheric optical turbulence also alters the distribution of beam energy on the hard target, ultimately influencing the speckle correlation area.

Consider the special case in which only variations in \(f(T_i, R_i, \ldots) \) contribute to the fluctuations in the return signal \(\sigma_{U_i} \). There are a number of different sources of variations in \(f(T_i, R_i, \ldots) \). These include changes in atmospheric absorption, fluctuations in the spatial distribution of energy on the target and at the receiver caused by atmospheric turbulence effects, variations in the intensity of the received reflective speckle, and hard-target albedo changes. In the model that follows, we consider only those contributions to the time dependence of \(f(T_i, R_i, \ldots) \) caused by atmospheric optical turbulence and reflective speckle.

Our approach to modeling the effects of reflective speckle and atmospheric turbulence consists of applying a Huygens–Fresnel wave optics computer simulation, previously developed at the Naval Postgraduate School, to our lidar geometry.\(^{31}\) This is an accepted approach for modeling the effects of atmospheric optical turbulence on the propagation of a laser beam to a target with no hard-target reflection.\(^{32}\) Other numerical approaches that model Gaussian beam propagation have met with success as well.\(^{33,34}\) Simulations of the double pass of an optical wave through a phase screen after reflection from a mirror have been done to examine enhanced backscatter.\(^{35}\) A related speckle modeling approach, which neglected atmospheric turbulence effects, used Fresnel propagation to simulate the creation of a speckle pattern and determine the number of speckle integrated in a receiver aperture for different target geometries.\(^{36}\) Another method for modeling speckle, which did not incorporate beam propagation, utilized a one-dimensional imaging approach to analyze the speckle intensity distribution and contrast as a function of surface roughness and the point spread of the imaging system.\(^{37}\) An approach to the combined speckle–turbulence problem, which is conceptually similar to our turbulence propagation model, has provided some comparisons of probability density functions of received backscattered intensity with analytical approximations for point receivers.\(^{38}\)

In our model, the phase front of the beam is distorted as it propagates to the target by a series of phase screens that simulate atmospheric turbulence effects. To simulate the diffuse hard-target production of reflective speckle, a random phase is added to the electric field phase term of the entire beam at the target. This distorted phase front then propagates through the same turbulent path.

In Appendix A, we discuss the approach of Davis\(^{39}\) that uses the Fresnel–Kirchhoff theorem to approximate the electric field at an observation point in cylindrical coordinates as

\[
E(\hat{r}, z) = -\frac{i}{\lambda} \int_A E(\hat{\rho}, z) \exp[i(k(z^2 + |\hat{r} - \hat{\rho}|^2)^{1/2}] (z^2 + |\hat{r} - \hat{\rho}|^2)^{1/2} dA. \tag{2}
\]

Propagation is in the \(z \) direction, \(\hat{r} \) represents the position vector of the observation point in the \(x-y \) plane, and \(\hat{\rho} \) is the position vector of the radiating point in the aperture plane. \(E(\hat{\rho}, z) \) is the electric field originating in the transmitter aperture of surface area \(A \). After assuming on-axis paraxial propagation along with the Fresnel approximation, we can write a propagation step symbolically, after some math, as

\[
E(\hat{r}, z) = \text{IFT}[\exp(-i\pi\lambda z |\hat{r}|^2)\text{FT}(E(\hat{\rho}, 0))], \tag{3}
\]

where FT is the two-dimensional Fourier transform and IFT is the two-dimensional inverse Fourier transform. This is an expression for the electric field at a propagation distance \(z \) in terms of the Fourier transform of the electric field at \(z = 0 \) with \(\exp(-i\pi\lambda z |\hat{r}|^2) \) as the Fresnel propagator in frequency space \(\hat{r} \).

The form of approximation (3) lends itself to numerical FT techniques and forms the basis of the wave optics simulation. We implemented this Huygens–Fresnel wave optics simulation using an \(N \times N \) array of complex numbers to represent the electric field in a plane perpendicular to the propagation axis. The initial electric field, a Gaussian TEM\(_{00}\) spatial intensity and phase distribution with the characteristics of our experimental transmitter beam, is used as the input for the simulation. The simulation propagates this initial electric field by dividing the path from the lidar platform to the target into equal-sized steps and applying a phase screen to simulate turbulence at each step. As in approxima-
tion (3), the expression for the electric field after a step over a distance Δz is determined from

$$E(\hat{r}, \Delta z) = \text{IFT}(\exp(-i\pi \lambda \Delta z/\hat{f}^2) \text{FT}[E(\hat{r}, 0) \exp[i\theta(\hat{r})]])$$

(4)

where $E(\hat{r}, 0)$ is the electric field at the beginning of the step $(z = 0)$. As before, FT is the discrete two-dimensional Fourier transform, $\exp(-i\pi \lambda \Delta z/\hat{f}^2)$ is the Fresnel propagator in frequency space \hat{f}, λ is the lidar wavelength, and IFT is the discrete two-dimensional inverse Fourier transform. The phase screen $\theta(\hat{r})$ is given by

$$\theta(\hat{r}) = 0.0984k_0 \frac{C_n^2(z)\Delta z}{(N\alpha s)^{5/6}} \times \text{FT}[\left(\frac{n_x^2 + n_y^2}{n_x} - 1\right)^{1/6} \Theta_0(n_x, n_y)],$$

