
Calhoun: The NPS Institutional Archive
DSpace Repository

Theses and Dissertations 1. Thesis and Dissertation Collection, all items

2014-12

Federated ground station network model and
interface specification

Felt, Aaron J.
Monterey, California: Naval Postgraduate School

https://hdl.handle.net/10945/44558

This publication is a work of the U.S. Government as defined in Title 17, United
States Code, Section 101. Copyright protection is not available for this work in the
United States.

Downloaded from NPS Archive: Calhoun

NAVAL
POSTGRADUATE

SCHOOL

MONTEREY, CALIFORNIA

THESIS

Approved for public release; distribution is unlimited

FEDERATED GROUND STATION NETWORK MODEL
AND INTERFACE SPECIFICATION

by

Aaron J. Felt

December 2014

Thesis Advisor: James H. Newman
Co-Advisor: Mathias N. Kölsch

THIS PAGE INTENTIONALLY LEFT BLANK

 i

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704–0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing
instruction, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection
of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden, to Washington headquarters Services, Directorate for Information Operations and Reports, 1215
Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction
Project (0704-0188) Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
December 2014

3. REPORT TYPE AND DATES COVERED
Master’s Thesis

4. TITLE AND SUBTITLE
FEDERATED GROUND STATION NETWORK MODEL AND INTERFACE
SPECIFICATION

5. FUNDING NUMBERS

6. AUTHOR(S) Aaron J. Felt

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES)
N/A

10. SPONSORING/MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the
official policy or position of the Department of Defense or the U.S. Government. IRB Protocol number ____N/A____.

12a. DISTRIBUTION / AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited

12b. DISTRIBUTION CODE
A

13. ABSTRACT (maximum 200 words)

This thesis solves the problem of a lack of a complete, simple ground station network interface standard. A
federated satellite ground station network (FGN) model and computer interface are developed that extend
the use of ground stations to external users across the Internet. This should allow for reuse of existing
ground stations, reducing costs and complexity of space missions. An improved model describing FGNs is
proposed that defines a hierarchy of the components of the network, allowing for scalability and unified
interfaces, and simplifying the process of using FGN resources. This model, which we call the Improved
FGN model, is used to develop security schemes that are simple but effective. Simple but effective security
schemes are then developed for this Improved FGN model, along with a standardized software interface.
This interface connects external users to the network in order to extend ground station hardware to remote
users as well as to simplify scheduling for the resource owners in a network. Different middleware
frameworks are compared, and Apache Thrift is selected as the best fit for an FGN. This interface is then
described and demonstrated with a reference implementation in Python. Recommendations for future
improvements of this interface standard are discussed.

14. SUBJECT TERMS ground station, federated ground station, ground station network,
earth station, earth station network, interface, web service, service-oriented architecture,
CubeSat, picosatellite, M-PIPE, MC3, TT&C

15. NUMBER OF
PAGES

183

16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION OF
ABSTRACT

UU

NSN 7540–01-280-5500 Standard Form 298 (Rev. 2–89)

 Prescribed by ANSI Std. 239–18

 ii

THIS PAGE INTENTIONALLY LEFT BLANK

 iii

Approved for public release; distribution is unlimited

FEDERATED GROUND STATION NETWORK MODEL AND INTERFACE
SPECIFICATION

Aaron J. Felt
Civilian, Department of the Navy

B.S., California State University, Monterey Bay, 2012
B.S., University of California, Santa Cruz, 2008

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN SPACE SYSTEMS ENGINEERING
AND

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
December 2014

Author: Aaron J. Felt

Approved by: James H. Newman Mathias N. Kölsch
Thesis Advisor Co-Advisor

Rudolf Panholzer
Chair, Space Systems Academic Group

Peter J. Denning
Chair, Department of Computer Science

 iv

THIS PAGE INTENTIONALLY LEFT BLANK

 v

ABSTRACT

This thesis solves the problem of a lack of a complete, simple ground station

network interface standard. A federated satellite ground station network (FGN)

model and computer interface are developed that extend the use of ground

stations to external users across the Internet. This should allow for reuse of

existing ground stations, reducing costs and complexity of space missions. An

improved model describing FGNs is proposed that defines a hierarchy of the

components of the network, allowing for scalability and unified interfaces, and

simplifying the process of using FGN resources. This model, which we call the

Improved FGN model, is used to develop security schemes that are simple but

effective. Simple but effective security schemes are then developed for this

Improved FGN model, along with a standardized software interface. This

interface connects external users to the network in order to extend ground station

hardware to remote users as well as to simplify scheduling for the resource

owners in a network. Different middleware frameworks are compared, and

Apache Thrift is selected as the best fit for an FGN. This interface is then

described and demonstrated with a reference implementation in Python.

Recommendations for future improvements of this interface standard are

discussed.

 vi

THIS PAGE INTENTIONALLY LEFT BLANK

 vii

TABLE OF CONTENTS

I. INTRODUCTION ... 1

A. PURPOSE .. 1

B. BACKGROUND ... 2

1. Ground Stations ... 2

2. Ground Station Networks .. 4

3. Federated Ground Station Networks 8

4. Peer-to-Peer Ground Station Networks 10

5. Ground Station Network Models Compared 11

II. IMPROVED FGN MODEL ... 13

A. ROLES OF CAS AND SAS ... 14

B. HIERARCHICAL DEFINITION ... 15

C. GROUND STATION NETWORK RESOURCES 17

1. Abstraction into Pipelines ... 17

a. A Traditional Packet Radio Ground Station 17

b. A Modern Software-Defined Radio Ground Station . 18

2. Capabilities of a Pipeline-Oriented Ground Station 19

3. Permissions ... 20

4. Communicating Pipeline Configurations 21

D. SCHEDULING .. 22

E. SCHEDULING SYNCHRONIZATION .. 23

III. FGN INFORMATION SECURITY SCHEMES ... 25

A. INFORMATION SECURITY OVERVIEW ... 25

B. SHORT INTRODUCTION TO PKI.. 27

C. CANDIDATE AUTHENTICATION SCHEMES FOR IMPROVED
FGN MODEL .. 28

1. Category 1 Scheme—Network-wide Central Certificate
Authority ... 29

2. Category 2 Scheme—Certificate Authority Solely as a
Scheduling Interface ... 31

D. ANALYSIS OF AUTHENTICATION SCHEMES 31

E. INCREASING AVAILABILITY ... 32

IV. STANDARDIZATION OF AN INTERFACE .. 33

A. INTERFACE BACKGROUND .. 33

B. BENEFITS OF A STANDARD ... 33

C. EXISTING FGN INTERFACE STANDARDS 35

1. GSML .. 35

2. CCSDS SLE .. 37

D. MOTIVATION FOR A NEW STANDARD .. 38

E. INTERFACE DEFINITION TOOLS .. 40

1. CORBA ... 41

2. SOAP .. 41

 viii

3. REST ... 42

4. ICE ... 43

5. Abstract Syntax Notation 1 ... 44

6. Protocol Buffers ... 44

7. Apache Thrift .. 44

8. Design Decisions ... 46

V. M-PIPE INTERFACE .. 49

A. INTRODUCTION TO APACHE THRIFT .. 49

1. Server-Side Stub Code .. 51

2. Client-side Stub Code ... 54

3. Thrift Schema Evolution .. 55

B. INTENDED USAGE OF M-PIPE INTERFACE 56

1. Hardware Control ... 57

a. Usage Scenario 1—Integrated Ground Station
Software ... 58

b. Usage Scenario 2—Mission Control Software 58

c. Usage Scenarios Summary .. 59

2. Scheduling ... 60

a. User Interface .. 60

b. Intra-Network Interface ... 61

c. Retaining Resource Configuration Information 74

3. Design Decisions ... 74

C. PYTHON SAMPLE IMPLEMENTATION ... 75

D. M-PIPE API DOCUMENTATION ... 76

VI. CONCLUSION AND FUTURE WORK.. 79

A. CONCLUSION ... 79

B. FUTURE WORK... 80

1. SSL .. 80

2. Online Certificate Status Protocol .. 80

3. Scheduling CA interface ... 80

4. Driver implementations ... 81

5. Turbo and LDPC Codes .. 81

C. SUMMARY ... 81

APPENDIX. M-PIPE THRIFT IDL FILES ... 83

A. MPIPE.THRIFT... 83

B. MPIPE_TYPES.THRIFT ... 84

C. MPIPE_GLOBALS.THRIFT ... 85

D. AMP.THRIFT .. 87

E. ANTENNA.THRIFT .. 89

F. CPU.THRIFT .. 93

G. PACKET.THRIFT ... 95

H. PREAMP.THRIFT .. 96

I. RADIO.THRIFT .. 98

J. SESSION.THRIFT .. 102

 ix

K. SCHEDULER.THRIFT ... 104

L. EVENTTSERVERSOCKET.PY .. 112

M. AMP_CLIENT.PY ... 113

N. AMP_SERVER.PY ... 115

O. ANTENNA_CLIENT.PY ... 117

P. ANTENNA_SERVER.PY ... 119

Q. CPU_CLIENT.PY ... 121

R. CPU_SERVER.PY ... 122

S. PACKET_CLIENT.PY .. 124

T. PACKET_SERVER.PY .. 126

U. PREAMP_CLIENT.PY ... 127

V. PREAMP_SERVER.PY .. 129

W. RADIO_CLIENT.PY ... 131

X. RADIO_SERVER.PY ... 133

Y. SESSION_CLIENT.PY ... 135

Z. SESSION_SERVER.PY ... 137

AA. CA_SCHEDULER.PY .. 138

BB. SA_SCHEDULER.PY .. 141

CC. USER_CONTROL_EXAMPLE.PY ... 145

DD. SA_CONTROL_EXAMPLE.PY .. 152

LIST OF REFERENCES .. 157

INITIAL DISTRIBUTION LIST ... 161

 x

THIS PAGE INTENTIONALLY LEFT BLANK

 xi

LIST OF FIGURES

Figure 1. Simplified Satellite Ground Station Block Diagram 3

Figure 2. Common Amateur-Class Satellite Ground Station Radio. 3

Figure 3. Pre-amplifier or LNA ... 3

Figure 4. A 150-foot satellite dish antenna in Stanford, California 4

Figure 5. Basic Ground Station Network ... 5

Figure 6. Coverage Area of a 500 km Circular Orbit .. 6

Figure 7. Satellite Ground Tracks Moving Westward ... 7

Figure 8. Polar and Equatorial Orbits Versus Ground Station Locations 7

Figure 9. A Simple FGN .. 9

Figure 10. A Simple P2P Network ... 10

Figure 11. Multiple Subnetwork FGN ... 14

Figure 12. Hybrid CA/SA ... 15

Figure 13. Multiple Levels of Subnetworks .. 16

Figure 14. Typical Single Pipeline Ground Station Block Diagram 18

Figure 15. Simplified Multi Pipeline Ground Station Block Diagram 19

Figure 16. User’s View of FGN Resources .. 26

Figure 17. Public Key Encryption ... 28

Figure 18. FGN Usage Concept of Operations .. 30

Figure 19. Two Possible Usage Scenarios of FGN Interface 39

Figure 20. Rest Versus Soap... 43

Figure 21. Apache Thrift Framework Diagram ... 46

Figure 22. Two Basic M-PIPE Usage Scenarios ... 60

Figure 23. Resource Object Diagram .. 64

Figure 24. M-PIPE Scheduling CONOPS .. 68

Figure 25. Resource Split by Reservation ... 71

Figure 26. CONOPS with M-PIPE Service Method Calls 73

Figure 27. M-PIPE Antenna Enums and Structs API Example 77

Figure 28. M-PIPE Antenna Services API Example .. 78

 xii

THIS PAGE INTENTIONALLY LEFT BLANK

 xiii

LIST OF TABLES

Table 1. Generalized Resource Definition Matrix ... 21

Table 2. Concrete Resource Definition Matrix Example 21

Table 3. Example Simple Pipeline Configuration .. 22

Table 4. Sample Schedule ... 23

Table 5. FGN Usage Concept of Operations .. 31

Table 6. GSML Virtual Hardware Level Object Descriptions 36

Table 7. Languages Supported by Apache Thrift ... 45

Table 8. Available M-PIPE Hardware Interfaces .. 57

Table 9. Certificate Creation Process ... 61

Table 10. M-PIPE Resource Description .. 63

Table 11. Example of Desynchronization of CAs ... 66

Table 12. M-PIPE Scheduling Steps .. 69

 xiv

THIS PAGE INTENTIONALLY LEFT BLANK

 xv

LIST OF CODE LISTINGS

Code Listing 1. Type Definitions and Data Structures 49

Code Listing 2. Service Definition Example .. 50

Code Listing 3. Server-side Stub Code Example .. 52

Code Listing 4. Server-side Python Configuration Example 53

Code Listing 5. Client-side Example Implementation in Python 54

Code Listing 6. Requiredness Example .. 56

 xvi

THIS PAGE INTENTIONALLY LEFT BLANK

 xvii

LIST OF ACRONYMS AND ABBREVIATIONS

ACL access control list

AFSK audio frequency shift keying

API application programming interface

ASN.1 Abstract Syntax Notation 1

BPSK binary phase-shift keying

CA central authority

CCSDS Consultative Committee for Space Data Systems

CGA Neptune Common Ground Architecture®

CIA confidentiality, integrity, availability

CONOPS concept of operations

CSR certificate signing request

DMZ de-militarized zone

ESA European Space Agency

FGN federated ground station network

GENSO Global Education Network for Satellite Operations

GMSK Gaussian minimum-shift keying

GSML ground station markup language

GSN Ground Station Network (Japan’s university network)

HTTP Hypertext Transfer Protocol

IDL interface definition language

JSON JavaScript Object Notation

LEO low Earth orbit

LNA low-noise amplifier

MC3 Mobile CubeSat Command and Control

MGSN Mercury Ground Station Network

NASA National Aeronautics and Space Administration

NEN Near Earth Network

NPS Naval Postgraduate School

NRL Naval Research Laboratory

OQPSK offset quadrature phase-shift keying

 xviii

P2P peer-to-peer

PKI public key infrastructure

REST Representational State Transfer

RF Radio Frequency

RPC remote procedure call

RX receive

SA sub-authority

SDR software-defined radio

SLE Space Link Extension

SOA service-oriented architecture

SOAP Simple Object Access Protocol

SSL Secure Sockets Layer

TNC terminal node controller

TX transmit

W3C World Wide Web Consortium

WSDL Web Service Definition Language

XML Extensible Markup Language

 xix

ACKNOWLEDGMENTS

I would like to thank Dr. Jim Newman and Dr. Mathias Kölsch for your

guidance and experienced advice on this effort. You provided me an opportunity-

rich environment to find a project that enhanced our work being performed on the

Mobile CubeSat Command and Control (MC3) ground station network. You also

provided crucial guidance from years of experience that kept this project moving

forward. Thank you, Dr. Kölsch, for providing crucial computer science

experience and for your reviews of my writing which were instrumental in making

this interface not only complete but powerful.

I want to thank Jim Horning for your initial idea to create an interface for

extending the resources of our ground station network to external users, and for

crucial advice in designing the model so that it was scalable and manageable,

and shaping the engine and methods of the interface. Your mentorship through

my entire time at the Naval Postgraduate School has been greatly appreciated

through multiple projects and has been one of the most enjoyable parts of

working in our lab.

Thank you to Jamie Cutler for providing the initial idea to further develop a

model for our ground station networks, leading to the Improved FGN model

presented in this paper. This work builds heavily upon your own master’s thesis

and papers. I would also like to thank Giovanni Minelli for helping to shape the

requirements of this work. Thank you also to David Rigmaiden for your

mentorship with radio technology and the “black magic” of radios. Thank you to

John Gibson, Geoffrey Xie, and Gurminder Singh for your guidance in the world

of web services and SOA.

Finally, thank you to my wonderful wife and best friend, Rebecca, for all of

your support and understanding. Without you this work would not have been

completed. I love you and look forward to the adventure ahead for us upon

completion of this chapter of our lives.

 xx

THIS PAGE INTENTIONALLY LEFT BLANK

 1

I. INTRODUCTION

A. PURPOSE

Ground station equipment often spends a larger portion of time unused

than actively tracking and communicating with satellites. A simple yet powerful

interface standard is needed that can extend the resources a ground station

network can provide to users across the Internet. The purpose of this research

was to develop a model as well as an interface standard that allows remote users

to utilize ground station network resources. Before this interface standard could

be developed, a clear network model had to be described that could clearly

distinguish the roles of players among ground station networks. This model also

needed to include a clear model for what the resources are that a ground station

network can provide to a user.

This research produced a new model that we call the Improved Federated

Ground Station Network (FGN) model. This model was built based on our

experience with the Naval Postgraduate School (NPS) and Naval Research

Laboratory’s (NRL) Mobile CubeSat Command and Control (MC3) ground station

network. Along with the model, this research produced and interface standard

that we have called the MC3 Picosatellite Interface Pipe Extension (M-PIPE).

This standard is based on a single interface framework that provides all levels of

development from full remote procedure call functionality to the transfer of bits

across the Internet. The result is an easily implementable standard that can be

integrated into new and existing software products with minimal effort. Naval

Postgraduate School is beginning to use the model and interface to extend the

MC3 ground station network across the Internet with a standard interface, hence

the inclusion of MC3 and picosatellite into the standard’s name.

This thesis first presents a background of ground station networks in

Section I, then proposes the Improved FGN model in Section II. Next, Section III

explores schemes for securing FGN networks using the Improved FGN model

 2

selects the best for use in an interface. Section IV analyzes existing interfaces

and demonstrates a need for a new standard. This section also analyzes

different interface technologies selects one to provide FGN interface service.

Section V presents the interface standard called M-PIPE that was developed in

response to the need for a standard. Section VI concludes this thesis and

presents areas for future work to be performed.

B. BACKGROUND

1. Ground Stations

Even before the first satellite, Sputnik, was launched into orbit, both the

USSR and the USA had invested considerable resources into researching how to

communicate from Earth with an object in space. Radar and radio

communication stations, as well as radio and optical observatories, were

commonplace by the 1950s. Early satellite ground stations spawned from the

methods discovered during the development of these key technologies (Corliss,

1967). A satellite ground station at a minimum is composed of an antenna, a pre-

amplifier, also known as low-noise amplifier (LNA), and a radio with a built-in

amplifier, as shown in Figure 1. A common amateur-class satellite ground radio

is shown Figure 2. An example pre-amplifier is shown in Figure 3. The famous

150-foot satellite dish at SRI International known as “The Dish” is shown in

Figure 4 though many antennas are much smaller.

 3

Radio

Pre-
amplifier Antenna

Satellite

Figure 1. Simplified Satellite Ground Station Block Diagram

Figure 2. Common Amateur-Class Satellite Ground Station Radio.
ICOM Ltd. (from http://www.icomuk.co.uk/IC-910H/

Amateur_Radio_Ham_Base_Stations, November 3, 2014)

Figure 3. Pre-amplifier or LNA. Mini-Circuits (from
http://www.minicircuits.com/pdfs/ZQL-900MLNW+.pdf, November

3, 2014)

http://www.icomuk.co.uk/IC-910H/Amateur_Radio_Ham_Base_Stations
http://www.icomuk.co.uk/IC-910H/Amateur_Radio_Ham_Base_Stations
http://www.minicircuits.com/pdfs/ZQL-900MLNW+.pdf

 4

Figure 4. A 150-foot satellite dish antenna in Stanford, California. SRI
International (from http://www.sri.com/research-

development/specialized-facilities/dish-radio-antenna-facility,
November 3, 2014)

Satellites would not be useful if it were not for their ability to communicate

from space back to Earth. Basic satellite communications come in the form of

telecommand, which is the remote control of a satellite, and telemetry, which are

the data products produced by a satellite. Ground stations send telecommands,

and receive telemetry.

2. Ground Station Networks

Before Sputnik was launched, the first satellite ground stations built by the

USSR were geographically distributed and grouped into a network called the

Command Measurement Complex, abbreviated KIK in Russian (Darrin &

O'Leary, 2009). During this same time period, the United States NRL built its own

satellite ground station network called Minitrack (Corliss, 1974). The American

ground stations were each managed from a central location called the Vanguard

Control Center at the NRL in Washington, DC. The Vanguard Control Center had

communication links to each ground station with which it coordinated

synchronization of clocks as well as communicated satellite tracking data

(Corliss, The Evolution of the Satellite Tracking and Data Acquisition Network

(STADAN), 1967). The form of the Minitrack network was similar to the network

shown in Figure 5.

http://www.sri.com/research-development/specialized-facilities/dish-radio-antenna-facility
http://www.sri.com/research-development/specialized-facilities/dish-radio-antenna-facility

 5

Ground Station
Control Center

Ground
Station 1

Ground
Station n

...
Ground

Station 2

Mission
Control
Center

Figure 5. Basic Ground Station Network

The benefits of a satellite ground station network, as compared to a single

ground station, are primarily in expanded coverage. The majority of satellites are

in low Earth orbit (LEO) (Union of Concerned Scientists, 2014). A LEO satellite is

only within line-of-sight of a small portion of the ground at any moment due to the

geometry of a satellite in LEO above a planet of Earth’s size. The portion of the

Earth visible to a satellite in LEO is actually quite small as demonstrated in

Figure 6. At this elevation, the satellite will only be in view of a spot on Earth for

around 10 minutes per orbit.

 6

Figure 6. Coverage Area of a 500 km Circular Orbit

A LEO satellite completes its orbit in about 90 minutes (Gordon & Morgan,

1993). Ignoring the consequences of a rotating, non-spherical, inconsistently

dense Earth, this means that a satellite passing above a point on the ground will

return to the same point above Earth in that time period. Factoring in the reality of

a rotating Earth, means that a satellite’s orbit will not bring it over the same point

on Earth every revolution for most orbits. For LEO satellites, it will instead slowly

move westward each orbit until it circles back around after a number of orbits as

seen in Figure 7.

 7

Figure 7. Satellite Ground Tracks Moving Westward

The inclination of an orbit also has an effect on how much coverage a

ground station can provide. A low inclination equatorial LEO satellite will never be

in sight of a polar ground station. Conversely, a polar satellite will not be able to

make as much use of an equatorial ground station as from a polar ground

station. These two orbits are compared with two ground stations in Figure 8.

Figure 8. Polar and Equatorial Orbits Versus Ground Station Locations

 8

These factors combined mean that a single ground station will not be able

to contact a LEO satellite every time it comes around the Earth for most orbits. In

fact, after a satellite’s orbit moves west of a ground station, it will often not pass

within range again until the far side of its orbit rotates past the ground station, up

to a half day later. This illustrates the difficulty of LEO satellite communications

and illustrates the benefit of duplicating ground stations around the world,

increasing coverage, and therefore, contact time with satellites, as well as the

types of orbits that can be reached. Due to this need for ground station networks,

two categories have been developed: federated ground station networks and

peer-to-peer networks.

3. Federated Ground Station Networks

The first satellite ground stations in both the United States and the USSR

were also the first examples of a type of ground station network called a

federated satellite ground station network. An FGN is a conglomeration of ground

stations, often referred to among the satellite community as ground station

nodes, in which a central coordinator is designated as shown in Figure 9. Cutler,

Linder, and Fox (2002) present the idea of an FGN in their paper on the subject:

This network infrastructure is a loose federation of ground stations
that provides global, cross-mission support. This federated ground
station network (FGN) will harness the strengths and diversity in
global ground stations that are under different administrative
domains to increase network connectivity to satellites and to
enhance basic ground station capabilities. (p. 1)

The word federation implies a central authority that unites multiple smaller

units. In the case of Minitrack, this central authority was the NRL in Washington,

DC, and the smaller units were the ground stations distributed across continents.

This central authority has gone by many names, but we can refer to it as the CA.

The responsibilities that the CA bears vary from network to network, but a CA

always serves to manage the network resources and connect a user of the

network to the ground stations they wish to utilize. Some CAs serve additional

duties such as coordinating time and providing a central data repository (Darrin &

 9

O'Leary, 2009). Yet, in all instances of an FGN, a CA provides some level of

coordination between multiple ground stations and their users.

...

Node 1 Node k

...
Node 2

User 1 User 2 User i

CA

Figure 9. A Simple FGN

Each node may remain semi-autonomous in that it may be able to

communicate directly with a user without coordination through a CA. A single

owner may own all of the ground station nodes, as is the case with most

government satellite ground station networks, or each may have different owners

as is sometimes the case amongst academic ground station networks such as

the Japanese Ground Station Network (Sakamoto, 2009). Current examples of

FGNs are numerous. The Near Earth Network (NEN) run by the National

Aeronautics and Space Administration (NASA) (NASA, 2010) is an FGN. Among

small satellite communications, the MC3 network run by NPS is intended

explicitly for the purpose of CubeSat communications (Minelli, et al., 2012). The

Mercury Ground Station Network (MGSN) was set up to handle university

satellite missions and supports CubeSat operations (Cutler, 2004).

 10

4. Peer-to-Peer Ground Station Networks

Another type of ground station network is the peer-to-peer (P2P) network

as shown in Figure 10. The P2P network mimics networks from Internet file

sharing where users distribute files among themselves. P2P as it applies to

ground stations means that the ground stations are connected in an ad-hoc,

transient fashion from one to another without a hierarchy. The owner of a ground

station donates time where other network members may use their resources

similar to how a user in a file sharing community uploads pieces of a file to

another user upon request. In recent years, the Global Educational Network for

Satellite Operations (GENSO) attempted to form a peer-to-peer network with a

CA used for authentication (Leveque, Puig-Suari, & Turner, 2007; Shirville &

Klofas, 2007). In Japan, the Ground Station Network (GSN) operates almost

entirely peer-to-peer, though it also utilizes a central server for server registration

(Miyashita, Nakaya, Ui, & Matunaga, 2003). Currently, another P2P network is

being developed called the SATNet project. SATNet is being developed at

California Polytechnic State University in San Luis Obispo (Tubio, Vazquez, Puig,

Kurahara, & Bellardo, 2014) and plans are to set it up as a P2P model.

Node 1 Node 3

Node 2

User 1 User 2

User 3

Figure 10. A Simple P2P Network

 11

5. Ground Station Network Models Compared

Both P2P networks and FGNs have their pros and cons. The benefits of a

P2P model over an FGN are that the reliance on a central server is removed.

Reliance on a single point of failure may be reduced by choosing the P2P model,

though in most of the P2P networks described there is still a heavy reliance on a

central server. In a basic FGN, if the CA were to be disabled, the network would

lose some level of functionality dependent on what responsibilities the CA

carries. This drawback to FGNs may be reduced by duplication of CAs as will be

discussed later. A P2P network may also be attractive for amateur ground station

owners considering offering the use of their ground stations to others as power

over how the network is used may be more equally shared.

For many ground station owners, the idea of a CA has its advantages,

though. A trusted CA can handle the following duties:

 Trust establishment

 Coordination of resource usage

 Optimizing usage of resources

 Storing and archiving data

 Relaying communications between users and ground stations

Trust establishment can be handled through a central location that all

members of the network can rely upon to securely vet new users and provide

methods of identification to which all members of the network can verify the

validity. A CA can also coordinate the scheduling of ground station usage with

users and simplify the process of finding a satisfactory resource for a user. If the

schedule is conglomerated from all ground stations at one central site, a user can

simply communicate with this single source to discover availability at all member

ground stations. During this process, a CA also locally has all of the information

necessary to optimize the usage of these resources based upon the needs of the

network users and the availability of the ground stations. Optimization cannot

happen without coordination and collection of information, as optimal usage

 12

requires a view of the data on which optimization is made. While a scheme could

be imagined for peers to optimize themselves, the optimization complexity would

likely need to be much greater than for an FGN with a central optimizer.

