
Calhoun: The NPS Institutional Archive
DSpace Repository

Theses and Dissertations 1. Thesis and Dissertation Collection, all items

2015-03

Evaluation of efficient XML interchange (EXI)
for large datasets and as an alternative to
binary JSON encodings

Hill, Bruce W.
Monterey, California: Naval Postgraduate School

https://hdl.handle.net/10945/45196

This publication is a work of the U.S. Government as defined in Title 17, United
States Code, Section 101. Copyright protection is not available for this work in the
United States.

Downloaded from NPS Archive: Calhoun

NAVAL
POSTGRADUATE

SCHOOL

MONTEREY, CALIFORNIA

THESIS

Approved for public release; distribution is unlimited

EVALUATION OF EFFICIENT XML INTERCHANGE
(EXI) FOR LARGE DATASETS AND AS AN

ALTERNATIVE TO BINARY JSON ENCODINGS

by

Bruce W. Hill

March 2015

Thesis Advisor: Don Brutzman
Co-Advisor: Don McGregor

THIS PAGE INTENTIONALLY LEFT BLANK

 i

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704–0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction,
searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send
comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to
Washington headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA
22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington, DC 20503.
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
March 2015

3. REPORT TYPE AND DATES COVERED
Master’s Thesis

4. TITLE AND SUBTITLE
EVALUATION OF EFFICIENT XML INTERCHANGE (EXI) FOR LARGE
DATASETS AND AS AN ALTERNATIVE TO BINARY JSON ENCODINGS

5. FUNDING NUMBERS
W4V02

6. AUTHOR Bruce W. Hill
7. PERFORMING ORGANIZATION NAME AND ADDRESS

Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING /MONITORING AGENCY NAME AND ADDRESS
Commander Navy Information Dominance Forces (COMNAVIDFOR)
115 Lake View Parkway
Suffolk, VA 23435

10. SPONSORING/MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official policy
or position of the Department of Defense or the U.S. Government. IRB Protocol number: N/A.

12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited

12b. DISTRIBUTION CODE
A

13. ABSTRACT

Current and emerging Navy information concepts, including network-centric warfare and Navy Tactical Cloud,
presume high network throughput and interoperability. The Extensible Markup Language (XML) addresses the latter
requirement, but its verbosity is problematic for afloat networks. JavaScript Object Notation (JSON) is an alternative
to XML common in web applications and some non-relational databases.

Compact, binary encodings exist for both formats. Efficient XML Interchange (EXI) is a standardized, binary
encoding of XML. Binary JSON (BSON) and Compact Binary Object Representation (CBOR) are JSON-compatible
encodings. This work evaluates EXI compaction against both encodings, and extends evaluations of EXI for datasets
up to 4 gigabytes. Generally, a configuration of EXI exists that produces a more compact encoding than BSON or
CBOR. Tests show EXI compacts structured, non-multimedia data in Microsoft Office files better than the default
format.

The Navy needs to immediately consider EXI for use in web, sensor, and office document applications to improve
throughput over constrained networks. To maximize EXI benefits, future work needs to evaluate EXI’s parameters, as
well as tune XML schema documents, on a case-by-case basis prior to EXI deployment. A suite of test examples and
an evaluation framework also need to be developed to support this process.

14. SUBJECT TERMS
Extensible Markup Language (XML), Efficient XML Interchange (EXI), JavaScript Object Notation
(JSON), Compact Binary Object Representation (CBOR), Binary JSON (BSON), data serialization,
data interoperability

15. NUMBER OF
PAGES

135
16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION OF
ABSTRACT

UU
NSN 7540–01-280-5500 Standard Form 298 (Rev. 2–89)
 Prescribed by ANSI Std. 239–18

 ii

THIS PAGE INTENTIONALLY LEFT BLANK

 iii

Approved for public release; distribution is unlimited

EVALUATION OF EFFICIENT XML INTERCHANGE (EXI) FOR LARGE
DATASETS AND AS AN ALTERNATIVE TO BINARY JSON ENCODINGS

Bruce W. Hill
Lieutenant, United States Navy

B.S., University of Notre Dame, 2008

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN NETWORK OPERATIONS AND TECHNOLOGY

from the

NAVAL POSTGRADUATE SCHOOL
March 2015

Author: Bruce W. Hill

Approved by: Don Brutzman
Thesis Advisor

Don McGregor
Co-Advisor

Dan Boger
Chair, Department of Information Sciences

 iv

THIS PAGE INTENTIONALLY LEFT BLANK

 v

ABSTRACT

Current and emerging Navy information concepts, including network-centric warfare and

Navy Tactical Cloud, presume high network throughput and interoperability. The

Extensible Markup Language (XML) addresses the latter requirement, but its verbosity is

problematic for afloat networks. JavaScript Object Notation (JSON) is an alternative to

XML common in web applications and some non-relational databases.

Compact, binary encodings exist for both formats. Efficient XML Interchange

(EXI) is a standardized, binary encoding of XML. Binary JSON (BSON) and Compact

Binary Object Representation (CBOR) are JSON-compatible encodings. This work

evaluates EXI compaction against both encodings, and extends evaluations of EXI for

datasets up to 4 gigabytes. Generally, a configuration of EXI exists that produces a more

compact encoding than BSON or CBOR. Tests show EXI compacts structured, non-

multimedia data in Microsoft Office files better than the default format.

The Navy needs to immediately consider EXI for use in web, sensor, and office

document applications to improve throughput over constrained networks. To maximize

EXI benefits, future work needs to evaluate EXI’s parameters, as well as tune XML

schema documents, on a case-by-case basis prior to EXI deployment. A suite of test

examples and an evaluation framework also need to be developed to support this process.

 vi

THIS PAGE INTENTIONALLY LEFT BLANK

 vii

TABLE OF CONTENTS

I.	
 INTRODUCTION ... 1	

A.	
 PROBLEM STATEMENT .. 1	

B.	
 PURPOSE AND MOTIVATION .. 2	

C.	
 RESEARCH QUESTIONS .. 3	

D.	
 THESIS ORGANIZATION ... 3	

II.	
 BACKGROUND AND RELATED WORK ... 5	

A.	
 THE NAVY INFORMATION LANDSCAPE ... 5	

1.	
 Network-Centric Warfare .. 5	

2.	
 Cloud-Based Architecture .. 6	

3.	
 Sensor Networks .. 6	

4.	
 Network-Optional Warfare .. 7	

5.	
 Network Limitations ... 7	

6.	
 Solution Approaches ... 8	

a.	
 Say Less .. 8	

b.	
 Buy More .. 8	

c.	
 Use It All ... 9	

d.	
 Say the Same Thing in Fewer Words 9	

7.	
 Interoperability Considerations .. 9	

B.	
 DATA SERIALIZATION .. 10	

1.	
 Semantic Interoperability .. 10	

2.	
 Syntactic Interoperability .. 11	

3.	
 Coding .. 11	

4.	
 Data Types ... 12	

5.	
 Compression .. 12	

C.	
 XML AND DATA INTEROPERABILITY .. 14	

1.	
 Key Attributes of XML .. 15	

2.	
 Why XML Supports Interoperability ... 16	

3.	
 Relevant Applications of XML .. 16	

a.	
 Web Applications and Services .. 16	

b.	
 Sensor Networks ... 19	

D.	
 XML VERBOSITY ... 19	

1.	
 Verbose by Design ... 20	

2.	
 Generic Compression Approaches .. 20	

3.	
 Binary Encoding Approaches .. 21	

4.	
 Efficient XML Interchange .. 23	

a.	
 Grammar-Based Encoding .. 24	

b.	
 String Table .. 24	

c.	
 Data Types .. 24	

d.	
 Range Restrictions ... 25	

e.	
 Channelization ... 25	

E.	
 JAVASCRIPT OBJECT NOTATION ... 25	

1.	
 Relationship between JSON and XML ... 26	

 viii

2.	
 Tradeoff Space .. 26	

a.	
 Expressive Differences ... 26	

b.	
 Quantitative Differences .. 27	

c.	
 Qualitative Differences .. 28	

3.	
 Binary Encoding Approaches .. 30	

F.	
 CHAPTER SUMMARY ... 31	

III.	
 METHODS .. 33	

A.	
 SINGLE-APPLICATION FOCUS .. 33	

B.	
 CONFIGURATION FOCUS ... 34	

C.	
 SMALL-FILE CATEGORY .. 36	

1.	
 Subsetting ... 37	

2.	
 Format Conversions .. 37	

3.	
 Focus Questions ... 41	

4.	
 Use Cases .. 42	

a.	
 Global Positioning System XML ... 43	

b.	
 OpenWeatherMap XML .. 45	

c.	
 Automated Identification System ... 46	

D.	
 LARGE-FILE CATEGORY .. 49	

1.	
 Format Conversions .. 49	

2.	
 Focus Questions ... 50	

3.	
 Use Cases .. 51	

a.	
 Digital Forensics XML .. 52	

b.	
 Packet Details Markup Language ... 53	

c.	
 OpenStreetMap XML ... 54	

E.	
 CHAPTER SUMMARY ... 55	

IV.	
 EXPERIMENTAL RESULTS AND ANALYSIS .. 57	

A.	
 INTERPRETING THE NUMBERS ... 57	

B.	
 RESULTS BY FOCUS QUESTION—SMALL-FILE CATEGORY 58	

1.	
 Focus Question A: Base Comparison of JSON and XML 58	

2.	
 Focus Question B: Post-Compression of BSON and CBOR 61	

3.	
 Focus Question C: Primary EXI Modes ... 63	

4.	
 Focus Questions D and E: Comparison of EXI, BSON and

CBOR ... 65	

5.	
 Focus Question F: Improvement over Gzip 70	

6.	
 Focus Question G: Schema Impact ... 72	

C.	
 RESULTS BY FOCUS QUESTION—LARGE-FILE CATEGORY 73	

1.	
 Focus Question A: Primary EXI Modes ... 73	

2.	
 Focus Question B: Strict Schema Conformance 75	

3.	
 Focus Questions C and D: Post-Compression other than

DEFLATE .. 77	

4.	
 Focus Question E: Most Compact EXI Configuration 81	

5.	
 Focus Question F: Improvement over Gzip 82	

D.	
 CHAPTER SUMMARY ... 84	

V.	
 CONCLUSIONS AND RECOMMENDATIONS .. 85	

 ix

A.	
 SMALL-FILE CATEGORY .. 85	

1.	
 When To Send? ... 85	

2.	
 Significance of EXI Configurations ... 86	

3.	
 Significance of XML Schema ... 87	

4.	
 EXI and Binary JSON Encodings ... 88	

B.	
 LARGE-FILE CATEGORY .. 89	

1.	
 EXI Performs Well on Large Files .. 89	

2.	
 Compaction Plateaus as Size Increases ... 89	

C.	
 RECOMMENDATIONS FOR FUTURE WORK 90	

1.	
 Conventions for JSON/XML Interoperability 90	

2.	
 Holistic Profiling ... 91	

3.	
 Need for Best Practices ... 92	

4.	
 Expanding EXI across the Open Web Platform 92	

5.	
 EXI Streaming Protocols .. 93	

6.	
 Fleet Adoption ... 93	

D.	
 CLOSING THOUGHTS .. 94	

APPENDIX A. EXI AND MICROSOFT OFFICE .. 95	

APPENDIX B. SOURCE CODE .. 97	

APPENDIX C. BEING EFFICIENT WITH BANDWIDTH .. 99	

LIST OF REFERENCES ... 103	

INITIAL DISTRIBUTION LIST .. 115	

 x

THIS PAGE INTENTIONALLY LEFT BLANK

 xi

LIST OF FIGURES

Figure 1.	
 Unstructured data about a ship without metadata. It is unclear what the
purposes of the values are, and how the relate to one another. 15	

Figure 2.	
 XML structured data about the same ship, with metadata describing the
purpose of each value and how they are related. .. 16	

Figure 3.	
 Ajax system process diagram showing movement of XML in a web
application (after Garret, 2005 and Paulson, 2005). 17	

Figure 4.	
 SOAP request and response cycle (after Cerami, 2002, p. 51). 18	

Figure 5.	
 WAP system diagram showing XML transformation into WML via a

gateway architecture (after Saha, Jamtgaard, & Villasenor, 2001). 22	

Figure 6.	
 Ambiguous tank line item in a cross-service stock system. It is unclear

whether the tank is a fuel tank or an armored vehicle. 29	

Figure 7.	
 Unambiguous tank line item in the http://navy.mil/supply namespace.

Adding the Navy namespace suggests what sort of tank it is. 29	

Figure 8.	
 A categorized representation of all small-file category encodings derived

from the same data. ... 40	

Figure 9.	
 Sample code for GPX file, in XML format. ... 43	

Figure 10.	
 Sample code for GPX file, in JSON format. ... 44	

Figure 11.	
 Visualization of GPX master file in Google Earth. .. 44	

Figure 12.	
 Sample code for OpenWeatherMap file, in XML format. 45	

Figure 13.	
 Sample code for OpenWeatherMap file, in JSON format. 46	

Figure 14.	
 An operational view diagram of the NAIS system including information

flows from ship-borne transceivers to intelligence fusion centers (United
States Coast Guard, 2014b). .. 47	

Figure 15.	
 Sample code for AIS file, in XML format. ... 48	

Figure 16.	
 Sample code for AIS file, in JSON format. .. 48	

Figure 17.	
 A categorized representation of all large-file category encodings derived

from the same plain-text XML document. .. 50	

Figure 18.	
 A DFXML element representing a single file, including information about

the file name, size, hash codes, location on disk, and provenance (after
Garfinkel, 2011). ... 52	

Figure 19.	
 A sample PDML element representing a single ICMP packet. Adapted
from Risso (2010). .. 53	

Figure 20.	
 Sample XML fragments, in OpenStreetMap format, for node and way
elements. ... 54	

Figure 21.	
 Plot for GPX use case, focus question A. ... 59	

Figure 22.	
 Plot for OpenWeatherMap use case, focus question A. 59	

Figure 23.	
 Plot for AIS use case, focus question A. ... 60	

Figure 24.	
 OpenWeatherMap temperature element in XML format, using 69

characters. ... 60	

Figure 25.	
 Semantically equivalent data as JSON, using 73 characters. 60	

Figure 26.	
 Plot for GPX use case, focus question B. ... 61	

Figure 27.	
 Plot for OpenWeatherMap use case, focus question B. 62	

 xii

Figure 28.	
 Plot for AIS use case, focus question B. ... 62	

Figure 29.	
 Plot for GPX use case, focus question C. ... 63	

Figure 30.	
 Plot for OpenWeatherMap use case, focus question C. 64	

Figure 31.	
 Plot for AIS use case, focus question C. ... 64	

Figure 32.	
 Plot for GPX use case, focus question D. ... 66	

Figure 33.	
 Plot for OpenWeatherMap use case, focus question D. 66	

Figure 34.	
 Plot for AIS use case, focus question D. ... 67	

Figure 35.	
 Plot for GPX use case, focus question E. .. 67	

Figure 36.	
 Plot for OpenWeatherMap use case, focus question E. 68	

Figure 37.	
 Plot for AIS use case, focus question E. ... 68	

Figure 38.	
 Plot for GPX use case, focus question F. .. 70	

Figure 39.	
 Plot for OpenWeatherMap use case, focus question F. 71	

Figure 40.	
 Plot for AIS use case, focus question F. ... 71	

Figure 41.	
 Plot for AIS use case, focus question G. ... 72	

Figure 42.	
 Plot for DFXML use case, focus question A. ... 73	

Figure 43.	
 Plot for PDML use case, focus question A. .. 74	

Figure 44.	
 Plot for OpenStreetMap use case, focus question A. 74	

Figure 45.	
 Plot for DFXML case, focus question B. .. 75	

Figure 46.	
 Plot for PDML use case, focus question B. .. 76	

Figure 47.	
 Plot for OpenStreetMap use case, focus question B. 76	

Figure 48.	
 Plot for DFXML case, focus question C. .. 77	

Figure 49.	
 Plot for PDML use case, focus question C. .. 78	

Figure 50.	
 Plot for OpenStreetMap use case, focus question C. 78	

Figure 51.	
 Plot for DFXML case, focus question D. ... 79	

Figure 52.	
 Plot for PDML use case, focus question D. .. 79	

Figure 53.	
 Plot for OpenStreetMap use case, focus question D. 80	

Figure 54.	
 Plot for DFXML case, focus question E. .. 81	

Figure 55.	
 Plot for PDML use case, focus question E. .. 81	

Figure 56.	
 Plot for OpenStreetMap use case, focus question E. 82	

Figure 57.	
 Plot for DFXML case, focus question F. .. 83	

Figure 58.	
 Plot for PDML use case, focus question F. ... 83	

Figure 59.	
 Plot for OpenStreetMap use case, focus question F. 84	

Figure 60.	
 Radar chart comparing hypothetical, multivariate profiles for two data

exchange encodings. Presents potential opportunities for further work.
Visualization adopted from Bremer (2013) and Brutzman (personal
communication, December 2, 2014). .. 91	

Figure 61.	
 Comparison of EXI and Zip compaction of Microsoft Office documents. 96	

 xiii

LIST OF TABLES

Table 1.	
 Minimum requirements for a binary XML format as determined by XBC
Working Group (after Goldman & Lenkov, 2005). .. 23	

Table 2.	
 A summary of the EXI options explored in this research (after Schneider
et al., 2014). .. 35	

Table 3.	
 Focus questions for small-file category, relevant encodings, and baseline
for comparison. ... 42	

Table 4.	
 Focus questions for large-file category, relevant encodings, and baseline
for comparison. ... 51	

 xiv

THIS PAGE INTENTIONALLY LEFT BLANK

 xv

LIST OF ACRONYMS AND ABBREVIATIONS

A2/AD Anti-access/Area Denial

AIS Automated Identification System
Ajax Asynchronous JavaScript and XML

API Application Programming Interface
BSON Binary JSON

CBOR Concise Binary Object Representation
C2 Command and Control

DTD Document Type Definition
EXI Efficient XML Interchange

FI Fast Infoset
GB Gigabyte

GPS Global Positioning System
GPX Global Positioning System Exchange

HTTP Hypertext Transfer Protocol
IANA Internet Assigned Numbers Authority

IETF Internet Engineering Task Force
IIS Internet Information Services
IoT Internet of Things

IT Information Technology
JSON JavaScript Object Notation

KB Kilobyte
LZ77 Lempel-Ziv 1977 Algorithm

LZMA Lempel-Ziv Markov-chain Algorithm
MB Megabyte

NCW Network-Centric Warfare
NoSQL Not only Structured Query Language

NOW Network-Optional Warfare
ODF Open Document Format

OOXML Office Open Extensible Markup Language
RF Radio Frequency

 xvi

RSS Really Simple Syndication
SATCOM Satellite Communications

SGML Standard Generalized Markup Language
SOA Service Oriented Architecture

SQL Structured Query Language
UBJSON Universal Binary JSON

UTF-8 Universal Transformation Format 8-bit
WAP Wireless Application Protocol

WBXML WAP Binary XML
W3C World Wide Web Consortium

WML Wireless Markup Language
WoT Web of Things

X3D Extensible 3D Graphics Standard
XBC XML Binary Characterization

XML Extensible Markup Language
XML-RPC XML Remote Procedure Call

XMPP XML Messaging and Presence Protocol

 xvii

ACKNOWLEDGMENTS

I would like to thank the following individuals for their support through the many

stages of this undertaking: Don Brutzman—I thought a quick response code would say it

best, and I truly hope your work with EXI continues to infect the system! Don

McGregor—you are a man of few words, but when you do speak, you have an uncanny

tendency to make difficult concepts seem very, very simple. I couldn’t have asked for a

better sounding-board throughout the process. Takuki Kamiya, John Schneider, Rumen

Kyusakov, Daniel Peintner and the rest of the EXI working group—thanks for letting a

rookie join in the process and teaching me a great deal about computers, algorithms, and

standards along the way. Steve Debich—it’s been great working and commiserating with

you through this process. And Terra—thanks for putting up with my stress!

 xviii

THIS PAGE INTENTIONALLY LEFT BLANK

 1

I. INTRODUCTION

Network-centric warfare hinges on the dual criteria of interoperable systems and

timely information flows, but oftentimes these criteria are at odds. The Extensible

Markup Language (XML) is a common data format for systems communicating across

the web, and its structure and ubiquity enable both syntactic and semantic

interoperability. However, it is verbose by design (Bos, 2001). In network environments

with low bandwidth and intermittent connectivity, verbose file formats are undesirable.

