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Multivariable SlidingKMode Control 
for Autonomous Diving and Steering 
of Unmanned Underwater Vehicles 

Anthony J. Healey and David Lienard 

Abstruct-A six degree of freedom model for the maneuvering 
of an underwater vehicle is used and a sliding mode autopilot 
is designed for the combined 
functions. In flight control a 
arise because the system to be controlled is highly nonlinear, 
coupled, and there is a good deal of parameter uncertainty 
and variation with operational conditions. The development of 
variable structure control in the form of sliding modes has 
been shown to provide robustness that is expected to be quite 
remarkable for AUV autopilot design. This paper shows that 
a multivariable sliding mode autopilot based on state feedback, 
designed assuming decoupled modeling, is quite s-ory for 
the combined speed, steering, and diving response of a slow speed 
AUV. The influence of speed, modeling nonlinearity, uncertainty, 
and disturbances, can be effectively compensated, even for com- 
plex maneuvering. Waypoint acquisition based on line of sight 
guidance is used to achieve path tracking. 

I. INTRODUCTION 
HIS PAPER proposes the use of a multivariable sliding T mode autopilot for the combined control of AUV steer- 

ing, depth, and speed during complex flight maneuvers. The 
method draws upon the power of sliding modes to reduce the 
inherent coupling between the vehicle response modes that 
naturally exist in ROV/AUV vehicles. The approach leads 
to a set of separate designs for the steering, diving, and 
speed control systems, and a series of simulations based on 
the dynamics of a swimmer delivery vehicle illustrates the 
robustness and validity of the concept. This is likely to be the 
control method of choice for AUV’s in the future. 

Well-behaved autopilot systems enable the use of a variety 
of guidance schemes to achieve waypoint and path tracking. 
Waypoint acquisition is illustrated using proportional line of 
sight guidance with and without the influence of ocean current. 
The paper contains a discussion of the vehicle modeling; the 
sliding mode control design; the guidance scheme; and the 
results of computer simulations under conditions of parameter 
mismatch. 

11. BACKGROUND 

The design of an autopilot for the control of underwater 
vehicles is of interest both from the view of motion stabi- 
lization as well as maneuvering and tracking performance. 
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AUV’s of the class considered here, fall between the two 
extremes of underwater vehicles (the ROV’s and the torpedo 
type), and are difficult to control having highly variable and 
uncertain dynamics. Recent work concerned with the modeling 
and control of ROV vehicles includes Lewis, Lipscomb, and 
Thompson [14] who described an ROV simulation program 
using linear hydrodynamic coefficients. ROV vehicles do not 
possess hydrodynamically shaped profiles and the hydrody- 
namic forces are uncertain and difficult to predict [4]. To 
overcome the widely varying and uncertain behavior of these 
vehicles Russel and Bugge [22] had considered the use of an 
adaptive automatic guidance system including modeling strong 
measurement noise of uncertain spectral nature, Yoerger and 
Slotine [28], [30] proposed and successfully used a sliding 
mode controller for an ROV maneuvering around large objects 
at very slow speed; and Goheen, Jefferys, and Broome [ 121 de- 
scribed a “self testing” procedure for evaluation of the vehicle 
dynamic response and a corresponding automatic gain selec- 
tion. In a useful summary of underwater vehicle modeling, 
Yuh [32] has described the functional form of vehicle dynamic 
equations of motion, the nature of the loadings and the use 
of adaptive control via on line parameter identification. The 
work of Yoerger and Slotine with robust control using sliding 
modes is most encouraging, and, although the extra time taken 
to perform the self-test of Goheen et al. may not always be 
available, it still has merit. Recently, Yoerger [30] showed 
that the dynamics of torque controlled thruster elements are 
problematic in ROV positioning because lags in the thrust 
response, if not taken into account, can lead to limit cycling 
behavior. Fossen [SI, and Fossen and Satagun [91 describe 
the use of multivariable sliding mode control in dynamic 
positioning of ROV’s and show that this method has great 
potential for controlling the ROV attitude and position with 
excellent robustness properties against parametric uncertainty. 

For higher speed vehicles than ROV’s, and those with 
more streamlined hydrodynamic characteristics, the situation 
is different, and previous work has been reported by Lindgren 
et al. [17], who addressed the issues of steering and depth 
control of a torpedo pointing out the importance of the 
nonlinear hydrodynamic behavior and the stroke limits of 
the surfaces; Young [31] described the stability derivatives 
of the Navy’s DSRV vehicle, and Smith et al. [25] gave a 
comparison of the performance of a simulator for a swimmer 
delivery vehicle with field response data. Dobeck et al. [6] 
provided an unclassified description of tests conducted on 
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the control systems test vehicle (CSTV) under closed loop 
computer controlled maneuvering. Humphries [ 101 describes 
analytical and empirical considerations for the evaluation 
of hydrodynamic coefficients while Gueler 1111 studied the 
independent use of bow and stern planes in submarine depth 
control under the action of wave forces. Richards and Stoten 
[21], modeling the disturbance response to waves, and later 
Milliken [ 181, concerned about the yaw-pitch coupling during 
turns, applied a linear model based compensator to the problem 
of depth control. Optimized trade-offs between plane action 
and the depth error response in waves is possible. So far, 
the issues of robustness had not been addressed to the same 
degree as for the ROV vehicles. Milliken described the use of 
a linearized model-based compensator to reduce the pitch-yaw 
coupling during turns for a linear submarine vehicle in which 
a full state observer was employed in the compensator. Some 
reduction in pitch induced response was achieved depending 
on speed. A gain schedule with two separate speed regimes 
was proposed. Consideration was given neither to the design 
of a command generator nor the feedforward response shaping 
for depth changing maneuvers. Recently, however, Ruth and 
Humphreys [23] discussed the use of robust control design us- 
ing 1-1 synthesis methods in designing the coupled speeddepth 
controller for a heavy UUV at slow speed where the plane 
action is used to control both vertical load inbalance and 
depth. Simulation results indicated that a classical controller 
could be improved using the 10-state compensator described. 
Dougberty and Woolweaver [7] have also shown that a mixed 
sliding mode control with an inner pitch control and outer 
depth control loop as used on the MUST vehicle provides 
satisfactory coupled behavior, although the details of the 
control design are few. Others have suggested the use of 
sliding modes with adaptivity, as in Cristi et al. 131 where the 
sliding surface is based on system state and state estimators 
rathter than on output error. 