(5)

where $k_0 = 2\pi/\lambda$, $C_n^2(z)$ is the path-dependent index of refraction structure constant that parameterizes the level of turbulence, Δz is the step propagation distance, N is the number of pixels along one dimension of the array, $\alpha s = \sqrt{\lambda L/N}$ is the optimized pixel size for a transmitter-to-hard-target distance of L, n_x and n_y denote integer pixel coordinates within the two-dimensional array, $\Theta_0(n_x, n_y)$ represents an $N \times N$ array of complex unit-variance Gaussian random numbers, and FT again implies a two-dimensional discrete Fourier transform. The optimized pixel size $\alpha s = \sqrt{\lambda L/N}$ is based on the work of Knepp and Davis, which takes into account the Nyquist criterion for sampling at an optimal spatial frequency. The argument of the FT operation is an array in the spatial frequency domain produced by one taking a Gaussian random number distribution and applying the $(n_x^2 + n_y^2)^{1/2} - 1/6$ factor to impose properties of the Kolmogorov spectrum, which describes the spatial frequency distribution of index of refraction fluctuations in the transverse plane. As can be seen in Eq. (5), the strength of the turbulence phase screen depends on the level of turbulence, the length of the propagation step, and the wavelength. Figure 2 shows a typical phase screen.

The criteria for selecting the size of a propagation step Δz are twofold. The assumptions used to approximate a propagation step by use of approximation (3) dictate that the step be within the near field. Because our laser beam is approximated as a Gaussian TEM$_{00}$ transverse mode, a step within the Rayleigh range is in the near field. The turbulence level also has an impact on the size of this step because the phase effects over this step must not be dominated by amplitude effects that arise from diffraction and interference as the distorted phase front propagates. Martin and Flatté found that for the phase screen approach to be valid, the normalized point irradiance variance σ_I^2, defined below, for a propagation step must be less than 0.10 of the total normalized point irradiance variance for the entire propagation distance L:

$$\sigma_I^2(\Delta z) < 0.1\sigma_I^2(L).$$

(6)

They also found that this variance must be less than 0.1 for one step:

$$\sigma_I^2(\Delta z) < 0.1.$$

(7)

For propagation of a spherical wave, assuming weak turbulence, the rms noise or scintillation at an on-axis point detector is

$$\sigma_f = [\exp(4\sigma_x^2) - 1]^{1/2},$$

(8)

where σ_f is the normalized standard deviation of irradiance. This is the square root of the normalized point irradiance variance mentioned above. The parameter σ_x^2 is the spherical wave log-amplitude variance for a point detector. For a horizontal path of length L with uniform turbulence (i.e.,
constant C_n^2, the spherical-wave log-amplitude variance is

$$\sigma_n^2 = 0.124 C_n^2 x_0^{7/6} L^{11/6},$$

again with $x_0 = 2\pi/\lambda$.

At the target, the electric field phase is randomized to simulate reflective speckle with the expression

$$E(n_x, n_y)_{\text{reflected}} = E(n_x, n_y)_{\text{target}} \times \exp[i2\pi \text{ random}(n_x, n_y)],$$

where $E(n_x, n_y)_{\text{reflected}}$ is the electric field reflected from the target, (n_x, n_y) again denotes a pixel location within the transverse two-dimensional array, $E(n_x, n_y)_{\text{target}}$ is the complex electric field incident on the target after propagation through turbulence, and random(n_x, n_y) is a random number between 0 and 1 chosen from a uniform distribution. A uniform distribution is used because this is a good approximation for the phase produced by a surface that is rough compared to a wavelength of the coherent light on the target. The reflected electric field then propagates back to the telescope and receiver with turbulence effects induced by use of the same phase screens as on the path out. The same phase screens are used because the atmosphere is considered frozen during the transit time of the lidar pulse. At the receiver, the electric field is used to determine the irradiance with the relation $I(\hat{p}, 2L) \propto E^*(\hat{p}, 2L) E(\hat{p}, 2L)$, where $E^*(\hat{p}, 2L)$ indicates the complex conjugate of the electric field at the receiver after propagation through a round-trip distance $2L$. The irradiance is integrated over the particular receiver area to determine the return signal. This return signal is analyzed over a number of atmospheric turbulence and target phase realizations. These different realizations produce changes in the received speckle pattern and vary the return signal from one pulse to the next.

In modeling the round-trip propagation, there are a number of transverse scales that one must consider. The simulation must be able to accommodate the larger scales without allowing energy to be artificially reflected back into the grid. The initial output beam width as well as the diffraction-limited beam width at the target must be small enough in comparison to the overall simulation grid to minimize any unphysical reflection. Turbulence-induced beam spreading must also be contained in the simulation grid. In general, a beam diameter less than half of the simulation grid width at any point along the propagation path is sufficient to mitigate the artificial reflection of beam energy. For the reflection of energy from the rough target, the paraxial assumption, on which the numerical model is based, reduces the amount of energy that propagates to the edges of the simulation grid.