A single repository can be created at the CA, storing and archiving all data

received on the network. The centralization of data archiving allows for easier

navigation and analysis of data compared to navigating separate storage points.

Lastly, a CA provides a single source to which users can communicate and be

redirected to member ground stations. Rather than needing to reach out to each

ground station to discover what resources are available, a user can contact the

central authority and discover the same information from a single source. Also, a

ground station can stay hidden from the user behind a layer of obscurity, as will

be shown, which may be a benefit for secure, limited access ground stations.

 13

II. IMPROVED FGN MODEL

To the author’s surprise no model could be found in the literature that

depicts generalized ground station layout and roles and responsibilities of all of

the players within the model. In an effort to capture the complexity of the

interactions within an FGN, to provide abstraction that encapsulates separate

roles amongst an FGN, and to provide the scalability desirable for future FGNs,

an Improved FGN model is described here. This new FGN model allows for

increased growth, collaboration, and ease of scalability of the FGN model.

We have improved upon the model defining FGNs in a hierarchical model.

This hierarchy allows for separate networks to be combined. Two or more of the

simple networks shown in Figure 9 can be combined by adding another player to

the model: a new top-level CA. This top-level CA lies one level above the

previous CAs, grouping multiple subnetworks into a larger FGN as shown in

Figure 11. The previous CAs can now be referred to as sub-authorities (SA) in

the model. They serve as a contact point between this new top-level CA and the

ground station nodes of their subnetwork. The final role described in this model is

the user. Thus, the list of players in the Improved FGN model is composed of the

CAs, SAs, nodes, and users.

 14

...

SA1 SAj...SA2

GSN 1
Node 1

GSN 1
Node k

...
GSN 2

Node 1
GSN 2
Node k

...
GSN j

Node 1
GSN j

Node k

...
GSN 2

Node 2
GSN 1

Node 2
GSN j

Node 2

User 1 User 2 User i

CA

Legend

Orange à Subnetwork 1
Green à Subnetwork 2
Blue à Subnetwork j

à Scheduling
à Resource Usage

Figure 11. Multiple Subnetwork FGN

A. ROLES OF CAS AND SAS

The role of a CA is distinguished from the other players in the network by

its responsibility of providing a schedule interface to users that provides

information about the configuration and availability of FGN resources. SAs may

also continue to serve as duplicate interfaces to their subnetworks, if they

so choose, and will thus still be referred to as a hybrid CA/SA as shown in

Figure 12. The role of an SA is distinguished by possessing the responsibility of

communicating between its subnetwork and the CA or SA above it, or of having

ground station nodes directly under it. It serves to route the communication

between the layer above and below itself. At the lowest level of this hierarchy of

SAs are the node-level SAs which are responsible for offering up the resources

of their ground station nodes. These SAs are directly connected to their ground

station nodes as are each of the SAs in this example.

 15

...

SA1 SAj...

GSN 1
Node 1

GSN 1
Node k

...
GSN 2

Node 1
GSN 2
Node k

...
GSN j

Node 1
GSN j

Node k

...
GSN 2

Node 2
GSN 1

Node 2
GSN j

Node 2

User 1 User 2 User i

CA

SA2

Legend

Orange à Subnetwork 1
Green à Subnetwork 2
Blue à Subnetwork j

Figure 12. Hybrid CA/SA

B. HIERARCHICAL DEFINITION

A subnetwork can be defined as being composed of an SA, CA, or hybrid

CA/SA, as well as any SAs residing at a lower level, and all ground station nodes

below these. Subnetworks must include the ground station nodes, and therefore

can be grouped from the bottom level up to a variable tree height. An FGN is

composed of a federation of these subnetworks. An example grouping of

subnetworks into an FGN is shown in Figure 13. This definition is hierarchical

and can be repeated for many layers, where, as networks are conglomerated,

each previous network can be referred to as a subnetwork in the new, larger

federation. The usefulness of such a definition comes from the ability to maintain

subnetworks semi-autonomous from the larger federation while becoming part of

a larger network. This serves to ease the concerns of combining existing ground

station networks into a unified entity.

 16

SA1 SA3

GSN 1
Node 1

GSN 1
Node k

...
GSN 2

Node 1
GSN 2
Node k

...
GSN 2

Node 2
GSN 1

Node 2

User

CA1

Legend

Orange à Subnetwork 1
Green à Subnetwork 2
Blue à Subnetwork 3

SA2/
CA2

Sub Network 3Sub Network 3

Sub Network 2Sub Network 2

Sub Network 1Sub Network 1

Figure 13. Multiple Levels of Subnetworks

As an example, in Figure 13, one can imagine that Subnetwork 3 started

out as a lone network in which there was a single CA and a number of ground

stations. Then Subnetwork 3 joined with SA1 and its ground stations, forming

Subnetwork 2. To join, they selected a new player to serve as their CA, namely

CA2. Once again, one can imagine this federation of two subnetworks joining

together with similar networks (not shown) into an even larger federation,

 17

Subnetwork 1. Maintaining CA2 as a CA, as well as serving its SA duties, means

that Subnetwork 2 can continue to serve its existing users with the same

interface it had used previously. This autonomy eases the process of

conglomerating networks as the previous interface remains viable to a user and

has no apparent effect. It also allows for a user to be registered only with certain

subnetworks if, for example, the larger network cannot authorize the user for

policy reasons.

C. GROUND STATION NETWORK RESOURCES

1. Abstraction into Pipelines

Just as the roles among an FGN can benefit from abstraction, so can the

resources that an FGN provides.

a. A Traditional Packet Radio Ground Station

The traditional idea behind a ground station network is to grant control of a

ground station for a certain time period, or time slot. According to Cutler (2004),

due to the increasing utilization of software-defined radios, and reduction of

reliance on traditional RF equipment, a simpler way to specify ground station

capabilities is to define a pipeline. We would restrict this pipeline to be solely

composed of the resources necessary for either a receive (RX) or transmit (TX)

capability, but not both, as they are separate processes and may be used

separately by different users. For example, in a traditional CubeSat packet radio

ground station with a single terminal node controller (TNC) plugged into a typical

hardware radio with a single tuner, the pipeline is defined by the entire TNC, and

the entire radio, both in the uplink and downlink directions. Thus, there are two

pipelines in this system: one for uplink and one for downlink. Yet both use the

same exact equipment. Because no other communications can occur

simultaneously on this hardware, multiplexing of this system is not possible

beyond a single transmit and receive capability. A typical simplified block

diagram of such a system is shown in Figure 14.

 18

Legend

Computer

TNC

Radio

Uplink

Downlink

Figure 14. Typical Single Pipeline Ground Station Block Diagram

b. A Modern Software-Defined Radio Ground Station

A newer type of ground station using software-defined radios (SDR) can

receive or transmit on multiple frequencies and antennas using one or more RF

chains as shown in Figure 15 and thus can be multiplexed both on receive and

transmit capabilities. This means that a given hardware chain can handle multiple

pipelines simultaneously, and as long as multiple satellites are in view of a single

antenna, these pipelines can serve various customers simultaneously. The

scenario of having a number of satellites in view of an antenna is common with

CubeSat missions, as well as with satellite constellation formations. The number

of pipelines and specifics of the flexibility of an SDR are equipment- or

implementation- dependent. This multiplexing capability creates the need to

abstract the idea of a ground station resource to the provision of a pipeline rather

than the traditional view consisting of a single RF chain (Cutler, Ground Station

Markup Language, 2004).

 19

Software-defined radio

Computer

Legend

Uplink 1

Downlink 2

Uplink 2

Downlink 1

Figure 15. Simplified Multi Pipeline Ground Station Block Diagram

2. Capabilities of a Pipeline-Oriented Ground Station

With the inclusion of this multiplexing capability, what a modern FGN can

provide is a pipeline for a certain period of time. Thus, the description of a

pipeline is an enumeration of the possible configurations that a ground station

can provide. Examples of configuration options that may describe a pipeline are

the possible frequencies, modulation and demodulation formats, antenna slew

rates, as well as permitted operations such as manual antenna control. In order

to fully benefit from the SDRs hardware multiplexing capabilities, the separation

of pipelines into TX and RX as described earlier provides the maximum amount

of flexibility. Example uses of the model, or usage scenarios, enabled by this

separation are listed below:

 Allows ground station operators to enable receive but restrict
transmit capability

 Allows one user to utilize an RX pipeline while another user
operates a TX pipeline

 Allows multiple RX pipelines to operate off a single hardware chain
while one or more TX pipelines operate on this same hardware

 20

3. Permissions

While security policies can vary from organization to organization, every

ground station network imaginable has limited or protected resources and will

want to control who is allowed to use their resources. Authorization, meaning

which users are allowed to use which resources, is undoubtedly a requirement

for most ground station networks. Which users are authorized will also vary from

one subnetwork, or even ground station, to another depending on the parties

involved and their needs. For example, “Subnetwork 1” may be willing to grant

permission to a user to utilize all of its resources. “Subnetwork 2” may decide that

this same user is not allowed to utilize any of their resources or may only utilize

certain resources at certain times.

Due to this need for authorization, the final component that must be added

to each resource is an access control list (ACL). There may be an ACL for each

time slot on each pipeline. This ACL would be composed of a list of users and

their permissions. Permissions may be binary, meaning the user is allowed to

use the resource or not. Permissions may also be more granular to the level of

certain functions of a resource which are allowed and which are barred, such as

the ability to have automatic antenna steering, but not to manually command an

antenna. As authorization and usage for a given channel will vary over time, a

separate ACL and availability must exist for each pipeline and time slot, as

shown in Table 1. An example resource definition matrix with populated fields is

shown in Table 2.

 21

Table 1. Generalized Resource Definition Matrix

Time

1 2 3

P
ip

e
li
n

e
 1 Availability

 Reserved by

 ACL

… …

2 … … …

3 … … …

Table 2. Concrete Resource Definition Matrix Example

Time

1 2 3

P
ip

e
li
n

e

1 Available

 Not reserved

 ACL

o User 1

o User 3

 Not available

 User 1

 ACL

o User 1

o User 3

 Not available

 User 2

 ACL

o User 2

o User 3

2 Not available

 User 3

 ACL

o User 1

o User 3

 Not available

 User 1

 ACL

o User 1

o User 2

 Not available

 User 1

 ACL

o User 3

3 … … …

4. Communicating Pipeline Configurations

The configuration possibilities that describe a pipeline can be

communicated in a number of ways. Using the improved FGN model described in

the previous chapter, this information can be included in the interface provided by

the CA along with the schedule information. Alternately, this data can be

provided through any desired means directly from the network, or a subnetwork,

such as through RPC during the beginning of a resource usage.

Sample configurations available on three pipelines can be described, as

shown in Table 3. Here, GMSK stands for Gaussian minimum-shift keying, BPSK

stands for binary phase shift-keying, AFSK stands for audio frequency-shift

keying, and OQPSK stands for offset quadrature phase-shift keying. Note that in

a realistic example, there would need to be many more columns to capture each

 22

field that describes the capabilities of a ground station, but which have been left

out for simplicity. These tables must be distributed for informational purposes,

describing to a user the potential resources available.

Table 3. Example Simple Pipeline Configuration
 TX/RX Frequency (MHz) Modulation

P
ip

e
li
n

e
 1 TX 435-440 GMSK, AFSK

2 RX 902-928 BPSK, GMSK

3 RX 2200-2290 OQPSK

D. SCHEDULING

On their own, pipeline configurations do not describe the resources that an

FGN provide. A resource consists of the pipeline, and its corresponding

configuration options, as well as the time span for which the resource is

available. Thus, what is needed for an FGN schedule is a combination of Table 1

and Table 3. This creates rows made up of individual resources, with columns

detailing fields that combine to create the resource. These fields range from start

and stop times, to radio options such as TX or RX, frequency ranges,

modulations, encodings, as well as antenna descriptions such as slew rates and

polarizations, finally followed by ground station location information. A simplified

sample schedule is shown in Table 4.

 23

Table 4. Sample Schedule

Pipeline Start Stop TX

RX
Frequency
(MHz)

Modu-
lation

Lat Lon
R

e
s
o

u
rc

e

1 10/20/2014
0900

10/20/2014
0920

TX 435-440 GMSK,
AFSK

37.3 -76.2

2 10/20/2014
0900

10/20/2014
0920

RX 902-928 BPSK,
GMSK

59.2 -153.3

3 10/20/2014
0900

10/20/2014
0920

RX 902-928 BPSK,
GMSK

38.0 13.3

1 10/20/2014
0920

10/20/2014
0940

TX 435-440 GMSK,
AFSK

37.3 -76.2

3 10/20/2014
0920

10/20/2014
0940

RX 902-928 BPSK,
GMSK

38.0 13.3

The abstraction provided by this resource definition enables filtering of the

resources to find which can provide assistance to a user. For example, a user

needs a 915 MHz GMSK receive capability for their satellite. They can provide

the ephemeris and the aforementioned configured requirements to the CA. The

CA can then filter resources to ones that provide the compatible configuration. In

this subset of resources, it can then calculate which have line-of-sight to the

ephemeris within the bounds of the start and stop time associated with each

resource.

E. SCHEDULING SYNCHRONIZATION

The possibility of multiple CAs among a network presents an issue. The

duplication of responsibility of scheduling requires synchronization. Without

synchronization, a user could request a ground station resource and reserve it

with a hybrid CA/SA at a mid-level, which would leave the resource appearing to

be available at the top-level CA, when in fact it has been reserved.

Synchronization solutions for this problem must be solved in any implementation

of the Improved FGN model.

A solution would be to require the hybrid CA/SA at a mid-level to

propagate resource request acceptance messages from the node-level SA up to

the top level CA. As a CA is only aware of the schedule of the ground station

nodes below it, but not in separate branches, there is no need for the message to

 24

propagate through each branch of the tree. The message only needs to travel

straight upwards to the top level CA.

A second solution could be to require that when a reservation is made, the

bottom level SA, which is the owner of the resource, must request up the chain

that the resource is marked reserved or deleted from the schedule. Thus, when a

bottom level SA receives a request to reserve a resource, it must take action to

notify the CAs above it of the change. Whichever solution is selected, the

problem of synchronization must be solved in implementation with multiple CAs.

 25

III. FGN INFORMATION SECURITY SCHEMES

The security of satellite communications has often been of extremely high

priority. Even in amateur systems where some message structures are fully

public and decodable by the public, some commands and messages are likely to

be kept private. Thus, in a ground station network, particularly one using the

Internet as a communication pathway, the following are of high importance:

 Confidentiality—know that no party but the intended destination can
understand a message

 Integrity—be assured the data is not modified en route to its
destination

 Availability—provide reliable access to ground station

 Authenticity—know whom they are sharing a session with

 Authorization—limit who is allowed to use their resources

A. INFORMATION SECURITY OVERVIEW

The first three concepts form the Confidentiality, Integrity, Availability (CIA)

triad of information security (Stallings & Brown, 2008). Authenticity and

authorization are often considered to be equally important in a secure system.

These are the five concepts that must be provided to have confidence in the

security of an FGN system.

Availability is usually inherent when using the Internet but methods of

improving availability will be discussed in sub-section E of this section.

Authorization has been discussed in Section II.C.3. This leaves three concepts to

resolve with a security scheme: confidentiality, integrity, and authenticity. These

can be provided in a number of ways using modern computer networks.

A widely used network authentication scheme is password authentication.

This scheme in its basic form provides authentication, but does not provide either

integrity or confidentiality and is thus insufficient on its own for the purposes of

most satellite ground station networks. More complicated methods exist that use

 26

passwords to achieve the tenets of information security, but generally they rely

on a level of trust that has already been established using another method (RSA

Laboratories, 2000).

Public key infrastructure (PKI), using matching public and private keys,

solves the shortcomings of password authentication and is a good choice for

providing information security in ground station networks across the Internet

(Stallings & Brown, 2008). PKI solves the issues of confidentiality, integrity, and

authenticity. While, PKI is not the only solution that meets security needs, it is

one of the most commonly used. PKI provides a means for the CA, SA, and

users all to maintain trust that their data is protected in all directions and only

being understood by the intended recipient.

As far as the users of an FGN are concerned, there is only a resource

they would like to use and a system in between that enables access to the

resource. Figure 16 shows this abstracted view; notice that none of the details

inside of the FGN concern the user, and that the FGN simply serves as a relay

for communications with the resource. Security must be ensured for each party

as the system is composed of multiple entities, and communication is often in an

insecure medium, namely the Internet. This necessitates methods of

authentication which implementations must follow. Two sample authentication

schemes follow.

Federated
Ground Station

Network

User1

User2

Usern

...

Resource
 Availability
 Reserved by
 Access Control List

Figure 16. User’s View of FGN Resources

 27

B. SHORT INTRODUCTION TO PKI

Certificates and private keys are the crux of PKI security. The process of

certificate requests and creation is standard, though as applied to this network

model, the role of creating certificates can be played by varying players. The

process begins with the following: a new user who desires to use the network will

create a certificate request and a matching private key. The private key must be

shared with no one and the user must maintain sole knowledge of its contents.

The user will then send this certificate request to a trusted authority of the

network. This authority must then verify the identity of this new user through out-

of-channel means. This could take place through registered mail, in person, or

through some secure, verifiable means. Once identity has been verified, the truth

authority creates a certificate and sends it in the clear to the user. This certificate

is public knowledge and not secret.

Within this certificate is what is known as the public key. This public key is

cryptographically linked to the private key. The authority never needed to see the

private key itself but was able to secure its use for the user. With users Alice and

Bob, these two keys allow Bob to encrypt a message to Alice using her public

key, contained in her certificate. This encrypted message can only be decrypted

by Alice using her private key. This process is shown in Figure 17. Conversely,

the private key can be used to sign a message that can be checked for validity

with the user’s public key. For more in-depth information on information security

and public-key infrastructure refer to (Stallings & Brown, 2008).

 28

Figure 17. Public Key Encryption (from
http://en.wikipedia.org/wiki/Public-key_cryptography, November 3,

2014)

C. CANDIDATE AUTHENTICATION SCHEMES FOR IMPROVED FGN
MODEL

This section presents candidate authentication schemes utilizing PKI in

federated ground station networks for the purposes of accomplishing a

reasonable level of security, while balancing usability with ground station

subnetwork autonomy. Following are two primary categories of strategies for

FGN security schemes.

 Category 1: the top-level CA manages authorization of users and
subnetworks by generating certificates for all members of the FGN,
acting like a traditional PKI certificate authority

 Category 2: the top-level CA only provides a means of sharing
resource availability and of scheduling.

The primary distinction for the second category is that the CA does not

hold the responsibility to provide certification for users to be recognized by

subnetworks. The SA must have signed a special subnetwork-specific certificate

to identify each user it recognizes, and in this way acts as a certificate authority.

A need to maintain tighter control over a subnetwork could drive a desire to use

this second category of schemes. If the SAs are the generators of certificates,

they hold the keys to their kingdom. Conversely, if the top-level CA is the sole

generator of certificates, if any subnetwork recognizes a user, all subnetworks

http://en.wikipedia.org/wiki/Public-key_cryptography

 29

must also recognize the user. This is because they implicitly trust the certificate

as valid and representing a registered user. This does not imply that they must

authorize the user to use the subnetwork’s resources, but they must recognize

the user as a valid registrant. While this provides the user no particular

capabilities, security, administrative, or political concerns may dictate a simple

top-level CA.

An important concept to note when considering the security of this system

is that, while the user controls the node during scheduled resource usage, the

user never communicates directly with the node. The user does not need to be

made aware of the node’s contact information, namely its Internet Protocol

address. The SA handles routing between the user and node such that the node

is safely hidden behind a layer of obscurity, while allowing the SA to be aware of

any communications destined for or coming from a node, thereby enabling

traceability. This may help determine which scheme is most applicable.

1. Category 1 Scheme—Network-wide Central Certificate
Authority

With a network-wide CA, the CA, or CAs, provides a certificate to every

user and SA, and, depending on implementation, possibly to each ground station

node. The SA trusts that the CA verified the identity of a user in creating its

certificate and thus trusts the binding between the certificate and the assumed

user. If all communications between users or the CA and the ground station

nodes of a subnetwork are routed through the SA as shown below in Figure 18,

then each sub-authority only needs one certificate, and ground station nodes

need none. Security of the communications between the SA and the ground

station node is independent of the larger security model, and could be done

using PKI, symmetric key cryptography, or any secure method and could be

different for each subnetwork. This allows for existing subnetworks to rely on

their current models and software when joining a larger FGN.

 30

Scheduling and resource publishing is provided through an interface of the

CA for the user. The SA informs the CA of all available resources at each node in

its subnetwork. The CA, in turn, publishes this information for users. Resources

are requested by users from the CA, which routes these requests to the

appropriate SA. The SA can accept or deny these requests and the response is

returned to the user by the CA. Whether the SA accepts or not depends on a

check of its Access Control List (ACL) for the resource. This ACL is not part of

this standard but will instead be implementation-dependent as the levels of

restriction and determination for authorization can be simple or complex. The

MC3 implementation will determine this based upon mappings of users to ground

station nodes that they are authorized to utilize. Once a request is accepted, this

enables communication between the user and SA at the scheduled time. During

this resource usage, communication is directly between the user and the SA,

which routes these commands to the appropriate node. The SA in turn routes all

data flow, including any received downlink data, from ground station nodes to the

user. Figure 18 shows a sample concept of operations (CONOPS) diagram, and

Table 5 shows the meaning of each of the operations numbered in the figure.

Central
Authority

(CA)

Sub-network
Authority

(SA)

User

Node
1

6

User ßàNode

CA ßàSA

4

5

7

8

User ßàCA

2

3

Figure 18. FGN Usage Concept of Operations

 31

Table 5. FGN Usage Concept of Operations

Step Operation
1 SA publishes available time slots to CA
2 CA hosts available time slots for users
3 User sends a request for a time slot to CA
4 CA pushes, or makes available, time slots requests to SA until these

requests reach the lowest level SA
5 At appropriate time, SA initiates connection with user and begins

forwarding all data from node
6 User sends configuration and transmit requests to SA
7 SA commands node based on user’s requests

2. Category 2 Scheme—Certificate Authority Solely as a
Scheduling Interface

In this scheme, high-level operations appear very similar to those in

Category 1 except that for communications with a user, a certificate is created for

each user by each SA and transferred in out-of-band secure communications.

This certificate and its matching key are used for all communications between the

SA and user. Each CA generates a certificate for each SA. This secures the

CA/SA bidirectional communications. To secure user/CA bidirectional

communications, the SA distributes a user’s certificate to the CA. When the user

needs to request a resource, this certificate is used to secure communications

with the CA. This same certificate is utilized by the user to communicate with the

SA during scheduled time slots. This allows for each subnetwork to strictly

control initial authorization of each user and to have been the authority that

generated the identification mechanism.

D. ANALYSIS OF AUTHENTICATION SCHEMES

Category 2 comes with the added complexity of managing many more

certificates, with multiple certificates for a single party, but enables each

subnetwork maximum confidence in the identity of each user to whom it grants

access. This grants each subnetwork absolute control over who has been

granted a certificate in order to establish communications. This may serve to

comply with security requirements and alleviate concerns that may arise for a

 32

subnetwork considering joining an FGN that may lack trust in the CA’s ability to

properly authenticate new users.

Conversely, Category 1 relies on a complete trust relationship between

the SA and CA, which in turn allows the SA to trust users, while still maintaining

the ability to deny authorization, either carte blanche, or specific to a given user

at a given time slot. One risk is in being able to recognize an unauthorized user’s

certificate, but does not pose any risk of misuse of a resource as authorization

can be denied just as readily as in Category 2. Another risk is if a CA cannot be

trusted to properly authenticate users in a secure manner, which would mean no

CA-signed certificate can be trusted.

A single certificate authority provides for a reduction in the number of

certificates. This also moves the responsibility of authenticating new users to the

CA, freeing the SA of this duty. Loading this duty onto a single source, may

hamper scalability if certificate signing becomes a high demand task. Category 1

seems to be a winner between these two schemes as long as the CA can be

trusted to securely vet new users.

E. INCREASING AVAILABILITY

Availability is the last piece of the five security principles to ensure. In

either category, having multiple CAs helps to increase reliability. In a single-CA

system, even if the CA has a 99.9% availability time, this means that 0.1% of the

time, the entire network is unable to add new users or schedule new resources.

With multiple CAs, redundancy exists that may increase reliability, which is an

important consideration for many satellite owners. Conversely, as resource

scheduling can be done far in advance, a user should not need to reserve a

resource shortly before the resource start time. The standard procedure for using

a resource on a network is to reserve it as far in advance as possible. Thus, as

long as downtime is short, even if it is frequent, the network should still remain

fully viable. Reliability in critical times such as during or just before a resource

start time is dependent on the reliability of the SAs and nodes themselves.

 33

IV. STANDARDIZATION OF AN INTERFACE

A. INTERFACE BACKGROUND

The abstraction that the improved FGN model provides suggests the

possibility of a standard communication interface that would extend the

resources of an FGN to a user. The remote use of a resource by a user across

the Internet is often referred to as a service, and as being part of a Service

Oriented Architecture (SOA) (Erl, 2005). The World Wide Web Consortium

defines a service interface as “the abstract boundary that a service exposes. It

defines the types of messages and the message exchange patterns that are

involved in interacting with the service, together with any conditions implied by

those messages” (W3C Working Group, 2004). Four components comprise an

interface:

 Data structure formats – a syntactic specification of what data types
group together to form data objects and to be used in requests and
responses

 Serialization - a means of translating data to be transferred on the
wire between heterogeneous computer systems

 Remote procedure call (RPC) library - the signatures of functions
that can be requested of the service provider

 Interface specification – semantic documentation describing what
the interface provides and the correct usage and expected
outcomes and effects of usage (Bachmann, et al., 2002)

B. BENEFITS OF A STANDARD

By now, CubeSats have become widespread in government, industry, and

academic use. Most missions develop their own ground station hardware and

software solution but reuse of existing infrastructure would allow efforts to be

focused on the satellite and researching new technologies. Often, effort is spent

in CubeSat communications in setting up new networks of one-time-use ground

stations. Leffke (2013) proposed a method of building simple receive-only ground

stations that could be networked and provide receive service. Many other ground

 34

stations with similar capabilities already have been built and have unused

resources.

There is not always a need to build new ground stations for a mission, as

existing stations are hardware compatible. Incompatibility with existing ground

station systems often occurs due to software differences or proprietary software

being used for control. With a standard interface, the hardware can extend

common functions to any software that implements an FGN’s interface. As long

as the software has an integrated interface connecting the different components

of an FGN in a standard way, what particular software is running at any one

computer is not relevant to the computer on the other end of the interface.

As an example, this interface could be integrated into the software

currently being utilized by the MC3 network, namely the Naval Research

Laboratory’s Neptune™ ground station software. The MC3 ground station nodes

could continue using Neptune™ software to control their hardware, but would be

capable of providing FGN service to users who could be using any mix of

software they would like, as long as it implements the same interface. The

Neptune™ software would be unaware of what type of software is running on the

other end.

Multiple efforts are also under way to create ground station networks.