It is the robustness of control of UUV’s operating in the 
range up to 10 knots that needs to be addressed, and is the 
subject of this work. This work shows that a comprehensive 
mulltivariable approach to sliding mode autopilot design leads 
to robustly satisfactory results for flight vehicles, as opposed to 
ROV’s, over a wide speed range. The sliding mode approach 
used here appears to offer simplicity for vehicle in flight 
conditions and is similar to that of Fossen and Satagun [9] 
except in the choice of technique for selection of the sliding 
surface parameters 

111. VEHICLE MODELING 
The three-dimensional equations of motion for hydrody- 

namically shaped underwater vehicles have been described 
in general terms by Abkowitz [l], and are most conve- 
niently developed using a body fixed coordinate frame and 
a global reference frame. The body fixed frame has com- 
ponents of motion given by the six velocity components, 
[ ~ ( t ) ,  w ( t ) ,  w(t) ,  p ( t ) ,  q ( t ) ,  ~ ( t ) ] ,  relative to a constant ve- 
locity coordinate frame moving with the ocean current, U,, 
and the velocity vector is represented as 

while the six components of position in the global reference 
frame are 

Z ’ ( t )  = F(t) ,  W),  Z ( t ) ,  #)(a d ( t ) ,  $431. (2)  

The angles #)(t), O ( t ) ,  $( t ) ,  (azimuth, elevation, and spin), 
are related through Euler transformations to the body yaw, 
pitch, and roll motions. Control inputs from control surfaces, 
propeller speeds, thruster forces, and buoyancy adjustment in 
general may be considered as the vector, u(t), and are more 
specifically taken for this work from a swimmer delivery 
vehicle, where 

The first four correspond to control surface deflections from 
the rudder, port, and starboard bow planes, and the stem plane, 
and the remaining two arise from propeller rotational rate and 
buoyancy adjustment. The development of the functional form 
of the hydrodynamic forces has been well studied and, in 
terms of first order variations of motion components, were 
given by Gertler and Hagen 1111 and later by Abkowitz. 
Specific values of the particular coefficients depend on specific 
vehicles, although normalization by speed and length can 
provide some generalized feeling as to their scaling behavior. 
The values used in this work were based on a box shaped 
vehicle, a simplified model of which is outlined in the sketch in 
Fig. 1. This was chosen mainly because experimental data was 
in existence for the verification of the simulation models used 
here. The coefficients are vehicle dependent and would need 
modification if applied to other vehicles. The functional form 
of the force equations are given in Boncal [2],  and are repeated 
in the Appendix. The model described includes a model of the 
cross flow drag effects, and a model of the propulsion system 
and is therefore a large departure from the original work of 
Abko witz . 

The vehicle motion may be descnbed in terms of the twelve 
nonlinear system equations [32] 

M(W4t)ldt = f(z(t), 4 t ) l  4 t ) )  + g ( 4 t ) ,  4 t ) M t )  
dz( t ) /dt  = W t ) ,  4 t ) ,  u c )  (4) 

in which the coupled mass matrix M ( t )  includes both me- 
chanical and hydrodynamic added mass; the functions f and 
g are mappings of the vehicle motions into forces including 
Coriolis, gravitational, and centrifugal forces; the hydrostatic 
and hydrodynamic forces and moments acting on the vehicle 
in the body fixed coordinate frame, with coefficients e; the 
motion dependent influence of control surfaces, thrusters, and 
any ballasting; and the function h includes the kinematical 
relationships found in performing the coordinate transforma- 
tions between body fixed and global reference frames and the 
constant ocean current, U,. 

Once a hydrodynamic design is made, these functions 
can be ’estimated and are known through a vehicle dynamic 
modeling to lie within a finite bound where that bound can 
be established a priori if knowledge of the variability of 
the vehicle coefficients c is assumed. The functions f and g 
are known to be finite gain stable. h is known to be finite 
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Fig. 1.  Sketch of the vehicle type. 

singularity may be avoided by the use of quaternions in the 
rigid body angular motion kinematics rather than Euler angles. 
In this situation and with (4) as the background model for a 
general underwater vehicle during maneuvering, the concept 
of a multivariable sliding mode control will be developed. 

will also imply 

(9) 

Global asymptotic stability of the sliding sut$uce dynamics is 
guaranteed through consideration of u(%(t), 2( t ) )  in terms of 
a Lyapunov function V(a, t ) ,  yielding 

V(a(t))  = 0.5a’(f(t), Z(t))*a(%(t), Z ( t ) ) .  (IO) 
is positive definite and unbounded* global 

%(t), Z ( t )  -+ 0 as t -+ 00. 