The numerical simulation must also be capable of sampling the transverse electric field at a spatial frequency large enough to provide satisfactory modeling and assessment of the overall propagation effects. To determine the speckle correlation diameter, for example, there must be an adequate number of pixels that make up each speckle. For small speckle or coarse grids, the sampling would be unsatisfactory. We never approach this regime for the lidar geometries modeled in this research. For example, the smallest number of pixels per speckle correlation area in this research is ~ 16. The turbulence-induced transverse coherence length of the electric field and the characteristic size of scintillation should also never approach the pixel size. Large values of path-integrated turbulence effects in the strong turbulence regime would prove troublesome.

3. Simulation Results and Discussion

A. Atmospheric Turbulence Effects

Although in general the ability of the Huygens-Fresnel approach to simulate the effects of atmospheric optical turbulence is well established, this approach has certain limitations that may limit its usefulness for specific systems. One possible limitation is that the Fourier representation of the phase screens underestimates the large-amplitude, low-frequency components of the Kolmogorov spectrum, which characterizes atmospheric turbulence. Consequently, this may lead to less beam wander than would be measured experimentally. The Fresnel approximation, inherent to the method, constrains the length of the propagation steps as mentioned above. If an excessive number of propagation steps are used, it could lead to a disproportionate amount of computation time. Therefore one goal is to keep the number of steps as low as possible. In addition, as mentioned above, the maximum size of the beam on the target must be limited so that one may avoid spillover of energy off the grid. We also realize that small spatial variations are not adequately modeled by this simulation because of aliasing effects inherent in FT techniques. It is therefore necessary and instructive to verify the application of this method to specific propagation problems. Here we verify the validity of the simulation for our geometry by comparing results from it with analytical models and experimental results. Figure 3(a) is an example of an irradiance pattern from the simulation for a case of zero turbulence ($C_n^2 = 0$). In Fig. 3(b) we used a higher level of turbulence ($C_n^2 = 10^{-14} \text{ m}^{-2/3}$) that is at approximately the midrange of the values that we measured during summer in the Nevada desert. The effect of turbulence on the beam is readily apparent in the image of Fig. 3(b).

1. Long-Term Beam Spreading

One effect of turbulence that we observed in our lidar system is that of long-term beam spreading, which is a combination of short-term beam spreading and centroid motion over many pulses. We begin with the analytical prediction of such spreading. Ignoring platform motion, we can express the effective diameter ($1/e^2$ intensity) of a laser beam propagating...
through a turbulent atmosphere as the combination of two independent effects by47,23
\[D^2 = 8(\alpha_d^2 + \alpha_r^2), \] (11)
where \(\alpha_d^2 \) and \(\alpha_r^2 \) refer to the contributions that are due to diffraction and atmospheric turbulence, respectively. The long-term turbulence contribution is
\[\alpha_r = \frac{\lambda L}{\pi \rho_0}, \] (12)
where \(\lambda \) is the laser wavelength and \(L \) is the propagation distance. The transverse coherence length \(\rho_0 \) is the distance transverse to the propagation direction where the average electric field correlation falls to 1\(/e \) of its fully correlated value.48

The transverse coherence length can be expressed for three cases. For the plane-wave limit it is given by49
\[\rho_{0-\text{plane}} = \left[1.46k_0^2 \int_0^L C_n^2(z)dz \right]^{-3/5}, \] (13)
and for the spherical-wave limit,49
\[\rho_{0-\text{spherical}} = \left[1.46k_0^2 \int_0^L C_n^2(z) \frac{z}{L} \frac{2}{L} dz \right]^{-3/5}, \] (14)
where \(k_0 = 2\pi/\lambda \) and \(C_n^2(z) \) is the index of refraction structure constant denoting the strength of atmospheric turbulence. For a beam wave or a Gaussian beam, the expression for transverse coherence length is13
\[\rho_{0-\text{Gaussian}} = \rho_{0-\text{plane}} \left[\frac{\left(1 - \frac{L}{f_i} \right)^2 + \frac{4L^2}{k_0^2D_x^4} \left(1 + \frac{1}{3} \left(\frac{D_x}{\rho_{0-\text{plane}}} \right)^2 \right)}{\left(1 - \frac{13L}{3f_i} + \frac{11}{3} \frac{L}{f_i} \right)^2 + \frac{4L^2}{3k_0^2D_x^4} \left(1 + \frac{1}{4} \left(\frac{D_x}{\rho_{0-\text{plane}}} \right)^2 \right)} \right]^{1/2}, \] (15)
where \(D_x \) is the transmitted beam diameter and \(f_i \) is the radius of curvature. The value of \(\rho_{0-\text{Gaussian}} \) will fall between the extremes of \(\rho_{0-\text{plane}} \) and \(\rho_{0-\text{spherical}} \).

Experimentally, we quantified the transverse laser beam profile in the target region by scanning the beam over a narrow vertical pole in our target area and measuring the return signal at each position in the scan.23 The beam scan was performed slowly over a large number of pulses to quantify the long-term spreading effect. We concurrently measured the atmospheric turbulence through use of a combination of scintillometers and point temperature probes.23,50 The propagation path was horizontal over flat, featureless desert terrain with a range of 3300 m. The turbulence along this path was assumed to be uniform.

In Fig. 4 we present the long-term beam-spreading effects (which include the effects of short-term beam spreading and centroid motion) observed in several experimental profiles. They are compared with those observed in the simulation and predicted by analytical models for beam propagation in turbulence.23 We calculated the analytical values for plane-wave, spherical-wave, and beam-wave cases assuming uniform turbulence over a horizontal propagation path and using Eqs. (11) and (12) taking system beam parameters into account.12,14 Transverse coherence lengths for plane wave, spherical wave and Gaussian beams were calculated with Eqs. (13)–(15), respectively.