File compression before transmission alleviates this issue, but until recently, there has

been no open standard for an XML-specific compression algorithm. In 2004, the World

Wide Web Consortium (W3C) began addressing this issue, and in 2014 it released the

Efficient XML Interchange (EXI) Format Recommendation (Schneider, Kamiya,

Peintner, & Kyusakov, 2014). EXI is an alternate encoding of XML data, which, in some

cases, results in files that are less than 10 percent, the size of the original XML file

(Bournez, 2009). The potential performance and impacts of EXI in limited-throughput

network environments, such as those regularly encountered by afloat naval units, is

significant and warrants investigation through use-case analysis.

A. PROBLEM STATEMENT

Networks with intermittent uptime and limited throughput must maximize

utilization of network resources. These constraints are problematic for applications where

large, monolithic data sets must be transmitted. In such scenarios, file compression prior

to transmission can decrease transfer time. EXI compaction performance has been

measured for XML file sizes up to 100 megabytes (MB), and results indicate it offers

higher compaction rates than the Zip and Gzip algorithms. However, some applications

require larger amounts of data to be transferred, and research is necessary to evaluate the

performance of EXI compression in such cases.

Similarly, XML is commonly used by web-based applications and web services to

transmit small data exchanges between a client and server as requested by the user. The

performance of EXI for these cases is well documented (Bournez, 2009; Kyusakov, 2014;

 2

D. Peintner, Kosch, & Heuer, 2009; J. Schneider, personal communication, October 20,

2014). However, many web applications use the JavaScript Object Notation (JSON)

format as an alternative to XML, and compact binary encodings of JSON also exist.

Given that these binary encodings are analogous to EXI, research is necessary to evaluate

the performance and tradeoffs between the two formats.

The EXI standard defines multiple configuration options that can dramatically

affect the performance of an EXI encoding, both in speed and compactness. Though

much research and time has been invested in developing the EXI standard and its

descriptions of the various configurations, there is little open documentation of best

practices or empirical results that can inform developer decisions for configuring an EXI

codec.

B. PURPOSE AND MOTIVATION

This research re-evaluates and extends previous work of the W3C EXI Working

Group and NPS researchers to explore the use of EXI in transmitting large XML files and

database information over networks with intermittent connectivity (Bournez, 2009;

Snyder, McGregor, & Brutzman, 2009; Snyder, 2010). It extends the NPS test-corpus of

XML documents to include additional datasets representative of real-world naval

operations. First, it measures EXI compaction performance for large native XML files

from 100 MB to 4 gigabytes (GB) and compares the results to conventional compression

algorithms. Second, it measures compaction of both EXI and binary JSON encodings for

small data transfers representative of those found in web applications. During both of

these threads of inquiry, the methodology explores various configurations of the EXI

codec and XML schemas to assess their impact on EXI encodings with the goal of

identifying best practices supported by real-world data.

 3

C. RESEARCH QUESTIONS

Four research questions form the basis for inquiry and organization in this thesis.

They are:

• For large XML files between 100MB and 4GB, does the EXI format offer
compaction rates superior to Gzip?

• Does the EXI format offer compaction rates superior to Gzip-compressed
JSON?

• Does the EXI format offer compaction rates superior to BSON and
CBOR?

• What impact do the various EXI configurations have on compaction rates?

D. THESIS ORGANIZATION

This thesis is comprised of five chapters. Chapter I provides an introduction,

purpose and outline of research questions. Chapter II is a review of relevant scholarly and

professional literature on: the United States Navy's information and communications

environments; data serialization formats and interoperability; and binary and compressed

encodings for compact representation of serialized data. Chapter III describes the

methodology for data collection and format conversions for comparing binary and

compressed encodings of XML and JSON. Chapter IV presents and discusses empirical

test results. Chapter V lists major findings of this research and recommendations for

future work.

A portion of Chapter II (specifically, Chapter II, Section D) addressing XML

Verbosity and binary XML encodings is a collaborative, co-written product and also

appears in The Role of Efficient XML Interchange in Navy Wide Area Network

Optimization (Debich, 2015). For additional information on EXI and its role in wide area

network (WAN) optimization, refer to that document.

 4

THIS PAGE INTENTIONALLY LEFT BLANK

 5

II. BACKGROUND AND RELATED WORK

To meet increased demands and network-centric and cloud-based operating

models for pushing real-time information to forward-deployed tactical and afloat units,

the Navy must meet the twin criteria of data interoperability and efficient delivery. The

Extensible Markup Language (XML) provides the former at the expense of the latter, but

the Efficient XML Interchange (EXI) standard allows for compact binary representations

of XML data. An alternative to XML commonly used in web-based applications is

JavaScript Object Notation (JSON), which is commonly used for data interchange in web

applications and in some modern database systems, and also has spurred development of

multiple binary encodings. This chapter reviews the literature concerning the Navy’s

information landscape and technical limitations for high-bandwidth applications, as well

as the tradeoffs between and performance of XML, JSON and their derivative binary

encodings.

A. THE NAVY INFORMATION LANDSCAPE

Several operational and architectural concepts are defining and changing the road

ahead for U.S. Navy communications. Each presents potential benefits, as well as distinct

challenges in afloat environments.

1. Network-Centric Warfare

The network-centric warfare (NCW) concept is, and has been for several years,

fundamental to the U.S. Navy’s operations and information technology (IT) strategy. As

originally proposed, NCW derives value “from the content, quality, and timeliness of

information moving between nodes on the network” (Cebrowski & Garstka, 1998, “The

Business of America”, para. 1). “Speed of Command” (Cebrowski & Garstka, 1998,

"How Can the Military," para. 4) is one such benefit of modern information flows, and

stems directly from timeliness of information. With rapid access to networked

information, military commanders can make more effective decisions.

 6

Though modern network speeds continually increase, information timeliness is a

problematic and ever-advancing goal for afloat units. First, the capacity of network links

available to U.S. Navy ships pales in comparison to terrestrial lines. Second, advances in

distributed sensor networks and unmanned vehicles will likely continue to drive

exponential growth in data transiting U.S. Navy networks from ship to shore (Chief of

Naval Operations for Information Dominance, 2013, p. 10). Large-scale data transfer

paired with significant time delay over limited-bandwidth links makes information

dominance at sea a challenge.

2. Cloud-Based Architecture

Cloud-based architectures are gaining ground in the public sector, and the U.S.

Navy, along with the Department of Defense, is following suit and incorporating the

cloud in current policy and IT planning (Department of the Navy Chief Information

Officer, 2013). Navy IT leadership expects to reap benefits in performance, security and

life cycle costs through a cloud architecture compatible with other military branches and

government agencies (Deputy Chief of Naval Operations for Information Dominance

[DCNO(ID)], 2014). However, the same document addresses the unique needs of afloat

units in a cloud architecture, particularly complications associated with anti-access/area

denial (A2/AD) threats.

3. Sensor Networks

The U.S. Navy’s Task Force Cloud Charter identifies sensor and combat systems

data as initial focus points for the U.S. Navy cloud (DCNO[ID], 2014). These systems

tend to generate small, repetitive transmissions, which, in aggregate, offer commanders

unprecedented situational awareness. Such awareness, however, comes at a price: as the

U.S. Navy deploys more systems to its networks, the collective data load stresses network

capacity (Porche, Wilson, Johnson, Tierney, & Saltzman, 2014). Porche et al. (2014, p.

14) note that afloat analysts are crippled by slow transfer speeds when working with

sensor data—download limits often prevent them from ever seeing the information.

Current cloud approaches may be insufficient to meet the challenging topologies and

performance variability facing afloat networks.

 7

4. Network-Optional Warfare

Though network-centric warfare is the basis for much of the fleet’s current

command and control (C2), A2/AD threats mean that the electromagnetic spectrum will

likely be contested in conflicts with technologically advanced opponents (Rowden,

Gumataotao, & Fanta, 2015). Alternate C2 models, not predicated on high-throughput

radio frequency (RF), are possible. Network Optional Warfare seeks to achieve stealth

and surprise through the use of data transmission via visible light, acoustic, free-space

optics and other unconventional media (Goff, 2014; Hughes, 2014). As these media are

likely low-bandwidth in comparison to existing RF-based channels, efficient, compressed

communications technologies are a key enabler (Brutzman, Hughes, Kline, Buettner, &

Ekelund, 2014).

5. Network Limitations

The Navy draws heavily on commercially developed technologies to run its

information systems. Often, those technologies are designed for use on terrestrial

networks with far higher bandwidth than is available for afloat communications channels.

As such, terse data exchange formats are not always first priority in commercial

technology development. For perspective, a one-terabyte download over a terrestrial fiber

line takes a matter of minutes, while the same download over Wideband Global

SATCOM link requires a few days (Porche et al., 2014). Similarly, commercial

technologies are designed for low-latency networks. Round-trip delays for

transcontinental and inter-continental links are approximately 200 to 400ms, but for a

ship-to-shore transmission via a satellite in geosynchronous orbit, the delay can be closer

to 900ms (Bentrup, Otte, Chan, Vavrichek, & Gingras, 2012). With this degree of

disparity, many commercial technologies are not viable for afloat applications.

Intermittent network availability is another issue facing Navy communications.

For some applications, such as undersea and remote sensors or unmanned vehicles,

continuous data transmission is not feasible or desirable. In these cases, nodes collect and

store sensor data for a period of time and transmit once connected to the larger network.

Fall (2003) discusses alternate techniques for improving performance in these

 8

environments, including military ad-hoc networks, through a delay-tolerant network

architecture. Other work explores data mules, or mobile nodes in a static sensor network,

to periodically harvest data from nodes and move it to a wide-area network access point

(Anastasi, Conti, & Di Francesco, 2008). In either scenario, consolidated bursts of sensor

data may spike network traffic, reflecting a tradeoff space between bandwidth

consumption and sensor granularity.

6. Solution Approaches

Given these challenges facing afloat network and system designers, there are

several general approaches to the Navy’s limited network problem, none of which are

mutually exclusive.

a. Say Less

Though a trivial solution, reducing or eliminating data transmission is a simple

way to conserve network resources, though it is problematic. The approach appears in

fleet procedures such as RIVER CITY and EMCON with different motivations, such as

operational security and detection avoidance. However, it is incompatible with the fleet’s

preference for network-centric operations and shift to cloud architecture. If the American

tactical advantage comes from fast information flows as suggested by Cebrowski and

Garstka (1998), reducing transmissions means ceding that advantage—information

ceases to be timely, the crux of NCW. Though useful in certain situations, saying less is

generally not the preferred solution.

b. Buy More

Expanding the available network capacity for afloat units is a viable solution,

though not without its drawbacks. Adding capacity invariably incurs major costs. The

cost may come in systems development and acquisition satellite constellations, measured

in billions of dollars (Chaplain, 2009). It can come from using more energy at the cost of

fuel, and for battery-constrained systems such as sensor networks, additional power may

be technically infeasible. Regardless of cost, additional satellite capacity may not be

 9

available when needed, and in fiscally constrained times, less costly solutions are

desirable, particularly if they work in conjunction with new system acquisitions.

c. Use It All

Network throughput, or the amount of data passing over a network in a unit of

time, is dependent on time (Kurose & Ross, 2013, p. 35). Systems that send network

traffic in intermittent bursts leave the networks underutilized during downtimes and over-

utilized during others, making time the critical resource. This leads to another approach

to the issue: traffic shaping and network optimization, which seek to smooth out the flow

of network traffic, holding excess transmissions until later, and sending them during lulls.

Navy afloat units are working to adopt these technologies.

d. Say the Same Thing in Fewer Words

Similar to human languages and communication, digital communications provide

many ways to send the same message, some more concise than others. At the simplest

level, this category of approaches seeks the digital equivalents of acronyms and

contractions, implemented through alternate data encodings and compression. The

fundamental drawback to this approach is that the receiver of a message must be able to

decode, or make sense of, the message, and they should be able to do so quickly. This

work focuses on this area and expands the underlying concepts in subsequent sections.

7. Interoperability Considerations

Network-centric information sharing in a tactical environment hinges also on

hundreds or thousands of networked systems communicating. Just as humans must

communicate in a shared language, so must the computer systems they use. In broad

terms, there are two avenues toward this interoperability: deploy homogeneous systems at

all network nodes, or focus on interfaces and data formats.

Homogeneous systems are unviable for the fleet for several reasons. The Navy

constantly designs and acquires new systems, which means that synergy requires

forward, reverse and sideways compatibility. This is an ongoing challenge for the Navy.

The challenge stems in part from human factors such as bureaucracy, acquisition

 10

procedures and the sheer size of the organization (Wong & Gonzales, 2014). Another

pain point lies in technical issues—operational systems in the Navy’s massive IT

portfolio span decades of technology. A full technology refresh to a homogeneous

baseline is prohibitively expensive and time consuming.

For the Navy, interoperability is best achieved through well-defined data formats

and system interfaces. In this paradigm, modular, black-box functionality is acceptable as

long as developers incorporate open specifications for the system’s data format and

interface. Efficient XML Interchange, the subject of this research, maintains XML’s

lingua franca functionality alongside significant benefits to network throughput, by

providing a compact way to transmit XML.

B. DATA SERIALIZATION

When a computer exchanges data over a network, it converts the data from a non-

linear form in main memory to a sequential series of bits to send over the communication

medium in a process called serialization (Eck, 2011, p. 533). The receiver deserializes the

bits back into a data structure in main memory, which it can then process further (Eck,

2011). It is important to note both that the in-memory data structure at either end of the

communication may differ while the serialization over the medium remains constant, and

that there are multiple possible serializations of any data structure. Serialization ties

closely to interoperability and compression.

1. Semantic Interoperability

At the core of interoperability is the notion that an idea needs to move from one

human mind to another, and that, regardless of transfer mechanism, it is semantically

identical at both ends. In practice, the transfer is rarely precise; people may not express

themselves clearly, and two listeners might come to different understandings of the same

message. When the communication between people occurs over a network, the message

is often distorted in the conversion from idea in mind to serialized bits on a wire.

In computing, semantic interoperability is the ability to clearly convey meaning

regardless of its exact data format (Sheth, 1999). Semantically interoperable systems

 11

facilitate clear conveyance of ideas between the humans using them—in a network-

centric operating paradigm, digital semantics enhance mission capability through higher-

quality information. As Shannon (1948) notes, semantics in communication is a separate

issue from the engineering issue of syntax. Though clear semantic exchange is a

cornerstone of the NCW and information dominance concepts, this work focuses on its

prerequisite: syntactic interoperability.

2. Syntactic Interoperability

Syntactic interoperability, analogous to human language, is the process of taking

two semantically identical messages, and converting them into a compatible set of bits

that can be ingested and exported by heterogeneous computers (Sheth, 1999). The in-

memory format on each computer may be different, as long as the computer can make the

necessary conversions.

3. Coding

Encoding is the process of transforming one message into another, semantically

identical yet syntactically different, message, and doing so in a predefined manner

(Salomon, 2008). Decoding reverses the processing into the original message, and a

device, system or program that enacts either change is a codec (Salomon, 2008). This

work compares two broad categories of encodings: plain text and binary.

Plain-text encodings store data as a sequence of human-readable characters,

including numbers (“3” or “9”), letters (“x” or “Z”) and special symbols (“>” or “%”).

Computers, however, can only store binary 0s and 1s, so a preset sequence of bits

represents each character inside the computer. For example, in a plain-text encoding

scheme, a computer stores the number “13” as the character “1” followed by the

character “3.” Under the common Universal Transformation Format 8-bit (UTF-8)

scheme, this is 8 bits per character, for 16 total: 00110001 00110011 (Asanov, Oleg,

Palashina, Krivonosova, & Namjittrong, 2014). As binary arithmetic differs from decimal

arithmetic, the computer cannot immediately perform math operations on these bits; they

must be converted to a native computer format first.

 12

The alternative to a plain-text encoding is a binary encoding, which represents

data in a format more natural to computers. “13” encoded as a basic unsigned binary

value uses four bits: 1101. Though simplistic, this example illustrates that data (here the

number thirteen) can be represented, or encoded, in multiple formats, and those formats

are not all of identical size. Bormann & Hoffman (2013) note there are hundreds of

binary encoding formats used in various computing systems. This diversity contributes

greatly to the challenges of syntactic interoperability.

4. Data Types

A data type is a set of distinct values with related properties (International

Organization for Standardization [ISO], 2007). Data types are a basic method that

programmers use to describe their data, and help define which operations the computer

performs on those bits (ISO, 2007). For example, if the number 13 is stored as a positive

integer data type, a program can deduce that only mathematical functions are valid, that

subtracting 14 produces an invalid negative integer, and that 13 cannot be multiplied by

the letter “z.” Programming languages use data types to decide how exactly to encode

data as 1s and 0s. In many cases, there are multiple data types syntaxes for the same

abstract idea. A timestamp in some systems is stored as the number of seconds since

January 1, 1970; in others, it is stored as year, month, day, hour, minute and second

according to the Gregorian calendar; another system may store a timestamp using the

Julian date system. As the above discussion of encoding suggests, some data types are

more compact than others carrying the same semantic value. For many data serialization

scenarios, selection of data type can significantly impact the size of message transmitted.

5. Compression

Network throughput benefits from more concise encodings—fewer bits require

less time to send. To this end, data compression algorithms leverage the principle that a

message can be encoded in many ways, turning a given message into a semantically

identical but syntactically different message of smaller size before storage or network

transmission.

 13

Since truly random data has no semantic value, or meaning, in the human mind,

data useful to humans often has patterns and redundancy. Compression algorithms find

those redundancies and select shorter encodings to express them (Salomon, 2008, p. 7).

To do so, they need prior knowledge of the data, meaning that most specialize in certain

applications, and no existing compression system is a panacea (Salomon, 2008, p. 7).

This work addresses such a specific compression scheme, targeted at data formatted in

the Extensible Markup Language (XML).

For some media types, such as audio or video, the receiving end need not receive

exactly the message sent. Lossy compression, in which the encoding sacrifices details for

conciseness, is acceptable for these applications. Much research has addressed

compression methods for imagery and audio recordings that incorporate various degrees

of data loss, and common file formats such as JPEG and MP3 fall in the lossy category

(Gonzalez, Woods, & Eddins, 2009, p. 420). For the textual or numeric data in XML,

however, lossy compression is unacceptable.

Lossless compression algorithms, however, allow perfect recreation of the

original message at the receiver. Methods used in lossless compression for plain-text

encodings include variable-length codes and dictionaries. Variable-length codes use

shorter series of bits to represent more common characters, and dictionaries replace

reoccurring sequences of characters, or words, with shorter codes (Salomon, 2008, p.

21,47).

Of particular relevance to this research is the LZ77 universal compression

algorithm proposed by Lempel and Ziv (1977). The algorithm sequentially scans a data

stream and uses a dictionary technique to select short representations for previously-

scanned sequences of symbols (Sayood, 2005). Based on its sliding window, or the

portion of the data being scanned, it favors data streams where repeated sections are

relatively close together (Salomon, 2008, p. 50). LZ77, combined with variable-length

Huffman coding, is the basis for the DEFLATE compression standard (Deutsch, 1996;

Salomon, 2008, p. 50). DEFLATE is implemented by the common Zip and Gzip

compression tools (Sayood, 2005).

 14

Many compression algorithms, called composite algorithms, incorporate multiple

techniques in series to transform data in multiple steps, giving an overall improvement in

compaction (Kattan, 2010). An example is the Bzip2 algorithm, which first rearranges

strings of characters into a new string in which identical characters are close together, and

afterwards applies variable-length Huffman coding for compression (Salomon, 2008;

Seward, 2000). The Lempel-Ziv Markov-chain Algorithm (LZMA) algorithm

implemented by 7-Zip is another example of a composite compression scheme; it applies

the LZ77 algorithm followed by range encoding (Kattan, 2010; Pavlov, 2014).