Each will likely have a different custom interface, and thus far, CubeSat ground

station networks have shown this to be true (Tubio et al., 2014; Leveque et al.,

2007). New and existing networks could implement a common interface and

architecture, which would allow for conglomeration. This would expand the

options available to users of ground station networks. A standard interface would

also simplify a user’s development effort when attempting to achieve

compatibility with an interface, as developing a single interface would allow for

compatibility with multiple networks. If multiple networks, even separate from

each other, use the same interface to network with users, the user can develop a

solution once and utilize multiple FGNs.

 35

As not all ground station networks utilize the same radio frequencies, and

neither do satellites, a unification of the interface also prevents evolution among

satellites from affecting the method of communication between users and ground

station networks. For example, many CubeSat developers begin with Ultra-High

Frequency (UHF) radios onboard their satellites and migrate to higher data rate

S-Band radios. If they began using a UHF-centric network with a standard

interface, they could slowly migrate to S-Band centric networks and not create

the burden of redesigning their ground station network communications.

Finally, a standard allows for differing ground station networks to unify and

integrate with each other. Existing ground station networks could conglomerate

more simply if they all used the same interface to communicate between each

other. Integration between systems using the same standard would involve less

change as the architectural framework would be very close.

C. EXISTING FGN INTERFACE STANDARDS

Multiple implementations exist that extend ground station network

services, some of which fully or partially describe an interface standard.

1. GSML

The Ground Station Markup Language (GSML) (Cutler, 2004) describes

the data structures that are used in the interface, as well as describing a means

of serialization. The Hardware Virtualization Layer of GSML is shown in Table 6.

GSML does not contain an RPC library as part of the published interface

standard, and instead the RPC libraries are implementation-specific. The

Mercury Ground Station Network (MGSN) implements GSML, and provides a

custom set of RPCs to achieve the functionality an FGN provides its users. As

GSML does not explicitly document what actions are to be taken upon receiving

a GSML (Extensible Markup Language, XML) document, one could argue it does

not compose a full interface (Bachmann, et al., 2002). The MGSN describes its

services and implements RPC using XML-RPC. Use of XML-RPC implies use of

the Hypertext Transport Protocol (HTTP) as the transport protocol. A standard

 36

defined using these tools is not available at the time of this writing at the home

page of the GSML description.

Table 6. GSML Virtual Hardware Level Object Descriptions
(from Cutler, 2004)

Object State

Antenna Azimuth Angle
Elevation Angle
Brake Status

Preamp (LNA) Enabled Status
Gain Level

Radio Transmit Frequency
Transmit Mode
Transmit Output Power
Receive Frequency
Receive Mode
Receive Attenuation
Receive Squelch Level
Receive Signal Strength

Output Amplifier Enabled Status
Output Level

Digital IO Channel State
Number of Channels

Analog IO Channel State
Number of Channels

Power Controller Channel Value
Channel Name
Number of Channels

CPU Network Bytes In
Network Bytes Out
CPU Usage Times
Disk Usage (Free/Total)
Load Averages
Processes Total
Processes Running
Memory Usage (Free/Total)
Status
Uptime
Name
IP Address

Virtual Machine (Includes CPU state from above.)
Type of VM

 37

Object State

Ground Station Name
Location
Pipelines
Status

Environment Parameters
(common to all hardware)

Temperatures
Voltages

2. CCSDS SLE

The Space Link Extension (SLE), created by the international Consultative

Committee for Space Data Systems (CCSDS) provides a more comprehensive

standard than GSML does with extensive documentation and architectural

descriptions (CCSDS, 2005). SLE explicitly details the RPC library, in addition to

suggesting a method of data structure formats and serialization, which is largely

Abstract Syntax Notation 1 (ASN.1).

 While the SLE standard is extremely comprehensive and well-defined, it

is intended to be used with a specific set of communication protocols spanning

from the lowest physical level to the highest application level: the Space Link

protocols (CCSDS, 2001). The CCSDS protocols at each layer were engineered

to support CCSDS protocols at other layers, but were not engineered with

generality in mind. The CCSDS protocols must be bent and the majority of their

capabilities ignored to easily encapsulate the typical capabilities needed for

CubeSat users who typically do not use CCSDS protocols at other levels of

communications. For example, AX.25, a very common CubeSat protocol, is not

by default compatible with CCSDS. Considerable expertise is needed to

encapsulate simpler protocols inside of the CCSDS protocol layers.

The SLE definition is spread across a number of documents totaling

thousands of pages of documentation putting its complexity well beyond the

usefulness for the average small satellite team and showing its intended target

audience, which was originally NASA and the European Space Agency (ESA).

While this complexity might be useful with the level of complexity present in large

satellites flown by the likes of NASA and ESA, it is largely unnecessary for the

 38

simple type of control and ground station network usage a small satellite team

would desire or want to invest valuable man hours into implementing.

While the protocol sets define most of what is needed to provide FGN

service to a user, a complete implementation would be prohibitive for the typical

small CubeSat team that is not interested in implementing the additional layers of

CCSDS. In addition, the specificity of CCSDS protocols requires modification to

support the array of protocols being utilized by CubeSat missions. As will be

shown, the capabilities needed can be fairly simple to achieve use of an FGN.

D. MOTIVATION FOR A NEW STANDARD

The primary objective of any further FGN interface development should be

a standard capable of meeting the goals of today’s and tomorrow’s FGNs. These

goals consist of enabling sharing of ground station resources with granularity of

control. Each piece of hardware that has configuration possibilities should be

considered in the interface. An FGN user may want full control of a ground

station’s hardware, with the granularity of control to scan frequencies attempting

to acquire a signal, or to dither an antenna back in a pattern to attempt to acquire

their satellite or to test a satellite acquisition optimization algorithm. Alternatively,

an FGN user may want nothing but to transmit and receive packets, which is

often called bent pipe operation. To use a bent pipe, the SA must control the

radio frequency to account for Doppler, predict the satellite position to point the

antennas, and prepare any other hardware such as amplifiers and pre-amps.

Figure 19 shows these two usage scenarios. Due to the granularity a user may

require in controlling hardware, it is highly desirable to have abstraction of each

hardware resource available on an interface such that maximum granularity and

compatibility with varying models of hardware can be communicated in a single

interface standard.

 39

 SAUser NodeTX/RX Packets
CPU Monitoring

Antenna Control
Radio Configuration

Amp/PA Control

TX/RX Packets

CPU Monitoring
SAUser Node

Antenna Control
Radio Configuration

Amp/PA Control

TX/RX Packets
CPU Monitoring

Antenna Control
Radio Configuration

Amp/PA Control

TX/RX Packets

Doppler
Tracking
Amps On

Usage Scenario 1: Full Manual Control

Usage Scenario 2: Bent Pipe Operation

Figure 19. Two Possible Usage Scenarios of FGN Interface

Cutler’s work designing the GSML Virtual Hardware Layer, Session Layer,

and Network Layer as well as in defining resources as a pipeline paves the way

for these objectives to be accomplished (Cutler, 2004). With minor additions and

deletions from these abstraction layers, a new interface was developed to fully

abstract and encompass the large enumeration of configuration options available

among hardware and software-defined radio ground stations. But in addition to

the abstraction of the different hardware components and their possible

configuration options, a standardized set of functions for altering and checking

these configurations and transmitting data was needed. These functions that

software can call upon for remote control of a ground station are referred to as

remote procedure calls (RPC) and when compiled along with necessary

descriptions of the effects of these calls and their expected input and output data

it is referred to as an application programming interface (API). Finally, the

semantic behavior of the interface must be defined along with expected usage

and high-level behavior and interaction descriptions. These components

combined make up the full definition of an interface standard and were the

products of this research (Bachmann, et al., 2002).

 40

When designing an interface, it is necessary to define specifics such that a

standard is implemented correctly between different interpreters of the

specification. This level of specifics is missing from SLE as it is written only for

CCSDS protocols and encompassing other standard protocols must be

implemented as a side branch of the standard. Also, specific implementation

recommendations are avoided in the SLE standard leaving the door open to

incompatible implementations. The idea seems to have been to avoid cornering

any possible implementer of the standard into a design decision they might not

desire. While this has its merits, it also leaves the possibility of incompatible

implementations of the standard. Defining further layers of software requirements

of the interface can serve to further standardize it and maintain compatibility

between different implementations extending the utility of a standard.

Standardization, in its current form of GSML and SLE, could be improved

in order to encourage users to develop solutions for their mission capable of

utilizing existing FGNs. We have developed a standard interface implementing a

Category 1-modeled interface (see Section III.C.1). It not only defines the data

structures used for input and output, by building upon the foundation of GSML,

but also defines the RPC library available for a remote user, as well as the

semantics of their use. Using this new interface and model, we should be able to

extend the infrastructure of the MC3 FGN to other United States Government

and U.S. Government-sponsored contractors and researchers.

E. INTERFACE DEFINITION TOOLS

A new interface standard should be simple enough to be easily

comprehended and implemented while still providing sufficient abstraction to

enable functionality among a diverse number of ground stations and users. This

necessitates enough documentation and specification without ruling out

unforeseen uses and demands. The documentation should also thoroughly

explain intended usage and effects of RPC calls.

 41

This new interface standard should not limit which languages it may be

implemented with, ruling out some obvious options such as using JavaScript with

the Asynchronous JavaScript + XML (Ajax). The user and ground station owner

should be able to use their existing ground station software to implement the

interface creating a need for compatibility with as many languages as possible, or

at least the most common languages such as C languages, Java, PHP,

JavaScript, Python, and Perl (TIOBE Software, 2014).

The interface tool chosen should also handle schema evolution well.

Schema evolution is the term for when an interface changes over time or is

versioned. If a data structure to describe the status of an antenna is built, it may

well need to change over time as different types of antennas with more

functionality are added necessitating new variables. Also, it may be the case that

a data type chosen for a field is found to be insufficient or non-optimal. A well-

designed interface tool supports the ability to have a client running one version of

an interface while the server runs another with minimal effect. The following

sections evaluate these options.

1. CORBA

While GSML uses XML to format the structure of its data, and its

implementation under the MGSN uses XML-RPC to provide RPC, many different

options exist for accomplishing the goal of specifying a standardized interface.

The Common Object Request Broker Architecture (CORBA) is a framework for

performing RPC in a language-agnostic way. CORBA is one of the oldest

interface definition methods, dating back to 1991. It has since been considered

by most to be outdated and difficult to implement and understand due to its

design by committee. CORBA has largely been replaced by other tools such as

RESTful API’s and SOAP (Henning, 2006).

2. SOAP

The Simple Object Access Protocol (SOAP) has been a common choice

for web services for the better part of the last decade and remains common

 42

today. SOAP often uses HTTP to transfer XML documents. SOAP is very similar

to XML-RPC but with additional features and data types. SOAP is slower than

some competitors such as CORBA because data is transferred using XML

instead of a binary format. XML is a verbose, textual representation of data.

SOAP is highly portable and does not rely on a particular transport protocol. This

means that the large numbers of languages with XML support are already close

to compatible with SOAP, if a library does not exist already. Also, SOAP can

automatically generate code from descriptions of the service, allowing for

interfaces to be implemented faster. A drawback of SOAP is that it can be quite

verbose when using Web Service Definition Language (WSDL) documents,

which it uses to define the RPC. This can be a significant drawback if there are

competing standards defining a service, as implementers may be deterred by the

perceived complexity of an interface defined using SOAP.

3. REST

RESTful (Representational state transfer) API’s are another alternative. In

approximately 2008 REST overthrew SOAP to become the most utilized interface

definition tool as shown in Figure 20 (Royal Pingdom, 2010). REST attempts to

set architectural constraints in the design of the interface including that the server

must be stateless. This results in successive calls to a server producing the

same response, allowing for caching, and for different client connections to the

server to all view the same state. While this may work for many web services,

this is hard to imagine applying to a ground station where state not only is

different for every client that connects, but also which is constantly changing as

real-world events such as the movement of the satellite are taking place. REST

can be made to be stateful but this is not in line with the idea of it. One benefit of

REST is the ability to discover the resources of a server dynamically. This allows

for changes to the interface while it is live. Many RPC implementations of

interfaces will break when the interface is updated on one side or the other.

Another benefit of REST is that it has implementations in many languages.

 43

Figure 20. Rest Versus Soap (from DuVander, 2010)

4. ICE

The Internet Communication Engine (ICE) is a proprietary interface

framework created by ZeroC, Inc. It has a licensing model that includes a free

(GNU General Public License) version for the open source community but also

has a proprietary licensing version for commercial customers. ICE is designed to

be very fast, with its website advertising that ICE is typically hundreds of times

faster than SOAP. ICE also claims to be easier and less verbose than XML

(ZeroC Inc.). While it may be faster and simpler than SOAP, the simple addition

of a license makes this framework a negative aspect of any standard that would

rely on it. In order to achieve the highest levels of adoption, excess costs

associated with low-level pieces of the software are to be avoided. Existing

commercial ground station software that does not currently hold an ICE license

would need to purchase one to integrate with the system. Therefore, regardless

of the speed increases ICE may bring, its cost is a high deterrent.

 44

5. Abstract Syntax Notation 1

Abstract Syntax Notation 1 (ASN.1) is an older standard dating back to the

1980s that only defines part of what is necessary to build an interface. ASN.1

covers serialization, which is the process of encoding and decoding data

structures across a boundary such as the Internet. Thus, ASN.1 provides a

method of encoding data structures, but lacks the RPC framework that is

available with other options, which makes ASN.1 an incomplete solution. SLE

made use of ASN.1 in its standard for defining data structures. ASN.1 contains a

number of standard encodings including textual, binary, and more heavily

encoded formats that perform faster than the basic textual ones, and would

outperform XML encodings in terms of speed. Downsides of ASN.1 are the broad

number of data types available for defining a field. While this may seem

empowering, it can often lead to inconsistent implementations where certain

developers use a certain data type to represent a field, and other developers use

a different type for a similar field.

6. Protocol Buffers

Originally developed by Google and now an open source project, Protocol

Buffers, or ProtoBuf as it is often called, also only provides serialization. ProtoBuf

is used for Google’s RPC communications, but only by building a custom RPC

framework on top of ProtoBuf, which Google has kept proprietary. ProtoBuf is

fast in terms of serializing data across a boundary and was designed to be faster

than XML. The fact that ProtoBuf is open source is often considered a positive as

it has withstood the rigors of public review and is constantly being updated. A

benefit of ProtoBuf is its ability to handle schema evolution. Yet, ProtoBuf is still

missing an RPC framework, which is a significant drawback.

7. Apache Thrift

Apache Thrift is both a serialization and RPC framework similar to

CORBA, SOAP, RESTful APIs and ICE, including the RPC that is missing from

ASN.1 and ProtoBuf. Thrift was originally developed by Facebook and it is still

 45

used internally for their serialization and RPC needs. Facebook has handed over

Thrift development to the open source community at the Apache Software

Foundation. Being an Apache project means that Thrift is an open source project

and as such all source code is available for public review and modification if

needed. Thrift, at the time of this writing, is still relatively new and has yet to

reach version 1.0, but is expected shortly. It has been in existence for six years,

though, which is a moderate amount of time for software. Literature is scarce but

a great introduction and reference guide is available from the Manning Early

Access Program as “The Programmer’s Guide to Apache Thrift” by Randy

Abernethy. This textbook was used to successfully create a Thrift interface that is

described in Section V.

With Thrift, data structures are defined in a language-generic method

using the Thrift Interface Definition Language (IDL) that is compiled into many

common programming languages. It is currently compatible with 17 languages

including C, C++, Objective-C, C#, Java, PHP, and Python. The full list of

languages is listed in Table 7.

Table 7. Languages Supported by Apache Thrift (from Abernethy,
2014)

C C++ C# D

Delphi Erlang Go Haskell

Java JavaScript Objective-C OCaml

Perl PHP Python Ruby

Smalltalk

Serialization is provided as a plug-in and different serialization protocols

can be chosen from or created to encode data structures across the wire. Data

structures can be passed from server to client or vice versa across the Internet,

through a data file locally, or through local memory. Regardless of the transport

 46

type, the data structure will be maintained across the boundary. RPC is provided

through means of service definitions. Services are defined with full signatures

including function names, input parameters, and return data types using Thrift

IDL.

A service provider can define their service using Apache Thrift IDL and

implement their server-side code in Python. The provider can then share this IDL

file with a user, who can compile the file into C++ and add their client code to the

auto-generated stub. The user can then interact with the Python server from a

C++ program, making RPC calls and passing parameters defined in C++

structures that are translated into Python structures and that trigger Python

functions at the server. This process is demonstrated in Figure 21.

Figure 21. Apache Thrift Framework Diagram (from Abernethy, 2014)

8. Design Decisions

Apache Thrift has been determined to be the most fitting choice for a

standard at this time. The primary reason for this is Thrift’s completeness. It

provides serialization, as each of its competitors do, but Thrift also provides RPC,

which ProtoBuf and ASN.1 do not include. While ProtoBuf and ASN.1 can be

 47

connected to RPC frameworks, this must be done externally, complicating the

process of defining a standard based upon multiple separate technologies. This

lack of completeness in ProtoBuf and ASN.1 leaves CORBA, SOAP, REST, ICE,

and Thrift as possible contenders.

Among these tools, CORBA has been considered to be outdated for quite

some time and due to the problems described in Section IV.E.1, has largely been

abandoned by the programming community. SOAP and REST remain viable

options. SOAP typically uses XML documents (W3C Woking Group, 2007) and

as such is often slower than necessary when compared with binary protocols.

While REST is a capable choice, it is a style more than a framework. Each

language has its own frameworks that implement the REST style. Choosing

REST would leave much work up to the designer in setting up a framework. The

designer may find they are the only implementer of the standard using the

framework they choose, possibly presenting unique incompatibilities. The ideal

framework will require less work on the programmer’s part to encourage adoption

of the standard. This leaves two complete interface frameworks with ICE and

Thrift.

Both ICE and Thrift perform well, are highly configurable, support a

number of languages, and have support for schema evolution but the scales tip

towards Thrift in a couple key areas. Thrift provides support for a larger set of

languages than ICE does, covering a key design requirement mentioned at the

beginning of this section. It also is completely free, whereas ICE requires a

licensed product to be used in a commercial setting. Thus, Apache Thrift was

chosen to define and implement an interface.

 48

THIS PAGE INTENTIONALLY LEFT BLANK

 49

V. M-PIPE INTERFACE

This section presents an interface that was designed to extend the

resources that an FGN can provide across the Internet. The interface is called

the MC3 Picosatellite Interface Protocol Extension (M-PIPE). Thought its name

includes MC3 and Picosatellite, it is specific to neither and is a broad ground

station network standard. It provides support for two primary categories of

functionality: remote operation of ground station hardware, and scheduling of

resources. An introduction to the middleware framework chosen to build our

interface, Apache Thrift, follows.

A. INTRODUCTION TO APACHE THRIFT

As was explained in Section IV, Thrift uses a language called IDL to

encode the data structures, services, and exceptions it can describe. Data

structures come in different forms such as a struct, union, enumeration, and

other common data structures from other programming languages. Code Listing

1 is an IDL code snippet from the actual M-PIPE interface that provides manual

control of an antenna’s steering. It defines a data type and a data structure for

detailing the position of an antenna.

Code Listing 1. Type Definitions and Data Structures

1 typedef double Degrees
2
3 /** Defaults to a position of 0 azimuth, 90 elevation */
4 struct AntDirection {
5 /** Azimuth in degrees*/
6 1: Degrees azimuth = 0.0
7 /** Elevation in degrees */
8 2: Degrees elevation = 90.0
9 }

The code starts off by naming a new data type of Degrees, which is

equivalent to a double, a common programming data type representing a floating

point number with high precision. This is merely for convenience and clarity of

 50

the meaning of data fields that utilize it. The code continues by making a data

structure named AntDirection that is composed of an azimuth and elevation

direction. These are set to a default value of 0 and 90 degrees respectively. The

Thrift compiler reads from detailed C-style comments throughout the code to

generate Application Programming Interface web pages that help programmers

utilize the interface.

The true power of Thrift or any other interface framework lies in defining

services. Services are groupings of functions that each have return types and

parameters. They are semantically equivalent to defining an interface in object-

oriented programming (Apache Software Foundation, 2014). The following

example is further sample code from the M-PIPE interface that controls the

antenna’s pointing direction:

Code Listing 2. Service Definition Example

1 /**
2 * AntControl allows for manual control of the antenna
3 */
4 service AntControl {
5 /**
6 * AntPoint points an antenna in a given direction. Returns the
7 * input antDirection repeated indicating success, otherwise
8 * throws a PointingException.
9 */
10 AntDirection AntPoint(
11 /**
12 * an AntDirection struct describing Az and El to point
13 * towards
14 */
15 1: AntDirection antDirection
16)
17 /**
18 * exception indicating the requested antenna direction was
19 * Invalid
20 */
21 throws (1: PointingException pointingException)
22 }

This code begins by defining a service named AntControl. It has a single

function available called AntPoint that takes one parameter that is the

 51

AntDirection struct defined in the previous section. The function can throw an

exception, defined in code available in Appendix A.E. This exception informs the

caller of a problem such as an invalid direction that the antenna cannot satisfy

such as a negative elevation that would exceed the physical capability of the

antenna controller.

1. Server-Side Stub Code

As mentioned in the previous section, the Thrift compiler takes IDL code

and converts it into stub code in the language of choice. This stub code contains

both client and server implementations. The programmer then needs to fill in the

details of the implementation of a service call. For example, the server-side stub

code for the Antenna interface shown above would generate an empty function

called AntPoint. This code would then be extended by the programmer to drive

their ground station’s antenna similar to the example in Code Listing 3.

 52

Code Listing 3. Server-side Stub Code Example

1 import sys
2 sys.path.append(‘gen-py’)
3 from thrift.transport import TSocket
4 from thrift.server import TServer
5 from mpipe_antenna import AntControl
6
7 class AntHandler(AntControl.Iface):
8 def __init__(self):
9 self.status = True # Set initial status to good
10 self.currDirection = AntControl.AntDirection(azimuth=0.0,
11 elevation=90.0)
12 def AntPoint(self, antDirection):
13 if antDirection.azimuth < 0.0 \
14 or antDirection.azimuth >= 360.0 \
15 or antDirection.elevation < 0.0 \
16 or antDirection.elevation >= 180.0:
17 print(“[Server] Bad antenna point parameters.
18 Raising PointingException”)
19 raise AntControl.PointingException(antDirection)
20 print(“Pointing antenna to %s” % (antDirection))
21 # Insert real driver control here
22 self.currDirection = antDirection
23 return antDirection

The AntControl.Iface abstract class is part of the stub code created by the

Thrift compiler. The AntHandler class builds upon this abstract class to give

meaning to the function call AntPoint. It begins by setting up an __init__ function,

that is Python’s way of constructing a new instance of an object. This function will

be called whenever a new AntHandler is created. It begins by setting up status

and current direction variables and setting them to known states. Next, the

AntPoint function is implemented. First, some checks on the input parameters

from the client are performed, and, if the data fails to pass checks, an exception

is raised, which Thrift automatically handles by returning the exception to the

client. The client would receive this exception in their implementation language’s

exception class types when they attempt to make a call with bad parameters. If

the parameters pass, the code continues with a comment indicating where actual

driver-level code would be inserted (see the comment on line 21 of Code Listing

3) For some antenna controllers such as the Yaesu antenna controller commonly

used on CubeSat ground stations, this would be as simple as opening a serial

 53

port to the antenna controller, sending the text “W2 000 090” to set the azimuth

to zero and the elevation to 90 degrees, and closing the port again.

All of the complexity of setting up a socket server, serializing and

deserializing data, and designing the RPC language that tells the server which

function the client is calling are all handled by the Thrift stub code plus a handful

of configuration lines, shown in Python below for the antenna example.

Code Listing 4. Server-side Python Configuration Example

1 svr_trans = TSocket.TServerSocket(port=12345)
2 processor = AntControl.Processor(AntHandler())
3 server = TServer.TSimpleServer(processor, svr_trans)
4 server.serve()

The first line opens a server-side socket listening for client connections on

port 12345. In this and all other examples shown, communications are on an

insecure socket connection. The actual M-PIPE implementation will need to use

Secure Socket Layer (SSL) sockets to securely communicate. The second line

hooks in the AntHandler class defined in the previous code snippet to a

processor, which is the level of Thrift that determines if a particular series of bits

coming from a client are a request for AntPoint or some other function and finds

the input parameters and connects them to their named variables. The amount of

work involved in creating the level of code of the processor and serializer from

nothing is large in comparison to the example. Thrift provides a benefit in being

able to start building from this framework and begin at the level of actual function

call implementations. The third line sets up a full server linking the listening

socket and the processor. The final line simply starts the listening process and

does not return until the server is shut down. More complex types of servers such

as threaded or multiprocessing servers are also available in Thrift for Python and

many other languages. For details on this, refer to Abernethy (2014). As one can

see, the server-side implementation is quite simple using Apache Thrift.

 54

2. Client-side Stub Code

The Antenna interface client side Python implementation is simpler than

the server-side code, which the author believes was simple to begin with.

Code Listing 5. Client-side Example Implementation in Python

1 import sys
2 sys.path.append(“gen-py”)
3 from thrift import Thrift
4 from thrift.transport import TSocket, TTransport
5 from thrift.protocol import TBinaryProtocol
6 from mpipe_antenna import AntControl
7
8 socket = TSocket.TSocket(“localhost,” 12345)
9 socket = TTransport.TBufferedTransport(socket)
10 socket.open()
11 protocol = TBinaryProtocol.TBinaryProtocol(socket)
12 client = AntControl.Client(protocol)
13 try:
14 az = 41.3
15 el = 11.2
16 pointDirection = AntControl.AntDirection(azimuth=az,
17 elevation=el)
18 msg = client.AntPoint(pointDirection)
19 except AntControl.PointingException as pe:
20 print(“[Client] Server rejected our antenna pointing request of
21 az: %f, el: %f” % (az, el)

A large amount of the code shown above is merely the imports. Following

these, a socket is connected to the server on port 12345. Then a buffered

transport layer is wrapped around the socket to optimize the number of packets

sent to complete communications. Next, the socket is opened. Following this, the

Thrift Binary protocol is chosen as the serialization method. The server in the

previous section chose Thrift Binary by default. A different serialization method

could be used, including JavaScript Object Notation (JSON) or more compact

serializers such as the Thrift Compact method by providing parameters to the

server code (Abernethy, 2014). Next, a client is created from the AntControl

client-side stub code. An antenna direction structure is populated with the desired

pointing directions. Next, a call to AntPoint is made. This single call handles the

passing of the RPC data, including the function name and parameters, through

 55

the serializer, to the server, and then awaits a response from which it saves to

msg. This single line handles a large amount of underlying code that the

developer need not implement. Finally, as we are within a try block, if this call

receives an exception from the server for an invalid pointing direction, it will be

caught and reported here and could be handled as desired. Clearly, the

hardware control Thrift interface is quite powerful and simple to implement.

3. Thrift Schema Evolution

Thrift provides powerful tools for handling schema evolution. Schema

evolution is the process of an interface and its definition changing over time. In

the definition of the AntDirection struct, it may have been noted that the fields

were numbered. Thrift needs these numbers to identify the meaning of a field as

it comes across the wire and to correctly map a value to a variable when

deserializing. These numbers are not required and, by default, every time Thrift

compiles and IDL file it will assign numbers to the fields. Thus, if they are not

manually numbered as shown above, they will arbitrarily be assigned numbers.

Thus, if a new field is added to the server’s interface, but not to the client’s, their

numbering will differ. Numbering fields removes this uncertainty.