For the simulation, a total of 100 independent turbulence realizations were summed to generate the long-term beam-spreading effect. Columns of pixels in the resulting pattern were then summed to generate a one-dimensional intensity pattern, mimicking the scanning of a beam across a pole. A least-squares curve fit to this profile was used to determine the Gaussian beam parameter for the simulation.

The simulation used five propagation steps on a \(512 \times 512 \) array and was repeated for each turbulence level. The lidar beam was modeled to closely match the experimental beam with a beam diameter of 0.207 m and an initial radius of curvature \(f_i \) of 843 m. This is indicative of a beam that is initially converging to a focus in front of the transmitter output and diverges beyond that point. There is good agreement between the simulation and the analytical theory that uses the spherical-wave transverse coherence length in Eq. (12). This conforms with previous research in Gaussian beam spreading.13,14,16,51 There is also agreement in the trend with increasing atmospheric optical turbulence evident in the experimental data.

2. Scintillation
A second turbulence effect is scintillation, the temporal and spatial fluctuation of intensity. Figure 5 shows the comparison between simulation and the analytical expression of Eq. (8). The value of \(\sigma_x^2 \) for this beam-wave case, following Miller et al.,52 is given by
\[\sigma_x^2 = 0.0675C_n^2k_0^{7/6}L^{11/6}, \] (16)
where the constant 0.0675 is based on an output beam that is 0.075 m in diameter with a radius of curvature of 601 m (initially converging) for the
The propagation geometry involves a one-way 2000-m trip to the target where the scintillation values are obtained. The simulation consisted of five propagation steps and a 512 × 512 array. For each of the 100 pulses simulated, the turbulence was modeled as uncorrelated from pulse to pulse. The simulated detector area is that of one pixel (0.0064 m × 0.0064 m) and is as close to a point detector as the simulation allows. There is good agreement in the weak turbulence regime. The simulated values assume uncorrelated rms noise, and the error bars reflect the fact that 100 pulses were modeled.

Figure 6 shows a comparison of the off-axis behavior of scintillation as observed in the simulation with the analytical theory predicted by Miller et al.52 In both cases the rms noise or σ_I increases with radial distance from the beam center. The simulation values are indicative of one-pixel detectors (0.0046 m × 0.0046 m). The simulated output lidar beam for this case had a diameter of 0.075 m and a radius of curvature of 139 m (initially converging). The simulation grid was 512 × 512 and utilized 20 phase screens
that modeled 100 pulses. Again we see good agreement between our simulation and analytical theory.

3. Transverse Coherence Length

Another turbulence effect is the decrease in spatial coherence transverse to the propagation direction which was mentioned above.

Figure 7 is a plot of transverse coherence length \(\rho_0 \) obtained from the simulation compared with plane-wave, spherical-wave, and beam-wave analytical theory of Eqs. (13)–(15). The simulated values were calculated from

\[
\text{MTF}_{\text{atmosphere}} = \exp \left[-3.44 \left(\frac{\hat{r}}{r_0} \right)^{5/3} \right],
\]

(17)

where \(\text{MTF}_{\text{atmosphere}} \) is the long-exposure atmospheric modulation transfer function, \(r_0 = 2.1 \rho_0 \) is the Fried parameter, and \(\hat{r} \) is the radial distance from the center of the \(\text{MTF}_{\text{atmosphere}} \). The half-width at half-maximum (HWHM) of the \(\text{MTF}_{\text{atmosphere}} \) provided us a means of determining \(\rho_0 \). Simulation values of \(\rho_0 \) exhibit the expected decrease in size with increasing turbulence and lie between the plane-wave and spherical-wave predictions. The simulated lidar beam had an output diameter of 0.075 m and a radius of curvature of 139 m (initially converging). A total of 100 pulses were numerically simulated on a 512 \(\times \) 512 grid with 20 phase screens.

B. Reflective Speckle Effects

Our next step in determining the validity of this type of simulation for predicting the effects of atmospheric turbulence and reflective speckle is to establish the validity of the model in simulating reflective speckle alone. To accomplish this, we conducted a number of simulations for zero-turbulence conditions to compare with results from established theory describing effects of speckle. Figure 8 shows a typical speckle pattern at the receiver from our simulation for a zero-turbulence case with reflective speckle.

1. Speckle Correlation Diameter

One statistical property of a speckle pattern is the average speckle diameter. From the derivation of Goodman\(^{20}\) and MacKerrow and Schmitt\(^{53}\), the speckle correlation diameter can be estimated from the width of the spatial autocorrelation function of
the intensity distribution in the plane of the receiver given by

\[
R_t(x_1, y_1; x_2, y_2) = \langle I(x_1, y_1) \overline{I}(x_2, y_2) \rangle,
\]

where the angled brackets indicate an ensemble average over statistically independent speckle patterns. The derivation uses the Fresnel approximation with the Huygens–Fresnel principle, which is completely analogous to the assumptions used in our model and assumes fine-surface variations that are unresolved by the lidar telescope. With these assumptions, after some manipulation, the autocorrelation for the intensity of a TEM\(_{00}\) Gaussian beam becomes\(^{20,53}\)