Compression algorithm selection for any application involves a broad tradeoff

space. Compactness, or the relationship of compressed to uncompressed message size, is

the simplest to measure. Another factor is compression speed, measured in the time

required to compress a message, which varies between algorithms, and also between

implementations and platforms for the same algorithm. Some algorithms are, speed wise,

asymmetric. For example, Bzip2 decompresses much faster than it compresses (Kattan,

2010). Parallel processing and hardware implementations can also improve the speed of

compression algorithms for some systems (Gilchrist, 2003; Szecówka & Mandrysz,

2009). Choice of algorithm, configuration, and implementation affect energy efficiency, a

concern in mobile devices operating on batteries (Dzhagaryan, Milenkovic, & Burtscher,

2013). In general, the choice of compression algorithm is application and scenario

dependent, and developers must understand their data, the available compression

schemes, and what factor they wish to optimize.

C. XML AND DATA INTEROPERABILITY

The development of networked computer systems, and later the web, precipitated

a need for a common, syntactically interoperable data exchange format. Without one,

programmers spend significant time implementing data input and output capabilities,

rather than core system function. In the early 1990s, available options included

proprietary binary formats and the powerful, but complicated and little used, Standard

Generalized Markup Language (Fawcett, Ayers, & Quin, 2012). To address this need, a

working group of the World Wide Web Consortium (W3C) developed a simpler rendition

 15

of SGML, the Extensible Markup Language, and finalized the recommendation in 1998

(Fawcett et al., 2012). Today, XML is the W3C-endorsed lingua franca of the web.

1. Key Attributes of XML

Two core features of XML that lend it to both syntactic and semantic

interoperability, are metadata and structure. Metadata adds semantic value, or meaning,

to raw data, which means that with metadata, a file describes itself. In XML, metadata is

added to a file via tags (simply words enclosed with < and > symbols, such as <tag>)

surrounding the data they describe. An XML document arranges the tags in a

hierarchical, tree based structure. To the human reader, this indicates how different pieces

of data within the document relate to one another, even without associated metadata.

Also, computers can easily processing XML’s tree structure without prior data

descriptions. Figure 1 and Figure 2, both adapted from a similar example by Fawcett et

al. (2012), illustrate the difference that metadata and structure add to data. In the first

figure, there is no context for the four numbers and two words to suggest what they mean

or how they are connected. In the second, with metadata in XML format added, it is clear

that the final three numbers are attributes of the Vandegrift, which is a frigate in the 3rd

Fleet.

3
Vandegrift
Frigate
445
4100
22

Figure 1. Unstructured data about a ship without metadata. It is unclear
what the purposes of the values are, and how the relate to one

another.

 16

<fleet number=“3”>
 <ship name=“Vandegrift” class=“Frigate”>
 <length>445</length>
 <displacement>4100</displacement>
 <draft>22</draft>
 </ship>
 <!-- Other ship elements may follow ... -->
</fleet>

Figure 2. XML structured data about the same ship, with metadata
describing the purpose of each value and how they are related.

2. Why XML Supports Interoperability

XML is the lingua franca of the web for several reasons. First, it is a proven,

stable technology with broad software ecosystem supporting it. In the 16 years since the

XML recommendation was first published, the W3C has created numerous supporting

standards, each adding new capabilities to the core technology. Every major

programming language has commonly available modules for ingesting, validating,

processing and exporting XML. Second, as a result, XML is platform independent and

well suited for heterogeneous environments across the web (Bos, 2001; Maeda, 2012, p.

177). By default XML includes metadata that adds semantics to the raw data, and through

the XML Schema standard, it can use a common set of data types. The metadata can be

scoped through namespaces to add context. Third, the modular, extensible nature of XML

means that nearly any data or information can be expressed in an XML document (Bos,

2001). Finally, it is an open standard published by an international organization with

many major organizations worldwide invested in continuing it at a global scale.

3. Relevant Applications of XML

XML can express an immense spectrum of information types. The following

section outlines general categories of XML applications relevant to this research.

a. Web Applications and Services

XML is a key technology in the computing paradigm of web services and service-

oriented architectures (SOA). In such an architecture, effectively a client-server model, a

client requests data or processing from a server, and receives a response. The server is a

 17

central data repository and performs much of the processing. Since it is platform-

independent, XML enables this architecture to function for nearly any combination of

devices and applications.

A common technique for implementing a service architecture in web applications

is Asynchronous JavaScript and XML, or Ajax. Ajax uses JavaScript code on a client

device to send and receive small exchanges of XML data between the client and server,

then updates the web page on the client end with the new information (Garret, 2005). The

result is an interactive web application capable of many things once left to desktop

applications, partly because the XML transfers encompass only the changing data, rather

than refreshing the entire web page (Paulson, 2005). However, as the technology

improves and network throughput increases, application developers push its limits and

increase the number of transfers.

:HE�RU�;0/�VHUYHU

'DWD�VWRUHV��EDFN�HQG�
SURFHVVLQJ��OHJDF\�V\VWHPV

8VHU�,QWHUIDFH

$MD[�HQJLQH

%URZVHU�FOLHQW

-DYD6FULSW�FDOO +70/���&66

+773�6��WUDQVSRUW

6HUYHU�VLGH�V\VWHPV

+773�UHTXHVW

;0/�GDWD

Figure 3. Ajax system process diagram showing movement of XML in a

web application (after Garret, 2005 and Paulson, 2005).

 18

The XML-based SOAP format and associated Web Services group of

specifications offer a standardized protocol for moving information amongst

decentralized systems (Cerami, 2002, p. 49; Gudgin et al., 2007). The specification,

currently maintained by the W3C, evolved from Winer’s (1999) XML-Remote Procedure

Call (XML-RPC) standard, adding extended capability and conformance to the XML

Schema specification (Jepsen, 2001). A SOAP message, or envelope, is generic and

extensible, meaning it can hold pure data, remote procedure calls, or nearly any message.

In a SOAP architecture, shown in Figure 4, both clients and servers format their messages

as SOAP XML envelopes.

62$3
FOLHQW

62$3�UHTXHVW�
ŗ&RXUVH�VSHHG
IRU�WUDFN��"Ř

62$3�UHVSRQVH�
ŗ�������NWVŘ

62$3
VHUYHU�V�

+773

+773

Figure 4. SOAP request and response cycle (after Cerami, 2002, p. 51).

The Web Service Description Language (WSDL) is an XML format describing

what information a server provides, and how another system should request it (Cerami,

2002). In practice, a server responding to a SOAP request often builds part of the

response, then passes the SOAP message to another server for additional processing prior

to transmitting back to the client. Through this mechanism, a client can receive data from

multiple sources via a single request. Proper WSDL descriptions can automate the

process of establishing connections between computers in a SOAP environment.

Publish-subscribe systems present an alternative to the request-response model

implemented in Ajax and SOAP. In a publish-subscribe environment, a client subscribes

to a publisher, often via an intermediary. Afterwards, whenever the publisher has new

information to disperse, it transmits the message to all subscribers without waiting for a

 19

request (Baldoni, Querzoni, & Virgillito, 2005). Prevalent in news syndications,

workflow systems, and other event-driven applications, publishers often transmit in XML

formats such as Really Simple Syndication (RSS) or Atom (Winer, 2003). XML’s

platform-independence lends itself to such systems: subscribers and publishers are often

heterogeneous and connected over the web.

b. Sensor Networks

As the World Wide Web (WWW) grows in ubiquity and mobile technologies

expand, new classes of devices such as remote sensors are moving onto networks,

creating the Internet of Things (IoT). Applications range from radiation and biochemical

detection to meteorology and oceanography (Ling, Durbha, & King, 2006; Sheth,

Henson, & Sahoo, 2008). While the IoT facilitates low-level connections between

devices, it does not necessarily convey the semantics of data exchanged. Data spread

across isolated sensor networks is problematic to combine and process meaningfully

(Sheth et al., 2008).

The Web of Things (WoT) concept seeks to address the issue of interoperability

in the IoT by applying proven technologies and techniques from the Web to mobile and

micro-scale devices. XML will likely be a core data exchange format in the distributed

systems populating the WoT (Kangasharju, 2008, pp. 3–4). Since the metadata in XML

documents merges semantics and context with raw data in a standard way, XML can

bridge stovepipes of single-purpose micro devices. Combining these existing information

sources in new ways may offer value beyond the original design (Raggett, 2010).

Furthermore, the EXI standard, discussed in the following section, is a key enabling

technology for transforming the IoT into the WoT by allowing resource-constrained

devices to communicate and interoperate on the WWW (Brutzman, personal

communication, March 12, 2015).

D. XML VERBOSITY

For networked systems with limited throughput, memory or battery power, XML

has an Achilles heel: it is not, and was never designed to be, a compact encoding. This

section summarizes the design decisions leading to XML’s verbosity, and previous

 20

working addressing the issue. As described in Chapter I, subsection D, this section was

co-written with S. Debich (2015) and therefore also appears in his thesis.

1. Verbose by Design

XML’s designers aimed largely to streamline data transfer on the web and to

eliminate the complexities of its predecessor, SGML (Kangasharju, 2008, pp. 13–14).

They built XML to be simple for humans to use, write and read, implying that it must be

a plain-text format - reading and debugging binary documents is near impossible without

computer assistance (Bos, 2001; Bray, Paoli, & Sperberg-McQueen, 1998). The

specification met its goals, and the plain-text encoding of XML is part of the reason

behind it success.

A drawback to the simplicity of plain-text encoding is an associated size increase.

The original XML specification states that “terseness in XML markup is of minimal

importance” (Bray et al., 1998). In practice, however, computers are often the only

entities processing XML messages, so for many applications, terseness is more desirable

than human-readability. To clarify the issue, consider the word “Efficient.” Encoded in

plain text using UTF-8, each of its nine letters uses 1 byte, or 8 bits, for a total of 72 bits.

In a binary encoding, those 72 bits can represent 4,722,366,482,869,645,213,696 (272)

different words, which is approximately 7.9 trillion times as many words as there are in

the English language (Oxford University Press, 2013). Considering this overhead, there

certainly are more efficient ways to communicate the word “Efficient.”

2. Generic Compression Approaches

A common approach to reducing XML transfer sizes is to apply a generic, lossless

compression algorithm for which both the sender and receiver have a codec. Nearly all

operating systems include software implementations of the DEFLATE algorithm and can

process file formats such as Zip and Gzip, so those are common in practice. In general,

Gzip compression offers significant compaction over plain-text XML, decreasing it to

50% or less of original size, though the compaction rate varies based on the XML

contents (Bournez, 2009). In a few cases, however, Gzip encodings increase the file size

(Bournez, 2009).

 21

When clients on the web send hypertext transfer protocol (HTTP) requests to

servers, they may specify that they accept responses in specific encodings (Fielding &

Reschke, 2014, p. 40). If the server supports that encoding, it applies the requested

compression prior to sending its response. The Internet Assigned Numbers Authority

(IANA) maintains an official list of formats, though clients may choose to request others

(Internet Assigned Numbers Authority, 2014). Both the Apache HTTP server and

Microsoft Internet Information Services (IIS) server support Gzip compression without

extensions (Microsoft, 2014; The Apache Software Foundation, 2014). If the server does

not store compressed copies of requested resources, it must spend time applying

compression before responding, which presents a series of tradeoffs based on network

speed, server capabilities, and traffic load (Morse, 2005).

3. Binary Encoding Approaches

Binary encodings are another group of techniques for compacting XML data.

Generic compression algorithms such as Gzip make no assumptions about the data being

compressed - they work on any stream of bytes. XML documents, however, have a well-

defined tree structure. Binary encoding algorithms designed specifically for XML

documents leverage use a priori knowledge of this structure to achieve greater

compaction than generic algorithms (Sakr, 2009). Between the publishing of the XML

recommendation in 1998 and 2014, multiple standards and formats emerged, each

specifying such a binary representation of XML. The following paragraphs briefly

describe select methods illustrating techniques relevant to this research. Sakr (2009)

provides a broader survey of formats along with comparative test results.

One category of XML compression methods works by substituting short binary

tokens for longer plain-text elements in a process called tokenization. The Wireless

Application Protocol (WAP), developed by the WAP Forum, was an early such solution

in this group. WAP is a group of standards that define a complete architecture optimized

for low-memory mobile devices connected by low-capacity wireless networks (The WAP

Forum, 2000). A WAP system routes client requests through a gateway device between a

web server and end client. The WAP gateway transforms the requested web page or

 22

information into a Wireless Markup Language (WML) document, an XML format. In a

process called tokenization, the gateway converts longer plain-text elements from the

WML document into short, binary tokens that consume less space on the final wireless

hop - a format called WAP Binary XML (WBXML) (Martin & Jano, 1999). The Fast

Infoset (FI) specification takes a similar approach to WBXML. It uses binary tokens to

encode XML structural elements, and builds dynamic vocabulary tables that hold

recurring strings of characters (ISO, 2007b).

0RELOH
:$3
&OLHQW

+70/�
;0/

:0/�
:%;0/

:$3
3URWRFRO�
6WDFN

:$3
*DWHZD\

7&3�,3
6WDFN

:HE
6HUYHU

:LUHOHVV
1HWZRUN

:LUHG
1HWZRUN

Figure 5. WAP system diagram showing XML transformation into WML
via a gateway architecture (after Saha, Jamtgaard, & Villasenor,

2001).

Another common approach to XML compression is to use knowledge of both the

XML structure and the mechanics of one or more generic compression algorithms to pre-

process the XML document so that conventional compression algorithms such as Gzip

perform better as a final processing step (Sakr, 2009). An early example of this method is

the XMill compression method, developed by Liefke and Suciu (2000). It separates data

from structure, reorganizes the XML document to group similar items together, and

finally applies customizable semantic compression if the specific contents of an element

are known (Liefke & Suciu, 2000). A possible limitation of this approach is poor

compaction for small files—in Liefke and Suciu’s (2000) work, files below

approximately 20 kilobytes suffered from pre-processing overhead and were better

compressed with only Gzip.

 23

4. Efficient XML Interchange

Between 2000 and 2011, a wide variety of XML-specific compression techniques

were developed; different methods optimized for memory footprint, difficulty of

implementation, encoding speed, decoding speed, random access and compactness

(Kangasharju, 2008; Sakr, 2009). In light of this complexity, two W3C working groups

evaluated a variety of binary XML encodings for adoption as the consortium’s

recommended standard. The XML Binary Characterization (XBC) Working Group

enumerated a list of target use-cases and an associated list of more than 25 requisite

properties for a binary XML standard (Cokus & Pericas-Geertsen, 2005a, 2005b).

Beginning in 2005, the successor Efficient XML Interchange Working Group compared a

variety of candidate compression algorithms against the properties, ultimately settling on

AgileDelta’s Efficient XML (Le Hegaret, 2005; Schneider & Kamiya, 2011). In March

2011, the Efficient XML Interchange Format (EXI) reached official W3C

recommendations status (Schneider & Kamiya, 2011).

Table 1. Minimum requirements for a binary XML format as determined by
XBC Working Group (after Goldman & Lenkov, 2005).

MUST Support MUST NOT Prevent

Directly Readable and Writable Processing Efficiency

Transport Independence Small Footprint

Compactness Widespread Adoption

Human Language Neutral Space Efficiency

Platform Neutrality Implementation Cost

Integratable into XML Stack Forward Compatibility

Royalty Free

Fragmentable

Streamable

Roundtrip Support

Generality

Schema Extensions and Deviations

Format Version Identifier

Content Type Management

Self Contained

 24

EXI capitalizes on multiple techniques to improve compression, and they vary

depending on a set of EXI options passed to the codec. This section briefly discusses core

compression techniques available in the EXI specification, while a discussion of various

option configurations is included in the methods chapter. Kyusakov (2014) and Peintner

and Pericas-Geertsen (2007) offer concise explanations of the EXI algorithm, and the

official EXI Specification presents a normative description (Schneider et al., 2014).

a. Grammar-Based Encoding

XML documents have a set of rules governing their structure. While processing

an XML document, an XML parser interprets the various tags as events, which can be

considered as state transitions in a grammar. At any given point in a document, an XML

parser can expect the next event to be one of a finite set of possibilities with different

probabilities. An EXI encoder builds an internal model of the document as a set of such

grammars, and assigns short, variable-length, numeric codes to each event (Schneider et

al., 2014). The short codes replace longer tag structures in the encoded stream.

b. String Table

While parsing an XML document, an EXI encoder builds a table of character

strings, which can be thought of as words. The first time the encoder encounters a word,

it writes it in full and assigns it a short numeric code and every time afterwards, the

encoder replaces the full word with the shorter code. This technique addresses the

repetition of opening and closing tags in XML, as well as documents where the data itself

is repetitive.

c. Data Types

If an XML document has a corresponding XML Schema describing the data type

of its elements, an EXI encoder can use that information to encode data in a compact

format. Without a schema, the EXI encoder treats all element contents as plain-text

character strings. For example, consider an XML attribute with a value of “false.” As a

plain-text string, its five characters each fill 8 bits, for a total of 40 bits. However, with a

schema identifying the attribute as a Boolean, the EXI encoder knows that the attribute

 25

can only take one of two logical alternative values: “true” or “false.” Since 1 bit can

encode 2 different values, the encoder uses that information to shorten “false” from 40

bits to 1 (Schneider et al., 2014).

d. Range Restrictions

In addition to specifying an element’s data type, an XML Schema can define a set

of restrictions on its possible values. For example, consider an XML attribute defined as

an integer, with a value of 15,009. An EXI encoder by default encodes it with 2 bytes, or

16 bits. However, if the schema restricts the attributes values to the set of integers

between 15,000 and 16,000, the EXI encoder simply writes its offset from 15,000 (i.e.,

the value 9), which uses only 4 bits.

e. Channelization

An EXI encoder can reorganize the contents of an XML document such that

similar elements are close together in the output stream, a process called channelization.

Since many compression algorithms identify recurring strings of characters, and perform

better when the recurrences are localized rather than scattered throughout a document, the

reorganization optimizes the document for later compression (Salomon, 2008; Schneider

et al., 2014). By default, EXI applies the DEFLATE algorithm for the final compression

step, although others can be used.

E. JAVASCRIPT OBJECT NOTATION

JavaScript Object Notation (JSON) is a widely used alternative to XML, often

referred to as a lightweight data exchange format (G. Wang, 2011; P. Wang, Wu, &

Yang, 2011). The JSON syntax stems from the syntax for defining objects in JavaScript.

In 2001, Douglas Crockford self-published a standard for JSON after finding it useful in

developing client-server exchanges in JavaScript web application (Crockford, n.d.). Both

Ecma International and the Internet Engineering Task Force (IETF) have since published

standards documents describing the format (Crockford & Bray, 2014; Ecma International,

2013). Like XML, JSON is plain-text encoded and independent of any specific

programming language and thus platform independent.

 26

1. Relationship between JSON and XML

In many situations, the JSON interchange format is functionally equivalent to

XML. XML parsers build in-memory representations as a tree, whereas JSON parses into

a series of key-value pairs. Wang (2011) notes that, because both formats are similar and

widely used, web service developers may need to incorporate both into their systems.

Some web services maintain dual application programming interfaces (API) that return

data in either JSON or XML.

Given the shared purpose of data interchange and application domain of data

exchange over networks, several conversion techniques between XML and JSON exist

(Lee, 2011; G. Wang, 2011). In general, the conversion is not a one-to-one process; there

are multiple semantically identical and syntactically correct methods for converting one

to the other. Some are unidirectional conversions; others can be converted in both

directions with no fidelity loss. Some conversions preserve all data while others discard

information. Examples include dropping namespaces from an XML document because

JSON has no concept of namespaces, or discarding unique keys for child elements. Lee

(2011) provides a survey of various translation methods, none of which are standardized.

2. Tradeoff Space

The decision between XML and JSON as a data interchange format presents a

multidimensional tradeoff space. This section reviews the key variables and with support

from the literature where possible.

a. Expressive Differences

Due to differences in their standards and their underlying structural differences as

tree and key-value pairs, JSON and XML express information differently. JSON does not

use comments, while XML does (Crockford & Bray, 2014). In general, JSON is well-

suited for transmitting atomic values and lists of data, but it cannot handle mixed-content

messages where semantic markup intermingles with data content (Walsh, 2010). As there

is no standardized method for commuting data between XML and JSON formats,

interoperability between the two is not guaranteed—work by the Web3D Consortium on

 27

the X3D graphics standard has underscored this challenge in development of parallel

standards supporting both formats. (Brutzman & X3D Working Group, 2014). Through

XSDs, developers have more options for defining the data types using in their XML, and

those data types can be further delineated through range restrictions (Evjen et al., 2007).