One of the most important ways Thrift can support schema evolution is by

making use of requiredness. Requiredness is an attribute of fields that describes

whether or not it must be written or read when serializing and deserializing the

struct it belongs to. This allows for some fields to be marked required such that

Thrift will throw an error if it receives a struct not containing the field, or to be

marked optional such that it does not need to be in the struct to be passed

through Thrift. Finally, the default requiredness option in Thrift necessitates that

the field be written by the struct creator, but does not need it to be present for the

struct reader (Abernethy, 2014).

These requiredness options provide tools that the interface designer can

use to maximize the ease of schema evolution. Most fields in M-PIPE are marked

optional. This allows for these fields to be removed if needed. This may be

 56

necessitated by a newer definition of a field with a different type. This also allows

for a single struct describing both hardware and software radios as well as the

many different types of equipment that may be used, each having their own

fields. It is intended that minor differences in radios should not necessitate

changes in the names or types of the fields in the M-PIPE interfaces. Making

fields optional also allows for the ground station implementer to decide which

fields they want to share on a field-by-field basis. An example of one such

structure making use of requiredness is shown in the optional fields of a

computer status that the ground station may want to avoid sharing.

Code Listing 6. Requiredness Example

1 /** CPUStatus describes the current status of the server’s computer */
2 struct CPUStatus {
3 /**
4 * CPU health status. True means healthy, False indicates
5 * degraded
6 */
7 1: bool status
8 /** Time in seconds since computer booted */
9 2: optional i64 uptime
10 /**Number of processes total */
11 3: optional i64 numProcessesTotal
12 /** Number of processes running */
13 4: optional i64 processesRunning
14 /** Average CPU load as a percent */
15 5: optional mpipe_types.Percent loadAve
16 /** Disk usage as a percent */
17 6: optional mpipe_types.Percent diskUsage
18 /** Disk free in MB */
19 7: optional i64 diskFree
20 /** RAM usage as a percent */
21 8: optional mpipe_types.Percent ramUsage
22 /** RAM free in MB */
23 9: optional i64 ramFree
24 }

B. INTENDED USAGE OF M-PIPE INTERFACE

As was shown in the previous sub-section, both the server- and client-side

implementations of the M-PIPE interface are simple to implement and will be

easy to integrate with existing ground station software.

 57

1. Hardware Control

Hardware control was broken down into the component pieces of a radio

frequency (RF) ground station chain as described by Cutler et al. for GSML in the

Hardware Abstraction Layer. This includes the antenna controller as well as radio

hardware. Whereas a ground station transmit RF chain often has an amplifier, a

ground station receive RF chain often contains a preamp. In many cases, the

receive and transmit chain are both using the same hardware, and thus both may

be present in an RF chain. As the combination of this hardware varies as

described, the amplifier and preamp were kept separate in the interface design.

Table 8 lists all of the abstracted hardware interfaces included with M-PIPE in its

first release.

Table 8. Available M-PIPE Hardware Interfaces

Hardware Interfaces Description

Antenna Controls antenna pointing and polarization

Preamp Controls power and gain

Amplifier Controls power and gain

Radio Controls frequency and configuration

CPU Checks status and health

Packet Forward data for transmit or from receiver

Each interface is separate from any other interface and any combination

of these can be hosted by a ground station. If a ground station prefers not to

provide control of the amplifier or does not want to share statistics regarding the

CPU, they simply do not need to implement the interface. If they would prefer to

hide the antenna control and instead only provide automatic antenna tracking,

they can do so.

 58

As well as specific hardware control, there is a Session Level interface

similar to the Session Level described by Cutler et al. in GSML. This session

level control provides for two primary functions: automatic tracking of a satellite

with the antenna, and automatic Doppler compensation for radios. Both require a

two-line element (TLE), which is a description of the orbital parameters of a

satellite and that provides the information needed to calculate the position and

speed of a satellite relative to the ground station’s position.

There are two large categories of satellite ground software. The first is

oriented more towards the satellite itself, and can be referred to as mission

control software. The second category is oriented towards the ground station

hardware, and is often referred to as the ground station software. These may be

integrated, or may be separate pieces of software communicating with each

other. M-PIPE is designed to connect a ground station that contains ground

station software with a user who is either using ground station software with

integrated mission control software, or who is solely using mission control

software.

a. Usage Scenario 1—Integrated Ground Station Software

A user with integrated ground station software can integrate the hardware

control functionality of M-PIPE with their existing software such that when the

existing software calculates the satellite prediction to necessitate pointing at a

certain azimuth and elevation, its existing calculations are connected to calls to

point the antenna using the client call shown in the previous sub-section,

AntPoint. The user can choose to map all hardware control from their existing

software to calls in M-PIPE for each piece of hardware included in the hardware

control interfaces.

b. Usage Scenario 2—Mission Control Software

If instead a user is solely using mission control software, the responsibility

to control hardware shifts largely towards the ground station itself. A ground

station utilizing M-PIPE can choose to provide automatic Doppler correction and

 59

antenna pointing when provided with the satellite’s orbital elements, or TLEs. The

ground station then only needs to know how to configure the radios, pre-amp,

and amplifier and will continue passing any uplink or downlink data through the

Packet interface. The radio configuration will be different for each satellite, and

thus the mission control software the user has must be extended to be capable of

manipulating the Radio interface to the point of setting modulations, modes,

center frequencies, and other RF settings. If the ground station can choose

default values satisfactory for its amplifier and pre-amp hardware, these

interfaces can be ignored by the mission control software as well. CPU

monitoring is not a required task. Therefore, beyond radio configuration, the only

task the mission control software must accomplish in terms of M-PIPE is

formatting its uplink packets into the Packet interface for transmission, and in

decoding the downlink packets on another Packet interface for downlink.

c. Usage Scenarios Summary

Thus, two usage scenarios can be supported by a flexible ground station

implementation of M-PIPE. No requirement to provide the entire functionality set

exists in order to ease the difficulty of creating an M-PIPE-capable ground

station. Figure 22 shows the basic usage scenarios described. Usage Scenario 1

illustrates full hardware control by the user’s ground station software. Usage

Scenario 2 illustrates the extension of mission control software to integrate radio

configuration control as well as the Packet interface. There are various other

enumerations that could be created including implementing parts of the hardware

interfaces that mission control software would not typically contain without

needing to implement all of them.

 60

 SAUser NodeTX/RX Packets
CPU Monitoring

Antenna Control
Radio Configuration

Amp/PA Control

TX/RX Packets

CPU Monitoring
SAUser Node

Antenna Control
Radio Configuration

Amp/PA Control

TX/RX Packets
CPU Monitoring

Antenna Control
Radio Configuration

Amp/PA Control

TX/RX Packets

Doppler
Tracking
Amps On

Usage Scenario 1: User’s Ground Station Software Controls Hardware

Usage Scenario 2: User Only Uses Extended Mission Control Software,
SA Ground Station Software Corrects

Integrated
Software

Mission
Control

Software

Radio
Config

Radio Configuration

Figure 22. Two Basic M-PIPE Usage Scenarios

2. Scheduling

In addition to hardware control, methods for resource scheduling are

included.

a. User Interface

An interface must be provided that supports a way for users to schedule

resources they would like to utilize. It is envisioned that initially a website could

be set up to provide a way to view and request resources. This website would be

hosted at a CA, perhaps in a de-militarized zone (DMZ) for network security

purposes. The scheduling interface could later be created in a Thrift interface as

a future version of M-PIPE and this will be discussed in the section on future

work.

To become a registrant of an M-PIPE FGN, a user must obtain a public

and private key. The public key will be contained in a certificate along with other

identifying information for the user. The common steps for creating a certificate

are shown in Table 9. This process provides a signed certificate that any network

member can use to secure communications with the user, identical to how

secure website communications operate. As mentioned previously, SSL sockets

 61

will be utilized for M-PIPE and certificates and private keys generated through

this process will secure the connection between the user and the GSN.

Table 9. Certificate Creation Process

Step Description

1 User generates public/private key pair using freely available software

2 User generates a certificate signing request (CSR)

3 User provides CSR to CA in secure out-of-band method such as secure

email

4 CA verifies information with user

5 CA creates a certificate for user and returns to user

The user must authenticate to the CA web server. This enables the CA to

provide the SA with the user’s public certificate and username when resources

are requested. With the user’s certificate, the SA can validate whether or not the

user is authorized to use the resource. Regardless of the shape of the user

interface, it must be capable of linking this information to requests for resources

to allow the SA to identify the requestor.

b. Intra-Network Interface

Inside the FGN’s network of CAs and SAs, scheduling communication

needs to occur as well. The bottom-level SA must be able to communicate with

the CAs to report what resources it has available. Inversely, the CAs must be

able to communicate with the SAs to request a resource on behalf of a user.

Accomplishing this goal necessitates an interface hosted by the CA and another

hosted by the SA.

The CA must host an interface that allows for an SA to offer a resource to

the network. A report containing the configuration options of a pipeline using the

 62

resource laid out in the Improved FGN model must be passed to the CA. A

resource description in M-PIPE is composed of three parts: the top-level

description, the radio options, and the radio restrictions. Table 10 shows a

summary of the contents of these configuration descriptions.

A resource is composed of a top-level description, which contains a single

radio options description, which itself contains zero or more radio restrictions.

Radio options are possible settings of a radio for each configurable setting of the

radio. Radio restrictions are incompatible sets of settings. For example, imagine

a radio that can provide baud rates of 9600 and 1 megabit, but can only provide

9600 baud with GMSK modulation and 1 megabit with OQPSK modulation. In

this case, radio restrictions should include a pairing of 9600 with OQPSK as well

as a pairing of 1 megabit with GMSK. Thus, a resource will contain one radio

options consisting of all available settings, but may contain multiple radio

restrictions for each invalid set. The number of radio restrictions is expected to be

small as incompatibilities are usually between categories such as baud rates and

modulations. Figure 23 shows a UML object diagram indicating the relationship

of M-PIPE resources. Variables which are decided by the radio are placed under

radio options while more generic variables such as frequency and bandwidth are

placed under at the top level under resource.

 63

Table 10. M-PIPE Resource Description

Layer Components

Top-level Name of the SA

Latitude, longitude, and elevation coordinates of the
ground station

Range of frequencies available

Time range associated with the resource

Models of the hardware

Directionality (TX or RX)

Permissions regarding hardware control

Radio options
Mode

Modulation

Bandwidth

Link Layer protocol

Encoding scheme

Baud

Viterbi, pseudo-random number randomization, Reed-
Solomon en/decoding, Turbo coding

Radio restrictions
Incompatibilities among radio option pairings

The actual configuration description in M-PIPE is lengthy and may at first

appear to be a drawback, but this resource description, once completed for each

ground station, will likely be repeated until the actual hardware chain is modified.

Additionally, the completeness provided by this resource description allows for a

thorough check of compatibility between the satellite and the ground station. In

practice, a satellite and ground station may be compatible in 99% of their

configuration options, but this last 1% can cause incompatibility between the two,

barring communications.

 64

Resource

RadioOptionsMinFrequency MaxFrequency Bandwidth

Modulation

BaudEncoding

TurboCode

ReedSolomon

LinkLayerProtocol Viterbi

StartTime StopTime MaxReserveTime

PRNMode

RadioRestrictions

Figure 23. Resource Object Diagram

 65

The use of the Improved FGN model as described for M-PIPE poses an

issue that must be dealt with. In the Improved FGN model, SAs can also serve as

CAs for their subnetwork. This creates the possibility of multiple servers offering

the same resource simultaneously. Thus, synchronization between the node-

level SA and all of the CAs in the tree above it arises as a requirement. An

example that illustrates the possible desynchronization of states is explained in

Table 11 which references Figure 13.

As this example makes evident, a method is required for posting

resources up the tree beyond its neighboring parent node. Step 2 of Table 11

requires that SA3 passes the resource to CA1 even though there is no direct

communication between the two. This necessitates that when a CA receives a

resource offering from a player below it, whether it is a CA or an SA, the resource

must then continue being offered upwards in the tree until it reaches a top-level

CA. The example also shows how deletions must be passed on up the tree for

the same reason.

 66

Table 11. Example of Desynchronization of CAs

Step Description

1 SA3 posts resource to CA2 above

2 SA3 posts resource to CA1 above

3 CA2 and CA1 both host resource on their scheduler

4 User interfaces with CA2 and requests resource

5 CA2 requests resource from SA3 on behalf of user

6 SA3 accepts

7 CA2 relays acceptance to user

8 SA3 requests CA2 delete resource from its schedule as it is reserved now

9 CA1 continues to host resource in schedule even though now reserved

The requirement for different players in the network to reference the same

resource repeatedly drives a need for a unique identifier for each resource.

Without a unique identifier, any reference to the resource must include the full

description of it, and require a lookup on each player’s database to find the

resource being referenced. A unique identifier simplifies this problem greatly.

Two methods were designed and analyzed that could be pursued to get a unique

identifier for resources.

The first method is that each CA can create an identifier including its own

name such that it always knows its resource count and can give the next number

to attach to the ID. Then each SA with a resource to offer requests an ID from

each CA to which it would want to post a resource. It then can talk with each CA

about the resource in question using the CA’s unique identifier for it.

The second method is that only the top-level CA can create ID numbers.

Any request for an ID number is routed up the tree until it reaches the top-level

CA who responds. This ID is unique in the entire FGN.

 67

Comparing these two methods, there are pros and cons to each. Method

one, with each CA creating a unique ID, is bulky and overly complicated to

maintain. Each resource would need to have a mapping between the CA and the

ID maintained at the node-level SA. Also, each request to delete must be a

separate request directed to a specific CA, harming the scalability of the

interface. But one important benefit of this method is that the SA can choose

which CAs host their resource in their schedule. Method two is quite a bit simpler.

It does have costs, though, including the fact that if a new top-level CA is chosen,

all current resources must be remapped to a new identifier. Also, this method

needs all CAs up the tree to show the same resource. No partitioning can be

performed.

The drawbacks of method two were considered acceptable. The

frequency of adding a new top-level CA is likely to be extremely infrequent with

any utilization scenario of M-PIPE. Also, if the idea is to prevent unauthorized

use of a resource, a request for it can simply be rejected. Thus, method two,

where the top-level CA generates unique identifiers for the whole network was

selected. The concept of operations (CONOPS) for scheduling shown in Figure

24 and Table 12 represents the method chosen.

 68

User
Mid-level SA/

CA 2
SA

5. SA sends CA available resource descriptions
with resource IDs paired

8. CA makes schedule available

9. User requests a portion of a resource

10. Using resource ID to look up correct SA,
CA send request and user info to SA

12. SA acknowledges

14. CA confirms user request

15. SA requests deletion of resource matching
requested resource ID from CA 1

21. SA pushes 1-2 new resources using new
resource IDs

23. CA makes updated schedule available

1. SA requests resource IDs for its resources

19. CA responds with unique resource IDs
to use

17. SA requests more resource IDs for resources
generated by segmenting previous resource

3. CA responds with unique resource IDs to
use

CA 1

2. SA passes on

4. SA passes on

6. SA passes on, noting mapping to SA and
adds this resource to its schedule

11. SA passes on

13. SA passes on

16. SA passes on

18. SA passes on

22. SA passes on, noting mapping to SA and
adds this resource to its schedule

20. SA passes on

Optional below

7. User logs in with credentials

Figure 24. M-PIPE Scheduling CONOPS

 69

Table 12. M-PIPE Scheduling Steps

Step Description

1 SA requests resource IDs for its resources from mid-level SA

2 Mid-level SA passes on to CA

3 CA responds to mid-level SA with unique resource IDs to use

4 Mid-level SA passes on to SA

5 SA sends mid-level SA available resource descriptions with resource
IDs paired

6 Mid-level SA passes on to CA, noting mapping between SA and

resource and adds to its schedule

7 User logs in to CA interface with credentials

8 CA makes schedule available to user

9 User requests some portion of a resource from CA

10 Using resource ID to look up correct SA, CA send request and user info
to mid-level SA

11 Mid-level SA looks up owner of resource and passes on to SA

12 SA acknowledges request to mid-level SA

13 Mid-level SA passes acknowledgement on to CA

14 CA confirms user request to user

15 SA requests deletion of resource matching requested resource ID from
mid-level SA to clear from schedule

16 Mid-level SA passes on delete request to CA

17 SA requests more resource IDs from mid-level SA for resources
generated by segmenting previous resource

18 Mid-level SA passes on ID request

 70

19 CA responds with unique resource IDs to use

20 Mid-level SA passes on IDs to SA

21 SA pushes 1–2 new resources using new resource IDs

22 Mid-level SA passes on, noting mapping to SA and adds this resource
to its schedule

23 CA makes updated schedule available for users

The important behavior to note is that all messages to add or delete a

resource or to request a resource ID are routed all the way up the chain, as

described in method two. Also, requests for a resource are routed back from the

CA to the node-level SA using the mapping that was created by any SAs in

between as the resource was added. This mapping is not a complete route, but,

instead each mid-level SA along the way notes from which SA below it the

resource was routed. Thus, in this example, the mid-level SA does not

necessarily know that the SA below it is the owner of the resource. It simply

needs to know that the request for the resource should be passed to it. If that SA

needs to pass on the message, it does not concern the mid-level SA. This

simplifies routing, as only neighbors one step away need to be routable. No

direct communication needs to occur more than one level away.

There is a dotted line in Figure 24 that is labeled “Optional below.” This is

because below that dotted line, the node-level SA is attempting to offer up the

unused portion of the original resource. As a resource covers a certain time

period, if a reservation does not request the entire time period, this resource can

be split into two or three resources, with one being the reserved portion. Figure

25 demonstrates what happens when a resource is reserved for a portion of time

in the middle of its coverage time. New resources can be created at the

beginning and end of the resource. A minimum length of time should be

considered before splitting a resource. If only seconds are left, there is no valid

reason to create a new resource for this unused portion of time. If new resources

 71

are not created, the portion of the CONOPS below the “Optional below” line does

not need to occur.

Original Resource

Original Resource

Reserved Portion of Resource
New

Resource
New

Resource

Time

Before Reservation

After Reservation

Figure 25. Resource Split by Reservation

State information must be kept by each player in the network such that

neighbor mappings are the sole responsibility of the player, and should not need

to be re-requested from other players. It is planned that for the first

implementation of M-PIPE, state information will be kept in a file. The top-level

CA also needs to keep a permanent tally of resource IDs so that it never causes

a collision by re-assigning an ID. Keeping state in a file is an easy task as Thrift

already provides methods of reading and writing files. Thrift allows for

serialization to a file, and this way the state can be stored after each modification

to the schedule. Programming languages also provide their own methods of

storing data for later use, such as Python and its Pickle module that can be used

to serialize data to disk and later be deserialized into memory once again

(Python Software Foundation, n.d.).

The M-PIPE interface that is offered by a higher level authority to a lower

level authority is named the Resource Scheduler service. The name of the

interface offered by a lower level authority to a higher level authority is the

Resource Offerer service. The Resource Scheduler provides a method to request

 72

a resource ID for identifying new resources to the system, a method to offer a

resource to the network, and another to delete resources. The Resource Offerer

service provides a method to request a resource on behalf of a user. The names

of the two services may seem backwards, but the service will be hosted by the

player to whom the name applies, as shown in Figure 26. The figure shows the

same CONOPS as shown in Figure 24 but with actual method calls from the M-

PIPE interface. In the figure, the calls to methods arrive at the Resource

Scheduler and Offerer servers. The returns calls and clients are not shown for

simplicity but each player has a client to the server it is making calls to. Thus, the

arrows arrive at the server but start from a client at each player.

 73

Mid-level SA/
CA 2

SA

Resource
Scheduler

Server

Resource Offerer
Server

OfferResource()

RequestResourceID()

Resource Offerer
Server

CA 1

Resource
Scheduler

Server

ScheduleResource()

RequestResourceID()

OfferResource()

ScheduleResource()

Optional below

DeleteResource() DeleteResource()

OfferResource()

RequestResourceID() RequestResourceID()

OfferResource()

Figure 26. CONOPS with M-PIPE Service Method Calls

 74

c. Retaining Resource Configuration Information

The resource configuration options communicated during scheduling from

the CA to the user must have been retained by the user so that they know the

bounds that they must stay within to control hardware. The SA will be aware of

these bounds as they have created them, and are likely based on real limits of

the hardware. Thus, the SA can throw an exception if a hardware control request

is received with out-of-bounds parameters, returning the exception including the

violated bounds. With an HTML schedule, this will require some work on the part

of the implementer for the first implementation of M-PIPE. The future work

section of this thesis discusses creating a Thrift interface for the scheduling

between the user and the CA to simplify the storage of these resource

configuration options.

3. Design Decisions

A number of areas required critical design decision making in the creation

of the interface. The abstraction of resources included in the Improved FGN

model requires careful description to communicate the options available. Thus, a

complete and extensible resource description was created that left no option

undescribed that could be initially thought of. Undoubtedly, some options will not

have been captured by the initial interface, thus an interface with high capability

to evolve was chosen in selecting Thrift. Also, extensive use of optional

requiredness was employed in defining the fields of M-PIPE structures easing the

evolution process and planning ahead for future improvements and modifications

to the standard.

A decision was made to branch from the abstraction of GSML in terms of

hardware control where GSML allows for analog I/O and power controllers. It was

decided that power control should be part of the physical component to which

power is being switched, even if the control is implemented through a separate

physical power controller. This reduces the complexity and amount of knowledge

an operator needs to have of the ground station setup in order to power on a

 75

preamp for example. With a separate power controller interface, the user must

know that switching power control port one, for example, may switch the radio

power, while port two switches the preamp power. Thus, power control was

made an option for each component to which power control might be needed. As

for analog I/O, it was decided that if any future hardware that requires a separate

interface in order to describe it must be integrated, a new service should be

created rather than tying it into a generalized analog I/O interface. The motivation

for this is to put the burden of control on the ground station rather than the

operator by reducing the ground station-specific ways the interfaces are used.

A decision also had to be made in terms of communicating ground station

configuration details during a resource usage period. While the user is connected

to the SA, they have a direct line where the user could be able to request the

configuration options from the SA. This was decided to be non-ideal as this

allowed for two pathways to receive configuration details. Duplicating information

pathways can be a source for error and branching of behavior where different

implementers use the two pathways differently. Instead it was decided that the

configuration details would instead need to be stored by the user from the time

the resource is reserved. If the user requests hardware control that is out of

bounds, they will instead receive an exception. This exception will contain the

bounds and in this way, even if configuration is improperly stored by the user in

between reservation and usage time, the user’s software can still correct and

update its boundaries programmatically.

C. PYTHON SAMPLE IMPLEMENTATION

A full implementation of the M-PIPE interfaces present in the current

version was created for each player in the network using the Python

programming language. Previous examples shown in sub-section A are

simplified portions of this Python implementation. This code was written from

both client and server perspectives for each interface. Both successful use of the

interface, as well as exceptional circumstances such as incorrect antenna

 76

pointing directions, were tested. The test code can be found in most of the

Python appendix files. Scheduling functions were also tested by making an SA

pass resources up to a CA and then requesting them with a user. Hardware

drivers were not added to implementations. Drivers will be discussed in the

section on future work.

The code could be incorporated into existing ground station software to

provide access to the interfaces and its functions called from existing locations in

software where hardware control is present. The code could also be extended to

perform as standalone ground station software. From a ground station owner’s

point of view, this code could be used to extend access to their ground station by

implementing drivers for their hardware and adding a layer that offers up

resources based upon actual scheduling. From a mission operator’s point of

view, this code could be used to extend ground station hardware control to their

implementation of their satellite’s command and control interface.

D. M-PIPE API DOCUMENTATION

The M-PIPE Thrift IDL files are coded with embedded documentation

known as docstrings. These lines in the code are consumed by the Thrift

compiler when run with the following command:

thrift -r --gen html mpipe.thrift

This will cause the Thrift compiler to read in the docstrings and compile

structured HTML pages that serve together with this thesis document as a full

API. This documentation can be generated by each user of the Thrift interface or

it can be hosted at a central location for each network describing the current

state and version of the interface. An example of the Antenna interface’s API on

its enumerations and structs is shown in Figure 27 as viewed in a browser. A

further example of the service portion of the Antenna interface’s API on its

services as viewed in a browser is shown in Figure 28.

 77

Figure 27. M-PIPE Antenna Enums and Structs API Example

 78

Figure 28. M-PIPE Antenna Services API Example

 79

VI. CONCLUSION AND FUTURE WORK

A. CONCLUSION

This thesis described a method of defining roles and hierarchy in

federated ground station networks as well as a standardized interface to be

created that extends the functions of satellite ground stations. By defining the

roles inherent in operating an FGN and structuring these roles into layers,

scalability and conglomeration of networks is simplified. Said standard will allow

for increased utilization of ground station resources by satellite mission

operators.

Analysis showed existing standardization to either be incomplete or overly

complex for a typical CubeSat satellite team to utilize with their existing ground

station software. Thus, an interface was created to tie together the following

three functions: the ability for a user to interact with a ground station, for a user to

schedule with a central interface, and for communication between the different

ground station nodes in a network with the central interface. Apache Thrift was

selected as the best technology for creating interfaces, allowing for greatly

simplified implementations of hardware control interfaces into existing ground

station software, increasing the appeal of the interface and decreasing the

burden on ground station software implementers to include such an interface in

their existing software. Lowering the burden of software development necessary

to integrate with ground station networks will entice program managers to utilize

existing ground station networks rather than duplicate efforts and build one-use

ground stations or ground station software. Sample implementations of interfaces

from M-PIPE were demonstrated in the Python programming language. These

implementations tested each interface presented by the M-PIPE standard and

were shown to be functional.

 80

B. FUTURE WORK

Listed below are areas of possible improvements of the M-PIPE interface

and suggestions for how to implement them.

1. SSL

The current Python reference implementation of M-PIPE does not use

SSL sockets. This is in part because the Thrift Python SSL library is missing

server-side certificate parameters and only allows the client to check the validity

of certificates. The Thrift Python SSL library could easily be modified to allow for

SSL validation of the client’s certificate at the server and preliminary efforts have

been made to add this functionality but are incomplete at the time of this writing.

2. Online Certificate Status Protocol

PKI certificates can be revoked or suspended by their certifying CAs. This

can happen due to a compromise of the user’s or CA’s private key. The most

common method for communicating these revocations and suspensions in the

past has been with certificate revocation lists. These are slowly being replaced

with the Online Certificate Status Protocol (OCSP), which allows for automated

checking of the current status of a certificate. The CA could be set up to be an

OCSP responder and network components could check the validity of the

certificate before accepting it.

3. Scheduling CA interface

The current M-PIPE standard does not specify a scheduling interface

between the user and the CA. This was a design decision, as HTML is likely the

best way for a human to view this information. HTML, though, does not provide a

good means of automation between the user and the CA, and thus it may be best

to have two interfaces between the user and the CA: one in HTML that humans

can view, and another in Thrift that software can interact with to make resource

reservations and view availability in existing ground station software. Another

benefit that a Thrift scheduling interface could provide is in the ability to save

 81

ground station configuration options between when the program makes a

reservation to when it operates during a resource usage. Currently, this will have

to be handled with another mechanism such as manual entry into a configuration

file.

There is currently no sample HTML-driven CA interface and this should be

developed. This interface would display the resource information that the M-PIPE

Scheduler interface communicated. This would require a web server and to

integrate the sample implementation in Python to drive the backend data.

4. Driver implementations

The sample implementation currently does not exercise any hardware.