\[
R_t(\Delta x, \Delta y) = \langle I \rangle^2 \left(1 + \exp \left\{ \frac{-\pi^2 w_T^2}{\lambda^2 z^2} [(\Delta x)^2 + (\Delta y)^2] \right\} \right),
\]

where \(\Delta x = (x_1 - x_2)\) and \(\Delta y = (y_1 - y_2)\) are separations within the speckle pattern, \(w_T\) is the laser spot size (radius) on the target, \(z\) is the distance from the TEM\(_{00}\) Gaussian illumination or target plane to the speckle pattern plane, \(\langle I \rangle\) is the mean intensity, and \(\lambda\) is the lidar wavelength. Defining the correlation diameter \(d_c\) as the point where the diameter of the complex coherence portion (the exponential term) of the autocorrelation function, Eq. (19), has dropped to \(1/e\) of its peak value, we obtain\(^{53}\)

\[
d_c = \frac{2L}{\pi w_T},
\]

where \(\lambda\) is the wavelength of the lidar pulse, \(z = L\) is the propagation distance from the target to the telescope, and \(w_T\) is the beam spot size (radius) on the target.

We determine the speckle correlation diameters in the simulation by calculating the square of the correlation diameter on target. A single-pulse simulation was used with five propagation steps on a \(512 \times 512\) array. The \(1/e\) value of the normalized autocovariance rendered the speckle correlation diameter. The simulated value errors bars represent one pixel width which is the resolution of the simulation. The analytical values are given by Eq. (20). Propagation range is \(1000\) m and the lidar wavelength is \(10.6\) \(\mu\)m.

![Fig. 9. Comparison of simulated speckle correlation diameter in zero turbulence with that predicted by theory as a function of beam diameter on target. A single-pulse simulation was used with five propagation steps on a \(512 \times 512\) array. The \(1/e\) value of the normalized autocovariance rendered the speckle correlation diameter. The simulated value errors bars represent one pixel width which is the resolution of the simulation. The analytical values are given by Eq. (20). Propagation range is \(1000\) m and the lidar wavelength is \(10.6\) \(\mu\)m.]

2. Approximate Gamma Distribution

Although in principle the exact probability distribution function (pdf) for reflective speckle can be calculated with the Karhunen–Loeve expansion, to our knowledge the exact probability distribution function for a Gaussian TEM\(_{00}\) beam on target and a circular receiver has not been solved.\(^{53}\) The probability density of return signal intensities are usually estimated by use of the approximate Gamma distribution developed by Goodman.\(^{20,45}\) The result of Goodman’s derivation is the approximate Gamma distribution, which is the pdf for the integrated intensity of a speckle pattern \(I_0\) as\(^{20}\)

\[
p_{I_0}(I_0) \approx \begin{cases} \frac{1}{\Gamma(M)} \left(\frac{M}{\langle I \rangle} \right)^{M-1} \exp \left(-M \frac{I_0}{\langle I \rangle} \right), & \text{if } I_0 > 0 \\ 0, & \text{otherwise} \end{cases}
\]

The factor \(M\) is usually interpreted as the number of speckle inside the receiver aperture for an average pulse, \(\langle I \rangle\) is the mean value for the integrated intensity of the entire speckle pattern, and \(\Gamma\) is the gamma function. Examples of this distribution for different values of \(M\) are shown in Fig. 10. For a point detector, \(M = 1\), and relation (22) simplifies to a negative exponential. If the receiver aperture area is smaller than the speckle correlation area, the value of \(M\) is unity. In such a case, the intensity measured at the aperture will be influenced by a single speckle even if
only a small fraction of the speckle is sampled. Values of \(M < 1 \) therefore have no physical meaning.

Goodman also defined a relationship that compares \(M \) with a signal-to-noise ratio.\(^{21}\) His definition is

\[
\frac{\text{signal}}{\text{noise}}_{\text{rms}} = \frac{\langle I_0 \rangle}{\sigma_{I_0}} = (M_{\text{exact}})^{1/2},
\]

where \(\langle I_0 \rangle \) is equal to the true mean of the speckle pattern and \(\sigma_{I_0} \) is the square root of the variance of integrated intensity. An approximate relationship is

\[
\left(\frac{\text{signal}}{\text{noise}} \right)_{\text{rms}} \approx M^{1/2},
\]

which compares the value of \(M \) from relation (22) with calculated quantities from the intensity pattern generated by the simulation.

For a given lidar beam and receiver geometry, it is possible to calculate the value of \(M_{\text{exact}} \) based on the speckle area and the receiver area.\(^{20,53}\) With a Gaussian TEM\(_{00}\) beam at the target and a circular receiver aperture, the geometrically calculated \(M_{\text{exact, circ-Gauss}} \) is

\[
M_{\text{circ-Gauss}} = \frac{\pi}{16} \int_0^1 dy \left[y \cos^{-1}(y) - y^2 \sqrt{1 - y^2} \right] \exp \left[-4 \left(\frac{S_M}{S_C} \right) y^2 \right]^{-1},
\]

where \(S_M \) is the receiver area and \(S_C \) is the speckle correlation area given by

\[
S_C = \pi \left(\frac{d_c}{2} \right)^2 = \frac{\lambda^2 z^2}{\pi w_f^2}.
\]

We can then compare the \(M \) found from the Gamma distribution fits in our simulation to the geometrically calculated \(M_{\text{circ-Gauss}} \).