IV. SLIDING MODE CONCEPTS 
We define sliding surfaces in the state error space with the 

element inputs that will guarantee global stability of the state 
variable errors and provide adequate performance under closed 
loop conditions. To this end, we define a sliding surface so that 

object of finding a sufficient relationship for each of the control Since 
asymptotic Of a(t)  be assured if 

dV(a) = cia < 0 vt > 0. (11) dt  
If we define positive functions ~ ; ( t )  then global asymptotic 
stability for the dynamics of each ui(t) will be given by 

(5 )  &i(%(t), Z(t))  = -vi sgn (c~(%(t), Z ( t ) )  i = 1, 6. (12) 

each passes through the origin of the state error space. State 
errors are defined by 

corn 
We find it better, in fact, to use a continuous function to define 
“practical” sliding surface dynamics using a “tanh” function, 
- -  . . 

where the commands are derived from a consistent command 
generation system or planned path, or from a series of way- 

as in points corresponding to desired values of vehicle velocity or 
position (posture). The set of sliding surfaces in the error space d-i(Z(t) ,  Z ( t ) )  = - ~ i ( t )  tanh ( c ~ i ( Z ( t ) ,  Z ( t ) ) / # i ) .  (13) 
are then 

where 

a(t) E 726x1; S I ,  s2 E 7Px6. 

Notice that in this work as opposed to the work of Yoerger 
and Slotine [28], the sliding surfaces are based on state variable 
errors rather than output errors. For flight vehicles in which the 
modes are highly coupled, we find @is approach to be more 
flexible. The coefficient matrices SI and S2 are assumed to 
be known at this point in the development, although as will be 
seen, are not arbitrary. In fact, system closed-loop response is 
dependent on values selected and at least part of any design 
procedure using sliding mode methods is to properly select 
surfaces yielding stable closed-loop error dynamics, namely, 
that for all t and [ ~ ( t ) ,  z( t )]  lying in the space of maneuvers 
to be accomplished, the conditions 

b(jE(t), %(t)) -, 0 as t -, 00 (7) 

The powerful result of (13) means that if the are large 
enough, then in spite of modeling uncertainty, nonlinear terms, 
and disturbances, the system response will be governed by 
the response of the ai(t) and by the choice of the sliding 
surface parameters: it is less influenced by the parameters of 
the vehicle dynamics as is more usual with linear feedback 
controllers. The &, not to be confused with the vehicle’s 
roll motion Euler angle #(t) ,  are sliding surface boundary 
layer parameters used to retain continuity of control as motion 
trajectories cross the sliding surface and prevent chattering. 
It remains to compute the control law to provide the desired 
B dynamics and select S1, S2 so that stable dynamics of a 
results in stability of the tracking errors. Use of the boundary 
layer to prevent high frequency chattering of the control, 
however, means that in the presence of uncertainty we can 
only guarantee global bounded stability for both a( t )  and the 
state errors rather than global asymptotic stability for a@). 

Assuming that S1,2 are established (by the method to be 
described here), substitution of (4) and (6) into (13) yields a 
solution for the control law. 
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Since the f(.), g(.), and h(.) are uncertain in general, we 
use the estimates, f( .) , g( .) , i(.), with which the solution for 
~ ( t )  follows as 

u(t) = U1 + U2 + U3 (15) 

and the right-hand side of (13) become the elements of the 
column vector F(a,  4) .  The control u1 balances the estimates 
of the forces to perform the required maneuver, u 2  provides 
stabilization based on estimates of the positional elements in 
h, and the current, and ‘113 is a switching term that drives the 
state errors to the sliding surface. 

Equation (16) shows a useful structure provided S1 and 
5’2 are known in that ~ ( t )  contain feedforward, nonlinear 
feedback, and nonlinear switching terms that make for inherent 
robustness. It may be shown that at all times the rank of [g] and 
[SlM] must be equal to the number of independent control 
elements; that the system must be controllable; and that the 
closed-loop behavior on the sliding surface is characterized 
by 6 poles (same as the number of independent controls) at 
the origin in the error space; and that S1, SZ may be selected 
so that stable performance with desired bandwidth is also 
achieved. 

V. SELECTING SI, S2 BY LINEARIZATION 

For motions along some nominal flight path, (4) may 
be linearized into a form in which the linear terms are 
collected and residuals act as unknown forcing terms. The 
equations of motion may be linearized for any defined motion 
using a Taylor series expansion, or by the use of equivalent 
linearization based on that defined motion, resulting in the 
following: 

AND THE EQUIVALENT CONTROL 

Ai A2 

Ai,  A2, AS, A4 E R6x6; B E R6x6; 
U ( t ) ,  x(t) ,  Z ( t )  E R 6 X l ;  

Sf(t> € RiZX1. (17) 