Drivers will be added to control the hardware at the Naval Postgraduate School’s

MC3 ground station to demonstrate the functionality of the M-PIPE system. Also,

the NPS expects to offer the functionality its ground stations provide to other

government and government-sponsored users and will use M-PIPE to do so. To

best leverage existing U.S. Government investment in ground station software,

an M-PIPE interface should be integrated with the Neptune™ software on the

MC3 network.

5. Turbo and LDPC Codes

Turbo and Low-Density Parity-Check (LDPC) codes are complex but

efficient methods of performing forward-error correction (FEC). They currently do

not have parameters to enable their configuration in the radio.thrift file. This

functionality could be added by parameterizing both fields. This would enable the

remote configuration of custom Turbo and LDPC codes in compatible receivers.

C. SUMMARY

This thesis solved the lack of a simple yet powerful interface which can

connect remote users to ground station networks. A model was created which

provides:

 82

 Hierarchy and role definitions

 Scheduling

 Security

Utilizing this model, an interface called M-PIPE was created which

provides:

 Remote hardware control

 Automatic and manual tracking

 Scheduling

 Resource sharing and reservations

 Synchronization

Finally, reference implementations of the interface, which can be found in

the appendix, were demonstrated. These will provide a starting point for future

implementers of the M-PIPE standard. This standard might lead to increased

usage of federated ground station networks and help to overcome the complexity

of integrating varying software packages for ground station and satellite control.

 83

APPENDIX. M-PIPE THRIFT IDL FILES

A. MPIPE.THRIFT

/**
 * M-PIPE interface: MC3 Picosatellite Interface Pipeline Extension
 * Author: Aaron Felt, Naval Postgraduate School
 */
namespace * mpipe

include “antenna.thrift”
include “preamp.thrift”
include “amp.thrift”
include “radio.thrift”
include “cpu.thrift”
include “session.thrift”
include “packet.thrift”
include “scheduler.thrift”

/** The version of the M-PIPE Interface */
const string VERSION = “0.1.0”

 84

B. MPIPE_TYPES.THRIFT

/** Azimuth/Elevation as a float in degrees */
typedef double Degrees
/** Slew Rate as a float in degrees per second */
typedef double SlewRate
/** Decibels as a double */
typedef double Decibels
/** Frequency in MHz as a double */
typedef double Frequency
/** Percentage */
typedef double Percent
/** Time in Unix time */
typedef i64 Time
/** A unique 32-bit integer identifying a resource network-wide */
typedef i32 ResourceID

 85

C. MPIPE_GLOBALS.THRIFT

/**
 * M-PIPE interface: MC3 Picosatellite Interface Pipeline Extension
 * Author: Aaron Felt, Naval Postgraduate School
 *
 * TODO A radio expert could go through these to see what needs to be added or
 * collapsed
 */
namespace * mpipe_globals

/** Radio Modulation Mode */
enum Mode {
 /** Frequency Modulation */
 FM = 1
 /** Lower Side Band */
 LSB = 2
 /** Upper Side Band */
 USB = 3
 /** Continuous Wave */
 CW = 4
 /** Amplitude Modulation */
 AM = 5
 /** Phase Modulation */
 PM = 6
 /** Quadrature Modulation */
 QM = 7
}

/** Modulation type */
enum Modulation {
 /** Audio Frequency-Shift Keying */
 AFSK = 1
 /** Minimum-Shift Keying */
 MSK = 2
 /** Gaussian Minimum-Shift Keying */
 GMSK = 3
 /** Binary Phase-Shift Keying */
 BPSK = 4
 /** Quadrature Phase-Shift Keying */
 QPSK = 5
 /** Offset Quadrature Phase-Shift Keying */
 OQPSK = 6
}

/** Physical level bit encoding */
enum Encoding {
 /** Non-return-to-zero, level */
 NRZL = 1
 /** Non-return-to-zero, inverted */
 NRZI = 2
 /** Non-return-to-zero, space */

 86

 NRZS = 3
 /** Return-to-zero */
 RZ = 4
 /** Return-to-zero, inverted */
 RZI = 5
 /** Manchester Encoding / Phase Encoding */
 ME = 6
 /** Differential Manchester Encoding */
 DME = 7
 /** Biphase Mark Coding */
 BMC = 8
 /** Biphase Space Coding */
 BSC = 9
 /** Biphase Level Coding */
 BLC = 10
 /** Bipolar */
 BP = 11
}

/** RSConfig describes parameters for a Reed-Solomon code */
struct RSConfig {
 /** Block length */
 1: i32 n
 /** Message length */
 2: i32 k
}

/** Data Link Layer protocols */
enum LinkLayerProt {
 /** High-Level Data Link Control protocol */
 HDLC = 1
 /** CCSDS Telemetry Space Data Link protocol */
 CCSDS_TM = 2
 /** CCSDS Telecommand Space Data Link protocol */
 CCSDS_TC = 3
 /** CCSDS Advanced Orbiting System Data Link protocol */
 CCSDS_AOS = 4
}

 87

D. AMP.THRIFT

/**
 * M-PIPE interface: MC3 Picosatellite Interface Pipeline Extension
 * Author: Aaron Felt, Naval Postgraduate School
 */
namespace * mpipe_amp

include “mpipe_types.thrift”

/**
 * AmpStatus describes the current status of the amplifier, returning an error
 * code if health is degraded.
 */
struct AmpStatus {
 /** Current amp gain setting */
 1: mpipe_types.Decibels currGain
 /** Current power status of amp */
 2: bool currPowerState
 /** True for healthy, False for degraded */
 3: bool healthy
 /** A code indicating degraded status cause */
 4: optional i16 degradedCode
}

/**
 * GainException is thrown when an invalid gain is requested.
 */
exception GainException {
 /** the invalid requested gain setting*/
 1: mpipe_types.Decibels dB
 /** an optional field indicating the minimum gain the amp supports */
 2: optional mpipe_types.Decibels minGain
 /** an optional field indicating the maximum gain the amp supports */
 3: optional mpipe_types.Decibels maxGain
}

/** AmpControl allows for manual control of amplifier status. */
service AmpControl {
 /**
 * AmpEnable is used to power-on/enable or power-off/disable the amp.
 * Returns the new power status after making change to power.
 */
 bool AmpEnable(
 /** True will power-on, False will power-off */
 1: bool isPowered
)

 /**
 * AmpSetGain is used to set the amp gain. If a valid gain is provided,
 * the value will be set and returned. If an invalid gain is provided, a

 * GainException will be thrown.
 */

 88

 mpipe_types.Decibels AmpSetGain(
 /**
 * Specifies setting the gain to the given value
 */
 1: mpipe_types.Decibels dB
)
 /** exception indicating the requested gain was invalid */
 throws (1: GainException gainException)

 /**
 * AmpGetStatus is used to request the health of the amp that is

 * returned as a AmpStatus struct.
 */
 AmpStatus AmpGetStatus()
}

 89

E. ANTENNA.THRIFT

/**
 * M-PIPE interface: MC3 Picosatellite Interface Pipeline Extension
 * Author: Aaron Felt, Naval Postgraduate School
 */
namespace * mpipe_antenna

include “mpipe_types.thrift”

/**
 * An enum describing the possible polarization configurations. These may or
 * may not be configurable for a ground station.
 */
enum Polarization {
 /** Linear vertical */
 Vertical = 1
 /** Linear horizontal */
 Horizontal = 2
 /** Left-handed Circular */
 LHC = 3
 /** Right-handed Circular */
 RHC = 4
}

/**
 * AntDirection describes pointing coordinates for an antenna using azimuth
 * and elevation. Defaults to “bird bath” coordinates, pointing straight up.
 */
struct AntDirection {
 /** Azimuth in degrees */
 1: mpipe_types.Degrees azimuth = 0.0
 /** Elevation in degrees */
 2: mpipe_types.Degrees elevation = 90.0,
}

/** AntConfig describes configuration parameters for an antenna controller */
struct AntConfig {
 /** Azimuth slew rate in degrees per second */
 1: mpipe_types.SlewRate azSlewRate
 /** Elevation slew rate in degrees per second */
 2: mpipe_types.SlewRate elSlewRate
 /** Polarization type */
 3: Polarization polarization
}

/**
 * AntStatus describes the current status of the antenna hardware, returning
 * an error code if health is degraded.
 */
struct AntStatus {
 /** Current antenna direction (Az, El) */
 1: AntDirection currDirection

 90

 /** True for healthy, False for degraded */
 2: bool healthy
 /** A code indicating degraded status cause */
 3: optional i16 degradedCode
}

/**
 * PointingException is thrown when an invalid antenna direction is requested.
 */
exception PointingException {
 /** an AntDirection struct which was rejected as invalid */
 1: AntDirection badDirection
 /**
 * an optional field indicating the minimum azimuth the antenna supports

 */
 2: optional mpipe_types.Degrees minAz
 /**

 * an optional field indicating the maximum azimuth the antenna supports
 */

 3: optional mpipe_types.Degrees maxAz
 /**

 * an optional field indicating the minimum elevation the antenna
 * supports
 */

 4: optional mpipe_types.Degrees minEl
 /**

 * an optional field indicating the maximum elevation the antenna
 * supports
 */

 5: optional mpipe_types.Degrees maxEl
}

/**
 * NoBrakeException is thrown when there are no brakes on an antenna but a
 * client uses the AntBrake() function.
 */
exception NoBrakeException {}

/**
 * BadConfigException is thrown when an invalid configuration is requested.
 */
exception BadConfigException {
 /** an AntConfig struct that caused the exception*/
 1: AntConfig antConfig
 /** an optional field indicating the requested azSlewRate was too low */
 2: optional mpipe_types.SlewRate minAzSlewRate
 /**

 * an optional field indicating the requested azSlewRate was too high
 */

 3: optional mpipe_types.SlewRate maxAzSlewRate
 /** an optional field indicating the requested elSlewRate was too low */
 4: optional mpipe_types.SlewRate minElSlewRate
 /**

 * an optional field indicating the requested elSlewRate was too high

 91

 */
 5: optional mpipe_types.SlewRate maxElSlewRate
 /** an optional field indicating the requested polarization isn’t

 * supported
 */

 6: optional Polarization polarization
}

/**
 * AntControl allows for manual control of the antenna, as well as reading of
 * the status.
 */
service AntControl {
 /**
 * AntPoint is used to point an antenna in a given direction. Returns
 * the input antDirection repeated indicating success, otherwise throws
 * a PointingException.
 */
 AntDirection AntPoint(
 /**

 * an AntDirection struct describing Az and El to point towards
 */
 1: AntDirection antDirection
)
 /**

 * exception indicating the requested antenna direction was invalid
 */

 throws (1: PointingException pointingException)

 /**
 * AntBrake is used to apply or remove brakes from an antenna. If brake

 * is not applicable to this ground station, AntBrake throws a
 * NoBrakeException.

 */
 void AntBrake(
 /** a boolean indicating whether or not to apply the brakes */
 1: bool enable
)
 /** exception indicating there are no brakes on the antenna */
 throws (1: NoBrakeException noBrakeException)

 /**
 * AntConfigure is used to configure parameters of the antenna. Returns

 * new configuration of the antenna. If requested configuration is not
 * applicable to this ground station, AntConfigure throws a
 * BadConfigException and does not make any updates to the
 * configuration.

 */
 AntConfig AntConfigure(
 /**

 * an AntConfig struct describing the parameters to set the
 * antenna to.

 */
 1: AntConfig antConfig

 92

)
 /** exception indicating the requested configuration is invalid */
 throws (1: BadConfigException badConfigException)

 /**

 * AntGetStatus is used to get the current status of the antenna.
 * Returns an AntStatus struct describing the health of the antenna, as
 * well as current pointing info.

 */
 AntStatus AntGetStatus()
}

 93

F. CPU.THRIFT

/**
 * M-PIPE interface: MC3 Picosatellite Interface Pipeline Extension
 * Author: Aaron Felt, Naval Postgraduate School
 */
namespace * mpipe_cpu

include “mpipe_types.thrift”

/** CPUStatus describes the current status of the server’s computer */
struct CPUStatus {
 /** CPU health status. True means healthy, False indicates degraded */
 1: bool status
 /** Time in seconds since computer booted */
 2: optional i64 uptime
 /**Number of processes total */
 3: optional i64 numProcessesTotal
 /** Number of processes running */
 4: optional i64 processesRunning
 /** Average CPU load as a percent */
 5: optional mpipe_types.Percent loadAve
 /** Disk usage as a percent */
 6: optional mpipe_types.Percent diskUsage
 /** Disk free in MB */
 7: optional i64 diskFree
 /** RAM usage as a percent */
 8: optional mpipe_types.Percent ramUsage
 /** RAM free in MB */
 9: optional i64 ramFree
}

/** NetStatus describes the current status of the network */
struct NetStatus {
 /** Bytes received on the network socket */
 1: optional i64 bytesIn
 /** Bytes transmitted on the network socket */
 2: optional i64 bytesOut
}

/** CPUControl allows the client to check on the server’s computer status. */
service CPUControl {
 /**

 * GetCPUStatus is used to check on the operating system-level server
 * status.

 */
 CPUStatus GetCPUStatus()

 /**
 * GetNetStatus is used to check on the network-level server status.
 */
 NetStatus GetNetStatus()

 94

}

 95

G. PACKET.THRIFT

/**
 * M-PIPE interface: MC3 Picosatellite Interface Pipeline Extension
 * Author: Aaron Felt, Naval Postgraduate School
 */
namespace * mpipe_packet

include “mpipe_types.thrift”

/**
 * Packet is a container for an uplink or downlink packet containing the data
 * and an integer identifier
 */
struct Packet {
 /**

 * A packet counter to uniquely identify and order packets. Receiving a
 * packet with identical packetIDs has undefined meaning but should
 * not be created on purpose by a server.
 */

 1: i32 packetID
 /** Packet of data */
 2: string data
}

/**
 * PacketSizeException is thrown when a packet too large for the system is
 * received to be uplinked
 */
exception PacketSizeException {
 /** The packet that was too large to be uplinked */
 1: Packet badPacket
 /** The maximum acceptable packet size */
 2: i32 maxPacketSize
}

/** CPUControl allows the client to check on the server’s computer status. */
service PacketService {
 /**
 * SendPacket is used to send packets between players. It can be used

 * for uplink or downlink packets.
 */
 void SendPacket(
 /** the packet to be sent */
 1: Packet packet
)
 /**

 * Indicates a packet too large for the system has been requested to be
 * uplinked.
 * NOTE: This is meaningless with downlink packets.
 */

 throws (1: PacketSizeException packetSizeException)
}

 96

H. PREAMP.THRIFT

/**
 * M-PIPE interface: MC3 Picosatellite Interface Pipeline Extension
 * Author: Aaron Felt, Naval Postgraduate School
 */
namespace * mpipe_preamp

include “mpipe_types.thrift”

/**
 * PAStatus describes the current status of the preamp hardware, returning an
error
 * code if health is degraded.
 */
struct PAStatus {
 /** Current preamp gain setting */
 1: mpipe_types.Decibels currGain
 /** Current power status of preamp */
 2: bool currPowerState
 /** True for healthy, False for degraded */
 3: bool healthy
 /** A code indicating degraded status cause */
 4: optional i16 degradedCode
}

/**
 * GainException is thrown when an invalid gain is requested.
 */
exception GainException {
 /** the invalid requested gain setting */
 1: mpipe_types.Decibels dB
 /** an optional field indicating the minimum gain the preamp supports */
 2: optional mpipe_types.Decibels minGain
 /** an optional field indicating the maximum gain the preamp supports */
 3: optional mpipe_types.Decibels maxGain
}

/** PAControl allows for manual control of preamp status. */
service PAControl {
 /**
 * PAEnable is used to power-on/enable or power-off/disable the preamp.
 * Returns the new power status after making change to power.
 */
 bool PAEnable(
 /** True will power-on, False will power-off */
 1: bool isPowered
)

 /**
 * PASetGain is used to set the preamp gain. If a valid gain is

 * provided, the value will be set and returned. If an invalid gain is
 * provided, a GainException will be thrown.

 97

 */
 mpipe_types.Decibels PASetGain(
 /**
 * Specifies setting the gain to the given value
 */
 1: mpipe_types.Decibels dB
)
 /** exception indicating the requested gain was invalid */
 throws (1: GainException gainException)

/**
 * PAGetStatus is used to request the health of the preamp that is returned
 * as a PAStatus struct.
 */
 PAStatus PAGetStatus()
}

 98

I. RADIO.THRIFT

/**
 * M-PIPE interface: MC3 Picosatellite Interface Pipeline Extension
 * Author: Aaron Felt, Naval Postgraduate School
 *
 * Description: Radio here encompasses both transmit and receive radios. As
 * explained in the supporting documentation, a radio, though it may
 * physically be capable of both transmit and receive, is treated in this
 * architecture as two different radios following the Improved FGN model.
 */
namespace * mpipe_radio

include “mpipe_types.thrift”
include “mpipe_globals.thrift”

/** A list of error codes and their values */
enum ConfigError {
 /**

 * Indicates that the ground station does not support the requested
 * value
 */

 Unsupported = 1
 /**
 * Indicates a conflict between two requested field-value pairs that

 * cannot co-exist
 */

 IncompatibleChoices = 2
 /** Value out of supported range for a given field */
 OutOfSupportedRange = 3
}

/** RConfig describes settings for the radio parameters */
struct RConfig {
 /** Frequency in MHz */
 1: optional mpipe_types.Frequency freq
 /** Radio mode from the Mode enum */
 2: optional mpipe_globals.Mode mode
 /** Percent of power level for transmit (0%-100%) */
 3: optional mpipe_types.Percent powerLevel
 /** Percent of attenuation level for receive (0%-100%) */
 4: optional mpipe_types.Percent attenuation
 /** Percent of squelch level for receive (0%-100%) */
 5: optional mpipe_types.Percent squelch
 /** Loop bandwidth for Phase Locked Loop (PLL) carrier synchronizer */
 6: optional double freqLBW
 /** Loop bandwidth for Phase Locked Loop (PLL) bit synchronizer */
 7: optional double modLBW
 /** Percent of Automatic Gain Control level (0%-100%) */
 8: optional mpipe_types.Percent agcLevel
 /** Encoding style */
 9: optional mpipe_globals.Encoding encoding
 /** Pseudorandom bit randomization */

 99

 10: optional i64 prnSequence
 /** Differential encoding enable/disable */
 11: optional bool useDiffEncode
 /** Viterbi encoding enable */
 12: optional bool useViterbi
 /**
 * Viterbi rate specifier. Meaningless if useViterbi is not True.
 * Rate should be specified as a ratio such as “1/2” or “3/4”
 */
 13: optional string viterbiRate
 /** Reed-Solomon coding enable */
 14: optional bool useReedSolomon
 /** Reed-Solomon parameters */
 15: optional mpipe_globals.RSConfig rsParams
 /** Turbo Code enable */
 16: optional bool useTurboCode
 // TODO add a struct describing Turbo codes as a parameter
 // TODO add LDPC code
 /** Data Link Layer protocol */
 17: optional mpipe_globals.LinkLayerProt llProt
 /** Modulation type */
 18: optional mpipe_globals.Modulation modulation
 /** Baud rate (symbols per second) */
 19: optional i32 baud
 /** Filter bandwidth in MHz */
 20: optional mpipe_types.Frequency filterBW
 /** IF (Intermediate Frequency) Bandwidth */
 21: optional mpipe_types.Frequency ifBW
 /**
 * In systems with scanning PLLs for acquisition of carrier, this

 * variable defines the range in MHz to box around center frequency. If
 * center frequency is 915MHz and acqRange is 1MHz, this will scan from
 * 914.5 to 915.5 MHz for the carrier.

 */
 22: optional mpipe_types.Frequency acqRange
}

/** RReceiveInfo contains RSSI and SNR from a receive radio */
struct RReceiveInfo {
 /**

 * Received Signal Strength Indicator (RSSI) in dB if provided by radio
 */

 1: optional mpipe_types.Decibels rssi
 /** Signal-to-Noise Ratio (SNR) as a float if provided by radio */
 2: optional double snr
}

/**
 * ConfigException is thrown when an invalid config is requested.
 */
exception ConfigException {
 /** The configuration request being rejected */
 1: RConfig badConfig
 /** A map linking the field(s) to the error related to the field(s) */

 100

 2: map<i16, ConfigError> fieldErrors
}

/** ProgramException is thrown when an SDR program cannot be started. */
exception ProgramException {
 /** the name of the program attempting to be started */
 1: string name
 /** the error message from attempting to start the SDR program */
 2: string errorMessage
}

/**
 * ParamException is thrown if errors are detected with parameters sent from
 * the client. Errors may be due to an unacceptable parameter string due to
 * use of restricted symbols or keywords, or may be due to parameters
 * recognized as missing by the server handler.
 */
exception ParamException {
 /** the client’s parameters input to be started with the SDR program */
 1: string params
 /**
 * the error message the server handler would like to return to the

 * client indicating failure
 */
 2: string errorMessage
}

/**
 * RControl allows for manual control of the radio, as well as reading of its
 * status.
 */
service RControl {

 /**
 * RadioConfigure is used to configure a radio. Returns the input

 * RConfig repeated indicating success, otherwise throws a
 * ConfigException.

 */
 RConfig RadioConfigure(
 /** an RConfig struct describing settings for the radio */
 1: RConfig config
)
 /** exception indicating the requested antenna direction was invalid */
 throws (1: ConfigException configException)

 /**
 * RSDRSelect is used to start and configure an SDR program, which must

 * already exist at the ground station system. The transfer of the SDR
 * program is beyond the scope of this interface. Returns True on
 * success, otherwise returns an exception.

 */
 void RSDRSelect(
 /** the filename of an SDR program */
 1: string name

 101

 /**
 * parameters to be passed when calling the SDR program
 *
 * NOTE: Implementers of this parameter are advised to thoroughly

 * inspect parameters for malicious behavior.
 */
 2: string params
)
 /** exception indicating the requested antenna direction was invalid */
 throws (
 /**
 * Thrown when an error occurs starting a program such as

 * inability to find the program, or inability to start program
 * due to bad parameters. Detection of bad parameters is an
 * optional feature and is not required, but may be provided for
 * a user.

 */
 1: ProgramException progException
 2: ParamException paramException
)

 /**
 * Returns the information about received signal strength if available.

 * If a value is not accessible to the ground station, it will not be
 * included. This function only makes sense to call on a receiver radio.
 * Values are meaningless on a transmitter and the service handler may
 * return an empty RReceiveInfo.

 */
 RReceiveInfo RGetReceiveInfo()
}

 102

J. SESSION.THRIFT

/**
 * M-PIPE interface: MC3 Picosatellite Interface Pipeline Extension
 * Author: Aaron Felt, Naval Postgraduate School
 */
namespace * mpipe_session

include “mpipe_types.thrift”

/** A string representing the Two-Line Element ephemeris for an object */
typedef string TLE

/**
 * SessionInfo describes information regarding the current session such as
 * satellite being tracked, as well as ground station location
 */
struct SessionInfo {
 /**

 * The Satellite Catalog Number for the current session, for example
 * 39400 (1- 5 digits typically)
 */

 1: optional i32 CatalogNumber
 /** Ground station latitude */
 2: optional double latitude
 /** Ground station longitude */
 3: optional double longitude
 /** Ground station altitude using WGS84 in meters */
 4: optional double altitude
}

/**
 * SessionInfo describes information regarding the current session such as
 * satellite being tracked, as well as ground station location
 */
struct SessionConfig {
 /** The TLE for the currently tracked satellite */
 1: optional TLE currTLE
 /** Configured for automatic antenna track this session */
 2: bool isAutoAntTrack
 /** Configured for automatic Doppler shifting of radio this session */
 3: bool isAutoDopplerTrack
}

/**
 * ConfigError is an error code indicating what reason the configuration was
 * rejected
 */
enum ConfigError {
 /** Indicates automatic antenna tracking is not available */
 noAutoAntTrack = 1
 /** Indicates automatic doppler shfting is not available */
 noAutoDopplerTrack = 2

 103

 /** Indicates no TLE was available to make predictions from */
 noTLEForTrack = 3
}
/**
 * ConfigException is used to indicate that a configuration was rejected for
 * ConfigError reason
 */
exception ConfigException {
 /** The SessionConfig that triggered the exception */
 1: SessionConfig badConfig
 /** A value from ConfigError indicating the cause of the exception */
 2: optional ConfigError error
}

/** SessionControl allows the client to configure automatic tracking. */
service SessionControl {
 /**
 * GetSessionInfo is used to check on the operating system-level server

 * status.
 */
 SessionInfo GetSessionInfo()

 /**
 * SetSessionConfig is used to set the session configuration, for

 * example updating the TLE, or switching to manual control of the
 * antenna.