To compare our simulation to the theory outlined above, we simulated 1000 speckle pattern realizations for a number of different beam sizes on target. We then calculated the measured intensities for a number of circular receiver apertures of varying radii.

We fit the simulation intensity data to the approximate Gamma distribution of relation (22) to determine if the simulation produced the expected form of the pdf. When performing histograms of intensity values, the bin size is important when one is determining the pdf. The curve fits included our varying the bin sizes for histogramming intensity data from the simulation. We sampled the bin sizes such that the number of bins used varied from \(\sim 20 \) to \(\sim 200 \). We used the \(\chi^2 \) distribution to test the suitability of our curve fits. The definition of \(\chi^2 \) is\(^{55}\)

\[
\chi^2 = \sum_{j=1}^{n_{\text{bin}}} \frac{(h(x_j) - N_{\text{tot}}P(x_j))^2}{\sigma_j(h)^2}.
\]

Here \(P(x_j) \) is the value of the pdf at a particular bin location and \(N_{\text{tot}} \) is the total number of measurements. The product \(N_{\text{tot}}P(x_j) \) is then the predicted number of measurements of intensity for a certain bin location and is equivalent to the Gamma distribution function given by relation (22). The value \(h(x_j) \) is the actual number of measured intensities in each bin and \(n_{\text{bin}} \) is the total number of bins. The standard deviation of the mean \(\sigma_j(h) \) acts as a weighting function and is estimated from the simulation results by use of Poisson statistics with \(\sigma_j(h) \approx \sqrt{N_{\text{bin}}} \) where \(N_{\text{bin}} \) is the number of counts per bin.\(^{55}\) The reduced value of \(\chi^2 \) is

\[
\chi^2 = \frac{\chi^2}{\nu_f},
\]

where \(\nu_f = n_{\text{bin}} - n_c \) and \(n_c \) are the number of constraints. The histogrammed simulation results and the Gamma distribution were normalized to calculate \(\chi^2 \). The probability of observing values of \(\chi^2 \) equal to or greater than our calculated value are distributed according to the \(\chi^2 \) distribution. Fits that met the criteria of being near the center of the \(\chi^2 \) distribution (0.50 \(\pm \) 0.10) were used as acceptable curve fits resulting in simulated \(M \) values or \(M_{\text{fit}} \). Several representative plots resulting from this method are shown in Fig. 11. The error bars of the histogrammed simulation results are based on the estimated value of \(\sigma_j(h) \). The simulation comparison with theory shown here looks similar to previous research by MacKerrow and Schmitt\(^{53}\) comparing their experiments with theory. Their experiments were conducted over a short path (115 m) in which the effects of atmospheric optical turbulence were small. We found that the simulation produced intensities that have the appropriate pdf’s. The simulation therefore produced intensity distributions close to those that we would expect from both theory and experiment. Table 1 shows some examples of the parameters described above.
We also compared our M_{fit} values with those calculated using Eq. (25) to numerically calculate $M_{circ-Gauss}$ values from the lidar geometry. In Fig. 12 the simulated M_{fit} values and S_M/S_C ratios are compared and show agreement to within $\sim 10\%$ of the $M_{circ-Gauss}$ values. This agreement is additional verification of the simulation regarding speckle for the particular geometry and receiver sizes of our system.

Another comparison involved our using M_{fit} and the measured signal-to-noise ratio from the simulation. Figure 13 shows agreement to within $\sim 5\%$ between the signal-to-noise ratio values obtained from theory and simulation when plotted versus the analytical M_{exact} and simulated M_{fit} values, respectively. Assuming linearly polarized light, we calculated the M_{exact} value through Eq. (23)20:

$$M_{exact} = \left(\frac{\text{signal}}{\text{noise}} \right)^2_{\text{rms}},$$

(29)

Table 1. Sample M_{fit} Parameters for Different Receiver Aperture Sizes

<table>
<thead>
<tr>
<th>Receiver Radius (m)</th>
<th>M_{fit}</th>
<th>χ^2</th>
<th>χ^2 Distribution Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0137</td>
<td>1.17 ± 0.07</td>
<td>0.984</td>
<td>0.49</td>
</tr>
<tr>
<td>0.0228</td>
<td>1.72 ± 0.07</td>
<td>0.968</td>
<td>0.57</td>
</tr>
<tr>
<td>0.0455</td>
<td>3.50 ± 0.18</td>
<td>1.002</td>
<td>0.46</td>
</tr>
<tr>
<td>0.0683</td>
<td>6.27 ± 0.29</td>
<td>0.977</td>
<td>0.52</td>
</tr>
<tr>
<td>0.0910</td>
<td>10.16 ± 0.45</td>
<td>0.908</td>
<td>0.58</td>
</tr>
<tr>
<td>0.1138</td>
<td>17.02 ± 0.91</td>
<td>1.005</td>
<td>0.47</td>
</tr>
<tr>
<td>0.1820</td>
<td>33.40 ± 1.69</td>
<td>1.013</td>
<td>0.44</td>
</tr>
</tbody>
</table>

Fig. 11. (a) Simulated pdf for a receiver of radius ~ 1.4 cm with independent speckle realizations and zero turbulence ($C_n^2 = 0$). The diffraction-limited diameter of the beam on target ~ 0.20 m and $z = 1000$ m. The inverted triangles represent the distribution of simulated received intensity for 1000 pulses. The solid curve represents the best-fit Gamma distribution. This figure compares favorably with the $M = 1$ curve in Fig. 10. The simulation used five propagation steps on a 512×512 array. (b) Same simulation parameters as (a) except the receiver radius is ~ 2.3 cm. Note the similarity with the $M = 2$ curve in Fig. 10. (c) Same simulation parameters as (a) and (b) except the receiver radius is ~ 18.2 cm. The transition to a more Gaussian shape is apparent as with the $M = 10$ curve in Fig. 10.