The Sf(.) contain the differences between linearized and 
nonlinear accelerations and velocities and are in general un- 
certain but bounded for bounded motion inputs. In the above 
it is considered that the mass matrix is nominally constant and 
invertible and has been multiplied through in the dynamics 
part of (4). If the nominal path is curved, the dynamics matrix 

in (17) will be time varying. Assuming that this is not the case, 
a control based on the linearized motion model would be 

u(t) = -[S1B]-1[S1 SZ] 

The closed-loop dynamics in a sliding condition are found 
using the equivalent control defined by Utkm [27]. Also, 
without loss of generality for the case where the rank of B IS 

full, we can select SI as unity. Then, if we set F ( c ,  4) = 0 
in (18), reduce commands to zero, and realize that not only 
a(x( t ) ) ,  but also da(x(t))/dt are zero in the sliding condition, 
the resulting closed-loop dynamics are given in terms of Sz by 

and must be designed to be stable. 
Since da/dt = 0, CJ = 0, and SI = I ,  we can consider 

x = - S p  so that the dynamics of z may be specified to be 
“desirable” through some closed-loop matrix A,. It may be 
shown that under these conditions, 

dz(t)/dt = A,z(t), where A, = (Ag - A3S2). (20) 

Assuming, as is usually the case, that the pair (A4, A3) is 
controllable, then 5’2 may be found as a gain matrix for the 
pair by pole placement or by considering an LQR optimal 
control solution. 

The vehicle dynamics on the sliding surface exhibit equal 
numbers of integrations as actuation signals hence the benefit 
in robustness. Having completely designed SI and S z ,  (16) 
provides the control laws. The choice of 7% and 4% are 
dependent on the activity level desired on the control surfaces 
and/or thrusters, and on the levels of uncertainty in the estimate 
of f(.), d.) ,  q . 1 .  

VI. SOLUTION BY SEPARATE AUTOPILOTS 
FOR SEPARATE SUBSYSTEMS 

The foregoing analysis is, however, not always practical 
since in flight conditions as opposed to dynamic positioning 
of ROV’s, there are often a smaller number of independent 
actuators than degrees of freedom. For instance, both pitch 
and heave modes are controlled by dive planes. The choice 
of SI = I is therefore not always valid and B is possibly 
rank deficient in these eases. We seek an alternative solution 
approach by separating the system into noninteracting (or 
lightly interacting) subsystems, grouping certain key motion 
equations together for the separate functions of steering, div- 
ing, and speed control. Other modes of response such as roll 
are commonly left as passive-as is the case here. For dynamic 
positioning control we would return to the case of full rank 
for B and proceed as earlier outlined. 

Restructuring (17) we get for each of four subsystems 

dx,(t)/dt = A,z,(t) + bzu?.(t) 

+ Sf, (2% ( t )  1 2 3  (4  , U3 ( t )  1 t )  
2 = 1 , . . . ,  4 3 = 1, . . . ,  4 (21) 
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and the Sfi represent nonlinear and coupling terms as func- 
tions of the coupling motions zj(t) and other controls uj(t) .  
In particular, the four subsystems correspond to the speed, 
steering, diving, and roll control modes. The fourth system 
(roll) remains passively stable without active control (ug(t) = 
0). 

VII. CONTROL PHILOSOPHY FOR THE W E  AUTOPILOTS 
A philosophy of control which is derived by the particular 

choice of subsystem equations is that the steering system will 
be responsible for control of the heading errors; the diving 
system will be responsible for the depth and pitch errors; and 
the speed system will control to speed commands. It should 
be pointed out that this control philosophy maps directly with 
the current practice in naval submarines. The conversion of 
commands for path following to a global location ( X ,  U, 2) 
will be accomplished by a guidance law that is the interesting 
subject of work addressed in later sections of the paper, and 
by others such as Papoulias [19]. 

With only a single control element active each subsystem, 
may be treated separately as a single input, multistate (SIMS) 
system with its own single sliding surface definition. We 
proceed to define 

VIII. SIMS DESIGN METHOD 
For any subsystem where 

a(t) = &(t) + h ( t )  + h f ( t )  (23) 

and 

z(t) E Rnxl; b E Rnxl; A E Rnxn. 

If the pair (A, b) is controllable, and [s’b] is nonzero, then 
it may be shown (see [5] and [27] for a comprehensive 
tutorial) that the sliding surface coefficients are elements of 
the left eigenvector of the closed-loop dynamics matrix A, 
corresponding to a pole at the origin 

s’[A,] = 0 (24) 

and the matrix A, is given by 

A, = [A - bk’] 
where k is the gain vector that places the closed-loop poles 
of the system at 

A 1  = 0, and A,, i = 2, n are selected for performance. 

The resulting sliding control law including the estimate 6 ] ( t )  
of the uncertain disturbance b f ( t )  becomes 

u(t)  = [s’b]-l[-s’h(t) - s ’ s j ( t )  + s’kcom(t) 
-rltanh (.(t)/d)l (25) 

or 

u(t) = -k’z ( t )  - [s’b]-1s’sj(t) + [s’b]-~s’k,,,(t) 
- [s’b] -‘qtanh( c( t )  / 4 ) .  (26) 

The choice of the switching gain, q(t) and the “boundary 
layer thickness” 4, is selected to eliminate control chattering. 
Reducing 4 increases the nonlinear gain at small U, while 
increasing 4 introduces a filtering effect if measurements are 
noisy. Further details are given in Sur [26] and Lienard [16]. 