JSON, by contrast, uses only objects, arrays, numbers, strings and Boolean values

(Crockford, 2008). The post-schema-validation-infoset is a useful reference for

delineating the descriptive power of XML and EXI documents (Thompson, Beech,

Maloney & Mendelsohn, 2004). JSON’s descriptive capability is a subset of XML and

EXI (Brutzman, personal communication, March 12, 2015).

b. Quantitative Differences

JSON is generally considered to be faster than XML for data interchange, though

speed in networking is multivariate in itself. Wang, Wu, and Yang (2011) measured parse

times for batches of objects in both JSON and XML format, with batch sizes increasing

from 100 to 10,000. In all batches, the average parsing time per object for JSON was

between 24 and 34% less than for XML (P. Wang et al., 2011). Maeda (2012) measured

object serialization and deserialization times to JSON, XML and other binary formats

using a variety of Java libraries. JSON serialized between 3 and 19 times faster than

XML, while JSON deserialization ranged from 34 times faster to 30 times slower,

depending on the serialization library (Maeda, 2012). Lee (2013) investigated round-trip

times for interactions in a client-server application, both in XML and JSON. The test

incorporated a variety of client devices and transmission mediums (mobile through

wired), and results found negligible difference in speed between the two formats (Lee,

2013). Overall, the inconsistency in results suggests that a wide array of variables affect

the speed tradeoff, including programming language, hardware specification, network

bandwidth and latency, and software implementation.

For applications concerned with storage, with minimizing lower-layer protocol

overhead, or with per-byte pricing plans (e.g., mobile devices), file size can be an

important factor. Sumaray and Makki (2012) and Maeda (2012) reported size

comparisons with JSON ranging from less than 50% up to 89% the size of XML. Lee

 28

(2013) created multiple JSON and XML files from the same abstract document, and

noted cases where JSON was both larger and smaller than XML, depending on

formatting conventions. Also, considering that network interactions often apply

compression, a document’s compressed size must be considered when comparing

formats. In Lee’s (2013) research, the size difference between XML and JSON, post-

compression, was negligible.

c. Qualitative Differences

An array of unquantifiable traits also differentiates XML from JSON. Perhaps the

most salient of these is the large ecosystem of standards built on the XML specification,

along with their corresponding software implementations. Common data functions such

as security, processing, querying and format translations are well defined and

implemented. JSON, by contrast, aims for overall simplicity and processing of JSON

documents is generally not standardized.

W3C standards such as XML Signature, XML Encryption, and XML Key

Management Specification (XKMS) define procedures for encrypting and digitally

signing XML documents to provide the confidentiality, integrity and authentication

components of security (Bartel et al., 2013; Hallam-Baker & Mysore, 2005; Imamura et

al., 2013). JSON has no analogs to these standards, and security functions are left for

developers to implement outside of the JSON standard.

Of particular interest in this research is the notion of interoperability. For

heterogeneous systems to communicate, the message exchange format must be well

defined, and be capable of validation. Technologies such as XML Schema, Document

Type Definition (DTD), RELAX NG and Schematron are all schema languages that

allow a developer to formally describe a family of XML documents, nominally those

documents that available for import or export by that system. With this definition,

another system can be certain of how it should communicate, or interoperate. At present,

there are no widespread technologies for formally describing a JSON document, though

the language is capable of such (Nurseitov, Paulson, Reynolds, & Izurieta, 2009). Nogatz

and Fruhwirth (Nogatz & Frühwirth, 2013) developed a prototype tool for converting an

 29

XML Schema Document (XSD) into a corresponding JSON Schema. Their work built

upon the unfinalized IETF JSON Schema specification, which has multiple

implementations despite its draft status (Galiegue, Zyp, & Court, 2013). Robust

validation capabilities may become increasingly available for JSON.

Another XML capability critical for interoperable systems is namespaces. A

namespace is a method for disambiguating XML metadata tags by breaking them into

groups (Fawcett et al., 2012). As an example, consider a supply system that combines

inventory information between branches of the military. A tank in an army system could

be a rather different item than in a navy system. Figure 6 and Figure 7 demonstrate the

concept of XML namespaces for the tank example. By design, JSON does not use

namespaces, relying instead on developers to use a unique set of keys in JSON

documents (Crockford, 2006). XML namespaces are thus advantageous for complex

system-of-system scenarios where a developer only controls a small portion. However,

the W3C JSON-Linked Data (JSON-LD) recommendation adds a similar capability for

adding context to JSON documents (Sporny, Longley, Kellog, Lanthaler, & Lindstrom,

2014).

<lineitem>
 <tank>
 <quantity>3</quantity>
 </tank>
</lineitem>

Figure 6. Ambiguous tank line item in a cross-service stock system. It is
unclear whether the tank is a fuel tank or an armored vehicle.

<lineitem>
 <tank xmlns=“http://navy.mil/supply”>
 <quantity>3</quantity>
 </tank>
</lineitem>

Figure 7. Unambiguous tank line item in the http://navy.mil/supply
namespace. Adding the Navy namespace suggests what sort of tank

it is.

 30

3. Binary Encoding Approaches

Though JSON is typically smaller than XML, just like XML it is plain-text

encoded, which leaves room for additional compaction efforts. Just as with XML,

networked systems commonly compress JSON messages with Gzip before transmitting.

Studies by Lee (2013) and Gil and Trezentos (2011) show that Gzip performs well on

most JSON files, compressing them to between 1% and 30% of plain-text size. One file

sample in Lee’s (2013) test corpus increased to 148% of original size, likely because it

was less than 100 bytes as plain text and Gzip’s overhead outweighed the compression

benefit. The variation in compression also derives from the contents of each file, because

Gzip performs well on repeating character strings. Compression and decompression with

Gzip also adds processing time, which may outweigh the benefits realized from smaller

file sizes, depending on performance metrics.

Just as EXI addresses the verbosity inherent to plain-text XML, multiple

standards have emerged to represent plain-text JSON in a binary format, with varying

objectives, strengths, and limitations (Bormann & Hoffman, 2013). Tiller and Harman

(2014) researched binary serializations for JSON, including Smile, Universal Binary

JSON (UBJSON) and Binary JSON (BSON) and noted that the JSON community lacks

consensus on the issue. The Concise Binary Object Representation (CBOR) format is an

IETF standard for serializing generic data objects, and is designed for full compatibility

with the JSON format (Bormann & Hoffman, 2013). This work focuses on BSON and

CBOR.

A comparison of the BSON and CBOR formats highlights a complicated set of

engineering challenges. BSON is a byproduct of the MongoDB project, which uses it as

the internal storage format for its Not only Structured Query Language (NoSQL)

database (MongoDB Documentation Project, 2014). Its stated design goals are to be

lightweight or compact, quickly traversed by computers, and efficiently encoded and

decoded (“BSON,” 2014). CBOR’s design objectives are to: (1) be capable of encoding

most standardized data formats on the network; (2) allow for compact, memory-

inexpensive codec implementations; (3) require no schema for decoding; (4) serialize

compactly; (5) minimize CPU usage; (6) convert to and from JSON; and (7) be extensible

 31

(Bormann & Hoffman, 2013). Overall, the two formats emphasize processing speed and

resource usage, with compaction a secondary goal.

F. CHAPTER SUMMARY

To maintain information superiority with network-centric operating concepts over

constrained networks, the Navy must seek to use its limited bandwidth as efficiently as

possible while maintaining interoperability between systems. XML and JSON are both

commonly used data interchange formats, but neither is particularly compact. Binary

representations of each exist: EXI for XML, and CBOR and BSON among others for

JSON. Previous work has shown that binary data encodings can significantly improve

compactness of data payloads for networked applications, thereby improving overall

system throughput.

 32

THIS PAGE INTENTIONALLY LEFT BLANK

 33

III. METHODS

This research investigated the performance of EXI, in terms of compaction, for

two broad categories: small and large files. The small-file category included applications

with frequent data transactions or where JSON would likely be used as an alternative to

XML, and data collection focused on comparing EXI to the binary JSON encodings

CBOR and BSON for files smaller than 1MB. For the large-file category, the datasets

came from applications that store large amounts of data in XML format, with the primary

intent of validating and extending past performance measurements of EXI to include files

larger than 100MB, up to 4GB. This chapter outlines experimentation methods for this

research.

A. SINGLE-APPLICATION FOCUS

Previous evaluations of EXI compression cover a broad spectrum of use cases and

applications. Some focus on EXI performance in general (across multiple applications),

and some on various aspects of EXI performance for a specific application. The W3C

EXI Working Group compiled a corpus of over 10,000 XML files, and culled it down to

a representative subset of 88 documents (White, Kangasharju, Brutzman, & Williams,

2007). They aimed to select a candidate implementation for adoption and adaptation as

the EXI standard, so the corpus reflected the standards wide scope. Snyder (2010)

extended the corpus to include DOD-relevant sample files, and explored several

characteristics of the XML documents to develop a generalized, predictive model for EXI

compaction. Both result sets suggest that EXI never increases the size of XML files, and

in practically all cases produces smaller files than Gzip.

Other research addresses EXI performance for specific applications. Kyusakov,

Makitaavola, Delsing, and Eliasson (2011) and Sundin (2013) each selected a specific

embedded-systems application, collected several files for that application, and measured

EXI compaction. Liefke and Suciu (2000) used a similar methodology for assessing

XMill performance. This single use case perspective on XML compression provides

deeper, but less general, insight. The testing method used in this work falls into the single

 34

use case focus category, and drew on the methods from Liefke and Suciu (2000) and

Sundin (2013) for assembling sample file sets and presenting results. For the purposes of

this work, two files were considered to be from the same use case if they validated

against the same XSD, and the following sections use the term use case interchangeably

with application.

The author selected sample files from real-world applications to avoid two

potential pitfalls in compression testing. First is the copy-paste issue, in which the tester

creates a large file by repeatedly copying and appending a smaller file to itself. In most

cases, the repeated data adds little information, but dramatically increases compaction.

Second is the random issue, in which a researcher generates a file using a pseudo-random

number generation program. The resulting file compacts poorly because it has little

repetition and may not represent realistic application traffic, though in cases such as

transmitting cryptographic hashes, it may. Either of the copy-paste or random issue tend

to misrepresent an application’s data, and therefore misrepresent the compression

algorithm’s performance (J. Schneider, personal communication, October 20, 2014).

B. CONFIGURATION FOCUS

The EXI standard defines many options users can set when encoding XML

documents into EXI (Schneider et al., 2014). Though the default option-set works for all

XML documents, it does not necessarily produce the smallest possible encoding. Other

configurations offer greater compaction, faster processing, smaller implementation

footprint and other advantages and disadvantages desirable in different scenarios. Also,

the impact of various options depends on the nature of the XML data and the XML

schema describing that data. Both the W3C’s draft EXI Best Practices document and the

EXI specification itself mention the impacts of the various configurations, but neither

provides in-depth empirical results for those impacts (Schneider et al., 2014; Cokus &

Vogelheim, 2007). Such results could offer insight for developers optimizing applications

to use EXI.

This research uses a systematic approach to explore many of the EXI

configuration permutations, as applied to each of six use cases. In all cases, the final

 35

recorded metric is file size, or compactness, generally achieved at the cost of additional

processing time. Table 2 presents a list, with non-normative descriptions, of the EXI

options explored in this research.

Table 2. A summary of the EXI options explored in this research (after
Schneider et al., 2014).

Option Description

Alignment The alignment of grammar event codes and data content in the EXI stream. Can
be either bitpacked, byte-aligned or precompress. In conjunction with the
‘Compression’ option, this field indicates which of the 4 EXI modes is to be used.

Compression Whether or not EXI should apply DEFLATE compression to the stream, i.e.,
whether compress mode should be used. Mutually exclusive with the Alignment
option, and in conjunction with the Alignment option, indicates which of the 4
primary EXI modes is to be used.

Strict Indicates if deviations from the given schema document are acceptable. Only
available for schema-informed encodings.

Schema ID Indentifies the XML schema used to inform the encoding. If not specified, the
encoding will be schemaless.

Preserve A series of Boolean flags indicating whether or not comments, processing
instructions, DTDs, namespace events/prefixes, and the lexical form of element
and attribute values should be preserved.

EXI encodings may use either one of three alignment options or a compression

option. Together, these effectively create a single set of four mutually exclusive ‘modes’

that an EXI encoder may use. In bitpacked mode, the encoder writes each event code and

value to the stream, in the original document order, with the fewest possible bits rather

than adding padding bits to align EXI events on byte boundaries. Since compression

algorithms process data streams by bytes, bitpacked encodings do not lend themselves to

post-compression (Schneider et al., 2014). A byte-aligned encoding writes each event

code and value to the stream, in the original document order, adding padding as necessary

to align events on byte boundaries. The EXI specification includes the byte- aligned

mode primarily for troubleshooting and debugging purposes (Schneider et al., 2014). In

precompress mode, the EXI encoder breaks the stream of EXI events into blocks, and

then rearranges the events within each block into channels such that similar events are

close together. This step optimizes the stream for additional compression via algorithms

such as Zip, Gzip, Bzip2 or 7zip (Schneider et al., 2014). The encoder aligns events in

 36

precompress EXI streams on byte boundaries. An EXI encoder in compress mode

performs the set of transformations defined in precompress, then applies the DEFLATE

algorithm to further reduce the stream size at the expense of additional processing time.

This research captured results for each of these four modes (bitpacked, byte-aligned,

precompress, compress), as they tend to have the greatest impact on compactness.

If an XML document conforms to a corresponding XSD, the EXI encoder may

use information from that XSD to increase compactness. This is called a schema-

informed encoding, whereas an EXI encoding that uses no XSD is schemaless (Schneider

et al., 2014). Schema-informed EXI streams may additionally use the strict option, which

prohibits XML events not conforming to the XSD and results in more compact

encodings. This research includes results for schemaless, schema-informed and schema-

informed with strict option set (hereafter referred to as strict) encodings for all file

samples.

For schema-informed and strict encodings, an EXI encoder can use any XSD that

the XML document validates against. However, many XSDs may describe the same

XML document, and the specific characteristics of the information in an XSD can affect

the compactness of an EXI encoding. If an XSD indicates that an element has a data type,

the EXI encoder uses that information to write the element’s value in a data type-specific

binary format. If the XSD does not specify a data type, the EXI encoder treats the

element as a string. Also, XSDs may set maximum and minimum values that an element

may take, and if that information is available, an EXI encoder uses it to write the value in

fewer bits. For one application, this research presents results of schema-informed

encodings for various XSDs.

C. SMALL-FILE CATEGORY

To compare compactness of plain text and binary XML encodings to

corresponding JSON-based encodings, this researcher compiled a collection of files, or

file sets, from each of three use cases. Each file set comprised a series of semantically

equivalent JSON and XML files of varying sizes representing abstract messages from

that application. Each plain-text file in a file set was encoded to multiple binary formats

 37

using various permutations of encoding options and post-compression algorithms. This

section summarizes the applications, describes the XML to JSON conversion process,

and lists the derivative file formats. As JSON is commonly used to transfer ‘small’

messages, plain-text file sizes range from 303B to 584KB in this category, hereafter

referred to as the small-file category.

1. Subsetting

In web applications, a client often requests or transmits a group of objects from or

to a server where all objects have the same type. Examples could be a list of server-log

entries or a group of stock orders. Depending on the application and the client’s needs,

the group size may range from a single object to hundreds of objects or more. Sundin

(2013), as well as Liefke and Suciu (2000) explore the impact of this variation on

compression of a related set of files. Their results indicate that compaction varies with

file size, and that larger files tend to compact more than smaller files. Given that

compression algorithms work by eliminating redundant data, it makes sense that a file

with many similar objects and thus high repetition would compress more than one with

few objects.

To explore the impact of varying file sizes for applications in the small-file

category, this researcher used a master file containing between 750 and 1,000 objects, in

XML format, from each application. From the master set, XSLT transformations were

used to generate progressively larger files containing a subset of the master file. The n-th

subset file contained the XML header, the root element and root-level metadata, and the

first n objects. For n < 10, every subset file was created, and for n ≥ 10, every 10th subset

file was created. Thus, for a master file with 1,000 objects, subset files were created for n

= {1, 2, 3 ... 8, 9} ⋃ {10, 20, 30 ... 980, 990, 1000}. This resulted in between 84 and 109

subset files per use case.

2. Format Conversions

All encodings tested in the small-file category derived from the n-object subset

files in XML format, requiring a series of software conversions to produce syntactically

different files containing, as much as was practical, semantically equivalent information.

 38

This section addresses the methodology and software used for each conversion. A series

of Bash shell scripts performed all task automation functions.

(1) XML to JSON

Since the XML to JSON conversion process is not one-to-one, this work

incorporated a generic, automated methodology to facilitate repeatability, speed up data

collection, and to create a “fair” comparison between applications. XML to JSON

conversions used the XSLTJSON stylesheet processed with the Saxon9 XSLT processor

(Kay, 2009; Stein, 2014) XSLTJSON allows the user to select one of four possible

transformation conventions (Stein, 2014). This research used the default, which is the

most compact but neither preserves namespaces nor allows for lossless round-trip

conversions from XML to JSON and back to XML (Stein, 2014). Though conventions

such as the BADGERFISH convention support do support lossless round-trip

conversions, this work favored the more compact method. Some degree of information is

lost in the process, but including content such as namespaces in a JSON document does

not reflect its use in practice and adds a bias toward XML by saddling JSON with

irrelevant information. Instead, this approach aims to inform development decisions of

whether to use JSON or EXI, or client decisions in situations where a web service offers

both JSON and XML API responses.

(2) XML to EXI

All XML to EXI encodings used the EXIficient library (Daniel Peintner & Heuer,

2014). To invoke various options in EXIficient, the ExiProcessor interface was used

(Garrett, 2012)(Garrett, 2012). Both EXIficient and ExiProcessor are written in Java.

(3) JSON to BSON

Unlike the above conversions, JSON to BSON is a one-to- one mapping. The

BSON codec included with Pythomnic3k framework performed all JSON to BSON

conversions (Dvoinikov, 2014). Pythomnic3k is written in Python. The conversion

process reads a JSON file into a Python dictionary object, then serializes the object in

binary format as BSON.

 39

(4) JSON to CBOR

The process for converting from JSON to CBOR was similar to that in (3) above,

but used a CBOR codec written in Python (Olson, 2014). JSON to CBOR conversions are

a one-to-one mapping.

(5) Zip, Gzip and Bzip2 Compression

Three BSD command-line utilities, Zip, Gzip and Bzip2, performed all

conventional compression encodings where applicable. For each, the version was the

default one included in a base installation of OS X 10.9 with Apple Developer Tools. The

encodings used default settings in all cases.

0 is a structured diagram of all format conversions for the large-file category. The

root node on the left represents an abstract piece of data, for which all other encodings

are semantically equivalent. Each leaf node on the right is a final encoding format written

as a string of filename extensions indicating the sequence of conversions. For example,

“.xml.strict_precompress_exi.bz2” denotes an XML file encoded first with EXI in

precompress mode with strict schema adherence, then encoded with the Bzip2

compression algorithm.

 40

Data

JSON

Uncompressed Plain Text .json

Compressed Plain Text

.json.zip

.json.gz

.json.bz2

Uncompressed Binary

.json.bson

.json.cbor

.json.eson

Compressed Binary

.json.bson.zip

.json.bson.gz

.json.bson.bz2

.json.cbor.zip

.json.cbor.gz

.json.cbor.bz2

.json.eson.zip

.json.eson.gz

.json.eson.bz2

XML

Uncompressed Plain Text .xml

Compressed Plain Text

.xml.zip

.xml.gz

.xml.bz2

Without Schema

Uncompressed EXI

.xml.bitpacked_exi

.xml.bytealigned_exi

.xml.precompress_exi

Compressed EXI

.xml.compress_exi

.xml.bitpacked_exi.zip

.xml.bytealigned_exi.zip

.xml.precompress_exi.zip

.xml.bitpacked_exi.gz

.xml.bytealigned_exi.gz

.xml.precompress_exi.gz

.xml.bitpacked_exi.bz2

.xml.bytealigned_exi.bz2

.xml.precompress_exi.bz2

With Schema

Strict

Uncompressed EXI

.xml.strict_bitpacked_exi

.xml.strict_bytealigned_exi

.xml.strict_precompress_exi

Compressed EXI

.xml.strict_compress_exi

.xml.strict_bitpacked_exi.zip

.xml.strict_bytealigned_exi.zip

.xml.strict_precompress_exi.zip

.xml.strict_bitpacked_exi.gz

.xml.strict_bytealigned_exi.gz

.xml.strict_precompress_exi.gz

.xml.strict_bitpacked_exi.bz2

.xml.strict_bytealigned_exi.bz2

.xml.strict_precompress_exi.bz2

Default

Uncompressed EXI

.xml.schema_bitpacked_exi

.xml.schema_bytealigned_exi

.xml.schema_precompress_exi

Compressed EXI

.xml.schema_compress_exi

.xml.schema_bitpacked_exi.zip

.xml.schema_bytealigned_exi.zip

.xml.schema_precompress_exi.zip

.xml.schema_bitpacked_exi.gz

.xml.schema_bytealigned_exi.gz

.xml.schema_precompress_exi.gz

.xml.schema_bitpacked_exi.bz2

.xml.schema_bytealigned_exi.bz2

.xml.schema_precompress_exi.bz2

Figure 8. A categorized representation of all small-file category encodings

derived from the same data.