Fig. 12. Comparison of fitted values of M, M_{fit} versus ratio of the aperture area to the estimated correlation area from simulation and theory. The theoretical plots of M, $M_{circ-Gauss}$ are those predicted for Gaussian target illumination with a circular receiver aperture. S_M is the area of the receiver aperture and S_C is the average area of a speckle. We simulated 1000 pulses for a transmitter to a target distance of 1000 m. Five propagation steps on a 512×512 array were used. The beam diameter on target ~ 0.20 m. Curve fits were performed to determine the simulated M factor M_{fit}. The data points represent receiver apertures of different radii.
where \((\text{signal/noise})_\text{rms}\) is the signal-to-noise ratio of the simulated intensities \(I_0\) measured by the receiver aperture. It should be emphasized that the value of \(M_\text{fit}\) that was determined from the curve fits to the Gamma distribution of relation (22) was not exact but the result of an approximation. Therefore, although the agreement in Fig. 12 is good, we do not expect a perfect comparison. Equation (23) is an exact relationship defined by Goodman\(^20\) whereas relation (24) is an approximation based on the approximate Gamma distribution given in relation (22). Our results for comparison with theory of the simulated \(M_\text{fit}\) values shown in Figs. 11–13 show agreement with both theory and experiment.\(^53\) This provides further verification that the \(M\) values of the fitted intensity distributions are appropriate when compared with the signal-to-noise ratio obtained from the simulation.

C. Combined Effects

The simulation provides a means of our examining the combined effects of atmospheric optical turbulence and reflective speckle for a finite-aperture lidar system. The results of combined effects of simulations for our lidar system are shown in Fig. 14. For the case shown in Fig. 14(a), the simulated lidar beam had an output radius of curvature of 139 m (initially converging). For the case shown in Fig. 14(b), the output radius of curvature was 601 m (initially converging). In both cases, a total of 100 pulses were numerically simulated on a 512 × 512 grid with five phase screens and an output lidar beam that was 0.075 m in diameter. The modeled lidar receiver is annular with an inner diameter of 0.118 m and an outer diameter of 0.0305 m. Note that there is a definite increase in rms noise for the larger values of \(C_n^2\). These results indicate that atmospheric optical turbulence is an additional noise source for a finite-aperture lidar. This increase in rms noise qualitatively agrees with earlier observations.\(^23,24\)

4. Conclusions

We have used a Huygens–Fresnel wave optics computer simulation to model the effects of atmospheric turbulence and reflective speckle. In this initial research, we have addressed the ability of our code to simulate these effects separately. Our approach has been to compare results for each of these phenomena with a combination of analytical and experimental results. The atmospheric optical turbulence effects produced by our simulation for our lidar geometry agree well with experimental results and analytical predictions. The simulation for long-term turbulent beam spreading showed good agreement with both experimental data and analytical predictions. Simulation values for point detector scintillation that is due to turbulence, both on and off axis, also showed good agreement with theory. These results indicate that our simulation accurately predicts the effects of atmospheric turbulence for our lidar geometry.

Our investigation of the reflective speckle effects also showed good agreement with analytical and ex-
experimental results. The simulated speckle correlation diameters were in excellent agreement with those predicted by theory. The intensity distributions predicted by our simulation agreed with those observed in experiment and expected from theory and resulted in appropriate simulation fitted M values. Comparison of simulated fitted M values with those predicted through the geometry of the relative speckle correlation area and receiver area resulted in agreement to within $\sim 10\%$. Comparison of the simulated signal-to-noise ratio versus the simulated fitted M values compared to within $\sim 5\%$ of theory. The results indicate that our simulation is valid for modeling the separate effects of atmospheric optical turbulence and reflective speckle.

Although each of these two separate phenomena is now characterized in our simulation, the interdependence of atmospheric optical turbulence and reflective speckle, as expressed in the term $f(T_\ast, R_\ast, \ldots)$ of Eq. (1), warrants further study. We have also presented simulation results, which are qualitatively consistent with previous experimental observations, of an increase in rms noise with increasing turbulence level. We intend to utilize our simulation of the phenomena involved to conduct further study of the combined effects of reflective speckle and atmospheric turbulence on the lidar method. This methodology is also applicable to a wide range of lidar situations including those involving moving platforms, target albedo variations, wavelength variation effects, and nonuniform turbulence conditions as encountered in systems with slant atmospheric paths.