The excellent robustness attributed to the sliding control 
method can be clarified by recasting the closed-loop equations 
of motion using (26) to get 

k(t)  = [A  - bk]z ( t )  + &om(t) - sI(t) + sf(t) 
-b[s’b]-’q tanh (c.(t)/$) (27) 

and since 

b(t) = s ’ ( ~ ( t )  - Zcom(t))  (28) 

we get 

b(t) = -vtanh ( ~ ( t ) / $ )  + s’[sf(t)  - S f ! ~ 5 ( t ) ] .  (29) 

Thus so long as 77 is chosen to be “large enough” to overcome 
the destabilizing effects of any disturbance mismatch, bounded 
stability of the errors is assured even though asymptotic 
stability is only approached as $ tends to zero. In this case 
77 is selected so that 

rl > llsll IIVf(t) - m)lII (30) 

and 4 is selected between 0.05 and 0.2. 

IX. SPEED CONTROL AUTOPILOT 
The longitudinal equation of motion, neglecting the effects 

(31) 

of plane drag, is 

G ( t )  = - 4 t )  l4t) I + (..P)n(t> In(t> I 
where 

a =  P L 2 c d  /3 = and [am + pL3XiL] ’ 
Cd = 0.0034 

and is linear in the modified square of the vehicle and 
propulsor speeds. The sliding surface for the speed control 
autopilot is thus first order and, without loss of generality, we 
can select 01 = 1 so that 

a1(t) = u(t)  - ucom(t) = G ( t )  (32) 

with the result that the control law in terms of the command 
for n(t) is found from 

h ( t )  = -rl1tanh(m(t)/41) (33) 
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TABLE I1 - 
Y1 = 0.5pL2Y, 
Y2 = 0 5pL3Yr 
Y3 = 0.5pL2u2Y6, 

NI = 0.5pL3N, 
N2 = 0 5pL4Nr 
N3 = 0 5pL3u2Nsr 

giving 

n(t)ln(t>l = (QP)-l{C4t)lu(t)I 
+&orn(t3 - rll t&(a1(t)/h)} (34) 

so that n(t) = signed square root of the right-hand side of 
(34). Notice that the propeller speed command arises from 
one term to accelerate the vehicle, another to overcome the 
vehicle forward drag, and the last term to stabilize the motion. 

X. STEERING AUTOPILOT 

The linearized steering system dynamics are given by the 
third-order system 

m1?j(t) + mzi.(t) = Y,uw(t) + Y,U?-(t) + Y2S,(t) 
m3ir(t) + rn4+(t) = Nluw(t) + NZur(t) + N3Sr(t) 

$(t)  = r ( t )  (35) 

while the progression of vehicle position not included in the 
autopilot system dynamics is given by 

X ( t )  = u(t)cos+(t) - w ( t )  sin+(t) +U,, 

p ( t )  = u(t)  sin$(t) + w ( t )  cos$(t) + uCy (36) 

where the coefficients Y and N are given in Table I1 in 
tesms of the nondimensional hydrodynamic coefficients of the 
Appendix. 

By inversion of the mass matrix, (19) may be expressed as 

(37) & 2 ( t )  = A222(t) + bzu2(t) 

where 

or, in more detail as 

A2 E R3"; b2 E R3'l. (39) 

Defining the sliding surface for steering as az(t), the values 
to place the sliding poles of the steering system arbitrarily at 
[0 - 0.41 - 0.421 become 

az(t) = -0.0746(t) + 0.816f(t) + 0.5734(t) (40) 

and the steering control law results in 

&(t) = 0.033w(t) + 0.1112r(t) 
f2.58 tanh { [0.074qt) + 0.816r"(t) + 0.5734(t)]/0.1}. (41) 

Notice that in the above, the heading error term is only 
included in the nonlinear switching term, while the linear 
feedback of v ( t )  and r(t) act only to stabilize the sway/yaw 
dynamics. The heading rate, ~,,,(t) is set to zero here al- 
though in rate command maneuvers it should also be included 
in the switching term as well as in the rate command term 
in the control law. wCom(t)  is not practical to include. Further 
details of the speed and steering autopilots are given in [16]. 

XI. DIVING AUTOPILOT 

The linearized diving system dynamics are given by the 
system of equations 

[I::; 1 = [-;7 -:.3 !I [;::; 1 + [0.;51 

(42) 
Z(t> - U0 Z ( t )  

In the above, the influence of w ( t )  , which may be significant 
in some vehicles, is in fact small in this case, perhaps because 
of the rectangular cross section. The sliding surface for the 
diving autopilot ignoring any nonzero command for pitch for 
now then becomes 

(43) c ~ s ( t )  = t ( t )  + 0.520J(t) - O . O l l Z ( t )  

when the poles are placed at [0 - 0.25 - 0.261. With 
[s'b]-lr = 4.0 and 4 = 0.4 the autopilot will have relatively 
fast performance. Externally to the computation of 6, ( t )  ~ it 
is necessary to limit commands for control surface stroke to 
a value, in this case, of 0.4 radians. The final diving control 
law is [261 

6,( t )  = -5.143q(t) + 1.070B(t) + 4.000 tanh [ 4 ) / 0 . 4 ] .  
(44) 

XII. COMPOSITE CONTROL RESULTS BY SIMULATION 

Two types of simulation can lead to an understanding of 
the performance of the three autopilot systems; by simulation 
of the linearized closed-loop performance; and, by simulahon 
of the complete nonlinear coupled system under the action of 
the autopilots designed by the separate linearized procedure. 
We will show first that each individual system response 
is well behaved when controlling a linearized uncoupled 
vehicle model. Secondly, we will show that the combined 
autopilot system is effective in driving the full nonlinear 
vehicle model through both steering and diving maneuvers as 
well as acceleration to speed. These complex maneuvers are 
significant because the additional drag terms due to control 
surface action cause a significant departure of the dynamics 
from the linear case. Also, the changing speed influences the 
unmodeled nonlinearity. 