XML

JSON

 41

3. Focus Questions

For each of the approximately 109 files in a small-file application file set, the test

suite generated 55 different encodings, resulting in a total of 5,995 different file size

records per file set. Though preliminary review of compression literature and early test

results indicated that many of the encodings were not ideal, this researcher conducted the

tests for thoroughness. With such a large number of choices, a winnowing method was

critical. To facilitate analysis and presentation of results, this research incorporated a

series of six focus questions addressing various facets of the XML to JSON comparison

space, as well as the various configurations of EXI. The questions derive both from the

researchers course of inquiry into the capabilities and traits of EXI, and well as potential

questions from developers considering EXI integration. In Chapter IV, a plot relating

compaction to original file size for a group of encodings formats answers each of the

focus questions.

All plots display compaction as a percentage, calculated as Compaction = original

size (in bytes) / compressed size (in bytes). Using this formula, a value of 100% on the

y-axis indicates no change in file size. Values greater than 100% on the y-axis indicate

the file size increased, and values less than 100% indicate the file size decreased. In other

words, a compaction rate of 25% means that the compressed file is 1/4 the size of the

original. The original size, or baseline, for most questions is plain-text XML size, though

some questions require alternate baseline formats. For example, though an EXI encoding

of plain-text XML may be 10% of original size, the result does not reflect the impact of

EXI for a network already using Gzip compression. In that case, the Gzip encoding of

XML is a more realistic baseline. Table 3 outlines the group of encodings associated with

each focus question and the baseline format for comparison. Chapter IV presents the plots

for all these questions, with the results grouped by focus question, and in the same

question order presented here.

 42

Table 3. Focus questions for small-file category, relevant encodings, and
baseline for comparison.

Question Baseline Encodings Compared

A. Is JSON more compact than XML either when both are
plain-text encoded or when both are compressed with
conventional compression algorithms?

.xml .json
.json.gz
.json.bz2
.xml.gz
.xml.bz2

B. Does post-compression with conventional algorithms increase
the compactness of BSON or CBOR?

.json .json.bson
.json.bson.gz
.json.bson.bz2
.json.cbor
.json.cbor.gz
.json.cbor.bz2

C. How do the primary EXI modes compare for schemaless and
schema-informed encodings?

.xml .xml.bitpacked_exi
xml.schema_bitpacked_exi
xml.compress_exi
xml.schema_compress_exi

D. Is Bitpacked-mode EXI more compact than BSON or CBOR? .xml .xml.bitpacked_exi
.xml.schema_bitpacked_exi
.xml.strict_bitpacked_exi
.json.cbor
.json.bson

E. Is Compress-mode EXI more compact than BSON or CBOR
post-compressed with conventional compression algorithms?

.xml .xml.compress_exi
.xml.schema_compress_exi
.xml.strict_compress_exi
.json.cbor.gz
.json.bson.gz

F. For a network already using Gzip compression, do any of the
tested binary encodings offer better compactness?

.xml.gz .xml.strict_compress_exi
.xml.strict_bitpacked_exi
.xml.compress_exi
.json.gz
.json.cbor.gz
.json.bson.gz

G. Do restrictions on data types and range restrictions in an XSD
significantly impact the compaction of schema-informed
encodings? Only addressed for 1 use case.

.xml .xml.schema_compress_exi
.xml.strict_compress_exi
.xml.schema_bitpacked_exi
.xml.strict_bitpacked_exi

4. Use Cases

The following sections describe the use cases included in the small-file category,

including data collection and sample code for both XML and JSON file formats. Full file

sets are included in the digital appendix.

 43

a. Global Positioning System XML

The Global Positioning System (GPS) Exchange (GPX) format is an XML format

for representing GPS data, including waypoints, routes and tracks (Foster, n.d.). For this

application, the master file is a GPS watch trace from a 10-mile trail run over 1 hour and

40 minutes, with GPX fixes at 6-second intervals. It includes 870 total fix points (each

with a latitude, longitude, elevation and timestamp), as well as general information about

the application producing the GPX file. After subsetting, the n-th file includes the

metadata and the first n GPS fixes. All subset files validated against the GPX 1.1 XSD

(TopoGrafix, 2004). Figure 9 and Figure 10 are samples from corresponding XML and

JSON files, respectively. Both code samples include whitespace and indentations for

clarity, but compression tests use versions with unnecessary whitespace removed. Figure

11 is a visual depiction of the GPX master file in Google Earth, with each yellow circle

representing a single GPS fix.

<?xml version=“1.0” encoding=“UTF-8”?>
<gpx version=“1.1” creator=“Garmin Connect”
 xmlns=“http://www.topografix.com/GPX/1/1”>
 <metadata>
 <link href=“connect.garmin.com”>
 <text>Garmin Connect</text>
 </link>
 <time>2014-09-05T18:07:03.000Z</time>
 </metadata>
 <trk>
 <name>Untitled</name>
 <trkseg>
 <trkpt lon=“-121.69120400212705” lat=“36.62711977958679”>
 <ele>29.799999237060547</ele>
 <time>2014-09-05T18:07:03.000Z</time>
 </trkpt>
 <!-- ... Series of trkpt’s continues ... -->
 </trkseg>
 </trk>
</gpx>

Figure 9. Sample code for GPX file, in XML format.

 44

{ “gpx”: {
 “creator”: “Garmin Connect,”
 “metadata”: {
 “link”: {
 “href”: “connect.garmin.com,”
 “text”: “Garmin Connect”
 },
 “time”: “2014-09-05T18:07:03.000Z”
 },
 “trk”: {
 “name”: “Untitled,”
 “trkseg”: {
 “trkpt”: [
 {
 “ele”: 29.799999237060547,
 “lat”: 36.627119779586792,
 “lon”: -121.69120400212705,
 “time”: “2014-09-05T18:07:03.000Z”
 }
 /* ... Series of trkpt’s continues ... */
] } } } }

Figure 10. Sample code for GPX file, in JSON format.

Figure 11. Visualization of GPX master file in Google Earth.

 45

b. OpenWeatherMap XML

OpenWeatherMap aggregates weather data from a variety of sources worldwide

and uses it for big-data analysis and weather modeling (OpenWeatherMap Inc., 2015b).

The OpenWeatherMap API offers current, forecasted and historical data in both XML

and JSON response formats (OpenWeatherMap Inc., 2015a). To assemble the master file

for this application, the author selected 1,000 cities from the list cities available through

the OpenWeatherMap API, made API queries for the current weather in those cities, and

concatenated the results into a single XML file. After subsetting, the n-th file included the

weather conditions for the first n cities in the master file. As OpenWeatherMap does not

publish an XSD describing the XML responses, the author generated a schema to include

reasonable data type information. Figure 12 and Figure 13 are samples from

corresponding XML and JSON files, respectively. Both code samples include whitespace

and indentations for clarity, but compression tests use versions with unnecessary

whitespace removed.

<?xml version=“1.0” encoding=“utf-8”?>
<group>
 <current>
 <city id=“688532” name=“Yalta”>
 <coord lon=“37.27” lat=“46.96”/>
 <country>UA</country>
 <sun rise=“2014-09-12T03:05:08” set=“2014-09-12T15:49:00”/>
 </city>
 <temperature value=“292.04”
 min=“292.04” max=“292.04” unit=“kelvin”/>
 <humidity value=“78” unit=“%”/>
 <pressure value=“1014” unit=“hPa”/>
 <wind>
 <speed value=“1.54” name=““/>
 <direction value=“306” code=“NW” name=“Northwest”/>
 </wind>
 <clouds value=“0” name=“clear sky”/>
 <visibility/>
 <precipitation mode=“no”/>
 <weather number=“800” value=“Sky is Clear” icon=“01n”/>
 <lastupdate value=“2014-09-12T21:54:18”/>
 </current>
 <!-- ... Series of cities continues ... -->
</group>

Figure 12. Sample code for OpenWeatherMap file, in XML format.

 46

{ “group”: { “current”:
 { “city”: {
 “coord”: { “lat”: 46.960000000000001, “lon”:
37.270000000000003 },
 “country”: “UA,” “id”: 688532, “name”: “Yalta,”
 “sun”: {
 “rise”: “2014-09-12T03:05:08,”
 “set”: “2014-09-12T15:49:00” } },
 “clouds”: { “name”: “clear sky,” “value”: 0 },
 “humidity”: { “unit”: “%,” “value”: 78 },
 “lastupdate”: { “value”: “2014-09-12T21:54:18” },
 “precipitation”: { “mode”: “no” },
 “pressure”: { “unit”: “hPa,” “value”: 1014 },
 “temperature”: {
 “max”: 292.04000000000002, “min”: 292.04000000000002,
 “unit”: “kelvin,” “value”: 292.04000000000002 },
 “visibility”: null,
 “weather”: { “icon”: “01n,” “number”: 800, “value”: “Sky is
Clear” },
 “wind”: {
 “direction”: { “code”: “NW,” “name”: “Northwest,” “value”: 306
},
 “speed”: { “name”: null, “value”: 1.54 }
 } }
 /* … Series of cities continues … */
} }

Figure 13. Sample code for OpenWeatherMap file, in JSON format.

The collection method for this application introduces potential issues affecting

compression. First, the API calls happened in rapid succession, so timestamp information

in the master file reflecting last update all reflects the same date. Such repetition

improves compaction for many compress algorithms. Second, a pseudorandom function

selected the cities to include in the master file, meaning that the data set is not logically

related in a geographic sense. Some fields in the API response, such as country code or

wind direction, may express less redundancy than for a data set including only weather

stations in a certain region, and thus compressing poorly. Though these issues do not

invalidate the results, they suggest that a portion of compression performance depends on

the underlying semantics of the information.

c. Automated Identification System

The Automated Identification System (AIS) is a distributed system for

communicating maritime safety information over Very High Frequency (VHF) line-of-

sight (LOS) links. Every two to ten seconds while underway, ship-borne transceivers emit

messages including position, course, speed and identification data (United States Coast

 47

Guard, 2014a). Nearby ships receive the messages and, using specialized charting

software, overlay the data on radar plots or electronic navigation charts to build

situational awareness. Systems such as National AIS (NAIS) and MSSIS collect feeds

from ships via large networks of shore-based stations, and aggregate them for global-

scale intelligence and Maritime Domain Awareness (MDA) purposes (United States

Coast Guard, 2015; United States Department of Transportation Volpe Center, n.d.).

Though AIS encodes messages in a compact binary format, formats such as XML can

assist in software analysis of large AIS datasets, as well as data interchange between

heterogeneous storage databases and Geographic Information System (GIS) software.

Figure 14. An operational view diagram of the NAIS system including

information flows from ship-borne transceivers to intelligence fusion
centers (United States Coast Guard, 2014b).

 48

The AIS data in this test case came from the MSSIS AIS feed at the Naval

Postgraduate School. To process the raw messages to XML, the author used

EsiAisParser, a Java library for AIS feed parsing, to read individual messages into in-

memory Java objects, then write them to a file in XML format. Only Type 3 position

report messages were included in the master file, which comprised 1,000 AIS position

reports. In the absence of an openly available XSD describing AIS messages, the

authored developed a simple XML format and a corresponding XSD with data type

information based on the U.S. Coast Guard’s AIS specification (United States Coast

Guard, 2014a). After subsetting, the n-th file included the first n position reports in the

master file. Figure 15 and Figure 16 are samples from corresponding XML and JSON

files, respectively. Both code samples include whitespace and indentations for clarity, but

compression tests use versions with unnecessary whitespace removed.

<?xml version=“1.0” encoding=“UTF-8”?>
<positionReports>
 <positionReport
 messageId=“3” repeatIndicator=“0”
 userId=“248859000” navStatus=“1”
 rateOfTurn=“0” speedOverGround=“0”
 positionAccuracy=“false”
 longitude=“117.36497666666666” latitude=“-20.534186666666667”
 courseOverGround=“3100” trueHeading=“310”
 timeStamp=“53” specialManoeuvre=“0” />
 <!-- ... Series of positionReport’s continues ... -->
</positionReports>

Figure 15. Sample code for AIS file, in XML format.

{ “positionReports”: {
 “positionReport”: [
 { “courseOverGround”: 3100,
 “latitude”: -20.534186666666667,
 “longitude”: 117.36497666666666,
 “messageId”: 3, “navStatus”: 1,
 “positionAccuracy”: false,
 “rateOfTurn”: 0, “repeatIndicator”: 0,
 “specialManoeuvre”: 0, “speedOverGround”: 0,
 “timeStamp”: 53, “trueHeading”: 310,
 “userId”: 248859000 },
 /* Series of positionReports continues */
] } }

Figure 16. Sample code for AIS file, in JSON format.

 49

D. LARGE-FILE CATEGORY

To measure the compactness of EXI encodings of XML files larger than 100MB,

this researcher compiled a collection of files, or file sets, from each of three use cases.

Each plain-text file in a file set was encoded to EXI using various permutations of EXI

options and post-compression algorithms. Plain-text file sizes in this collection range

from 1KB to 3.34GB in this category, hereafter referred to as the large-file category. This

section lists the tested file formats, introduces focus questions used to analyze the results,

and summarizes the use cases.

1. Format Conversions

Encodings for the large-file category were performed using the same software

tools as for the small-file category. However, the purpose of the large-file category was

not to compare EXI compactness to binary JSON encodings, and thus no JSON-

derivative encodings were measured. That is, the large-file category only measured

conversions of XML with conventional compression algorithms, XML to EXI, and EXI

with conventional compression algorithms. Figure 17 is a structured diagram of all

format conversions for the large-file category. The root node on the left represents the

plain-text XML document for which all other encodings are semantically equivalent.

Each leaf node on the right is a final encoding format written as a string of filename

extensions indicating the sequence of conversions. For example,

“.xml.strict_precompress_exi.bz2” denotes an XML file encoded first with EXI in

precompress mode with strict schema adherence, then encoded with the Bzip2

compression algorithm.

 50

XML

Uncompressed Plain Text .xml

Compressed Plain Text
.xml.zip
.xml.gz
.xml.bz2

Without Schema

Uncompressed EXI
.xml.bitpacked_exi
.xml.bytealigned_exi
.xml.precompress_exi

Compressed EXI

.xml.compress_exi

.xml.bitpacked_exi.zip

.xml.bytealigned_exi.zip

.xml.precompress_exi.zip

.xml.bitpacked_exi.gz

.xml.bytealigned_exi.gz

.xml.precompress_exi.gz

.xml.bitpacked_exi.bz2

.xml.bytealigned_exi.bz2

.xml.precompress_exi.bz2

With Schema

Strict

Uncompressed EXI
.xml.strict_bitpacked_exi
.xml.strict_bytealigned_exi
.xml.strict_precompress_exi

Compressed EXI

.xml.strict_compress_exi

.xml.strict_bitpacked_exi.zip

.xml.strict_bytealigned_exi.zip

.xml.strict_precompress_exi.zip

.xml.strict_bitpacked_exi.gz

.xml.strict_bytealigned_exi.gz

.xml.strict_precompress_exi.gz

.xml.strict_bitpacked_exi.bz2

.xml.strict_bytealigned_exi.bz2

.xml.strict_precompress_exi.bz2

Default

Uncompressed EXI
.xml.schema_bitpacked_exi
.xml.schema_bytealigned_exi
.xml.schema_precompress_exi

Compressed EXI

.xml.schema_compress_exi

.xml.schema_bitpacked_exi.zip

.xml.schema_bytealigned_exi.zip

.xml.schema_precompress_exi.zip

.xml.schema_bitpacked_exi.gz

.xml.schema_bytealigned_exi.gz

.xml.schema_precompress_exi.gz

.xml.schema_bitpacked_exi.bz2

.xml.schema_bytealigned_exi.bz2

.xml.schema_precompress_exi.bz2
Figure 17. A categorized representation of all large-file category encodings

derived from the same plain-text XML document.

2. Focus Questions

For each file in a large-file use case, the test suite generated 36 different

encodings. As in the analyses for small-file applications, a series of six focus questions

drove the data visualization process. A plot relating compaction rate to original file size

for a group of encoding formats answers each focus question. In general, the focus

XML

 51

questions for large-file use cases are a subset of those asked for small-file cases; since the

large-file tests examined only XML and EXI encodings, the large-file focus questions

exclude all JSON comparisons. Table 4 outlines the group of encodings associated with

each focus question and the baseline format for comparison. Chapter IV presents the plots

for all these questions, with the results grouped by focus question, and in the same

question order presented here.

Table 4. Focus questions for large-file category, relevant encodings, and
baseline for comparison.

Question Baseline Encodings Compared

A. How do the primary EXI modes
compare for schemaless and schema-
informed encodings?

.xml .xml.bitpacked_exi
xml.schema_bitpacked_exi
xml.compress_exi
xml.schema_compress_exi

B. Does the ‘strict’ option significantly
improve compaction for schema-
informed encodings?

.xml .xml.schema_bitpacked_exi
.xml.strict_bitpacked_exi
.xml.schema_compress_exi
.xml.strict_compress_exi

C. Do any of the tested conventional
compression algorithms better
compact a schemaless, precompress
EXI document than EXI’s default
DEFLATE?

.xml.compress_exi .xml.precompress_exi.zip
.xml.precompress_exi.gz
.xml.precompress_exi.bz2

D. Do any of the tested conventional
compression algorithms better
compact a schema-informed,
precompress EXI document than EXI’s
default DEFLATE?

.xml.schema_compress_exi .xml.schema_precompress_exi.zip
.xml.schema_precompress_exi.gz
.xml.schema_precompress_exi.bz2

E. Which EXI encoding is the most
compact?

.xml .xml.strict_compress_exi
.xml.strict_bitpacked_exi
.xml.compress_exi

F. For a network already using Gzip
compression, do any of the EXI
encodings offer better compactness?

.xml.gz .xml.strict_compress_exi
.xml.strict_bitpacked_exi
.xml.compress_exi

3. Use Cases

The following sections describe the use cases included in the large-file category,

including data collection and sample code. Full file sets are included in the digital

appendix.

 52

a. Digital Forensics XML

Digital Forensics XML (DFXML) is an XML file format describing the results of

forensic scans of digital media. The digital forensics field uses a many tools to automate

various parts of the process, from data extraction to data fusion and correlation

(Garfinkel, 2012). However, in many cases, these tools use disparate file formats to store

results, which makes automating the process as a whole challenging (Garfinkel, 2011).

DFXML is an interoperable, machine-readable format that addresses this issue of tool

integration.

A DFXML file describing a disk image includes information about the disk

sectors, about each of the disk’s partitions, about each file on the disk, and the

provenance of the DFXML file itself, such as information about the tool that created it

and timestamp (Garfinkel, 2009). The file set for this application includes DFXML

outputs from 51 disk images created by the program fiwalk. In plain-text XML format,

they range from 1 KB to 563 MB. After minor manual editing, all files validated against

the Digital Forensics XML Schema (Nelson & Digital Forensics XML Working Group,

2014).