Appendix A: Modeling of Atmospheric Optical Turbulence

Using the approach of Davis with the Fresnel–Kirchhoff theorem, one can approximate the electric field at an observation point in cylindrical coordinates as

$$E(\hat{r}, z) = -\frac{i}{\lambda z} \int A \exp \left[\frac{i k (z^2 + |\hat{r} - \hat{\rho}|^2)^{1/2}}{z^2 + |\hat{r} - \hat{\rho}|^2} \right] \mathrm{d}A. \quad (A1)$$

Propagation is in the z direction, \hat{r} represents the position vector of the observation point in the x-y plane, and $\hat{\rho}$ is the position vector of the radiating point in the aperture plane. $E(\hat{\rho}, z)$ is the electric field originating in the transmitter aperture of surface area A. It is assumed that the propagation is on axis and paraxial at distances much greater than the wavelength of the laser transmitter ($|\hat{r}| \ll z$ and $|\hat{\rho}| \ll z$). By approximating the denominator of Eq. (A1) as $(z^2 + |\hat{r} - \hat{\rho}|^2)^{1/2} \approx z$ and using the Fresnel approximation ($|\hat{r} - \hat{\rho}| \ll z$), Eq. (A1) becomes

$$E(\hat{r}, z) = -\frac{i}{\lambda z} \int E(\hat{\rho}, 0) \exp \left[\frac{i 2 \pi z}{\lambda} \left(1 + \frac{|\hat{r} - \hat{\rho}|^2}{z^2} \right)^{1/2} \right] \mathrm{d}\hat{\rho}. \quad (A2)$$

Expanding the exponential argument and keeping the lowest-order terms, we obtain

$$E(\hat{r}, z) = -\frac{i}{\lambda z} \int E(\hat{\rho}, 0) \exp \left(\frac{i 2 \pi z}{\lambda} \right) \int \exp \left(\frac{i \pi}{\lambda} |\hat{r} - \hat{\rho}|^2 \right) \mathrm{d}\hat{\rho}. \quad (A3)$$

The aperture field can be expanded by use of the FT identity

$$E(\hat{\rho}, 0) = \int \mathrm{d}\hat{r} \exp(2\pi i \hat{r} \cdot \hat{\rho}) \int \exp(-2\pi i \hat{r} \cdot \hat{\rho}') E(\hat{\rho}', 0). \quad (A4)$$

Substituting this identity into approximation (A2) and dropping the term $\exp(i2\pi/\lambda)$, which applies to the entire electric field, we obtain

$$E(\hat{r}, z) = -\frac{i}{\lambda z} \int \int \exp(2\pi i \hat{r} \cdot \hat{\rho}) \int \exp(-2\pi i \hat{r} \cdot \hat{\rho}') E(\hat{\rho}', 0) \exp(i \pi |\hat{r} - \hat{\rho}|^2) \mathrm{d}\hat{\rho}' \mathrm{d}\hat{\rho}. \quad (A5)$$

Making a change of variables ($\hat{\rho}' = \hat{r} - \hat{\rho}$) and rearranging, we obtain

$$E(\hat{r}, z) = -\frac{i}{\lambda z} \int \int \exp(2\pi i \hat{r} \cdot \hat{\rho}) \int \exp(-2\pi i \hat{r} \cdot \hat{\rho}') \exp(i \pi |\hat{r} - \hat{\rho}|^2) \mathrm{d}\hat{\rho}' \mathrm{d}\hat{\rho}. \quad (A6)$$

The last integral (in brackets) is the FT of a Gaussian function:

$$\int \exp(-2\pi i \hat{r} \cdot \hat{\rho}') \exp(i \pi |\hat{r} - \hat{\rho}|^2) = i \lambda z \exp(-i \pi \lambda z |\hat{r}|^2). \quad (A7)$$

Letting $\hat{\rho}' \to \hat{\rho}$, $E(\hat{r}, z)$ becomes

$$E(\hat{r}, z) = \int \int \exp(2\pi i \hat{r} \cdot \hat{\rho}) \exp(-i \pi \lambda z |\hat{r}|^2) \mathrm{d}\hat{\rho} \exp(-2\pi i \hat{r} \cdot \hat{\rho}). \quad (A8)$$

Rewritten symbolically,

$$E(\hat{r}, z) = \text{IFT} \{ \exp(-i \pi \lambda z |\hat{r}|^2) \text{FT} [E(\hat{\rho}, 0)] \}, \quad (A9)$$

where FT is the two-dimensional Fourier transform and IFT is the two-dimensional inverse Fourier transform. This is an expression for the electric
field at a propagation distance z in terms of FT of the electric field at $z = 0$ with $\exp(-i\pi \lambda z/\lambda^2)$ as the Fresnel propagator in frequency space $\tilde{\mathbf{E}}$.

This research was part of a large lidar project with many important team members, and we thank all of them. In particular we thank Michael Whitehead, Joe Tiee, Chuck Fite, and L. John Jolin for their contributions to this research and in helping us perform these measurements and conduct the simulations. The authors also acknowledge the cooperation of the team at the Nevada Test Site Spill Test Facility. We are very grateful to the project leader, John F. Schultz, who directed this research. This research was fully supported by the U.S. Department of Energy under contract W-7405-ENG-36.

References and Notes

6. The reader is encouraged to explore the web site compiled by W. B. Grant on lidar publications at http://w3.osa.org/HOMES/GENERAL/BIBLIO/lidar97.html.