In Figs. 2 and 3, simulations are based on a time step of 
0.1 s for 750 time steps and show the performance of separate 
speed control and heading autopilots in commands from 0 
to 90" and 0 to a commanded crnise speed of two-thirds of 
the nominal speed of 1.832 m/s.  The results are normalized 
because normalized equations of motion in ship maneuvering 
work show that under some conditions speed effects may be 
reducible to a second order effect. Distance is conveniently 
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Fig. 3. Vehicle rudder and yaw response in accelerating from zero to 
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commanded speed and turning 90°: Liner and nonlinear compared. 

normalized by the ship length, L. Normalized time, 7, is 
conveniently expressed in time to transit one ship length at the 
forward speed U (T = tu/L).  Also, as a wide speed range is 
contemplated, normalized data can be shown on fewer plots. 
Naturally, results computed for the same total real time at 
different speeds will have different nondimensional time spans 
which is why some later plots end at different points. 

Figure 2 shows a comparison of linear and nonlinear nor- 
malized propulsion motor speed and vehicle speed on the 
same plot versus normalized time. The normalizing parameters 
correspond to a propeller speed of 52.359 rad/s which drives 
the vehicle to a nominal speed of uo of 1.832 d s .  The steering 
responses shown in Fig. 3 compare the linear and nonlinear 
systems behavior through the 90' turn. The rudder commands 
are saturated at 0.4 rad. The proof of concept is given in 
Figs. 2 and 3 in which the autopilots appear to control the 
full nonlinear vehicle model in adequate fashion during a 
combined maneuver, accelerating to speed with a hard turn to 
port, in spite of the variation between the linear and nonlinear 
vehicle dynamics. 

While the closed loop performance of the nonlinear model 
takes longer to accelerate to speed, it is clear from Fig. 3 that, 
even though additional overshoot in rudder action is required 

in coming out of the turn, stable response is still achieved. The 
nonlinear vehicle speed response also clearly shows the added 
acceleration at 7- = 12.5 associated with drag loss when the 
rudder action is reduced. 

XIH. COMSINED MANEUVERING AT HIGHER SPEED 

It is interesting to determine if an autopilot designed for 
slow speed will also control the vehicle in higher speed 
maneuvers. Without modification to the contro1 laws, the 
series of Fig. 4 show that a complex maneuver, diving to a 
depth increase of 2 vehicle lengths, turning 90" to port, and 
maintaining speed in the turn, is controlled with changes in 
response but without loss of stability. Each figure in the series 
shows results for 1.0, 1.2,2.0, and 3.0 times the nominal speed. 
The simulations were run with initial conditions corresponding 
to a nominal straight line flight along the global X axis at the 
appropriate speed with the maneuver initiated at t = 0.0. Figs. 
4(a) and (b) show the steering response with + in degrees and 
6, in radians. The time for each case is nondimensionalized 
using the appropriate speed so each case in Fig. 4 terminates at 
different values of 7. In Fig. 4(b), the initial maneuver causes 
the control surface to saturate at 0.4 rad for some time before 
the controller acts to stabilize the turn. Since the maneuvers 
occur at different speeds, the time to make the turn and the 
response of the rudder command is different for each case. 
Figs. 4(c) and (d) show the diving response; Figs. 4(e) and 
(f) show the propeller and vehicle speed responses where the 
initial conditions are normalized to 1.0; Figs. 4(g) and (h) show 
the pitch and roll responses in degrees respectively; and, Fig. 
4(i) shows the differences in the vehicle's path for each case. 
In spite of what is shown in Fig. 1, the vehicle model includes 
a keel which has the effect of inducing a sway coupled roll 
motion. The combined maneuver causes the vehicle to roll up 
to 35" during the turn which modifies the effectiveness of the 
control planes in their respective steering and diving functions. 
In developing these results a time step of 0.018 s for 1000 
time steps was used to maintain numerical stability with the 
Euler integration scheme. The responses are plotted against 
nondimensionalized time (distance traveled in ship lengths) to 
enhance the comparison of the effect of speed. The vehicle 
physical response time increases with speed as the restoration 
forces from gravity and buoyancy become weaker compared 
to the hydrodynamic body forces, and responses at increasing 
speed are characterized by increased damping. At slow speed 
the vehicle input response (Fig. 4(b)) shows that more rudder 
overshoot is needed to stabilize the vehicle as it exits the turn, 
but the robustness of the sliding mode controller is such that 
stability is still retained. 