<fileobject>
 <filename>casper/filesystem.manifest-desktop</filename>
 <filesize>32672</filesize>
 <inode>651</inode>
 <meta_type>1</meta_type>
 <mode>511</mode>
 <nlink>1</nlink>
 <uid>0</uid>
 <gid>0</gid>
 <mtime>2008-12-29T01:33:32Z</mtime>
 <atime>2008-12-28T05:00:00Z</atime>
 <crtime>2008-12-29T01:33:32Z</crtime>
 <byte_runs>
 <byte_run file_offset=“0” fs_offset=“5577728”
 img_offset=“5609984” len=“32672”/>
 </byte_runs>
 <hashdigest type=“md5”>
 bd1b0831fcba1f22eff2238da96055b6</hashdigest>
 <hashdigest type=“sha1”>
 7e072af67f8d989cc85978487b948048ac3c7234</hashdigest>
</fileobject>

Figure 18. A DFXML element representing a single file, including
information about the file name, size, hash codes, location on disk,

and provenance (after Garfinkel, 2011).

 53

b. Packet Details Markup Language

The Packet Details Markup Language is an XML-based format for describing the

details of decoded network packets (Risso, 2010). It combines XML elements for

packets, protocols, and protocol fields, offering full details of a packet and all

encapsulated protocols, sans the payload. Wireshark was used to decode two large .pcap-

formatted packet traces from online repositories and export portions of them into PDML

format, following a subsetting approach similar to that in the small-file category. After

subsetting, the PDML files contained between 1 and 300,000 packet descriptions, and

ranged from 9 KB to 3.1 Gigabytes (GB) in plain-text encoding. All files validated

against a slightly modified version of the PDML schema (NetBee.org, n.d.).

<pdml>
 <packet caplen=“74” len=“74” num=“4”
 timestamp=“963585313.991300”>
 <proto longname=“Ethernet 802.3”
 name=“Ethernet” pos=“1” size=“14”>
 <field longname=“MAC Destination” name=“dst” pos=“1”
 showdtl=“000629-992da3 Unicast address (Vendor
 IBM RISC6000 system)”
 showmap=“IBM RISC6000 system” showvalue=“000629-992da3”
 size=“6” value=“000629992da3”/>
 <field longname=“MAC Source” name=“src” pos=“7”
 showdtl=“00e01e-ec3c84 Unicast address (Vendor Cisco)”
 showmap=“Cisco” showvalue=“00e01e-ec3c84”
 size=“6” value=“00e01eec3c84”/>
 <field longname=“Ethertype” name=“type-length” pos=“13”
 showvalue=“0800” size=“2” value=“0800”/>
 </proto>
 <proto longname=“IPv4 (Internet Protocol version 4)”
 name=“IP” pos=“15” size=“20”>
 <!-- Additional field elements -->
 </proto>
 <proto longname=“ICMP (Internet Control Message Protocol)”
 name=“ICMP” pos=“35” size=“40”>
 <!-- Additional field elements -->
 </proto>
 </packet>
</pdml>

Figure 19. A sample PDML element representing a single ICMP packet.
Adapted from Risso (2010).

 54

c. OpenStreetMap XML

The OpenStreetMap project aims to create a free database of geographic data for

the every feature on the planet, leveraging crowdsourced inputs from hundreds of

thousands of mappers to populate data (Bennett, 2010). After collecting raw GPS data, or

traces, mappers upload them to the OpenStreetMap servers and use them to mark

locations of, and metadata about, streets, waterways, paths, structures, signs and sundry

other features. Commercial and government entities also provide geospatial data to

OpenStreetMap under its license (Bennett, 2010).

OpenStreetMap uses an XML format based around nodes (single points), ways

(ordered lists of points), and relations (lists of nodes and ways that create complex

features) for data exchange between applications that process OpenStreetMap data. As a

single-file export, the entire OpenStreetMap database is over 498 GB in plain-text XML

format. This research used 20 smaller extracts covering single countries with file sizes

from 50 MB to 927 MB (Geofabrik GmbH, 2014). All files validated against a modified

version of the OpenStreetMap XSD (OpenStreetMap contributors, 2012).

<node id=“25270672”
 lat=“39.6735751” lon=“-31.1131917”
 version=“4” timestamp=“2014-08-08T22:35:03Z”
 changeset=“24625291” uid=“1963239” user=“UserX”>
 <tag k=“name” v=“Vila do Corvo”/>
 <tag k=“place” v=“village”/>
 <tag k=“population” v=“430”/>
 <tag k=“population:date” v=“2011”/>
</node>
<way id=“185364122” version=“1” timestamp=“2012-10-11T22:17:36Z”
 changeset=“13460710” uid=“179581” user=“UserY”>
 <nd ref=“1863929971”/>
 <nd ref=“1959512759”/>
 <tag k=“highway” v=“path”/>
</way>

Figure 20. Sample XML fragments, in OpenStreetMap format, for node and
way elements.

 55

E. CHAPTER SUMMARY

To extend and build upon previous research on EXI performance, this research

methodology focused on measuring the impact of various EXI and conventional

compression configurations on overall file size. It adopted an intra-use case focus, rather

than comparing results across multiple use cases, and examined the relationship between

file size and compaction rate within a single use case. This research identified three

small-file use cases: GPX, OpenWeatherMap and AIS; as well as three large-file use

cases: DFXML, PDML and OpenStreetMap. A systematic method, centered on a series

of focus questions, for comparing the myriad configurations of EXI, BSON and CBOR

was developed.

 56

THIS PAGE INTENTIONALLY LEFT BLANK

 57

IV. EXPERIMENTAL RESULTS AND ANALYSIS

This chapter presents experimental test results collected during compression

testing. The first section explains the compaction metric used and comments on

interpreting the plots and results. The second section presents results for the small-file

category of use cases, grouped by focus question. A summary analysis follows each focus

question that identifies common or generalizable trends across use cases. Finally, the

third section presents results for the large-file category of use cases, group by focus

question. Again, a summary analysis follows each focus question.

A. INTERPRETING THE NUMBERS

The following sections include compression test results for each focus question

organized first by category (small-file and large-file) and then by use-case. Each figure is

a scatterplot comparing the compaction rate of multiple encodings for all sample files in a

use-case. Colors denote the various encodings. Solid lines connect the points in a series

for visual clarity, but do not represent a parametric model of the trend.

Compaction rate, shown as a percentage on the y-axis in each figure, is

compressed size divided by original size, or more intuitively, percent of original size.

Compaction = compressed size / original size * 100%

With this measurement, smaller values indicate greater compaction (smaller is

better). A compaction rate of 100% indicates that the compressed size is identical to the

original size. Values less than 100% indicate the compressed size is less than the original

size, and values greater than 100% indicate that compression increased the file’s size.

In most figures, the baseline encoding for original size refers to the plain-text

XML encoding, though some figures use different baselines. When a figure compares a

mix of XML-based and JSON-based encodings, the baseline is plain-text XML. When a

figure compares only JSON-based encodings, the baseline is plain-text JSON. Both of

these baselines are appropriate for objectively comparing compression algorithms, they

do not suggest how much benefit a compression algorithm will provide for a network

 58

already using Zip or Gzip by default. Thus, some figures display compaction using Gzip-

compressed plain-text XML as a baseline.

For all figures, the x-axis shows the original size of the file in the baseline

encoding, in bytes, on a logarithmic scale. Though plotted identically, the file-size values

differ slightly between small-file and large-file use cases. Since the sample files in the

small-file use cases are all subsets of a master file, the points on the x-axis are subsets of

the same file. For large-file use cases, the sample files vary in size, but are not necessarily

subsets of one another. Thus, the plots in small-file use cases tend to create strictly

increasing or strictly decreasing series, while the plots of large-file use cases do not.

B. RESULTS BY FOCUS QUESTION—SMALL-FILE CATEGORY

This section presents empirical data for each focus question in the small-file

category. The focus question is reiterated, followed by corresponding plots from each of

the three small-file use cases: GPX, OpenWeatherMap and AIS, in that order. A brief

discussion follows, addressing results across the use cases in response to the focus

question.

1. Focus Question A: Base Comparison of JSON and XML

Is JSON more compact than XML either when both are plain-text encoded or

when both are compressed with conventional compression algorithms?

 59

●

●

● ● ● ● ● ● ● ● ●

●

●

●

● ● ● ● ● ● ● ●●

●

●

●

●●●●●●●●●

●

●

●

●●●●●●●●●

●

●

●

●●●●●●●●●

●

●

●

●●●●●●●●●

●

●

●

●●●●●●●●●

●

●

●

●●●●●●●

●

●

●

0%

10%

20%

30%

40%

50%

60%

70%

80%

500B 1K 5K 10K 50K 100K
Original XML size (bytes, log scale)

 (Baseline is XML : 100% indicates full XML size)

C
om

pa
ct

io
n

(%
 X

M
L

 s
ize

)

Encoding

●

json
json.gz
json.bz2
xml.gz
xml.bz2

Figure 21. Plot for GPX use case, focus question A.

●
●

●

● ● ● ● ● ● ● ● ●

●

●

●

● ● ● ●●●●●●

●

●

●

●●●●●●●●●

●

●

●

●●●●●●●●●

●

●

●

●●●●●●●●●

●

●

●

●●●●●●●●●

●

●

●

●●●
● ● ●●●●

●

●

●

●●●●●●●●●

●

●
●

●●●●●●●●●

●

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

110%

500B 1K 5K 10K 50K 100K 500K
Original XML size (bytes, log scale)

 (Baseline is XML : 100% indicates full XML size)

C
om

pa
ct

io
n

(%
 X

M
L

 s
ize

)

Encoding

●

json
json.gz
json.bz2
xml.gz
xml.bz2

Figure 22. Plot for OpenWeatherMap use case, focus question A.

 60

●

●

●

●

●
●

●

●
● ●

●
●

●
●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ●

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

500B 1K 5K 10K 50K 100K
Original XML size (bytes, log scale)

 (Baseline is XML : 100% indicates full XML size)

C
om

pa
ct

io
n

(%
 X

M
L

 s
ize

)

Encoding

●

json
json.gz
json.bz2
xml.gz
xml.bz2

Figure 23. Plot for AIS use case, focus question A.

For the GPX and AIS use cases, plain-text JSON was ~75-95% of XML size.

Visual inspection of the files revealed the decrease occurred when identically named

XML elements collapsed into a JSON array, thereby mitigating the penalty of repetitive

opening and closing tags for repeated elements in XML format. In the OpenWeatherMap

use case, JSON was approximately 98–106% of XML size. The increase in size came

from conversion of XML elements with multiple attributes into several key-value pairs in

JSON, as shown in Figure 24 and Figure 25.

<temperature value=“292.04” min=“292.04” max=“292.04”
unit=“kelvin”/>

Figure 24. OpenWeatherMap temperature element in XML format, using 69
characters.

{“temperature”:{“value”:292.04,”min”:292.04,”max”:292.04,”unit”:”k
elvin”}

Figure 25. Semantically equivalent data as JSON, using 73 characters.

 61

For smaller subset sizes, JSON compressed with Gzip and Bzip2 produced more

compact encodings than XML compressed with the same algorithm. For subsets larger

than ~7KB, XML compressed with Gzip and Bzip2 was more compact than JSON

compressed with the same algorithm. The Gzip and Bzip2 trend lines for all three use

cases show that in general, as the size of the plain-text file increases, compaction

improves. This is intuitive considering that Gzip and Bzip2 look for repeated strings of

characters to compress a file. When a file is small, there are few, if any, repeated strings.

As the subset size increase, there are more repeated strings, so compaction improves.

However, the trend is asymptotic, and compaction rates flatten. This pattern of

diminishing returns recurred in nearly all tests during experimentation.

2. Focus Question B: Post-Compression of BSON and CBOR

Does post-compression with conventional algorithms increase the compactness of

BSON or CBOR?

●

●

●
● ● ● ● ●

●
● ●

●

●

●

● ● ● ●
●

●
● ●●

●

●

●

●
●●●

●●●●
●

●

●

●

●●
●
●
●●●

●●

●

●

●

●●
●●●●●

●●

●

●

●

●
●
●
●●●

●●●

●

●

●

●
●
●●●

●●●
●

●

●

●

●●●●●
●●

●

●

●

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

500B 1K 5K 10K 50K 100K
Original JSON size (bytes, log scale)

 (Baseline is JSON : 100% indicates full JSON size)

C
om

pa
ct

io
n

(%
 J

SO
N

 s
ize

)

Encoding

●

json.bson
json.bson.gz
json.bson.bz2
json.cbor
json.cbor.gz
json.cbor.bz2

Figure 26. Plot for GPX use case, focus question B.

 62

●
●

●

● ● ● ● ● ● ● ● ●

●

●

●

● ● ●●●●●●●

●

●

●

●●●●●●●●●

●

●

●

●●●●●●●●●

●

●

●

●●●●●●●●●

●

●

●

●●●●●●●●●

●

●

●

●●●
●

● ●●●●

●

●

●

●●●●●●●●●

●

●
●

●●●●●●●●●

●

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

110%

500B 1K 5K 10K 50K 100K 500K
Original JSON size (bytes, log scale)

 (Baseline is JSON : 100% indicates full JSON size)

C
om

pa
ct

io
n

(%
 J

SO
N

 s
ize

)

Encoding

●

json.bson
json.bson.gz
json.bson.bz2
json.cbor
json.cbor.gz
json.cbor.bz2

Figure 27. Plot for OpenWeatherMap use case, focus question B.

●

●

●

●

●

● ●

●

● ●

●
●

●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ●

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

500B 1K 5K 10K 50K 100K
Original JSON size (bytes, log scale)

 (Baseline is JSON : 100% indicates full JSON size)

C
om

pa
ct

io
n

(%
 J

SO
N

 s
ize

)

Encoding

●

json.bson
json.bson.gz
json.bson.bz2
json.cbor
json.cbor.gz
json.cbor.bz2

Figure 28. Plot for AIS use case, focus question B.

 63

In all three use cases, conventional compression algorithms significantly

increased the compactness of both BSON and CBOR encodings, with the exception of

the smallest file in the GPX and AIS use cases, where Gzip and Bzip2 increased the file

size. Compaction demonstrated a curve of diminishing returns. After compression,

compaction leveled out at ~11-21% of the corresponding BSON or CBOR size.

3. Focus Question C: Primary EXI Modes

How do the primary EXI modes compare for schemaless and schema-informed

encodings?

●● ● ● ● ● ● ● ● ● ●

●

●● ● ● ● ● ● ● ● ●●

●

●● ●●●●●●●●●

●

●● ●●●●●●●●●
●

●● ●●●●●●●●●
●

●● ●●●●●●●●●
●

●● ●●●●●●●●●
●

●● ●●●●●●●● ●●

0%

10%

20%

30%

40%

50%

60%

500B 1K 5K 10K 50K 100K
Original XML size (bytes, log scale)

 (Baseline is XML : 100% indicates full XML size)

C
om

pa
ct

io
n

(%
 X

M
L

 s
ize

)

Encoding

●

xml.bitpacked_exi
xml.schema_bitpacked_exi
xml.compress_exi
xml.schema_compress_exi

Figure 29. Plot for GPX use case, focus question C.

 64

●
●

●

● ● ● ● ● ● ● ● ●

●

●

●

● ● ● ●●●●●●

●

●

●

●●●●●●●●●

●

●

●

●●●●●●●●●

●

●
●

●●●●●●●●●

●

●
●

●●●●●●●●●

●

●
●

●●●●
● ●●●●

●

●
●

●●●●●●●●●

●

●
●

●●●●●●●●●

●

0%

10%

20%

30%

40%

50%

60%

70%

500B 1K 5K 10K 50K 100K 500K
Original XML size (bytes, log scale)

 (Baseline is XML : 100% indicates full XML size)

C
om

pa
ct

io
n

(%
 X

M
L

 s
ize

)
Encoding

●

xml.bitpacked_exi
xml.schema_bitpacked_exi
xml.compress_exi
xml.schema_compress_exi

Figure 30. Plot for OpenWeatherMap use case, focus question C.

●
●

● ●
● ●● ● ● ●

0%

10%

20%

30%

40%

50%

60%

70%

80%

500B 1K 5K 10K 50K 100K
Original XML size (bytes, log scale)

 (Baseline is XML : 100% indicates full XML size)

C
om

pa
ct

io
n

(%
 X

M
L

 s
ize

)

Encoding

●

xml.bitpacked_exi
xml.schema_bitpacked_exi
xml.compress_exi
xml.schema_compress_exi

Figure 31. Plot for AIS use case, focus question C.

 65

For schemaless EXI encodings, compress mode was consistently more compact

than bitpacked mode across all three use cases. The difference between bitpacked and

compress mode encodings increased as subset size increased; compress mode performed

better on large subsets than did bitpacked mode.

Bitpacked encodings demonstrated significant compaction benefits from schema

information because they use data type information in the schema to reduce the encoding

size for those values. For the smallest subset in each use case, the schema-informed,

bitpacked encoding compacted the file to ~11–36% of the schemaless bitpacked

encoding, though this margin decreased as the subset size increased.

In the AIS and GPX use cases, compaction for schema-informed bitpacked

encodings decreased as subset size increased. It improved slightly for the

OpenWeatherMap use case. For all three use cases, compaction for schema-informed

compress encodings increased with subset size. For the 10 smallest subsets, schema-

informed, bitpacked encodings were smaller than schema-informed, compress encodings.

Past that point, which was different for each use case, schema-informed, compress

encodings were consistently smaller.

4. Focus Questions D and E: Comparison of EXI, BSON and CBOR

To simplify comparison and discussion, focus questions D and E are addressed in

tandem here. They are, respectively: Is bitpacked EXI more compact than BSON or

CBOR? Is compress-mode EXI more compact than BSON or CBOR post-compressed

with conventional compression algorithms?

 66

●● ● ● ● ● ● ● ● ● ●

●

●● ● ● ● ● ● ● ● ●●

●

●● ●●●●●●●●●

●

●● ●●●●●●●●●
●

●● ●●●●●●●●●
●

●● ●●●●●●●●●
●

●● ●●●●●●●●●
●

●● ●●●●●●●● ●●

0%

10%

20%

30%

40%

50%

60%

70%

500B 1K 5K 10K 50K 100K
Original XML size (bytes, log scale)

 (Baseline is XML : 100% indicates full XML size)

C
om

pa
ct

io
n

(%
 X

M
L

 s
ize

)

Encoding

●

xml.bitpacked_exi
xml.schema_bitpacked_exi
xml.strict_bitpacked_exi
json.bson
json.cbor

Figure 32. Plot for GPX use case, focus question D.

●●

●

● ● ● ● ● ● ● ● ●

●

●

●

● ● ● ●●●●●●

●

●
●

●●●●●●●●●

●

●
●

●●●●●●●●●

●

●
●

●●●●●●●●●

●

●
●

●●●●●●●●●

●

●● ●●●● ● ●●●●

●

●● ●●●●●●●●●

●

●● ●●●●●●●●●

●

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

110%

500B 1K 5K 10K 50K 100K 500K
Original XML size (bytes, log scale)

 (Baseline is XML : 100% indicates full XML size)

C
om

pa
ct

io
n

(%
 X

M
L

 s
ize

)

Encoding

●

xml.bitpacked_exi
xml.schema_bitpacked_exi
xml.strict_bitpacked_exi
json.bson
json.cbor

Figure 33. Plot for OpenWeatherMap use case, focus question D.

 67

●
●

● ●
● ●● ● ● ●

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

500B 1K 5K 10K 50K 100K
Original XML size (bytes, log scale)

 (Baseline is XML : 100% indicates full XML size)

C
om

pa
ct

io
n

(%
 X

M
L

 s
ize

)

Encoding

●

xml.bitpacked_exi
xml.schema_bitpacked_exi
xml.strict_bitpacked_exi
json.bson
json.cbor

Figure 34. Plot for AIS use case, focus question D.

●

●

● ● ● ● ● ● ● ● ●

●

●

●

● ● ● ● ● ● ● ●●

●

●

●

●●●●●●●●●

●

●

●

●●●●●●●●●

●

●

●

●●●●●●●●●

●

●

●

●●●●●●●●●

●

●

●

●●●●●●●●●

●

●

●

●●●●●●●

●

●

●

0%

10%

20%

30%

40%

50%

60%

500B 1K 5K 10K 50K 100K
Original XML size (bytes, log scale)

 (Baseline is XML : 100% indicates full XML size)

C
om

pa
ct

io
n

(%
 X

M
L

 s
ize

)

Encoding

●

xml.compress_exi
xml.schema_compress_exi
xml.strict_compress_exi
json.bson.gz
json.cbor.gz

Figure 35. Plot for GPX use case, focus question E.