 */
 SessionConfig SetSessionConfig (
 /** The SessionConfig to set the session to */
 1: SessionConfig config
)
/**
 * Thrown when a configuration is rejected because some form of automatic
 * tracking requested is not allowed.
 */
throws (1: ConfigException configException)
}

 104

K. SCHEDULER.THRIFT

/**
 * M-PIPE interface: MC3 Picosatellite Interface Pipeline Extension
 * Author: Aaron Felt, Naval Postgraduate School
 */
namespace * mpipe_scheduler

include “mpipe_types.thrift”
include “mpipe_globals.thrift”
include “antenna.thrift”

/** Indicates the directionality of a resource, either transmit or receive */
enum Direction {
 /** Transmit */
 TX = 1
 /** Receive */
 RX = 2
}

/**
 * A structure for describing a single incompatibility of radio options for
 * this resource. Every field is optional so that only fields that are
 * incompatible with each other are included. For example, if BPSK and a baud
 * rate of 1200 are incompatible on this resource, this struct will only be
 * populated with BPSK and 1200. If BPSK and LSB are also incompatible, there
 * will need to be a second RadioRestrictions with this incompatibility. If
 * this struct had BPSK, 1200 baud, and LSB in it, it would imply that the
 * three of those in combination are not compatible but doesn’t restrict BPSK,
 * LSB, 2400 baud.
 */
struct RadioRestrictions {
 /** Mode of operation such as FM, LSB, etc. */
 1: optional mpipe_globals.Mode mode
 /** Radio modulation such as GMSK, BPSK, etc. */
 2: optional mpipe_globals.Modulation modulation
 /**
 * The bandwidth desired on an SDR. Only this field or

 * hardwareFrequencies should be populated but not both. This field
 * shall be used when the resource contains an SDR

 */
 3: optional mpipe_types.Frequency sdrBandwidth
 /**
 * The specific hardware bandwidth desired. Only this field or

 * sdrBandwidthMax should be populated but not both. This field shall be
 * used when the resource contains a traditional radio as opposed to an
 * SDR

 */
 4: optional mpipe_types.Frequency hardwareBandwidth
 /** Desired link layer protocol such as HDLC, etc. */
 5: optional mpipe_globals.LinkLayerProt linkLayerProt
 /** Desired encoding such as NRZ-I, etc. */
 6: optional mpipe_globals.Encoding encoding

 105

 /** Desired baud rate */
 7: optional i32 baud
 /** Describes whether or not viterbi is desired */
 8: optional bool useViterbi
 /**

 * Describes whether or not PRN randomization/derandomization is desired
 */

 9: optional bool usePRN
 /** Describes whether or not Reed-Solomon en/decoding is desired */
 10: optional bool useRS
 /** Describes whether or not Turbo Coding is desired */
 11: optional bool useTurboCode
}

/** A structure defining the options available on the radio of a resource */
struct RadioOptions {
 /** List of radio modes of operation such as FM, LSB, etc. */
 1: list<mpipe_globals.Mode> mode
 /** List of radio modulations such as GMSK, BPSK, etc. */
 2: list<mpipe_globals.Modulation> modulation
 /**
 * The maximum bandwidth the SDR can support. Only this field or

 * hardwareFrequencies should be populated but not both. This field
 * shall be used when the resource contains an SDR

 */
 3: optional mpipe_types.Frequency sdrBandwidthMax
 /**
 * A list of bandwidths the hardware radio can support. Only this field

 * or sdrBandwidthMax should be populated but not both. This field shall
 * be used when the resource contains a traditional radio as opposed to
 * an SDR

 */
 4: optional list<mpipe_types.Frequency> hardwareBandwidths
 /** List of link layer protocols such as HDLC, etc. */
 5: list<mpipe_globals.LinkLayerProt> linkLayerProt
 /** List of encodings such as NRZ-I, etc. */
 6: list<mpipe_globals.Encoding> encoding
 /** List of baud rates */
 7: list<i32> baud
 /** Describes whether or not viterbi is a supported option */
 8: bool viterbiSupported
 /**

 * Describes whether or not PRN randomization/derandomization is a
 * supported option
 */

 9: bool prnSupported
 /**

 * Describes whether or not Reed-Solomon en/decoding is a supported
 * option
 */

 10: bool rsSupported
 /** Describes whether or not Turbo Coding is supported */
 11: bool turboCodeSupported
}

 106

/**
 * A structure for defining the choices selected from a RadioOptions struct */
struct RadioSelections {
 /**
 * Center frequency desired. This is mostly important for auto Doppler-

 * shifted resources
 */

 1: mpipe_types.Frequency centerFrequency
 /** Mode of operation such as FM, LSB, etc. */
 2: mpipe_globals.Mode mode
 /** Radio modulation such as GMSK, BPSK, etc. */
 3: mpipe_globals.Modulation modulation
 /**
 * The bandwidth desired on an SDR. Only this field or

 * hardwareFrequencies should be populated but not both. This field
 * shall be used when the resource contains an SDR

 */
 4: optional mpipe_types.Frequency sdrBandwidth
 /**
 * The specific hardware bandwidth desired. Only this field or

 * sdrBandwidthMax should be populated but not both. This field shall be
 * used when the resource contains a traditional radio as opposed to an
 * SDR

 */
 5: optional mpipe_types.Frequency hardwareBandwidth
 /** Desired link layer protocol such as HDLC, etc. */
 6: mpipe_globals.LinkLayerProt linkLayerProt
 /** Desired encoding such as NRZ-I, etc. */
 7: mpipe_globals.Encoding encoding
 /** Desired baud rate */
 8: i32 baud
 /** Describes whether or not viterbi is desired */
 9: bool useViterbi
 /**
 * Describes whether or not PRN randomization/derandomization is desired

 */
 10: bool usePRN
 /** Describes whether or not Reed-Solomon en/decoding is desired */
 11: bool useRS
 /** Describes whether or not Turbo Coding is desired */
 12: bool useTurboCode
}

/**
 * ResourceOptions describes a resource being offered with all radio options
 * included
 */
struct ResourceOptions {
 /**
 * An ID sourced from the top-level CA, originated from a

 * RequestResourceID call uniquely identifying the resource
 */
 1: mpipe_types.ResourceID id

 107

 /** The node-level SA who this resource belongs to */
 2: string saName
 /** The Unix time that this resource begins being available */
 3: mpipe_types.Time start
 /** The Unix time that this resource stops being available */
 4: mpipe_types.Time stop
 /** The maximum number of seconds this resource can be reserved */
 5: i32 maxSecReserve
 /** Either transmit (TX) or receive (RX) */
 6: Direction direction
 /** The lowest frequency this resource can provide */
 7: mpipe_types.Frequency lowFreq
 /** The highest frequency this resource can provide */
 8: mpipe_types.Frequency highFreq
 /** The manufacturer of the radio*/
 9: string radioManufacturer
 /** The model of the radio */
 10: string radioModel
 /** The manufacturer of the antenna control unit */
 11: string acuManufacturer
 /** The model of the antenna control unit */
 12: string acuModel
 /** The manufacturer of the pre-amp */
 13: optional string paManufacturer
 /** The model of the pre-amp */
 14: optional string paModel
 /** The manufacturer of the amplifier */
 15: optional string ampManufacturer
 /** The model of the amplifier */
 16: optional string ampModel
 /** The minimum azimuth slew rate of the antenna */
 17: mpipe_types.SlewRate azSlewRateMin
 /** The maximum azimuth slew rate of the antenna */
 18: mpipe_types.SlewRate azSlewRateMax
 /** The minimum elevation slew rate of the antenna */
 19: mpipe_types.SlewRate elSlewRateMin
 /** The maximum elevation slew rate of the antenna */
 20: mpipe_types.SlewRate elSlewRateMax
 /** The polarization options available on the antenna */
 21: list<antenna.Polarization> polarizations
 /** The gain of the antenna */
 22: mpipe_types.Decibels gain
 /**

 * True if the antenna can be manually controlled; False if auto-
 * tracking must be used
 */

 23: bool antControlEnabled
 /** The minimum azimuth the antenna can be directed to */
 24: mpipe_types.Degrees minAz
 /** The maximum azimuth the antenna can be directed to */
 25: mpipe_types.Degrees maxAz
 /** The minimum elevation the antenna can be directed to */
 26: mpipe_types.Degrees minEl
 /** The maximum elevation the antenna can be directed to */

 108

 27: mpipe_types.Degrees maxEl
 /**
 * The minimum transmit elevation allowed. This only needs to be

 * populated for a TX config but should be populated even if auto-
 * tracking is enabled to inform the user the pass length

 */
 28: optional mpipe_types.Degrees minElTx
 /**

 * True if the pre-amp can be manually controlled; False if it will be
 * controlled
 */

 29: bool paControlEnabled
 /** The minimum gain in dB the pre-amp can support */
 30: mpipe_types.Decibels paMinGain
 /** The maximum gain in dB the pre-amp can support */
 31: mpipe_types.Decibels paMaxGain
 /**
 * True if the radio frequency can be manually controlled; False if

 * automatic doppler-shifting must be used.
 */
 32: bool freqControlEnabled
 /** The latitude of the ground station */
 33: optional double latitude
 /** The longitude of the ground station */
 34: optional double longitude
 /** Ground station altitude WGS72 in meters */
 35: optional double altitude
}

/**
 * ResourceConfig describes a resource being requested with all options having
 * been selected
 */
struct ResourceConfig {
 /**
 * An ID sourced from the top-level CA, originated from a

 * RequestResourceID call uniquely identifying the resource
 */
 1: mpipe_types.ResourceID id
 /** The node-level SA who this resource belongs to */
 2: string saName
 /** The Unix time that this resource begins being available */
 3: mpipe_types.Time start
 /** The Unix time that this resource stops being available */
 4: mpipe_types.Time stop
 /** Either transmit (TX) or receive (RX) */
 5: Direction direction
}

/**
 * A struct for communicating a username and certificate in a resource request
 */
struct User {
 /** The username associated with the requesting user */

 109

 1: string userName
 /**

 * The public certificate associated with the user in X.509 PEM format
 */

 2: string publicCertificate
}

/** Thrown to indicate the resource ID was not recognized */
exception DeleteException {
 1: mpipe_types.ResourceID id
}

/** A list of error codes and their values */
enum ConfigError {
 /**

 * Indicates that the ground station does not support the requested
 * value
 */

 Unsupported = 1
 /**

* Indicates a conflict between two requested field-value pairs that
* cannot co-exist
 */

 IncompatibleChoices = 2
 /** Value out of supported range for a given field */
 OutOfSupportedRange = 3
 /**

 * Special error code for ResourceIDs that are not recognized by the
 * node-level SA
 */

 IDNotRecognized = 4
}

/** ConfigException is thrown when an invalid resource is passed. */
exception ConfigException {
 /** The resource being rejected */
 1: ResourceConfig badConfig
 /** A map linking the field(s) to the error related to the field(s) */
 2: map<i16, ConfigError> fieldErrors
}

/** A list of error codes and their values */
enum AuthError {
 /** Indicates the user is not authorized to use the resource */
 NotAuthorized = 1
 /**
 * Indicates the certificate did not match the public certificate the SA
 * expected for the user
 */
 UnrecognizedCertificate = 2
}

/**
 * AuthException is thrown when user requests a resource but is not authorized

 110

 * for use of the resource.
 */
exception AuthException {
 /** The authentication error behind the exception */
 1: AuthError error
}

/**
 * ResourceOwnerException is thrown when an SA attempts to add a resource but
 * the resourceID is already registered in the schedule with a different SA
 */
exception ResourceOwnerException {}

/**
 * BandwidthOptionException is thrown when a struct mentions both an SDR and
 * hardware bandwidth, which is ambiguous as both cannot exist
 */
exception BandwidthOptionException {}

/**
 * ResourceScheduler is served by a CA and used by an SA to offer a resource
 * to a CA as available for scheduling.
 */
service ResourceScheduler {
 /**
 * RequestResourceID is offered by a CA to allow an SA to request a

 * unique ID for keying a resource in a network-wide manner. This
 * message shall be propagated through each mid-level SA until it
 * reaches the top-level CA, all the way back to the originator which
 * should be a node-level SA.

 */
 mpipe_types.ResourceID RequestResourceID()
 /**
 * OfferResource is used by an SA to offer a resource to a CA as

 * available for scheduling. If the schedule already has this ResourceID
 * in use, and the saName that is part of the resource matches the
 * saName in its current schedule under that key, it will update its
 * schedule with this new resource. If the saNames do not match, this
 * throws a ResourceIDInUseException.

 */
 void OfferResource(
 /** A description of the resource being offered */
 1: ResourceOptions resource
 /** The radio options available in this resource */
 2: RadioOptions radioOptions
 /** The restricted options that subtract from radioOptions */
 3: list<RadioRestrictions> radioRestrictions
)
 /**
 * Thrown when an SA attempts to add a resource but is not shown as the

 * owner of the resource in the schedule
 */
 throws (1: ResourceOwnerException resourceOwnerException)
 /**

 111

 * DeleteResource is used by an SA to request a CA delete a previously
 * offered resource. If the resource ID is not recognized an exception

 * will be thrown.
 */
 void DeleteResource(
 /** The ResourceID matching the resource to delete */
 1: mpipe_types.ResourceID id
)
 throws (
 /**

 * Thrown when the requested resource ID has not been assigned
 * yet
 */

 1: DeleteException deleteException
 /**

 * Thrown when the requested resource ID does not belong to the
 * SA requesting the deletion
 */

 2: ResourceOwnerException resourceOwnerException
)
}

/**
 * ResourceOfferer is served by an SA and used by a CA to request a resource
 * reservation for a user.
 */
service ResourceOfferer {
 /**
 * ScheduleResource is used by a CA to relay that a user has requested a

 * resource. The ResourceConfig shall be populated with the specific
 * selections of the user, no longer containing multiple options as may
 * have been the case when the resource was offered.

 */
 void ScheduleResource(
 /**
 * Description of the selections made in requesting a resource

 * such as start time, and more.
 */
 1: ResourceConfig config
 /**
 * Desription of the selections made from the options the radio

 * provides this resource
 */
 2: RadioSelections radioSelections
 /** The user requesting the resource */
 3: User user
)
 throws (
 /** Exception indicating the resource contained an error */
 1: ConfigException configException
 /** Exception indicating an authorization error */
 2: AuthException authException
)
}

 112

L. EVENTTSERVERSOCKET.PY

from thrift.transport import TSocket
import socket
from thrift.transport.TTransport import *

Adds an event field to the TServerSocket
Event is set when a connection is formed. Can be used to detect incoming
connections in threading

class EventTServerSocket(TSocket.TServerSocket):
 def __init__(self, event, host=None, port=9090, unix_socket=None):
 self.host = host
 self.port = port
 self._unix_socket = unix_socket
 self.handle = None
 self.event = event

 def accept(self):
 result = TSocket.TServerSocket.accept(self)
 self.event.set()
 return result

 113

M. AMP_CLIENT.PY

‘‘‘
 M-PIPE interface: MC3 Picosatellite Internet Protocol Extension
 Author:
 Aaron Felt, Naval Postgraduate School
 Description:

This script is meant to exercise, test, and demonstrate the amp
Thrift Interface as a client and is intended to be used with
amp_server.py. As it doesn’t specify a protocol, it defaults to
TBinaryProtocol but does use sockets as expected.

‘‘‘
import sys
sys.path.append(“gen-py”)

from thrift import Thrift
from thrift.transport import TSocket, TTransport
from thrift.protocol import TBinaryProtocol
from mpipe_amp import AmpControl
from mpipe import constants
from socket import error as sockError

try:
 socket = TSocket.TSocket(“localhost,” 8585)
 socket = TTransport.TBufferedTransport(socket)
 socket.open()
 protocol = TBinaryProtocol.TBinaryProtocol(socket)

 client = AmpControl.Client(protocol)

 # Test AmpEnable works
 msg = client.AmpEnable(True)
 print(“[Client] Attempted to power on amp. Set to: %r” % msg)
 msg = client.AmpEnable(False)
 print(“[Client] Attempted to power off amp. Set to: %r” % msg)
 msg = client.AmpEnable(True)
 print(“[Client] Attempted to power on amp. Set to: %r” % msg)

 # Test AmpSetGain works the first time and throws an exception the

second and third time
 firstGain = 5.0
 msg = client.AmpSetGain(firstGain)
 print(“[Client] Attempted to set gain to %f. Set to: %f”\

% (firstGain,msg))
 try:
 badGain1 = -1.0
 msg = client.AmpSetGain(badGain1)
 except AmpControl.GainException as ge:

print(“[Client] Attempted to set a bad gain of %f and” + \
“ correctly received an exception.” % badGain1)

 print(“[Client] %s” % ge)
 try:
 badGain2 = 10.1

 114

 msg = client.AmpSetGain(badGain2)
 except AmpControl.GainException as ge:
 print(“[Client] Attempted to set a bad gain of %f and” + \

“ correctly received an exception.” % badGain2)
 print(“[Client] %s” % ge)

 # Test AmpGetStatus works the first time and returns the values set

above (power-on, gain 5.0)
 msg = client.AmpGetStatus()
 print(“[Client] %s” % msg)

except KeyboardInterrupt:
 print(“[Shutdown] Close command received. Goodbye!”)
except sockError as se:
 print(“[Error] Socket was aborted. socket.error %s” % (se))
except TTransport.TTransportException as tte:

print(“[Error] Server response timed out or data was lost.” + \
“ TTransportException(%d): %s” % (tte.type, tte))

except Thrift.TApplicationException as ta:
 print(“[Error] There appears to be an interface mismatch. Expected” + \

“ version of interface is %s: %s” % (constants.VERSION, ta))
except Exception as e:
 print(“[Error] Exception: %s %s” % (type(e), e))
except:
 print(“[Error] BaseException: %s” % sys.exc_info()[0])

 115

N. AMP_SERVER.PY

‘‘‘
 M-PIPE interface: MC3 Picosatellite Internet Protocol Extension
 Author:
 Aaron Felt, Naval Postgraduate School
 Description:

This script is meant to exercise, test, and demonstrate the amp
Thrift Interface as a server and is intended to be used with
amp_client.py. As it doesn’t specify a protocol, it defaults to
TBinaryProtocol but does use sockets as expected.

‘‘‘
import sys
sys.path.append(‘gen-py’)
from thrift.transport import TSocket
from thrift.server import TServer
from mpipe_amp import AmpControl

class AmpHandler(AmpControl.Iface):

 def __init__(self, minGain, maxGain, isPowered, gain):
 # Sample class variables for a real amp
 self.minGain = minGain
 self.maxGain = maxGain
 self.isPowered = isPowered
 self.gain = gain

 def AmpEnable(self, isPowered):
 print(“[Server] Amp power set to %r” % isPowered)
 self.isPowered = isPowered
 return isPowered

 def AmpSetGain(self, dB):
 if dB >= self.minGain and dB <= self.maxGain:
 self.gain = dB
 print “[Server] Amp gain set to %f” % dB
 return dB
 elif dB < self.minGain:
 print(“[Server] Amp gain of %f below min gain of %f.” + \

“ Raising GainException” % (dB, self.minGain))
raise AmpControl.GainException(dB=dB,

minGain=self.minGain)
 else:
 print(“[Server] Amp gain of %f above max gain of %f.” + \

“ Raising GainException” % (dB, self.maxGain))
 raise AmpControl.GainException(dB=dB,

maxGain=self.maxGain)

 def AmpGetStatus(self):

ampStatus = AmpControl.AmpStatus(currGain=self.gain,
currPowerState=self.isPowered,
healthy=True)

 print(“[Server] Amp status is %s” % ampStatus)

 116

 return ampStatus

if __name__ == “__main__”:
 minGain = 0.0
 maxGain = 10.0
 isPowered = False
 gain = 3.0
 svr_trans = TSocket.TServerSocket(port=8585)
 processor = AmpControl.Processor(AmpHandler(minGain,

maxGain,
isPowered,
gain))

 server = TServer.TSimpleServer(processor, svr_trans)
 server.serve()

 117

O. ANTENNA_CLIENT.PY

‘‘‘
 M-PIPE interface: MC3 Picosatellite Internet Protocol Extension
 Author:
 Aaron Felt, Naval Postgraduate School
 Description:
 This script is meant to exercise, test, and demonstrate the

antenna Thrift interface as a client and is intended to be used
with antenna_server.py. As it doesn’t specify a protocol, it
defaults to TBinaryProtocol but does use sockets as expected.

‘‘‘
import sys
sys.path.append(“gen-py”)

from thrift import Thrift
from thrift.transport import TSocket, TTransport
from thrift.protocol import TBinaryProtocol
from mpipe_antenna import AntControl
from mpipe_antenna.AntControl import Polarization
from mpipe import constants
from socket import error as sockError

try:
 socket = TSocket.TSocket(“localhost,” 8585)
 socket = TTransport.TBufferedTransport(socket)
 socket.open()
 protocol = TBinaryProtocol.TBinaryProtocol(socket)

 client = AntControl.Client(protocol)

 # Test AntPoint works the first time and throws an exception the second

time
 pointDirection = AntControl.AntDirection(azimuth=23.0, elevation=72.5)
 msg = client.AntPoint(pointDirection)
 print(“[Client] Attempted to steer antenna. Set to: %s” % msg)
 try:

pointDirection = AntControl.AntDirection(azimuth=-1.0,
elevation=181.2)

 msg = client.AntPoint(pointDirection)
 except AntControl.PointingException as pe:
 print(“[Client] Attempted to send a bad AntDirection and” + \

“ successfully caught error”)

 # Test AntBrake works the first time and throws an exception the second

time
 client.AntBrake(False)
 print(“[Client] Attempted to set brake False. Set to: %s” % msg)
 try:
 msg = client.AntBrake(False)
 except AntControl.NoBrakeException:
 print(“[Client] Attempted to use brake and correctly” + \

“ received an exception”)

 118

 # Test AntConfigure works the first time and throws an exception the

second time
 config = AntControl.AntConfig(azSlewRate=2.3,

elSlewRate=1.2,
polarization=Polarization.LHC)

 msg = client.AntConfigure(config)
 print(“[Client] Attempted to set configuration. Set to: %s” % msg)
 try:
 config = AntControl.AntConfig(azSlewRate=3.1,

elSlewRate=0.1,
polarization=Polarization.LHC)

 msg = client.AntConfigure(config)
 except AntControl.BadConfigException as bce:
 print(“[Client] Attempted to enter a bad config and” + \

“ correctly received an exception”)
 print(“[Client] %s” % bce)

 # Test AntStatus
 msg = client.AntGetStatus()
 print(“[Client] Attempted to check ant status. Received: %s” % msg)

except KeyboardInterrupt:
 print(“[Shutdown] Close command received. Goodbye!”)
except sockError as se:
 print(“[Error] Socket was aborted. socket.error %s” % (se))
except TTransport.TTransportException as tte:
 print(“[Error] Server response timed out or data was lost.” + \

“ TTransportException(%d): %s” % (tte.type, tte))
except Thrift.TApplicationException as ta:
 print(“[Error] There appears to be an interface mismatch. Expected” + \

“ version of interface is %s: %s” % (constants.VERSION, ta))
except Exception as e:
 print(“[Error] Exception: %s %s” % (type(e), e))
except:
 print(“[Error] BaseException: %s” % sys.exc_info()[0])

 119

P. ANTENNA_SERVER.PY

‘‘‘
 M-PIPE interface: MC3 Picosatellite Internet Protocol Extension
 Author:
 Aaron Felt, Naval Postgraduate School
 Description:
 This script is meant to exercise, test, and demonstrate the

antenna Thrift interface as a server and is intended to be used
with antenna_client.py. As it doesn’t specify a protocol, it
defaults to TBinaryProtocol but does use sockets as expected.

‘‘‘
import sys
sys.path.append(‘gen-py’)
from thrift.transport import TSSLSocket
from thrift.server import TServer
from mpipe_antenna import AntControl

antBrakeTestToggle = False

class AntHandler(AntControl.Iface):
 def __init__(self):
 self.status = True
 self.currDirection = AntControl.AntDirection(azimuth=1.0,

elevation=23.9)

 def AntPoint(self, antDirection):
 if antDirection.azimuth < 0.0 \
 or antDirection.azimuth >= 360.0 \
 or antDirection.elevation < 0.0 \
 or antDirection.elevation >= 180.0:
 print(“[Server] Bad antenna point parameters.” + \

“ Raising PointingException”)
 raise AntControl.PointingException(antDirection)
 print(“Pointing antenna to %s” % (antDirection))
 self.currDirection = antDirection
 return antDirection

 def AntBrake(self, enable):
 global antBrakeTestToggle
 # Toggles every call
 antBrakeTestToggle = not antBrakeTestToggle
 if antBrakeTestToggle:
 print(“[Server] Antenna brake set to %r” % enable)
 return enable
 else:
 print(“[Server] Antenna has no brake.” + \

“ Raising NoBrakeException”)
 raise AntControl.NoBrakeException()

 def AntConfigure(self, antConfig):
 if antConfig.elSlewRate < 0.25 :
 print(“[Server] Bad config received as input.” + \

 120

“ Raising BadConfigException”)
 raise AntControl.BadConfigException(antConfig=antConfig,

minElSlewRate=0.25)
 else:
 print(“[Server] Antenna being configured to %s” \

% antConfig)
 return antConfig

 def AntGetStatus(self):
 status = AntControl.AntStatus(healthy=self.status,

currDirection=self.currDirection)
 print(“[Server] Antenna status being returned as %s” % status)
 return status

if __name__ == “__main__”:
 svr_trans = TSSLSocket.TSSLServerSocket(port=8585)
 processor = AntControl.Processor(AntHandler())
 server = TServer.TSimpleServer(processor, svr_trans)
 server.serve()

 121

Q. CPU_CLIENT.PY

‘‘‘
 M-PIPE interface: MC3 Picosatellite Internet Protocol Extension
 Author:
 Aaron Felt, Naval Postgraduate School
 Description:
 This script is meant to exercise, test, and demonstrate the CPU

Thrift Interface as a client and is intended to be used with
cpu_server.py. As it doesn’t specify a protocol, it defaults to
TBinaryProtocol but does use sockets as expected.

‘‘‘
import sys
sys.path.append(“gen-py”)

from thrift import Thrift
from thrift.transport import TSocket, TTransport
from thrift.protocol import TBinaryProtocol
from mpipe_cpu import CPUControl
from mpipe import constants
from socket import error as sockError

try:
 socket = TSocket.TSocket(“localhost,” 8585)
 socket = TTransport.TBufferedTransport(socket)
 socket.open()
 protocol = TBinaryProtocol.TBinaryProtocol(socket)

 client = CPUControl.Client(protocol)

 # Test GetCPUStatus works
 msg = client.GetCPUStatus()
 print(“[Client] Attempted to get CPU status. Received: %s” % msg)

 # Test GetNetStatus works
 msg = client.GetNetStatus()
 print(“[Client] Attempted to get network status. Received: %s” % msg)

except KeyboardInterrupt:
 print(“[Shutdown] Close command received. Goodbye!”)
except sockError as se:
 print(“[Error] Socket was aborted. socket.error %s” % (se))
except TTransport.TTransportException as tte:
 print(“[Error] Server response timed out or data was lost.” + \

“ TTransportException(%d): %s” % (tte.type, tte))
except Thrift.TApplicationException as ta:
 print(“[Error] There appears to be an interface mismatch. Expected” + \

“ version of interface is %s: %s” % (constants.VERSION, ta))
except Exception as e:
 print(“[Error] Exception: %s %s” % (type(e), e))
except:
 print(“[Error] BaseException: %s” % sys.exc_info()[0])

 122

R. CPU_SERVER.PY

‘‘‘
 M-PIPE interface: MC3 Picosatellite Internet Protocol Extension
 Author:
 Aaron Felt, Naval Postgraduate School
 Description:

This script is meant to exercise, test, and demonstrate the CPU
Thrift Interface as a server and is intended to be used with
cpu_client.py. As it doesn’t specify a protocol, it defaults to
TBinaryProtocol but does use sockets as expected.

‘‘‘
import sys
sys.path.append(‘gen-py’)
from thrift.transport import TSocket
from thrift.server import TServer
from mpipe_cpu import CPUControl

Use external Python psutil library to get CPU/network statistics
import psutil

class CPUHandler(CPUControl.Iface):

 def GetCPUStatus(self):
 diskUsage = psutil.disk_usage(“C:\\”)
 print diskUsage
 memUsage = psutil.virtual_memory()
 print memUsage
 cpuStat = CPUControl.CPUStatus(
 status=True,
 uptime = 3216021,
 numProcessesTotal = 321,
 processesRunning = 27,
 loadAve = psutil.cpu_percent(interval=1),
 diskUsage = diskUsage.percent,
 # Convert bytes to MB
 diskFree = diskUsage.free / (2**20),
 ramUsage = memUsage.percent,

Convert bytes to MB
 ramFree = memUsage.free / (2**20)
)
 return cpuStat

 # Note that this currently just returns the bytes in and out on the

interface, not specific to the M-PIPE connection, but this is just
meant to show capability

 def GetNetStatus(self):
 netIO = psutil.net_io_counters()
 netStat = CPUControl.NetStatus(bytesIn = netIO.bytes_recv,

bytesOut = netIO.bytes_sent)
 print(“[Server] Network status requested”)
 return netStat

 123

if __name__ == “__main__”:
 svr_trans = TSocket.TServerSocket(port=8585)
 processor = CPUControl.Processor(CPUHandler())
 server = TServer.TSimpleServer(processor, svr_trans)
 server.serve()

 124

S. PACKET_CLIENT.PY

‘‘‘
 M-PIPE interface: MC3 Picosatellite Internet Protocol Extension
 Author:
 Aaron Felt, Naval Postgraduate School
 Description:
 This script is meant to exercise, test, and demonstrate the

Packet Thrift interface as a client and is intended to be used
with packet_server.py. As it doesn’t specify a protocol, it
defaults to TBinaryProtocol but does use sockets as expected.