X N .  WAYPOINT GUIDANCE BY LINE OF SIGHT 

Vehicle autonomous guidance is most simply accomplished 
by a heading command to the vehicle's steering system to 
approach the line of sight between the present position of the 
vehicle and the waypoint to be reached. In missile guidance 
this is related to "proportional navigation." The difference in 
guiding AUV's is that the vehicle response is slow compared 
to the rates of change in command unless the waypoint is many 
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F1g 4. (a) Combined maneuver responses: All three autopilots acting together, robustness to speed steering response-yaw (y 
degrees) versus time (7) .  (b) Steenng responses-rudder command (6,) versus hme (T) (c) Diving responses-stem plane command 
(6,) versus time (7).  (d) Diving responses-depth (Z/L) versus time ( T )  (Corztzrzued) 

vehicle lengths away. Separation of guidance and autopilot 
functions may not always produce stable results underwater. 
Notwithstanding, we define the line of sight (LOS) to be the 
horizontal plane angle given by 

(45) 

in which the [X,, Y k ]  are waypoints stored in the vehicle’s 
mission planner. Care must be taken to keep the proper 
quadrant in mind when programming the guidance law. The 
decision as to whether the waypoint has been reached is made 
on the basis of whether the vehicle lies within a “ball of accept- 
ability,” po defined around the particular waypoint. Namely, if, 
for some distance, P O ,  an acceptable zone around the waypoint, 
[Xk(t) ,  Y k ( t ) ,  Zk ( t ) ] ,  the vehicle location [ X ( t ) ,  Y ( t ) ,  Z( t ) ]  
are such that 

p2( t )  = [Yk - Y(t)I2 + [ X ,  - X(t>12 
+X[Zk - Z(t)I2 < p i  0 < X < 1 (46) 

then (46) triggers the selection of the next waypoint. If, on 
the other hand, the condition that d p l d t  goes from negative to 

positive without the above being met then the waypoint is not 
reached. At this juncture, the guidance law must contain logic 
that will either hold the current waypoint, directing the vehicle 
to circle, or enter the next, depending on a mission planning 
decision. X is a parameter relating to the importance of includ- 
ing the depth dimension. In this section, vehicle waypoint con- 
trol is examined in simulations using the autopilots described 
above combined with the LOS guidance. The assumption is 
made that vehicle speed control is obtained from a separate 
speed command for each separate leg of a transit mission, 
although that could be accomplished also by an on line speed 
command as a function of distance to go and the time to go 
if a desired time is also associated with each waypoint. The 
performance of the LOS method is illustrated in Fig. 5 showing 
that the large overshoot is natural when path dimensions are 
not large compared to the vehicle turning radius, and when the 
commanded heading change is large. These simulations are for 
a “ball of acceptability” of radius equal to two ship lengths run 
at the nominal vehicle speed. The results show that precision 
path following in tight maneuvering is not readily obtained 
using LOS and that more sophisticated guidance schemes 
including vehicle lags in the path planning are needed. One 
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Fig. 4. (Continued) (e) Propeller rate responses-normalized propeller rate versus time ( 7). (f) Vehicle speed responses-normalized 
forward velocity versus time ( T) . (g) Vehicle pitch angle responses-pitch (0) versus time ( T). (h) Vehicle roll angle responses-roll 
(4) versus time ( 7 ) .  (i) Vehicle path responses, distance in ship lengths-X/L versus Y/L.  

possible scheme involves cross track error minimization and is 
attractive but more involved than LOS in its implementation. 

unfavorable circumstances and that the vehicle track tends to 
fall downstream of the desired track. Figure 5 illustrates that 
without current compensation, slow-speed AUV's may have 
difficulty in precision control. The case of a current at 45' to 
the [X, Y ]  axis of magnitude 0.23 times the vehicle nominal 
speed shows the magnitude of the track errors obtained. It 

xv. EFFECT OF OCEAN CURRENT 

Finally, the influence of ocean current in slow speed guid- 
ance is that waypoints may not be achievable under the most 



336 IEEE JOURNAL OF OCEANIC WGINEEWNG, VOL. 18, NO. 3, JULY 1993 

35 r- x / L : : r  30 

0 

-5 

15 4 

I 

4 
5 ,  

0 10 15 20 25 30 35 

Y I L  
Fig. 5 .  Waypoint following, LOS guidance: po = 2L at nominal speed U O ,  

with and without current, with specified waypoints shown. 

should be noted that the ratio of the current to vehicle speed 
is much higher in AUV's than in higher speed vehicles. 
With current included as an added state in the sliding surface 
definition, and assumed to be measurable, the original track 
without current can be recovered. There is a steady offset in 
the vehicle heading to compensate for the current effect. 

XVI. CONCLUSIONS 

In conclusion, the use of sliding mode methods has been 
shown to provide robust performance of underwater vehicle 
autopilots when designed sepparately for speed wnlrol, sleer- 
ing, and diving activity. The method is generally suitable for a 
wide variety of IiuIiliIiear. conkol problems although for flight 
conditions, may be implemented using a linearized model for 
the sliding surface coefficient design. A study of waypoint 
acquisition using a LOS guidance has shown that the scheme 
is robust but not accurate in tight turning maneuvers. Path 
planning algorithms must take vehicle dynamics into account. 
Ocean currents effect the ability of the LOS guidance to drive 
the vehicle to its desired waypoint and must be compensated 
by an added feedforward term in the steering controller based 
on a current magnitude and direction estimate. 
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APPENDIX 
(Nomenclature according to Lewis [ 151) 