 68

●

●

●

● ● ● ● ● ● ● ● ●

●

●

●

● ● ● ●●●●●●

●

●

●

●●●●●●●●●

●

●

●

●●●●●●●●●

●

●

●

●●●●●●●●●

●

●

●

●●●●●●●●●

●

●

●

●●●
●

● ●●●●

●

●

●

●●●●●●●●●

●

●

●

●●●●●●●●●

●

0%

10%

20%

30%

40%

50%

60%

70%

500B 1K 5K 10K 50K 100K 500K
Original XML size (bytes, log scale)

 (Baseline is XML : 100% indicates full XML size)

C
om

pa
ct

io
n

(%
 X

M
L

 s
ize

)
Encoding

●

xml.compress_exi
xml.schema_compress_exi
xml.strict_compress_exi
json.bson.gz
json.cbor.gz

Figure 36. Plot for OpenWeatherMap use case, focus question E.

● ●

● ● ●
●

● ●
● ●

●
● ●

●
● ● ●

0%

10%

20%

30%

40%

50%

60%

70%

500B 1K 5K 10K 50K 100K
Original XML size (bytes, log scale)

 (Baseline is XML : 100% indicates full XML size)

C
om

pa
ct

io
n

(%
 X

M
L

 s
ize

)

Encoding

●

xml.compress_exi
xml.schema_compress_exi
xml.strict_compress_exi
json.bson.gz
json.cbor.gz

Figure 37. Plot for AIS use case, focus question E.

A relevant comparison of EXI to binary JSON encodings must be divided into

two categories. The first, addressed in focus question D, compares encodings with no

post-compression, i.e., bitpacked EXI compared to plain CBOR and BSON, with no Gzip

or other conventional compression applied. Here, schemaless, bitpacked EXI was more

 69

compact than both CBOR and BSON in the AIS and OpenWeatherMap use cases. For the

GPX use case, it was less compact than CBOR, but more compact than BSON. However,

schema-informed, Bitpacked EXI was between ~15-50% of CBOR size for all three use

cases, with an even larger margin over BSON. The trend-lines for BSON and CBOR are

generally flatter than for EXI, because these formats do not reuse variable-name tokens as

EXI does through grammar-based encoding. BSON is the least compact in all three use-

cases, presumably due to additional overhead incurred with string-length prefixing, a

feature intended to improve parsing speed at the expense of compactness

(BSONSpec.org, 2014).

The second comparison category, addressed by focus question E, compares

encodings with post-compression, i.e., compress-mode EXI compared to CBOR and

BSON further compressed by Gzip or other conventional compression. Since applying

conventional compression as a second step requires additional processing, this must be

considered in a separate category. Here, schemaless, compress-mode EXI was more

compact than both CBOR and BSON in the AIS and OpenWeatherMap use cases. For the

GPX use case, it was less compact than both Gzip-compressed CBOR and BSON.

Configured as schema-informed, compress-mode EXI was more compact than CBOR

and BSON in the AIS and OpenWeatherMap use cases, particularly for smaller files

where it was between ~15-50% of Gzip-compressed CBOR size, with an even larger

margin over Gzip-compressed BSON. For the GPX use case, schema-informed,

compress-mode EXI was more compact than both CBOR and BSON for small files, but

for files larger than ~5KB, both Gzip-compressed CBOR and BSON were more compact

at ~80-90% of schema-informed, compress-mode EXI size.

The GPX use case represents an outlier: CBOR and BSON achieve superior

compaction due to different encodings of high-precision decimal values. The GPX files

used 13–15 decimal places of precision for elevation, latitude and longitude values,

which comprise ~70% of the plain-text XML file. The corresponding XSD defined these

with the decimal data type. In EXI, a decimal data type value between -180 and 180 with

14 places of precision encodes as 66–82 bits, whereas in CBOR and BSON, it encodes as

a 72 bits for the identifier tag and a 64-bit double. Given that 14 decimal places of

 70

precision exceed the actual sensitivity of the GPS recording device or available GIS

systems (for example, the GPX sample files recorded elevations at sub-millimeter

precision), the truly useful information in the message could likely be represented with

less precision, and thus fewer bits using EXI (J. Schneider, personal communication,

October 20, 2014). The floating-point format used in CBOR and BSON is a potentially

lossy representation of decimal values, but the author’s visual inspection of the decoded

files showed no loss of fidelity. Further investigation using an XML float data type is

warranted.

5. Focus Question F: Improvement over Gzip

For a network already using Gzip compression, do any of the tested binary

encodings offer better compactness?

●

●
● ● ● ● ● ● ● ● ●

●

●

●

● ● ● ● ● ● ● ● ●

●

●

●

● ● ● ● ●●●●●
●

●

●

●●●●●●●●●
●

●

●

●●●●●●●●●●
●

●

●●●●●●●●●● ●

●

●●●●●●●●●● ●

●

●●●●●●●●

●

●

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

110%

120%

130%

140%

500B 1K 5K 10K
Original XML.GZ size (bytes, log scale)

 (Baseline is XML.GZ : 100% indicates full XML.GZ size)

C
om

pa
ct

io
n

(%
 X

M
L.

G
Z

 s
ize

)

Encoding

●

xml.strict_bitpacked_exi
xml.compress_exi
xml.strict_compress_exi
json.bson.gz
json.cbor.gz

Figure 38. Plot for GPX use case, focus question F.

 71

●

●

●

● ● ● ● ● ● ● ● ●

●

●

●

● ● ● ● ● ● ● ● ●

●

●

●

●●●●●●●●●

●

●

●

●●●●●●●●●

●

●

●

●● ●●●●●●●

●

●

●

●●●●●●●●●

●

●

●

●●

●

●

●
●●●●

●

●

●

●●●●●●●●●

●

●

●

●●●●●●●●●

●

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

110%

120%

130%

500B 1K 5K 10K 50K
Original XML.GZ size (bytes, log scale)

 (Baseline is XML.GZ : 100% indicates full XML.GZ size)

C
om

pa
ct

io
n

(%
 X

M
L.

G
Z

 s
ize

)

Encoding

●

xml.strict_bitpacked_exi
xml.compress_exi
xml.strict_compress_exi
json.bson.gz
json.cbor.gz

Figure 39. Plot for OpenWeatherMap use case, focus question F.

●

● ● ●
●

● ●

●
● ●

●
● ● ● ● ●

●
●

●

●
● ● ● ● ● ● ● ● ● ● ● ● ●

●
● ●

●

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

110%

120%

500B 1K 5K 10K
Original XML.GZ size (bytes, log scale)

 (Baseline is XML.GZ : 100% indicates full XML.GZ size)

C
om

pa
ct

io
n

(%
 X

M
L.

G
Z

 s
ize

)

Encoding

●

xml.strict_bitpacked_exi
xml.compress_exi
xml.strict_compress_exi
json.bson.gz
json.cbor.gz

Figure 40. Plot for AIS use case, focus question F.

The performance of binary formats varies with both the subset size and with

various characteristics of a use-case. For the 10 smallest subsets, the schema-informed

EXI encodings, in both bitpacked and compress modes, produced files ~10–50% the size

of Gzip-compressed plain-text XML. For larger subsets, the schema-informed, compress-

 72

mode EXI encodings produced files ~60–75% the size of Gzip-compressed plain-text

XML. By comparison, the JSON-based binary encodings for small subsets produced files

~75–95% the size of Gzip-compressed plain-text XML, and for larger subsets they

ranged from ~75–135%.

6. Focus Question G: Schema Impact

Do restrictions on data types and range restrictions in an XSD significantly impact

the compaction of schema-informed encodings? This question is addressed only for the

AIS use case.

A ('Best' Schema) B C D ('Worst' Schema)

●

●

● ●

●
●
●●

●
●

● ● ●
● ●●●●● ● ● ● ●●●●●●●●●

●●● ●●● ●

●

●

●

● ●
●●

●
●

● ● ● ● ●●●●● ● ● ● ●●●●●●●●●●●● ●●●

●

●

●
●

●
●●●

●
●

● ● ● ● ●●●●● ● ● ● ●●●●●●●●●●●● ●●●

●

●

●
●

●
●
●

●

●
●

●
● ● ●

●

●●●
● ●

●
●

●
●●

●
●
●
●

●

●
●●

●
●●
●

0%

10%

20%

1K 10K 100K 1K 10K 100K 1K 10K 100K 1K 10K 100K
Original XML size (bytes, log scale)

 (Baseline is XML : 100% indicates full XML size)

C
om

pa
ct

io
n

(%
 X

M
L

 s
ize

)

Encoding

●

xml.schema_bitpacked_exi
xml.strict_bitpacked_exi
xml.schema_compress_exi
xml.strict_compress_exi

Figure 41. Plot for AIS use case, focus question G.

The sample files for the AIS use case were relatively simple, with few nested

elements or complex structures. Modifications to the schema focused on proper selection

of data types and ranges and the resulting variation in compaction hinged upon those

changes. For each successive improvement in the schema, compaction for both bitpacked

and compress-mode EXI encodings improved. The encoding with the most restrictive

schema resulted in files ~45% the size of those encoded with the least restrictive schema.

 73

C. RESULTS BY FOCUS QUESTION—LARGE-FILE CATEGORY

This section presents empirical data for each focus question in the large-file

category. The focus question is reiterated, followed by corresponding plots from each of

the three large-file use cases: DFXML, PDML and OpenStreetMap, in that order. A brief

discussion follows, addressing results across the use cases in response to the focus

question.

1. Focus Question A: Primary EXI Modes

How do the primary EXI modes compare for schemaless and schema-informed

encodings?

●●

●

●

●

●

●

●

●

●

●
●

●
●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●
●

●
●

●

●

0%

10%

20%

30%

40%

50%

60%

1K 5K 10K 50K 100K 500K 1M 5M 10M 50M 100M 500M 1G
Original XML size (bytes, log scale)

 (Baseline is XML : 100% indicates full XML size)

C
om

pa
ct

io
n

(%
 X

M
L

 s
ize

)

Encoding

●

xml.bitpacked_exi
xml.schema_bitpacked_exi
xml.compress_exi
xml.schema_compress_exi

Figure 42. Plot for DFXML use case, focus question A.

 74

●

●

●

●

●

●

● ●

●
●

●

● ●

● ●
● ●

●
●

●
● ●

●

●

●
●

●

●

● ●
●
●

●

●
● ● ●

● ● ● ●
●

● ● ● ● ● ● ● ●
● ●

0%

10%

20%

30%

40%

50%

5K 10K 50K 100K 500K 1M 5M 10M 50M 100M 500M 1G 5G
Original XML size (bytes, log scale)

 (Baseline is XML : 100% indicates full XML size)

C
om

pa
ct

io
n

(%
 X

M
L

 s
ize

)
Encoding

●

xml.bitpacked_exi
xml.schema_bitpacked_exi
xml.compress_exi
xml.schema_compress_exi

Figure 43. Plot for PDML use case, focus question A.

● ●

●

●
●

●

●

●●

●
●

●

● ●
●

●

●
●

●●

0%

10%

20%

30%

50M 100M 500M 1G
Original XML size (bytes, log scale)

 (Baseline is XML : 100% indicates full XML size)

C
om

pa
ct

io
n

(%
 X

M
L

 s
ize

)

Encoding

●

xml.bitpacked_exi
xml.schema_bitpacked_exi
xml.compress_exi
xml.schema_compress_exi

Figure 44. Plot for OpenStreetMap use case, focus question A.

Across all three use cases, compress mode consistently produced the smallest

files, ~1–10% of plain-text XML size for original file sizes larger than 1 MB, and ~16–

35% the size of the corresponding bitpacked encoding. With schema-informed encodings,

all results were equal to or more compact than their schemaless counterparts. In the

 75

DFXML and PDML use cases, the schema information impacted files larger than 1MB

less than it did for files below 1MB. For plain-text file sizes greater than 1GB, the

difference between schemaless and schema-informed compress-mode encodings was

insignificant.

2. Focus Question B: Strict Schema Conformance

Does the strict option significantly improve compaction for schema-informed

encodings?

●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

0%

10%

20%

30%

1K 5K 10K 50K 100K 500K 1M 5M 10M 50M 100M 500M 1G
Original XML size (bytes, log scale)

 (Baseline is XML : 100% indicates full XML size)

C
om

pa
ct

io
n

(%
 X

M
L

 s
ize

)

Encoding

●

xml.schema_bitpacked_exi
xml.strict_bitpacked_exi
xml.schema_compress_exi
xml.strict_compress_exi

Figure 45. Plot for DFXML case, focus question B.

 76

●

●

●

●

●

●

●
●

●
●

●

● ●

● ●
● ●

●
●

●
● ●

●

●

●
●

●

●

● ●
●
●

●

●
● ● ●

● ● ● ●
●

● ● ● ● ● ● ● ●
● ●

0%

10%

20%

30%

40%

5K 10K 50K 100K 500K 1M 5M 10M 50M 100M 500M 1G 5G
Original XML size (bytes, log scale)

 (Baseline is XML : 100% indicates full XML size)

C
om

pa
ct

io
n

(%
 X

M
L

 s
ize

)
Encoding

●

xml.schema_bitpacked_exi
xml.strict_bitpacked_exi
xml.schema_compress_exi
xml.strict_compress_exi

Figure 46. Plot for PDML use case, focus question B.

●
●

●

●
●

●

●

●●

●
●

●

● ●
●

●

●
●

●
●

0%

10%

20%

50M 100M 500M 1G
Original XML size (bytes, log scale)

 (Baseline is XML : 100% indicates full XML size)

C
om

pa
ct

io
n

(%
 X

M
L

 s
ize

)

Encoding

●

xml.schema_bitpacked_exi
xml.strict_bitpacked_exi
xml.schema_compress_exi
xml.strict_compress_exi

Figure 47. Plot for OpenStreetMap use case, focus question B.

 77

In all three use cases, regardless of whether bitpacked or compress modes were

used, the strict option made only minor impacts on compaction. It resulted in files ~97–

100% the size of their non-strict counterparts. EXI encodings created without the strict

option set will accept XML that does not conform to the given schema. The difference in

compaction in these plots shows the benefits associated with configuring systems to

generate schema-valid XML.

3. Focus Questions C and D: Post-Compression other than DEFLATE

As these two questions are closely related with similar outcomes, they are

presented together here for simplicity. They are, respectively: Do any of the tested

conventional compression algorithms better compact a schemaless, precompress EXI

document than EXI’s default DEFLATE? Do any of the tested conventional compression

algorithms better compact a schema-informed, precompress EXI document than EXI’s

default DEFLATE?

●●
●

● ●
●

●

● ●
●

●
●

● ●
● ● ●

●
●● ● ●●● ●●● ● ●●● ●● ●●● ●● ● ● ●●

●

●● ● ●●●● ●

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

110%

120%

130%

140%

500B 1K 5K 10K 50K 100K 500K 1M 5M 10M 50M
Original XML.COMPRESS_EXI size (bytes, log scale)

 (Baseline is XML.COMPRESS_EXI : 100% indicates full XML.COMPRESS_EXI size)

C
om

pa
ct

io
n

(%
 X

M
L.

C
O

M
PR

ES
S_

EX
I

si
ze

)

Encoding

●

xml.precompress_exi.zip
xml.precompress_exi.gz
xml.precompress_exi.bz2

Figure 48. Plot for DFXML case, focus question C.

 78

●

● ●● ●
● ●●●●

●
●

● ● ● ● ● ● ● ● ●
●

● ●●

●
● ●● ●

● ●●● ●
●

●
●

● ● ● ●● ●

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

110%

5K 10K 50K 100K 500K 1M 5M 10M 50M
Original XML.COMPRESS_EXI size (bytes, log scale)

 (Baseline is XML.COMPRESS_EXI : 100% indicates full XML.COMPRESS_EXI size)

C
om

pa
ct

io
n

(%
 X

M
L.

C
O

M
PR

ES
S_

EX
I

si
ze

)

Encoding

●

xml.precompress_exi.zip
xml.precompress_exi.gz
xml.precompress_exi.bz2

Figure 49. Plot for PDML use case, focus question C.

● ● ●● ● ●● ●●● ●●● ● ●● ●● ●●

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

5M 10M 50M
Original XML.COMPRESS_EXI size (bytes, log scale)

 (Baseline is XML.COMPRESS_EXI : 100% indicates full XML.COMPRESS_EXI size)

C
om

pa
ct

io
n

(%
 X

M
L.

C
O

M
PR

ES
S_

EX
I

si
ze

)

Encoding

●

xml.precompress_exi.zip
xml.precompress_exi.gz
xml.precompress_exi.bz2

Figure 50. Plot for OpenStreetMap use case, focus question C.

 79

●●

●

●
●●

●

● ●

●
● ●

● ●
● ●

●

●

●● ● ●●● ●●● ● ●●● ●● ●●● ●● ● ● ●●

●

●● ● ●●●● ●

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%
110%
120%
130%
140%
150%
160%
170%
180%
190%

500B 1K 5K 10K 50K 100K 500K 1M 5M 10M 50M
Original XML.SCHEMA_COMPRESS_EXI size (bytes, log scale)

 (Baseline is XML.SCHEMA_COMPRESS_EXI : 100% indicates full XML.SCHEMA_COMPRESS_EXI size)

C
om

pa
ct

io
n

(%
 X

M
L.

SC
H

EM
A_

C
O

M
PR

ES
S_

EX
I

si
ze

)

Encoding

●

xml.schema_precompress_exi.zip
xml.schema_precompress_exi.gz
xml.schema_precompress_exi.bz2

Figure 51. Plot for DFXML case, focus question D.

●

● ●● ●
● ●●●●

●
●

● ● ● ● ● ● ● ● ●
●

● ●

●

●
● ●● ●

● ●●● ●
●

●
●

● ● ● ●● ●

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

110%

5K 10K 50K 100K 500K 1M 5M 10M 50M
Original XML.SCHEMA_COMPRESS_EXI size (bytes, log scale)

 (Baseline is XML.SCHEMA_COMPRESS_EXI : 100% indicates full XML.SCHEMA_COMPRESS_EXI size)

C
om

pa
ct

io
n

(%
 X

M
L.

SC
H

EM
A_

C
O

M
PR

ES
S_

EX
I

si
ze

)

Encoding

●

xml.schema_precompress_exi.zip
xml.schema_precompress_exi.gz
xml.schema_precompress_exi.bz2

Figure 52. Plot for PDML use case, focus question D.

 80

● ● ●● ● ●● ●●● ●●● ● ●● ●● ●●

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

110%

120%

130%

140%

5M 10M 50M
Original XML.SCHEMA_COMPRESS_EXI size (bytes, log scale)

 (Baseline is XML.SCHEMA_COMPRESS_EXI : 100% indicates full XML.SCHEMA_COMPRESS_EXI size)

C
om

pa
ct

io
n

(%
 X

M
L.

SC
H

EM
A_

C
O

M
PR

ES
S_

EX
I

si
ze

)

Encoding

●

xml.schema_precompress_exi.zip
xml.schema_precompress_exi.gz
xml.schema_precompress_exi.bz2

Figure 53. Plot for OpenStreetMap use case, focus question D.

In general, Gzip and Zip did not perform better on either schemaless or schema-

informed documents than the EXI’s DEFLATE algorithm. The one exception was in the

PDML use case, where Gzip compacted files with original XML sizes of ~2.5–25KB to

~92–99% of precompress EXI using DEFLATE. For files larger than 1MB, Bzip2

improved compaction in the DFXML and PDML use cases, but decreased compaction in

the OpenStreetMap use case.

 81

4. Focus Question E: Most Compact EXI Configuration

Which EXI encoding is the most compact?

●●

●

●

●

●

●

●

●
●

●
● ●

●

●
● ●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●●

●

●

●

●

●

●●

●

●

0%

10%

20%

30%

40%

1K 5K 10K 50K 100K 500K 1M 5M 10M 50M 100M 500M 1G
Original XML size (bytes, log scale)

 (Baseline is XML : 100% indicates full XML size)

C
om

pa
ct

io
n

(%
 X

M
L

 s
ize

)

Encoding

●

xml.strict_bitpacked_exi
xml.compress_exi
xml.strict_compress_exi

Figure 54. Plot for DFXML case, focus question E.