‘‘‘
import sys
sys.path.append(“gen-py”)

from thrift import Thrift
from thrift.transport import TSocket, TTransport
from thrift.protocol import TBinaryProtocol
from mpipe_packet import PacketService
from mpipe import constants
from socket import error as sockError

currPacketID = 0

try:
 socket = TSocket.TSocket(“localhost,” 8585)
 socket = TTransport.TBufferedTransport(socket)
 socket.open()
 protocol = TBinaryProtocol.TBinaryProtocol(socket)

 client = PacketService.Client(protocol)

 # Test SendPacket works
 packet = PacketService.Packet(packetID=currPacketID,

data=“You have mail!”)
 msg = client.SendPacket(packet)
 print(“[Client] Successfully sent a packet”)

 currPacketID = currPacketID + 1

 # Test SendPacket excepts correctly
 try:
 packet = PacketService.Packet(packetID=currPacketID, data=“You
have mail!You have mail!You have mail!You have mail!You have mail!You have
mail!You have mail!You have mail!You have mail!You have mail!You have mail!You
have mail!You have mail!You have mail!You have mail!You have mail!You have
mail!You have mail!”)
 msg = client.SendPacket(packet)
 print(“[Client] !!!!ERROR!!!!!! ---- Attempted to send” + \

“ a bad packet but exception was NOT caught”)
 except PacketService.PacketSizeException as pse:
 print(“[Client] Correctly received size exception for” + \

“ big packet”)

 125

 print(“[Client] %s” % pse)

except KeyboardInterrupt:
 print(“[Shutdown] Close command received. Goodbye!”)
except sockError as se:
 print(“[Error] Socket was aborted. socket.error %s” % (se))
except TTransport.TTransportException as tte:
 print(“[Error] Server response timed out or data was lost.” + \

“ TTransportException(%d): %s” % (tte.type, tte))
except Thrift.TApplicationException as ta:
 print(“[Error] There appears to be an interface mismatch. Expected” + \

“ version of interface is %s: %s” % (constants.VERSION, ta))
except Exception as e:
 print(“[Error] Exception: %s %s” % (type(e), e))
except:
 print(“[Error] BaseException: %s” % sys.exc_info()[0])

 126

T. PACKET_SERVER.PY

‘‘‘
 M-PIPE interface: MC3 Picosatellite Internet Protocol Extension
 Author:
 Aaron Felt, Naval Postgraduate School
 Description:
 This script is meant to exercise, test, and demonstrate the

Packet Thrift interface as a server and is intended to be used
with packet_client.py. As it doesn’t specify a protocol, it
defaults to TBinaryProtocol but does use sockets as expected.

‘‘‘
import sys
sys.path.append(‘gen-py’)
from thrift.transport import TSocket
from thrift.server import TServer
from mpipe_packet import PacketService

MAX_PACKET_SIZE = 223

class PacketHandler(PacketService.Iface):

 def SendPacket(self, packet):
 if len(packet.data) > MAX_PACKET_SIZE:
 print(“[Server] Packet size of %d received. Beyond” + \

“ max packet size of %d. Raising exception.” % \
(len(packet.data), MAX_PACKET_SIZE))

raise PacketService.PacketSizeException(badPacket=packet,
maxPacketSize = MAX_PACKET_SIZE)

 print(“[Server] Packet received of size %d: %s” \
% (len(packet.data), packet))

if __name__ == “__main__”:
 svr_trans = TSocket.TServerSocket(port=8585)
 processor = PacketService.Processor(PacketHandler())
 server = TServer.TSimpleServer(processor, svr_trans)
 server.serve()

 127

U. PREAMP_CLIENT.PY

‘‘‘
 M-PIPE interface: MC3 Picosatellite Internet Protocol Extension
 Author:
 Aaron Felt, Naval Postgraduate School
 Description:

This script is meant to exercise, test, and demonstrate the
preamp Thrift interface as a client and is intended to be used
with preamp_server.py. As it doesn’t specify a protocol, it
defaults to TBinaryProtocol but does use sockets as expected.

‘‘‘
import sys
sys.path.append(“gen-py”)

from thrift import Thrift
from thrift.transport import TSocket, TTransport
from thrift.protocol import TBinaryProtocol
from mpipe_preamp import PAControl
from mpipe import constants
from socket import error as sockError

try:
 socket = TSocket.TSocket(“localhost,” 8585)
 socket = TTransport.TBufferedTransport(socket)
 socket.open()
 protocol = TBinaryProtocol.TBinaryProtocol(socket)

 client = PAControl.Client(protocol)

 # Test PAEnable works
 msg = client.PAEnable(True)
 print(“[Client] Attempted to power on preamp. Set to: %r” % msg)
 msg = client.PAEnable(False)
 print(“[Client] Attempted to power off preamp. Set to: %r” % msg)
 msg = client.PAEnable(True)
 print(“[Client] Attempted to power on preamp. Set to: %r” % msg)

 # Test PASetGain works the first time and throws an exception the second

and third time
 firstGain = 5.0
 msg = client.PASetGain(firstGain)
 print(“[Client] Attempted to set gain to %f. Set to: %f” %

(firstGain,msg))
 try:
 badGain1 = -1.0
 msg = client.PASetGain(badGain1)
 except PAControl.GainException as ge:
 print(“[Client] Attempted to set a bad gain of %f and” + \

“ correctly received an exception.” % badGain1)
 print(“[Client] %s” % ge)
 try:
 badGain2 = 10.1

 128

 msg = client.PASetGain(badGain2)
 except PAControl.GainException as ge:
 print(“[Client] Attempted to set a bad gain of %f and” + \

“ correctly received an exception.” % badGain2)
 print(“[Client] %s” % ge)

 # Test PAGetStatus works the first time and returns the values set above

(power-on, gain 5.0)
 msg = client.PAGetStatus()
 print(“[Client] %s” % msg)

except KeyboardInterrupt:
 print(“[Shutdown] Close command received. Goodbye!”)
except sockError as se:
 print(“[Error] Socket was aborted. socket.error %s” % (se))
except TTransport.TTransportException as tte:
 print(“[Error] Server response timed out or data was lost.” + \

“ TTransportException(%d): %s” % (tte.type, tte))
except Thrift.TApplicationException as ta:
 print(“[Error] There appears to be an interface mismatch. Expected” + \

“ version of interface is %s: %s” % (constants.VERSION, ta))
except Exception as e:
 print(“[Error] Exception: %s %s” % (type(e), e))
except:
 print(“[Error] BaseException: %s” % sys.exc_info()[0])

 129

V. PREAMP_SERVER.PY

‘‘‘
 M-PIPE interface: MC3 Picosatellite Internet Protocol Extension
 Author:
 Aaron Felt, Naval Postgraduate School
 Description:
 This script is meant to exercise, test, and demonstrate the

preamp Thrift interface as a server and is intended to be used
with preamp_client.py. As it doesn’t specify a protocol, it
defaults to TBinaryProtocol but does use sockets as expected.

‘‘‘
import sys
sys.path.append(‘gen-py’)
from thrift.transport import TSocket
from thrift.server import TServer
from mpipe_preamp import PAControl

class PAHandler(PAControl.Iface):

 def __init__(self, minGain, maxGain, isPowered, gain):
 # Sample class variables for a real preamp
 self.minGain = minGain
 self.maxGain = maxGain
 self.isPowered = isPowered
 self.gain = gain

 def PAEnable(self, isPowered):
 print(“[Server] Preamp power set to %r” % isPowered)
 self.isPowered = isPowered
 return isPowered

 def PASetGain(self, dB):
 if dB >= self.minGain and dB <= self.maxGain:
 self.gain = dB
 print “[Server] Preamp gain set to %f” % dB
 return dB
 elif dB < self.minGain:

print(“[Server] Preamp gain of %f below min gain of” + \
“ %f. Raising GainException” % (dB, self.minGain))

 raise PAControl.GainException(dB=dB, minGain=self.minGain)
 else:
 print(“[Server] Preamp gain of %f above max gain of” + \

“ %f. Raising GainException” % (dB, self.maxGain))
 raise PAControl.GainException(dB=dB, maxGain=self.maxGain)

 def PAGetStatus(self):
 paStatus = PAControl.PAStatus(currGain=self.gain,

currPowerState=self.isPowered,
healthy=True)

 print(“[Server] Preamp status is %s” % paStatus)
 return paStatus

 130

if __name__ == “__main__”:
 minGain = 0.0
 maxGain = 10.0
 isPowered = False
 gain = 3.0
 svr_trans = TSocket.TServerSocket(port=8585)
 processor = PAControl.Processor(PAHandler(minGain, maxGain, isPowered,
gain))
 server = TServer.TSimpleServer(processor, svr_trans)
 server.serve()

 131

W. RADIO_CLIENT.PY

‘‘‘
 M-PIPE interface: MC3 Picosatellite Internet Protocol Extension
 Author:
 Aaron Felt, Naval Postgraduate School
 Description:
 This script is meant to exercise, test, and demonstrate the radio

Thrift Interface as a client and is intended to be used with
radio_server.py. As it doesn’t specify a protocol, it defaults to
TBinaryProtocol but does use sockets as expected.

‘‘‘
import sys
sys.path.append(“gen-py”)

from thrift import Thrift
from thrift.transport import TSocket, TTransport
from thrift.protocol import TBinaryProtocol
from mpipe_radio import RControl
from mpipe import constants
from socket import error as sockError
from mpipe_globals.ttypes import Mode, Modulation, Encoding, RSConfig,
LinkLayerProt

try:
 socket = TSocket.TSocket(“localhost,” 8585)
 socket = TTransport.TBufferedTransport(socket)
 socket.open()
 protocol = TBinaryProtocol.TBinaryProtocol(socket)

 client = RControl.Client(protocol)

 # Test RadioConfigure works the first time and fails the second
 config = RControl.RConfig(
 freq = 2415.2,
 mode = Mode.PM,
 powerLevel = 100.0,
 encoding = Encoding.NRZI,
 useDiffEncode = True,
 useReedSolomon = True,
 rsParams = RSConfig(
 n = 223,
 k = 255),
 llProt = LinkLayerProt.HDLC,
 modulation = Modulation.BPSK,
 baud = 57600)
 msg = client.RadioConfigure(config)
 print(“[Client] Attempted to configure for test transmit. Set to:” + \

“ %s” % msg)
 try:
 config = RControl.RConfig(
 freq = 2415.2,
 mode = Mode.PM,

 132

 powerLevel = 100.0,
 encoding = Encoding.NRZI,
 useDiffEncode = True,
 useReedSolomon = True,
 # Purposely not including rsParams to trigger
 llProt = LinkLayerProt.HDLC,
 modulation = Modulation.BPSK,
 baud = 57600)
 msg = client.RadioConfigure(config)
 print(“[Client] !!!!ERROR!!!!!! ---- Attempted to send a bad” + \

“ config but exception was NOT caught”)
 except RControl.ConfigException as ce:
 print(“[Client] Attempted to send a bad config but exception” + \

“ was correctly caught”)
 print(“[Client] %s” % ce)

 # Test RSDRSelect works the first time and throws exceptions on 2nd and

3rd
 msg = client.RSDRSelect(name=“test.sdr,” params=“--param1 goodValue”)
 print(“[Client] Started an SDR.”)
 try:
 msg = client.RSDRSelect(name=“badName.sdr,”

params=“--param1 goodValue”)
 print(“[Client] !!!!ERROR!!!!!! ---- Attempted to send a bad” + \

“ SDR name but exception was NOT caught”)
 except RControl.ProgramException as pe:
 print(“[Client] Correctly got exception for bad SDR name”)
 print(“[Client] %s” % pe)
 try:
 msg = client.RSDRSelect(name=“test.sdr,” params=“badParams”)
 print(“[Client] !!!!ERROR!!!!!! ---- Attempted to send a bad” + \

“ SDR param but exception was NOT caught”)
 except RControl.ParamException as pe:
 print(“[Client] Correctly got exception for bad params”)
 print(“[Client] %s” % pe)

 # Test RGetReceiveInfo works
 msg = client.RGetReceiveInfo()
 print(“[Client] Attempted to read receive strength: %s” % (msg))

except KeyboardInterrupt:
 print(“[Shutdown] Close command received. Goodbye!”)
except sockError as se:
 print(“[Error] Socket was aborted. socket.error %s” % (se))
except TTransport.TTransportException as tte:
 print(“[Error] Server response timed out or data was lost.” + \

“ TTransportException(%d): %s” % (tte.type, tte))
except Thrift.TApplicationException as ta:
 print(“[Error] There appears to be an interface mismatch. Expected” + \

“ version of interface is %s: %s” % (constants.VERSION, ta))
except Exception as e:
 print(“[Error] Exception: %s %s” % (type(e), e))
except:
 print(“[Error] BaseException: %s” % sys.exc_info()[0])

 133

X. RADIO_SERVER.PY

‘‘‘
 M-PIPE interface: MC3 Picosatellite Internet Protocol Extension
 Author:
 Aaron Felt, Naval Postgraduate School
 Description:

This script is meant to exercise, test, and demonstrate the radio
Thrift Interface as a server and is intended to be used with
radio_client.py. As it doesn’t specify a protocol, it defaults to
TBinaryProtocol but does use sockets as expected.

‘‘‘
import sys
sys.path.append(‘gen-py’)
from thrift.transport import TSocket
from thrift.server import TServer
from mpipe_radio import RControl

class RHandler(RControl.Iface):

 def RadioConfigure(self, config):
 if config.useReedSolomon and config.rsParams == None:
 errorMap = {
 14: RControl.ConfigError.IncompatibleChoices,
 15: RControl.ConfigError.IncompatibleChoices
 }
 print(“[Server] Config with conflicting parameters” + \

“ requested. Rejecting.”)
 print(“[Server] Bad config: %s” % config)
 raise RControl.ConfigException(badConfig=config,

fieldErrors=errorMap)
 print(“[Server] Radio config set to %s” % config)
 return config

 def RSDRSelect(self, name, params):
 if name == “badName.sdr”:
 print(“[Server] Bad SDR named %s being rejected” % (name))
 raise RControl.ProgramException(name, “Program %s not” + \

“ found” % name)
 if params == “badParams”:
 print(“[Server] Bad params being rejected”)
 raise RControl.ParamException(name, “Parameters are” + \

“ invalid”)
 print(“[Server] Starting %s with params %s” % (name, params))
 print(“[Server] Command would look like: %s %s” % (name, params))

 def RGetReceiveInfo(self):
 print(“[Server] Returning receive information”)
 return RControl.RReceiveInfo(rssi=-90.0, snr=15.0)

if __name__ == “__main__”:
 svr_trans = TSocket.TServerSocket(port=8585)
 processor = RControl.Processor(RHandler())

 134

 server = TServer.TSimpleServer(processor, svr_trans)
 server.serve()

 135

Y. SESSION_CLIENT.PY

‘‘‘
 M-PIPE interface: MC3 Picosatellite Internet Protocol Extension
 Author:
 Aaron Felt, Naval Postgraduate School
 Description:

This script is meant to exercise, test, and demonstrate the
Session Thrift interface as a client and is intended to be used
with session_server.py. As it doesn’t specify a protocol, it
defaults to TBinaryProtocol but does use sockets as expected.

‘‘‘
import sys
sys.path.append(“gen-py”)

from thrift import Thrift
from thrift.transport import TSocket, TTransport
from thrift.protocol import TBinaryProtocol
from mpipe_session import SessionControl
from mpipe import constants
from socket import error as sockError

try:
 socket = TSocket.TSocket(“localhost,” 8585)
 socket = TTransport.TBufferedTransport(socket)
 socket.open()
 protocol = TBinaryProtocol.TBinaryProtocol(socket)

 client = SessionControl.Client(protocol)

 # Test GetSessionInfo works
 msg = client.GetSessionInfo()
 print(“[Client] Attempted to get session status. Received: %s” % msg)

 # Test SetSessionConfig throws an exception the first time and works the

second time
 try:
 config = SessionControl.SessionConfig(
 isAutoAntTrack = True,
 isAutoDopplerTrack = True
)
 msg = client.SetSessionConfig(config)
 print(“[Client] !!!!ERROR!!!!!! ---- Attempted to send a bad” + \

“ config but exception was NOT caught”)
 except SessionControl.ConfigException as ce:
 print(“[Client] Correctly received config exception for” + \

“ bad config”)
 print(“[Client] %s” % ce)
 config = SessionControl.SessionConfig(
 currTLE = “AGOODTLE,”
 isAutoAntTrack = True,
 isAutoDopplerTrack = True
)

 136

 msg = client.SetSessionConfig(config)
 print(“[Client] Set new config. Received: %s” % msg)

except KeyboardInterrupt:
 print(“[Shutdown] Close command received. Goodbye!”)
except sockError as se:
 print(“[Error] Socket was aborted. socket.error %s” % (se))
except TTransport.TTransportException as tte:
 print(“[Error] Server response timed out or data was lost.” + \

“ TTransportException(%d): %s” % (tte.type, tte))
except Thrift.TApplicationException as ta:
 print(“[Error] There appears to be an interface mismatch. Expected” + \

“ version of interface is %s: %s” % (constants.VERSION, ta))
except Exception as e:
 print(“[Error] Exception: %s %s” % (type(e), e))
except:
 print(“[Error] BaseException: %s” % sys.exc_info()[0])

 137

Z. SESSION_SERVER.PY

‘‘‘
 M-PIPE interface: MC3 Picosatellite Internet Protocol Extension
 Author:
 Aaron Felt, Naval Postgraduate School
 Description:

This script is meant to exercise, test, and demonstrate the
Session Thrift interface as a server and is intended to be used
with session_client.py. As it doesn’t specify a protocol, it
defaults to TBinaryProtocol but does use sockets as expected.

‘‘‘
import sys
sys.path.append(‘gen-py’)
from thrift.transport import TSocket
from thrift.server import TServer
from mpipe_session import SessionControl

class SessionHandler(SessionControl.Iface):

 def GetSessionInfo(self):
 info = SessionControl.SessionInfo(
 CatalogNumber=39400,
 latitude=36.651231,
 longitude=-121.81231,
 altitude=30.12
)
 return info

 def SetSessionConfig(self, config):
 if ((config.isAutoAntTrack or config.isAutoDopplerTrack) \

and config.currTLE == None):
 print(“[Server] Exception thrown for bad config”)
 raise SessionControl.ConfigException(badConfig=config,

error=SessionControl.ConfigError.noTLEForTrack)
 print(“[Server] Config received”)
 print(“[Server] %s” % config)
 return config

if __name__ == “__main__”:
 svr_trans = TSocket.TServerSocket(port=8585)
 processor = SessionControl.Processor(SessionHandler())
 server = TServer.TSimpleServer(processor, svr_trans)
 server.serve()

 138

AA. CA_SCHEDULER.PY

‘‘‘
 M-PIPE interface: MC3 Picosatellite Internet Protocol Extension
 Author:
 Aaron Felt, Naval Postgraduate School
 Description:

This script is meant to exercise, test, and demonstrate the
Scheduler Thrift interface as a CA and is intended to be used
with sa_scheduler.py. As it doesn’t specify a protocol, it
defaults to TBinaryProtocol but does use sockets as expected.

‘‘‘
import sys, getopt
sys.path.append(“gen-py”)

from thrift import Thrift
from thrift.transport import TSocket, TTransport
from thrift.protocol import TBinaryProtocol
from thrift.server import TServer
import EventTServerSocket
from socket import error as sockError
import threading
from time import sleep
from mpipe_scheduler import ResourceOfferer, ResourceScheduler
from mpipe import constants
from resource_scheduler_server import ResourceSchedulerHandler
from mpipe_globals.ttypes import Mode, Modulation, Encoding, RSConfig,
LinkLayerProt
from mpipe_scheduler.ResourceScheduler import Direction
from mpipe_antenna.ttypes import Polarization

def main(argv):
 # Default random ports
 caPort = 8585
 saPort =caPort+1
 try:
 opts, args = getopt.getopt(argv,”hs:c:,”[“sport=,”“cport=“])
 except getopt.GetoptError:
 print(“sa_example.py -s <SA port> -c <CA port>“)
 sys.exit(2)
 for opt, arg in opts:
 if opt == ‘-h’:
 print(“sa_example.py -s <SA port> -c <CA port>“)
 sys.exit()
 elif opt in (“-s,” “--sport”):
 saPort = int(arg)
 elif opt in (“-c,” “--cport”):
 caPort = int(arg)
 print(“SA port is ,” saPort)
 print(“CA port is ,” caPort)

 # Create an event that can signal when a connection comes in from the

 139

SA indicating we can move on
 connEvent = threading.Event()

 # Start a ResourceScheduler server
 rsHandler = ResourceSchedulerHandler()
 rsProcessor = ResourceScheduler.Processor(rsHandler)

 # Use a custom event-handling threaded server
 rsTrans = EventTServerSocket.EventTServerSocket(event=connEvent,

port=caPort)
 rsServer = TServer.TThreadedServer(rsProcessor, rsTrans)

 # Serve in a thread as a daemon
 rsServer_thread = threading.Thread(target=rsServer.serve)
 # Exit the server thread when the main thread terminates
 rsServer_thread.daemon = True
 rsServer_thread.start()

 # Wait for a connection to come in from the SA on our service
 print “Waiting for connection from SA to initiate service”
 connEvent.wait()

 # Give servers time to start up
 sleep(1)

 # Start a ResourceOfferer client
 roSocket = TSocket.TSocket(“localhost,” saPort)
 roSocket = TTransport.TBufferedTransport(roSocket)
 roSocket.open()
 roProtocol = TBinaryProtocol.TBinaryProtocol(roSocket)
 roClient = ResourceOfferer.Client(roProtocol)

 # Make sure the resource has been added and finalized before reserving

it
 sleep(1)

 config =ResourceOfferer.ResourceConfig(id = 1,
 saName = “SA1,”
 # Unix time for 3 PM UTC on Sep 18, 2014 plus 5 minutes to cause

need for resource to be split
 start = 5.0*60.0 + 1412349478.884,
 # Unix time for 3 PM UTC on Sep 18, 2014 plus 10 minutes to cause

need for resource to be split again
 stop = 10.0*60.0 + 1412349478.884,
 direction = Direction.TX

)
 radioSelections = ResourceOfferer.RadioSelections(\

centerFrequency = 922.325,
 mode = Mode.FM,
 modulation = Modulation.BPSK,
 hardwareBandwidth = 1.5,
 linkLayerProt = LinkLayerProt.HDLC,
 encoding = Encoding.NRZI,
 baud = 115200,

 140

 useViterbi = True,
 usePRN = True,
 useRS = False,
 useTurboCode = False
)

 user = ResourceOfferer.User(userName = “Bob,”
 publicCertificate = “a certificate”
)
 roClient.ScheduleResource(config, radioSelections, user)
 print(“[CA] Resource scheduled for user:”)
 print(user)

if __name__ == “__main__”:
 main(sys.argv[1:])

 141

BB. SA_SCHEDULER.PY

‘‘‘
 M-PIPE interface: MC3 Picosatellite Internet Protocol Extension
 Author:
 Aaron Felt, Naval Postgraduate School
 Description:

This script is meant to exercise, test, and demonstrate the
Scheduler Thrift interface as an SA and is intended to be used
with ca_scheduler.py. As it doesn’t specify a protocol, it
defaults to TBinaryProtocol but does use sockets as expected.

‘‘‘
import sys, getopt
sys.path.append(“gen-py”)

from thrift import Thrift
from thrift.transport import TSocket, TTransport
from thrift.protocol import TBinaryProtocol
from thrift.server import TServer
from socket import error as sockError
from time import sleep
import threading
import Queue
from mpipe_scheduler import ResourceOfferer, ResourceScheduler
from resource_offerer_server import ResourceOffererHandler
from mpipe_globals.ttypes import Mode, Modulation, Encoding, RSConfig,
LinkLayerProt
from mpipe_scheduler.ResourceScheduler import Direction
from mpipe_antenna.ttypes import Polarization

myName = “SA1”

def main(argv):
 # Default random ports
 caPort = 8585
 saPort =caPort+1
 try:
 opts, args = getopt.getopt(argv,”hs:c:,”[“sport=,”“cport=“])
 except getopt.GetoptError:
 print(“sa_example.py -s <SA port> -c <CA port>“)
 sys.exit(2)
 for opt, arg in opts:
 if opt == ‘-h’:
 print(“sa_example.py -s <SA port> -c <CA port>“)
 sys.exit()
 elif opt in (“-s,” “--sport”):
 saPort = int(arg)
 elif opt in (“-c,” “--cport”):
 caPort = int(arg)
 print(“SA port is ,” saPort)
 print(“CA port is ,” caPort)

 # Connect as a client to the CA’s ResourceScheduler interface

 142

 rsSocket = TSocket.TSocket(“localhost,” 8585)
 rsSocket = TTransport.TBufferedTransport(rsSocket)
 rsSocket.open()
 rsProtocol = TBinaryProtocol.TBinaryProtocol(rsSocket)
 rsClient = ResourceScheduler.Client(rsProtocol)

 # Start a ResourceOfferer server interface for the CA to connect to
 roProcessor = ResourceOfferer.Processor(ResourceOffererHandler())
 roTrans = TSocket.TServerSocket(port=saPort)
 roServer = TServer.TThreadedServer(roProcessor, roTrans)

 # Serve in a thread as a daemon
 roServer_thread = threading.Thread(target=roServer.serve)
 # Exit the server thread when the main thread terminates
 roServer_thread.daemon = True
 roServer_thread.start()

 # Save a queue for new/unused resource IDs
 unusedResourceIDs = Queue.Queue()
 # Save a map for resources
 resourceMap = dict()
 radioOptionsMap = dict()
 restrictionsMap = dict()

 #Get a resource ID
 id = rsClient.RequestResourceID()
 try:
 int(id)
 except ValueError:
 print(“[ERROR] The scheduler returned a non-int as a” + \

“ resource ID”)
 sys.exit(1)
 # Throw the ID in the queue and pull it right back out (just for good

practice here)
 unusedResourceIDs.put(id)
 resourceID = unusedResourceIDs.get()

 radioOptionsMap[resourceID] = ResourceScheduler.RadioOptions(
 mode = [Mode.FM,
 Mode.LSB],
 modulation = [Modulation.AFSK,
 Modulation.GMSK,
 Modulation.BPSK],
 hardwareBandwidths = [0.0015,
 0.003,
 0.006,
 1.5,
 3,
 6],
 linkLayerProt = [LinkLayerProt.HDLC],
 encoding = [Encoding.NRZI,
 Encoding.NRZS],
 baud = [1200,
 9600,

 143

 19200,
 57600,
 115200,
 921600],
 viterbiSupported = True,
 prnSupported = True,
 rsSupported = False,
 turboCodeSupported = False
)

 restrictionsMap[resourceID] = [ResourceScheduler.RadioRestrictions(

mode = Mode.LSB,
 modulation = Modulation.BPSK),
 ResourceScheduler.RadioRestrictions(

modulation = Modulation.BPSK,
 baud = 1200),
 ResourceScheduler.RadioRestrictions(

modulation = Modulation.BPSK,
 baud = 9600),
 ResourceScheduler.RadioRestrictions(

modulation = Modulation.BPSK,
 baud = 19200),
 ResourceScheduler.RadioRestrictions(

modulation = Modulation.GMSK,
 baud = 57600),
 ResourceScheduler.RadioRestrictions(

modulation = Modulation.GMSK,
 baud = 115200),
 ResourceScheduler.RadioRestrictions(

modulation = Modulation.GMSK,
 baud = 921600)]

 resourceMap[resourceID] = ResourceScheduler.ResourceOptions(
 id = resourceID,
 saName = myName,
 start = 1412349478.884, # Unix time for 3 PM UTC on Sep 18, 2014
 stop = 1412349478.884 + 60.0*15.0, # 15 minutes out
 maxSecReserve = 60*15,
 direction = Direction.TX,
 lowFreq = 902.0,
 highFreq = 928.0,
 radioManufacturer = “Radios Inc,”
 radioModel = “100,”
 acuManufacturer = “Yaesu,”
 acuModel = “G-5500,”
 paManufacturer = “ICOM,”
 paModel = “920A,”
 ampManufacturer = “ICOM,”
 ampModel = “AS45,”
 azSlewRateMin = 1.0,
 azSlewRateMax = 5.0,
 elSlewRateMin = 1.0,
 elSlewRateMax = 5.0,
 polarizations = [Polarization.LHC,

 144

 Polarization.RHC],
 gain = 21.7,
 antControlEnabled = True,
 minAz = 0.0,
 maxAz = 450.0,
 minEl = 0.0,
 maxEl = 180.0,
 minElTx = 10.0,
 paControlEnabled = True,
 paMinGain = 0.0,
 paMaxGain = 30.0,
 freqControlEnabled = True,
 latitude=36.651231,
 longitude=-121.81231,
 altitude=30.12
)

 # Should be successful
 rsClient.OfferResource(resourceMap[resourceID],

radioOptionsMap[resourceID],
restrictionsMap[resourceID])

 print(“[SA] Offered a resource”)

 # Run until test ended
 while(True):
 sleep(1)

if __name__ == “__main__”:
 main(sys.argv[1:])

 145

CC. USER_CONTROL_EXAMPLE.PY

‘‘‘
 M-PIPE interface: MC3 Picosatellite Internet Protocol Extension
 Author:
 Aaron Felt, Naval Postgraduate School
 Name:
 user_control_example.py
 Description:

This script is meant to exercise, test, and demonstrate the user
side of a resource-control interface and is intended to be used
with sa_control_example.py. This script demonstrates control of
every piece of hardware as well as session control interfaces
remotely by a user. It begins with a user hosting a received
packet server interface, waiting for a connection from the SA.
The SA connects and opens server interfaces to the user for
hardware and session control, and the user connects to these
interfaces and tests each interface.