XIX. SURGE MOTION EQUATION 

SWAY MOTION EQUATION 

HEAVE MOTION EQUATION 

ROLL MOTION EQUATION 
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PITCH MOTION EQUATION 

YAW MOTION EQUATION 

331 

P + (YGW - ~ B B )  sin0 + - L ~ ~ ~ N ~ ~ ~ ~ .  2 

EULER ANGLE RATES AND GLOBAL POSITIONS, 
CROSSFLOW VELOCITY, AND PROPULSION TERMS 

4 = p + q s i n b t a n ~  + TCOS 4tan 0 
B = qcosb - r s i n b  
11, = ( q s i n ~ + r c o s ~ ) / c o s O  
x = uco + ucos11,cos0 

+  COS 11, sin 0 sin 4 - sin $ cos 41 
+ w [cos $ sin B sin 4 + sin $ sin 41 

+ w [sin $ sin 0 sin 4 + cos $ cos 41 
+ w [sin $ sin 0 sin 4 - cos $ sin 41 

+ w cos 0 sin4 

Y = w,o + u s i n ~ l , c o s ~  

i =  w , o - u s i n ~ + w c o s ~ s i n ~  

2 112 UCf(X) = [(w + Zr)2 + (w - xq) ] 
Xprop = CdO(17lrll - 1); 17 = 0.012n/u; 

CdO = 0.00385 
~ ( n )  = -1 + sign(n)/sign(u)* 

- ( d m  - 1)/(.Jc,+l- 1) 
Ct = 0.008L271~1/2.0; Ct1 = 0.008L2/2.0 

TABLE OF PARAMETBRS 

w = 53.4 kN 
IZy = -13.58 Nms2 

B = 53.4 kN 
I,, = -13.58 NmsZ 

L = 5.3 m 
I,, = -13.58 Nms2 

I ,  = 13587 Nms2 
I ,  = 13587 Nms2 

I ,  = 2038 Nms2 ZG = 0.0 zg = 0.0 YG = 0.0 
yB = 0.0 ZG = 6.1 cm z g  = 0.0 g = 9.81 m l s 2  

p = 1000 ks/m3 

X,, = 7.0e - 3 
X ;  = -7.6e - 3 
XqCs = 2.5e - 2 
X,, = 1.7e - 1 
X686s = - l e -  2 

m = 5454.54 kg 

X , ,  = -1.5e - 2 
Xwp = -2.0e - 1 
Xq6b/2 = -1.3e- 3 
Xu&. = 1.7e - 3 
XdbSb/2 = -4.5 - 3 

X, ,  = 4.0e - 3 
X,, = -3.0e - 3 
X,+ = - l e  - 3 
X , G ~  = 4.6e-  2 
X,5,6r = - l e  - 2 

X,, = 7.5e - 4 
X , ,  = 2.0e - 2 
Xvv = 5.3e - 2 
Xw&/2 = 0.5e - 2 
Xq6sn = 2.0e - 3 

XwGsn = 3.5e - 3 X696sn = -1.6e - 3 

Ys = 1.2e - 4 
Yc = -5.5e - 2 
Y,, = 2.3e - 1 
Y&. = 2.7e - 2 

Zi = -6.8e - 3 
ZG = -2.4e - 1 
Z, = -3.0e - 1 
Z,, = -2.9e - 3 

K i  = -1.0e - 3 
Ki, = 1.3e - 4 

Y, = 1.2e - 3 
Yp 3 3.0e - 3 
Y,, = -1.9e - 2 

Ypq = 4e - 3 
Y, = 3.0e - 2 
Y, = -1.Oe - 1 

YqT = -6.5e - 3 
Yvq = 2.4e - 2 
Y,, = 6.8e - 2 

Z,, = 1.3e - 4 
Z, = -1.4e - 1 
Z,, = -6.8e - 2 
Z,, = -5.le - 3 

Z,, = 6.7e - 3 

Zas = -7.3e - 2 
Z&n = -1.0e - 2 

Z,, = -7.4e - 3 
z,, = 4.5e - 2 
Z 6 b / 2  = -1.3e - 2 

Z,, = -4.8e - 2 

lit = -3.4e - 5 
K p  = -1.le - 2 

K p q  = -6.9e - 5 
K, = -8.4e - 4 

K,, = 1.7e - 2 
K,, = -5.le - 3 
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(Continued) TABLE OF PAFAMETERS 

K,, = -1 3e - 4 KWr = 1.4e - 2 K ,  = 3  l e - 3  
K 6 b p  = 0.0 ICpn = -5 7e - 4 Kprop = 0 0 

M ,  = -1.7e - 2 
M ,  = -6 8e - 2 
Mu,  = 1.Oe - 1 

Mpp = 5 3e - 5 
Muq = -6.8e - 2 
Mwu = -2.6e - 2 

Mpr = 5 Oe - 3 
Mu, = 1.2e - 3 
M 6 s = - 4 1 e - 2  

Mqn = -1 6 e - 3  Mwn = -2 9 e - 3  M&3n = -5 2e - 3 

N p = - 3 4 e - 5  
Nu = 1.2e - 3 
NWp = -1 7e - 2 

N, = -3~4e  - 3 
N p = - 8 4 e - 4  
N,, = 7 4 e - 3  

Npq = -2.le - 2 
N,. = -1 6e - 2 
N, = -7.4e - 3 

N6, = -1 3e - 2 Nprop = 0.0 
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