‘‘‘
import sys, getopt
sys.path.append(“gen-py”)

from thrift import Thrift
from thrift.transport import TSocket, TTransport
from thrift.protocol import TBinaryProtocol
from thrift.server import TServer
from socket import error as sockError
from mpipe_packet import PacketService
from mpipe_session import SessionControl
from mpipe_antenna import AntControl
from mpipe_cpu import CPUControl
from mpipe_preamp import PAControl
from mpipe_amp import AmpControl
from mpipe_radio import RControl
from mpipe import constants
import packet_server
import threading
import EventTServerSocket
from time import sleep
from mpipe_globals.ttypes import Mode, Modulation, Encoding, RSConfig,
LinkLayerProt

MAX_PACKET_SIZE = 223

def main(argv):
 # Default random ports
 userPort = 8585
 saPort = userPort+10
 try:
 opts, args = getopt.getopt(argv,”hs:u:,”[“sport=,”“uport=“])
 except getopt.GetoptError:
 print(“user_control_example.py -s <SA port> -u <user port>“)

 146

 sys.exit(2)
 for opt, arg in opts:
 if opt == ‘-h’:
 print(“user_control_example.py -s <SA port> -u” + \

“ <user port>“)
 sys.exit()
 elif opt in (“-s,” “--sport”):
 saPort = int(arg)
 elif opt in (“-u,” “--uport”):
 userPort = int(arg)
 print(“SA port is %d” % saPort)
 print(“User port is %d” % userPort)

 # Create an event that can signal when a connection comes in from the

SA indicating pass start
 connEvent = threading.Event()

 # Start the RX packet server
 rxPacketHandler = packet_server.PacketHandler()
 rxPacketProcessor = PacketService.Processor(rxPacketHandler)
 # Use a custom event-handling threaded server
 rxPacketTrans = EventTServerSocket.EventTServerSocket(event=connEvent,

port=userPort)
 rxPacketServer = TServer.TThreadedServer(rxPacketProcessor,

rxPacketTrans)

 # Serve in a thread as a daemon
 rxPacketServer_thread = threading.Thread(target=rxPacketServer.serve)
 # Exit the server thread when the main thread terminates
 rxPacketServer_thread.daemon = True
 rxPacketServer_thread.start()

 # Wait for a connection to come in from the SA on our packet service
 print “Waiting for connection from SA to initiate service”
 connEvent.wait()

 # Give servers time to start up
 sleep(1)

 # Starting TX packet client
 txPacketSocket = TSocket.TSocket(“localhost,” saPort)
 txPacketSocket = TTransport.TBufferedTransport(txPacketSocket)
 txPacketSocket.open()
 txPacketProtocol = TBinaryProtocol.TBinaryProtocol(txPacketSocket)
 txPacketClient = PacketService.Client(txPacketProtocol)

 # Starting session client
 sessSocket = TSocket.TSocket(“localhost,” saPort+1)
 sessSocket = TTransport.TBufferedTransport(sessSocket)
 sessSocket.open()
 sessProtocol = TBinaryProtocol.TBinaryProtocol(sessSocket)
 sessClient = SessionControl.Client(sessProtocol)

 # Starting the antenna client

 147

 antSocket = TSocket.TSocket(“localhost,” saPort+2)
 antSocket = TTransport.TBufferedTransport(antSocket)
 antSocket.open()
 antProtocol = TBinaryProtocol.TBinaryProtocol(antSocket)
 antClient = AntControl.Client(antProtocol)

 # Starting the RX radio client
 rxRadSocket = TSocket.TSocket(“localhost,” saPort+3)
 rxRadSocket = TTransport.TBufferedTransport(rxRadSocket)
 rxRadSocket.open()
 rxRadProtocol = TBinaryProtocol.TBinaryProtocol(rxRadSocket)
 rxRadClient = RControl.Client(rxRadProtocol)

 # Starting the TX radio client
 txRadSocket = TSocket.TSocket(“localhost,” saPort+4)
 txRadSocket = TTransport.TBufferedTransport(txRadSocket)
 txRadSocket.open()
 txRadProtocol = TBinaryProtocol.TBinaryProtocol(txRadSocket)
 txRadClient = RControl.Client(txRadProtocol)

 # Starting the pre-amp client
 paSocket = TSocket.TSocket(“localhost,” saPort+5)
 paSocket = TTransport.TBufferedTransport(paSocket)
 paSocket.open()
 paProtocol = TBinaryProtocol.TBinaryProtocol(paSocket)
 paClient = PAControl.Client(paProtocol)

 # Starting the amp client
 ampSocket = TSocket.TSocket(“localhost,” saPort+6)
 ampSocket = TTransport.TBufferedTransport(ampSocket)
 ampSocket.open()
 ampProtocol = TBinaryProtocol.TBinaryProtocol(ampSocket)
 ampClient = AmpControl.Client(ampProtocol)

 # Starting the CPU client
 cpuSocket = TSocket.TSocket(“localhost,” saPort+7)
 cpuSocket = TTransport.TBufferedTransport(cpuSocket)
 cpuSocket.open()
 cpuProtocol = TBinaryProtocol.TBinaryProtocol(cpuSocket)
 cpuClient = CPUControl.Client(cpuProtocol)

 # Ready to go! Send commands
 print(“Full session with SA established”)

 # Get ground station info (should know this from resource reservation

anyways but can check here)
 sessInfo = sessClient.GetSessionInfo()
 print(“Satellite ID: %d” % sessInfo.CatalogNumber)
 print(“Lat: %f\tLon: %f\tAlt: %f” % (sessInfo.latitude,

sessInfo.longitude,
sessInfo.altitude))

 # Configure session
 try:

 148

 config = SessionControl.SessionConfig(
 isAutoAntTrack = False,
 isAutoDopplerTrack = False
)
 sessClient.SetSessionConfig(config)
 except SessionControl.ConfigException as ce:
 print(“The SA did not accept the session” + \

“ configuration requested.”)
 print(ce)

 # Configure slew rate and polarization
 try:
 config = AntControl.AntConfig(azSlewRate=3.1,

elSlewRate=3.1,
polarization=AntControl.Polarization.RHC)

 msg = antClient.AntConfigure(config)
 except AntControl.BadConfigException as bce:
 print(“Attempted to enter an antenna config but received” + \

“ an exception”)
 print(bce)

 # Get current antenna position
 antStatus = antClient.AntGetStatus()
 print(“Current antenna pointing direction: %s” \

% antStatus.currDirection)

 # Point the antenna at the lowest elevation allowed of 10 degrees at

23.4 Az where the satellite will come into view pointDirection =
AntControl.AntDirection(azimuth=23.4, elevation=10.0)

 msg = antClient.AntPoint(pointDirection)
 print(pointDirection)

 # Turn off the brake
 try:
 msg = antClient.AntBrake(False)
 print(“Brake released on antenna”)
 except AntControl.NoBrakeException:
 print(“Attempted to use brake but ground station antenna” + \

“ doesn’t have a brake.”)

 # Test AntStatus and pointing success
 antStatus = antClient.AntGetStatus()
 if not (antStatus.healthy):
 print(“Antenna status is degraded”)
 else:
 newPointDirection = antStatus.currDirection
 print(“Checking that antenna has pointed to correct direction”)
 if (abs(newPointDirection.azimuth - pointDirection.azimuth) \

> 1.0 or abs(newPointDirection.elevation - \
pointDirection.elevation) > 1.0):

 print(“Greater than 1 degree off target in at least” + \
“ one axis still”)

 else:
 print(“Pointing within a degree in both axes”)

 149

 # Configure the RX radio
 rxConfig = RControl.RConfig(
 freq = 2415.2,
 mode = Mode.PM,
 attenuation = 0.0,
 encoding = Encoding.NRZI,
 useDiffEncode = True,
 useReedSolomon = True,
 rsParams = RSConfig(
 n = 200,
 k = 250),
 llProt = LinkLayerProt.HDLC,
 modulation = Modulation.BPSK,
 baud = 57600,
 acqRange = 0.5)
 print(“Setting RX radio config”)
 print(rxConfig)
 try:
 msg = rxRadClient.RadioConfigure(rxConfig)
 except RControl.ConfigException as ce:
 print(“SA rejected RX radio configuration”)
 print(ce)

 # Configure the TX radio
 txConfig = RControl.RConfig(
 freq = 2310.8,
 mode = Mode.FM,
 powerLevel = 100.0,
 encoding = Encoding.NRZI,
 useDiffEncode = True,
 llProt = LinkLayerProt.HDLC,
 modulation = Modulation.GMSK,
 baud = 57600)
 print(“Setting TX radio config”)
 print(txConfig)
 try:
 msg = txRadClient.RadioConfigure(txConfig)
 except RControl.ConfigException as ce:
 print(“SA rejected TX radio configuration”)
 print(ce)

 # Test RGetReceiveInfo works
 msg = rxRadClient.RGetReceiveInfo()
 print(“Current RX radio receive strength: %s” % (msg))

 # Try to enable the pre-amp
 msg = paClient.PAEnable(True)
 print(“Powered on pre-amp”)

 # Set the pre-amp gain
 try:
 newPAGain = 30.0
 msg = paClient.PASetGain(newPAGain)

 150

 print(“Set pre-amp gain to 30.0dB”)
 except PAControl.GainException as ge:
 print(“SA did not accept requested pre-amp gain”)
 print(“%s” % ge)

 # Verify that pre-amp started
 paStatus = paClient.PAGetStatus()
 if (not paStatus.healthy):
 print(“Pre-amp is in a degraded state with error code: %d” \

% paStatus.degradedCode)
 elif (not paStatus.currPowerState):
 print(“Pre-amp didn’t power on as requested”)
 elif (paStatus.currGain != newPAGain):
 print(“Pre-amp gain does not match requested gain”)
 else:
 print(“Pre-amp started correctly and settings are correct”)

 # Try to enable the amp
 msg = ampClient.AmpEnable(True)
 print(“Powered on amp”)

 # Set the amp gain
 try:
 newAmpGain = 100.0
 msg = ampClient.AmpSetGain(newAmpGain)
 print(“Set amp gain to 100.0dB”)
 except AmpControl.GainException as ge:
 print(“SA did not accept requested amp gain”)
 print(“%s” % ge)

 # Verify that amp started
 ampStatus = ampClient.AmpGetStatus()
 if (not ampStatus.healthy):
 print(“Amp is in a degraded state with error code: %d” \

% ampStatus.degradedCode)
 elif (not ampStatus.currPowerState):
 print(“Amp didn’t power on as requested”)
 elif (ampStatus.currGain != newAmpGain):
 print(“Amp gain does not match requested gain”)
 else:
 print(“Amp started correctly and settings are correct”)

 # Check the CPU status
 cpuStatus = cpuClient.GetCPUStatus()
 print(“CPU status at SA: %s” % cpuStatus)

 # Check the network status
 netStatus = cpuClient.GetNetStatus()
 print(“Network status at SA: %s” % netStatus)

 # Send TX data forever
 currPacketID = 1
 # # Send received data forever
 while(True): # Normal test would be until resource allocation time is up

 151

 sleep(1)
 packet = PacketService.Packet(packetID=currPacketID,

data=“Current TX packet you are” + \
“ receiving: %d” % currPacketID)

 try:
 msg = txPacketClient.SendPacket(packet)
 except PacketService.PacketSizeException as pse:
 print(“Packet size exception received in attempt to” + \

“ send a received packet”)
 print(pse)
 currPacketID = currPacketID + 1

if __name__ == “__main__”:
 main(sys.argv[1:])

 152

DD. SA_CONTROL_EXAMPLE.PY

‘‘‘
 M-PIPE interface: MC3 Picosatellite Internet Protocol Extension
 Author:
 Aaron Felt, Naval Postgraduate School
 Name:
 sa_control_example.py
 Description:
 This script is meant to exercise, test, and demonstrate the SA

side of a resource-control interface and is intended to be used
with user_control_example.py. This script demonstrates control of
every piece of hardware as well as session control interfaces
remotely by a user. It begins with a user hosting a received
packet server interface, waiting for a connection from the SA.
The SA connects and opens server interfaces to the user for
hardware and session control, and the user connects to these
interfaces and tests each interface.

‘‘‘
import sys, getopt
sys.path.append(“gen-py”)

from thrift import Thrift
from thrift.transport import TSocket, TTransport
from thrift.protocol import TBinaryProtocol
from thrift.server import TServer
from socket import error as sockError
from mpipe_packet import PacketService
from mpipe_session import SessionControl
from mpipe_antenna import AntControl
from mpipe_cpu import CPUControl
from mpipe_preamp import PAControl
from mpipe_amp import AmpControl
from mpipe_radio import RControl
from mpipe import constants
import threading
import packet_server
from session_server import SessionHandler
from cpu_server import CPUHandler
from radio_server import RHandler
from preamp_server import PAHandler
from amp_server import AmpHandler
from antenna_server import AntHandler
from time import sleep

MAX_PACKET_SIZE = 223

def main(argv):
 # Default random ports
 userPort = 8585
 saPort = userPort+10
 try:

 153

 opts, args = getopt.getopt(argv,”hs:u:,”[“sport=,”“uport=“])
 except getopt.GetoptError:
 print(“sa_ control_example.py -s <SA port> -u <user port>“)
 sys.exit(2)
 for opt, arg in opts:
 if opt == ‘-h’:
 print(“sa_control_example.py -s <SA port> -u <user port>“)
 sys.exit()
 elif opt in (“-s,” “--sport”):
 saPort = int(arg)
 elif opt in (“-u,” “--uport”):
 userPort = int(arg)
 print(“SA port is ,” saPort)
 print(“User port is ,” userPort)

 # Starting RX packet client to kick off the session
 rxPacketSocket = TSocket.TSocket(“localhost,” userPort)
 rxPacketSocket = TTransport.TBufferedTransport(rxPacketSocket)
 rxPacketSocket.open()
 rxPacketProtocol = TBinaryProtocol.TBinaryProtocol(rxPacketSocket)
 rxPacketClient = PacketService.Client(rxPacketProtocol)

 # Starting the TX packet server
 txPacketTrans = TSocket.TServerSocket(port=saPort)
 txPacketProcessor = \

PacketService.Processor(packet_server.PacketHandler())
 txPacketServer = TServer.TSimpleServer(txPacketProcessor, txPacketTrans)
 # Serve in a thread as a daemon
 txPacketServer_thread = threading.Thread(target=txPacketServer.serve)
 # # Exit the server thread when the main thread terminates
 txPacketServer_thread.daemon = True
 txPacketServer_thread.start()

 # Starting session server
 sessTrans = TSocket.TServerSocket(port=saPort+1)
 sessProcessor = SessionControl.Processor(SessionHandler())
 sessServer = TServer.TSimpleServer(sessProcessor, sessTrans)
 # Serve in a thread as a daemon
 sessServer_thread = threading.Thread(target=sessServer.serve)
 # Exit the server thread when the main thread terminates
 sessServer_thread.daemon = True
 sessServer_thread.start()

 # Starting the antenna server
 antTrans = TSocket.TServerSocket(port=saPort+2)
 antProcessor = AntControl.Processor(AntHandler())
 antServer = TServer.TSimpleServer(antProcessor, antTrans)
 # Serve in a thread as a daemon
 antServer_thread = threading.Thread(target=antServer.serve)
 # Exit the server thread when the main thread terminates
 antServer_thread.daemon = True
 antServer_thread.start()

 # Starting the RX radio server

 154

 rxRadTrans = TSocket.TServerSocket(port=saPort+3)
 rxRadProcessor = RControl.Processor(RHandler())
 rxRadServer = TServer.TSimpleServer(rxRadProcessor, rxRadTrans)
 # Serve in a thread as a daemon
 rxRadServer_thread = threading.Thread(target=rxRadServer.serve)
 # Exit the server thread when the main thread terminates
 rxRadServer_thread.daemon = True
 rxRadServer_thread.start()

 # Starting the TX radio server
 txRadTrans = TSocket.TServerSocket(port=saPort+4)
 txRadProcessor = RControl.Processor(RHandler())
 txRadServer = TServer.TSimpleServer(txRadProcessor, txRadTrans)
 # Serve in a thread as a daemon
 txRadServer_thread = threading.Thread(target=txRadServer.serve)
 # Exit the server thread when the main thread terminates
 txRadServer_thread.daemon = True
 txRadServer_thread.start()

 # Configuring the pre-amp for boot
 paMinGain = 0.0
 paMaxGain = 30.0
 paIsPowered = False
 paGain = 3.0

 # Configuring the amp for boot
 ampMinGain = 0.0
 ampMaxGain = 130.0
 ampIsPowered = False
 ampGain = 3.0

 # Starting the pre-amp server
 paTrans = TSocket.TServerSocket(port=saPort+5)
 paProcessor = PAControl.Processor(PAHandler(paMinGain,

paMaxGain,
paIsPowered,
paGain))

 paServer = TServer.TSimpleServer(paProcessor, paTrans)
 # Serve in a thread as a daemon
 paServer_thread = threading.Thread(target=paServer.serve)
 # Exit the server thread when the main thread terminates
 paServer_thread.daemon = True
 paServer_thread.start()

 # Starting the amp server
 ampTrans = TSocket.TServerSocket(port=saPort+6)
 ampProcessor = AmpControl.Processor(AmpHandler(ampMinGain,

ampMaxGain,
ampIsPowered,
ampGain))

 ampServer = TServer.TSimpleServer(ampProcessor, ampTrans)
 # Serve in a thread as a daemon
 ampServer_thread = threading.Thread(target=ampServer.serve)
 # Exit the server thread when the main thread terminates

 155

 ampServer_thread.daemon = True
 ampServer_thread.start()

 # Starting the CPU server
 cpuTrans = TSocket.TServerSocket(port=saPort+7)
 cpuProcessor = CPUControl.Processor(CPUHandler())
 cpuServer = TServer.TSimpleServer(cpuProcessor, cpuTrans)
 # Serve in a thread as a daemon
 cpuServer_thread = threading.Thread(target=cpuServer.serve)
 # Exit the server thread when the main thread terminates
 cpuServer_thread.daemon = True
 cpuServer_thread.start()

 # Ready to go, can now send RX data as received

 currPacketID = 1

 # Send received data forever
 while(True): # Normal test would be until resource allocation time is up
 sleep(1)
 packet = PacketService.Packet(packetID=currPacketID,

data=“Current RX packet you” + \
“ are receiving: %d” % currPacketID)

 try:
 msg = rxPacketClient.SendPacket(packet)
 except PacketService.PacketSizeException as pse:
 print(“Packet size exception received in attempt to” + \

“ send a received packet”)
 print(pse)
 currPacketID = currPacketID + 1

if __name__ == “__main__”:
 main(sys.argv[1:])

 156

THIS PAGE INTENTIONALLY LEFT BLANK

 157

LIST OF REFERENCES

Abernethy, R. (2014). The programmer’s guide to Apache Thrift. Shelter Island,
NY: Manning.

Apache Software Foundation. (2014). Apache Thrift - Thrift types. Retrieved
November 07, 2014, from apache.org: https://thrift.apache.org/docs/types

Bachmann, F., Bass, L., Clements, P., Garlan, D., Ivers, J., Little, R. … Stafford,
J. (2002). Documenting software architectures: Documenting interfaces.
Pittsburgh, PA: Carnegie Mellon Software Engineering Institute.

Consultative Committee for Space Data Systems. (2001). Overview of Space
Link protocols. Oxfordshire, UK: CCSDS Secretariat.

Consultative Committee for Space Data Systems. (2005). Cross support
reference model - Part 1: Space Link Extension services. Washington,
DC: CCSDS Secretariat.

Corliss, W. (1967). The evolution of the Satellite Tracking and Data Acquisition
Network (STADAN). Greenbelt, Maryland: NASA, Goddard Space Flight
Center.

Corliss, W. (1974). Histories of the Space Tracking and Data Acquisition Network
(STADAN), the Manned Space Flight Network (MSFN), and the NASA
Communication Network (NASCOM). NASA.

Cutler, J. (2004). Global CubeSat operations. CubeSat Developers’ Workshop.
San Luis Obispo, CA: Stanford University. Retrieved November 07, 2014,
from cubesat.org:
http://www.cubesat.org/images/cubesat/presentations/DevelopersWorksh
op2004/1c_stanford.pdf

Cutler, J. (2004). Ground Station Markup Language. IEEE Aerospace
Conference Proceedings, 5, 3337–3343. doi:
10.1109/AERO.2004.1368140

Cutler, J., Linder, P., & Fox, A. (2002). A federated ground station network. AIAA
SpaceOps Conference. doi: 10.2514/6.2002-T2-72

Darrin, A., & O’Leary, B. (2009). Handbook of space engineering, archaelogy,
and heritage. Boca Raton, FL: CRC Press.

DuVander, A. (2010, July 09). New job requirement: Experience building RESTful
APIs. Retrieved October 04, 2014, from ProgrammableWeb:

 158

http://www.programmableweb.com/news/new-job-requirement-
experience-building-restful-apis/2010/06/09

Elbert, B. (2001). The satellite communication ground segment and earth station
handbook. Norwood, MA: Artech House.

Erl, T. (2005). Service-oriented architecture: Concepts, technology, and design.
Upper Saddle River, NJ: Prentice Hall.

Gordon, G., & Morgan, W. (1993). Principles of communications satellites. New
York, NY: John Wiley & Sons.

Henning, M. (2006). The rise and fall of CORBA. ACMQueue, 4(5), 28–34.
Retrieved November 17, 2014 from acm.org:
http://queue.acm.org/detail.cfm?id=1142044

Leffke, Z. (2013). Distributed ground station network for CubeSat
communications. Blacksburg, VA: Virginia Polytechnic Institute and State
University.

Leveque, K., Puig-Suari, J., & Turner, C. (2007). Global Educational Network for
Satellite Operations (GENSO). AIAA/USU Conference on Small Satellites.
Retrieved November 07, 2014 from usu.edu:
http://digitalcommons.usu.edu/cgi/viewcontent.cgi?article=1506&context=s
mallsat

Minelli, G., Ibbitson, P., Felt, A., Yzquierdo, E., Horning, J., Rigmaiden, D. …
Newman, J. (2012). Mobile CubeSat Command and Control (MC3) ground
stations. 2012 Annual Summer CubeSat Developers’ Workshop.
Retrieved November 15, 2014 from cubesat.org:
http://www.cubesat.org/images/cubesat/presentations/SummerWorkshop2
012/Day_2/1145_Giovanni_Minelli.pdf

Miyashita, N., Nakaya, K., Ui, K., & Matunaga, S. (2003). Internet and XML-
based extensible and low-cost ground station system. International
Astronautical Congress of the International Astronautical Federation, the
International Academy of Astronautics, and the International Institute of
Space Law, 54. doi: 10.2514/6.IAC-03-U.2.a.06

NASA, G. S. (2010). Near Earth Network (NEN) users’ guide. Greenbelt, MD:
NASA.

Python Software Foundation. (n.d.). 11.1.pickle - Python object serialization -
Python 2.7.8 documentation. Retrieved November 14, 2014, from
Python.org: https://docs.python.org/2/library/pickle.html

 159

Royal Pingdom. (2010, October 15). REST in peace, SOAP. Retrieved
November 3, 2014, from Pingdom:
http://royal.pingdom.com/2010/10/15/rest-in-peace-soap/

RSA Laboratories. (2000). PKCS #5: Password-Based Cryptography
Specification version 2.0. Bedford, MA: RSA Laboratories.

Sakamoto, Y. (2009, 01 14). UNISEC GSN-WG. Retrieved November 20, 2014,
from Tohoku University: http://www.astro.mech.tohoku.ac.jp/~gsn/en/

Shirville, G., & Klofas, B. (2007). GENSO: A global ground station network.
AMSAT Conference Proceedings. Retrieved October 24, 2014 from
klofas.com: http://www.klofas.com/papers/AMSAT_2007.pdf

Stallings, W., & Brown, L. (2008). Computer security: Principles and practice.
Upper Saddle River, NJ: Pearson Education.

TIOBE Software. (2014, October). TIOBE Software: Tiobe Index. Retrieved
October 2, 2014, from TIOBE:
http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html

Tubio, R., Vazquez, A. J., Puig, J., Kurahara, N., & Bellardo, J. (2014). The
SATNet Project: Towards an open-source ground station network for
CubeSats. Annual Spring CubeSat Developers’ Workshop. Retrieved
October 13, 2014 from:
http://mstl.atl.calpoly.edu/~bklofas/Presentations/DevelopersWorkshop201
4/Tubio_SATNet.pdf

Union of Concerned Scientists. (2014, August 01). UCS Satellite Database.
Retrieved October 26, 2014, from Union of Concerned Scientists:
http://www.ucsusa.org/nuclear_weapons_and_global_security/solutions/sp
ace-weapons/ucs-satellite-database.html

W3C Woking Group. (2007, April 27). SOAP Version 1.2 Part1: Messaging
Framework (Second Edition). Retrieved November 05, 2014, from W3C:
http://www.w3.org/TR/2007/REC-soap12-part1-20070427/

W3C Working Group. (2004, February 11). Web Services Architecture. Retrieved
October 27, 2014, from W3.org: http://www.w3.org/TR/ws-arch/

Wertz, J., Everett, D., & Puschell, J. (2011). Space Mission Engineering: The
New SMAD. Hawthorne, CA: Microcosm Press.

ZeroC Inc. (n.d.). ZeroC - Ice vs. SOAP. Retrieved November 24, 2014, from
ZeroC.com: http://www.zeroc.com/iceVsSoap.html

 160

THIS PAGE INTENTIONALLY LEFT BLANK

 161

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
 Ft. Belvoir, Virginia

2. Dudley Knox Library
 Naval Postgraduate School
 Monterey, California