●

●

●

●

●

●

●
●

●
●

●

● ●
● ● ● ● ● ●

●
● ●

●

●

●
●

● ●

●
●

●●

●

●
● ● ● ● ● ● ●

● ●

0%

10%

20%

30%

40%

5K 10K 50K 100K 500K 1M 5M 10M 50M 100M 500M 1G 5G
Original XML size (bytes, log scale)

 (Baseline is XML : 100% indicates full XML size)

C
om

pa
ct

io
n

(%
 X

M
L

 s
ize

)

Encoding

●

xml.strict_bitpacked_exi
xml.compress_exi
xml.strict_compress_exi

Figure 55. Plot for PDML use case, focus question E.

 82

● ●
●●

●
●●

●
●

●

●
●

● ●

●

●

●● ●
●

0%

10%

20%

50M 100M 500M 1G
Original XML size (bytes, log scale)

 (Baseline is XML : 100% indicates full XML size)

C
om

pa
ct

io
n

(%
 X

M
L

 s
ize

)

Encoding

●

xml.strict_bitpacked_exi
xml.compress_exi
xml.strict_compress_exi

Figure 56. Plot for OpenStreetMap use case, focus question E.

For sample files across all three use cases with original XML size greater than

10KB, bitpacked EXI with the strict option set was the least compact encoding, and

produced files two or more times the size of the closest compress-mode EXI encoding.

Overall, compress-mode and strict compress-mode encodings were the smallest

for large files. For sample files in the DFXML and PDML use cases with original XML

size greater than ~1–5MB, compaction for compress-mode EXI with and without the

strict option set was nearly identical, but for smaller sizes diverged, with the strict option

adding significant compaction to smaller sample files. In the DFXML use case, the strict

option reduced a 1KB sample file to 54% the size of the encoding without the strict

option. For all sample files in the OpenStreetMap use case, whose original XML size

ranged from ~50MB–1GB, the strict option increased compaction, reducing the size of

compress-mode EXI encodings by ~17–20%.

5. Focus Question F: Improvement over Gzip

For a network already using Gzip compression, do any of the EXI encodings offer

better compactness?

 83

●● ●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●●

●

●

●●
● ●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%
110%
120%
130%
140%
150%
160%
170%
180%
190%
200%
210%
220%
230%
240%
250%
260%
270%
280%
290%
300%
310%
320%
330%
340%
350%
360%

500B 1K 5K 10K 50K 100K 500K 1M 5M 10M 50M
Original XML.GZ size (bytes, log scale)

 (Baseline is XML.GZ : 100% indicates full XML.GZ size)

C
om

pa
ct

io
n

(%
 X

M
L.

G
Z

 s
ize

)
Encoding

●

xml.strict_compress_exi
xml.strict_bitpacked_exi
xml.compress_exi

Figure 57. Plot for DFXML case, focus question F.

●

●

●

●

●

●

● ●
●

●

●

●

●

● ●
● ●

●

●
●

●

●

●

●

●

● ● ●

●
● ●

● ● ● ● ● ●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●
●

●
●

● ●

●
●

● ●
● ●

●

● ●
● ●

●
●

● ●
●

●

●
●

●
● ●

●

●
●

●

●
●

●

●
●

●
●

●

●
● ● ●

0%10%20%30%40%50%60%70%80%90%100%110%120%130%140%150%160%170%180%190%200%210%220%230%240%250%260%270%280%290%300%310%320%330%340%350%360%370%380%390%400%410%420%430%440%450%460%470%480%490%

5K 10K 50K 100K 500K 1M 5M 10M 50M 100M
Original XML.GZ size (bytes, log scale)

 (Baseline is XML.GZ : 100% indicates full XML.GZ size)

C
om

pa
ct

io
n

(%
 X

M
L.

G
Z

 s
ize

)

Encoding

●

xml.strict_compress_exi
xml.strict_bitpacked_exi
xml.compress_exi

Figure 58. Plot for PDML use case, focus question F.

 84

●
● ●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●
●

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%
110%
120%
130%
140%
150%
160%
170%
180%
190%
200%
210%
220%
230%
240%
250%
260%
270%

5M 10M 50M 100M
Original XML.GZ size (bytes, log scale)

 (Baseline is XML.GZ : 100% indicates full XML.GZ size)

C
om

pa
ct

io
n

(%
 X

M
L.

G
Z

 s
ize

)

Encoding

●

xml.strict_compress_exi
xml.strict_bitpacked_exi
xml.compress_exi

Figure 59. Plot for OpenStreetMap use case, focus question F.

For all three use cases, bitpacked EXI using the strict option generally resulted in

files two or more times the size of plain-text XML compressed with Gzip.

Compress-mode EXI, both with and without the strict option, resulted in

significant improvements. In the DFXML use case, the compress-mode EXI encodings

were ~30-85% the size of plain-text XML compressed with Gzip for files larger than

1MB. The corresponding results for the PDML and OpenStreetMap use cases were ~40–

95% and ~60–75%, respectively.

D. CHAPTER SUMMARY

Experimental results for small-file use cases showed significant variance in EXI

encoding size depending on the structure of the XML data itself, the data type

information in the associated XSD, and the configuration of the EXI codec itself. In

general, for any sample file in the small-file category, there was at least one EXI

configuration that produced a more compact encoding than BSON or CBOR while

maintaining semantic equivalence. Results for large-file category suggest that performs

no worse on large XML files than suggested by previous work, but that beyond 1MB file

sizes, compaction rates remain static within a use case as file size increases.

 85

V. CONCLUSIONS AND RECOMMENDATIONS

This chapter presents broad conclusions from comparing EXI to binary JSON

formats and from testing EXI compaction of large XML files, and presents the author’s

recommendations for future work identified in the course of the research.

A. SMALL-FILE CATEGORY

The following section outlines the major findings of this research stemming from

the small-file use cases: diminishing gains from compressing larger files suggest an

optimal point to begin transmission to maximize network throughput; the configuration

of EXI options as well as an XSD make significant differences in the final size of an EXI

encoding; and in most cases there is at least one EXI configuration that produces smaller

files than BSON and CBOR.

1. When To Send?

A common metric for a web-application’s performance is responsiveness, or how

quickly a user receives a response after making a request. The size of data transmitted in

an AJAX-style web application is one of myriad factors affecting response time. For

applications using AJAX for frequent data exchanges between the client and server,

intentionally waiting to aggregate multiple responses prior to transmission can decrease

overall data size. Tsai, Chen, Huang and Hu (2011) investigated this in the context of

image aggregation through a proxy server for mobile mashup applications, and found that

it increases performance and reduces HTTP overhead. Liefke and Suciu (2000) also

explored the relationship between file size and XMill compression ratio with results

suggesting that more messages, if aggregated, compact more. Only one of their datasets,

Weblog, had a temporal component relevant to this concept, i.e., the increasing file size

reflected more data generated over time. For the AIS and GPX use cases analyzed in this

research, there is a similar temporal relationship between each “message” that extends

their results for the EXI algorithm.

 86

By compressing sequential subsets of a larger file, this experiment investigates

this aggregation for textual data in conjunction with conventional compression. The

results suggest that similar responses, when combined, tend to create additional

redundancy in the data and improve compaction when compressed with generic lossless

compression algorithms such as DEFLATE, Gzip, or Zip. Beyond web applications, the

notion of aggregation has potential for remote sensor networks collecting real-time

information and transmitting back to a central node. In such a scenario, the decision to

transmit data every 5ms, 5s or 5min presents a tradeoff in overall timeliness of

information versus bandwidth consumption. In tests of a single-server streaming

architecture over HTTP, a buffering delay of 0.5 seconds, both improved compression

and decreased processor utilization for a high-capacity web server (Fisteus, García,

Fernández, & Fuentes-Lorenzo, 2014).

However, the intentional delay during aggregation may decrease responsiveness

in a situation where available bandwidth is not the limiting factor. Also, the results

indicate that for a specific use case, compaction increases quickly for small aggregations,

and then flattens as subset sizes increase. Thus, delaying transmission too long is not

likely to increase performance. As the compaction curve flattened at different points for

each of the small-file use cases, the optimal ‘when to send’ point is likely a function of

the application’s data, the needs of the application, and the characteristics of the larger

network. The variation across use cases in this research suggests empirical investigation

is the best method for identifying the balancing point between compaction benefits and

operational requirements.

2. Significance of EXI Configurations

EXI encodings are highly configurable, and no single configuration is the best for

all use cases. The EXI standard defines several options that affect the final size of an EXI

encoding, as well as memory footprint, implementation simplicity, and processing speed

(Schneider et al., 2014). It lists default settings for each option that decrease the size of

XML documents in all cases. However, as this experiment’s results indicate, in many

cases those defaults do not produce the smallest possible file size, and may not produce

 87

files smaller than conventional Gzip compression. A default configuration meeting both

of those criteria for all possible XML documents is simply not possible. Configuration of

the EXI codec, informed by empirical testing on a case-by-case basis, is necessary to

achieve the best compaction. Each adjustment thus made will also affect other factors

such as memory consumption or encode and decode speed, which are not addressed in

this research.

Even within a single use-case or application, there may not be a single best EXI

configuration. As the three small-file use case results indicate, there can be a transition

point in file sizes where Compress-mode begins to produce more compact files than

Bitpacked. If an application transmits messages on both sides of this divide, a static EXI

configuration for all transmissions is not optimal. Another scenario could be where a

server transmits EXI documents to some clients with memory limitations and others

without, where DEFLATE decompression for large block sizes may not be feasible. In

such cases, a dynamic, mixed-mode encoder could adjust the EXI parameters on a per-

message basis and achieve better results overall.

3. Significance of XML Schema

The XML Schema specification identifies the purposes of XSDs as primarily

definition, documentation and robust validation of XML documents (W3C, W3C).

However, the role of the XSD in EXI compression adds a new function to this list. The

empirical results in this work, both for the small and large-file use cases, reinforce the

notion that XSDs improve EXI compaction regardless of which mode EXI is configured

for, particularly true for small XML files and Bitpacked encodings.

The simple presence of a schema, however is not sufficient to maximize EXI

compression. Rather, as suggested in the EXI Specification and validated through the

empirical results in this work, selection of data types and range restrictions in an XSD

can significantly improve compaction for Bitpacked encodings (Schneider et al., 2014).

For the AIS use case, a schema with well defined, restricted data types resulted in

Bitpacked file-sizes less than half that produced with no data types at all. An XSD

schema, formerly a tool strictly for validation of data, serves also a tool for compression

 88

with EXI. This also presents a tradeoff space between maintaining generality of a

schema, or tightly restricting it to achieve maximum compaction. Data type

representation maps, described in the EXI specification but not tested during this

research, provide another method for efficiently representing custom data types that do

not conform to the basic data types included in the EXI specification (Schneider et al.,

2014).

In general, the author believes that for all of the sample files tested, there likely

exists an alternate combination of XSD and EXI codec configurations that could produce

semantically equivalent but more compact encodings than found in this research. The

implication for developers working with EXI is that though the default options are indeed

more efficient than plain-text transmission, the true potential of EXI lies in an in-depth

understanding of one’s own data, the EXI specification, and a customized marriage of the

two.

4. EXI and Binary JSON Encodings

The process of collecting sample files and testing compression figurations to

highlighted a major challenge, compounded with the introduction of multiple binary

formats and configurations, inherent to any comparison of XML to JSON: conversions

from XML to JSON and vice-versa are not one to one. Many configurations exist which

this work did not examine. Also, the tested binary encodings of JSON differ from EXI in

that specific data type encodings for CBOR and BSON are limited, relative to the impact

XSD information makes on EXI encoding sizes. Technologies such as JSON Schema, if

incorporated into the BSON/CBOR representations, could provide similar benefits.

As tested, however, a properly parameterized EXI encoding is more compact that

JSON in the majority of cases. However, identifying such parameters may require

examination and adjusting of data on a per-use case basis. This shows a need for defining

best-practice EXI properties for common XML documents and schemas, both in the fleet

and in industry.

 89

B. LARGE-FILE CATEGORY

The findings from the large-file use cases, in addition to reinforcing the

previously statements about significance of EXI configurations and schema, provided

two additional findings. First, EXI performs as well on files between 100MB and 4GB as

it does on files less than 100MB, but it does not necessarily perform better. Second, large

XML files can be computationally expensive to process and applications that must

transfer them over networks may be better served to break them into multiple, smaller

files.

1. EXI Performs Well on Large Files

The results from the three large-file use cases both extend and validate work by

the W3C working group and previous NPS research indicating that EXI consistently

produces more compact encodings than Gzip for plain-text XML files up to 100MB

(Snyder, 2010; White et al., 2007). In brief, this work found that across the three use

cases, EXI consistently produced more compact encodings than conventional

compression algorithms for plain-text XML files between 100MB and 4GB. For the three

use cases tested, schemaless EXI in Compress mode produced files between ~35–75%

the size of Gzip. Schema-informed EXI in Compress mode offered equivalent or better

results, generally ~30–60% the size of their schemaless counterparts. As noted in the EXI

standard, Bitpacked mode is not ideal for large files, and in all three use cases, produced

encodings significantly larger than Gzip (Schneider et al., 2014).

2. Compaction Plateaus as Size Increases

Though EXI does perform well on large documents, the test results did not

indicate that, within a given use case, EXI performs better on plain-text files larger than

100MB documents than on files between 1MB and 100MB. Trends from all three use

cases suggest that EXI compaction for a given use case plateaus as plain-text file size

grows past ~1MB. The author’s experience with testing EXI compression for large files

during this research was that large XML files can be memory intensive and slow to

process, not solely for EXI compressors but other software tools as well. Thus, since

large XML files can be difficult to process and EXI compaction doesn’t improve with

 90

additional file size beyond 1MB, it may be better to identify the point of diminishing

compaction gains and use that to break an XML file into chunks prior to EXI encoding

and transmission. For applications performing just-in-time compression immediately

prior to transmission this approach could provide a balance between file-manageability

and compression—it would begin transmission sooner and thereby reduce unutilized

bandwidth. However, for applications that maintain large files in persistent storage prior

to transmission, EXI compression overhead incurred once could pay dividends over the

course of many downloads.

C. RECOMMENDATIONS FOR FUTURE WORK

Since the EXI standard is well suited for optimizing machine-readable,

interoperable data moving over constrained networks such as those in afloat Navy units,

the technology warrants future research. The below recommendations summarize issues

identified in this research that could help to speed fleet adoption of EXI and once

adopted, ensure its potential is maximized.

1. Conventions for JSON/XML Interoperability

Given that JSON and XML are commonly used for identical functions in web

services and applications, and that the tradeoff space between the two is multivariate,

selecting one over the other should be a matter of picking the best tool for the application

under consideration. Further work to clarify and compare their respective capabilities and

limitations in terms of security, expressive power, performance and other dimensions

relevant to Navy information systems would provide insight and best practices for future

systems development. Such work might explore consistent conventions for expressing

XML as JSON and vice versa in the context of Navy web applications. With such

conventions in place, maintaining parallel development tracks to implement both

technologies may become unnecessary.

 91

2. Holistic Profiling

In comparing EXI to BSON and CBOR, this work only measured file sizes, but

file size is only one of many factors to consider in selecting a data serialization format.

Extending this research to include profiling capabilities across other dimensions would

allow for a more holistic comparison of EXI to other serialization formats, as well as

between various EXI configurations. Additional variables identified in this research

include: serialization, deserialization, and round-trip memory-to-memory transmission

times; memory consumption; power consumption; fidelity; and transmission size with

layer 4 and below overhead included.

Serialization Speed

Deserialization Speed

Memory Usage

Power Consumption

Fidelity

Compaction

Encoding
A
B

Figure 60. Radar chart comparing hypothetical, multivariate profiles for two

data exchange encodings. Presents potential opportunities for further
work. Visualization adopted from Bremer (2013) and Brutzman

(personal communication, December 2, 2014).

 92

3. Need for Best Practices

As the EXI algorithm is highly configurable, and each configuration parameter

affects various attributes of the encoding, a semi-formalized best practices methodology

is needed to effectively incorporate it into an existing or developing system. The process

could begin with requirements collection defining which parameters the system should be

optimized for, perhaps leveraging an instrument similar to Figure 60. Next, it would

address the optimizing from two angles: adjusting the system’s XML format and XSD to

best leverage EXI, and then adjusting EXI’s configuration parameters to find a sensible

default that fits the system requirements and constraints.

This research approached part of this problem through a brute-force approach,

trying all possible configuration permutations and comparing the results. More

sophisticated approaches are possible, such as automating tools to examine the data types

present in an XML document based on information from its XSD as well as regular

expressions, and locate areas that could benefit from additional schema tuning, custom

data type representation maps, or other configurations. Also, such an approach applied

across many Navy or DOD systems could result in a library of EXI patterns available for

reuse across the organization.

4. Expanding EXI across the Open Web Platform

At present, the EXI specification targets only XML, but the Open Web Platform

includes many other formats for moving data across web applications. Prototype

implementations by Kamiya (2014) and Peintner (2015) show that the grammar-based

EXI algorithm can be applied directly to JSON, rather than converting between XML and

JSON, with excellent results. Additionally, HTML5, CSS3, and JavaScript code can

potentially be compressed with EXI-like, grammar-based algorithms (Burtscher, Livshits,

Zorn, & Sinha, 2010). Finally, a JavaScript implementation of EXI could simplify

deployment for web applications, as the client would not need to have an EXI codec pre-

installed.

 93

5. EXI Streaming Protocols

Given results from this and other research showing that combining multiple small

transmissions prior to compression yields compaction benefits, EXI applied to streaming

XML protocols could capitalize on these results (Fisteus et al., 2014). Work at the XML

Messaging and Presence Protocol (XMPP) Standards Foundation is developing an EXI-

based streaming protocol for XMPP (Waher & Doi, 2014). The implications of this for

the fleet, both in terms of chat tools, sensor networks and other store and forward

situations, warrants further research.

6. Fleet Adoption

The EXI standard is a powerful tool for compressing and optimizing XML data

which could significantly benefit constrained Navy networks afloat, but is not widely

adopted in fleet systems. A mix of technological and administrative efforts is required to

leverage EXI. Also, a high-profile proof of concept implementation directly impacting

daily Navy business could support technology adoption. One such possibility is the

Microsoft Office suite’s files, which are a ubiquitous format for sharing ideas and

documents in the fleet and DOD. In practice, they are commonly transmitted over

networks as downloads from web portals or as attachments to emails. Past research by

SPAWAR has addressed compression of these files using NXPowerLite, a commercial

utility that targets unnecessary data in these files, such as excessive resolution and

metadata in embedded images (Jordan, 2008; Neuxpower Solutions Ltd., 2015). Though

image data inside Microsoft Office files can comprise a large portion of the file size, EXI

can target the remaining structured data in XML format. EXI, in conjunction with image

manipulation libraries, could provide a completely open-source tool, transparent to users,

that provides similar functionality to NXPowerLite and demonstrates the potential impact

of EXI in the fleet. Appendix B includes preliminary compaction results for such an

approach.

Also, unlike Zip and Gzip, the major operating systems do not by default include

an EXI codec, so integrating EXI into Navy systems requires additional work, be it

through gateway-based architecture compressing all XML data prior to transmission over

 94

SATCOM links, or on individual clients and servers. Future work toward developing a

widely integrated, open source codec pre-integrated at the operating system level could

decrease the entry cost for Navy system developers considering EXI. Approaches include

ongoing work by NPS faculty, students and industry partners to include the Apache-

licensed OpenEXI codec in the Apache Software Foundation codebase, or to work

toward inclusion into common development utilities, such as Apache Ant task or an

Apache Maven repository (OpenEXI Project, 2014).

D. CLOSING THOUGHTS

EXI is a powerful enabling technology for interoperable, efficient

communications over constrained or degraded networks. In the short-term, EXI can be

incorporated into the Navy’s tactical infrastructure via gateways or filters deployed near

edge routers, prior to transmission over SATCOM links. A longer-term solution that

eliminates a gateway bottleneck and maximizes performance everywhere is to deploy

EXI natively into applications, both on client and server nodes. Further developments

will soon change diverse IoT sensors into coherent WoT devices, with accompanying

improvements in power consumption and platform endurance. EXI provides major

benefits that deserve broad adoption to benefit the fleet.

 95

APPENDIX A. EXI AND MICROSOFT OFFICE

In 2003, Microsoft introduced an XML-based file formats into its Microsoft

Office suite that enabled interoperability with a wide array of external applications (Lenz,

McRae, & St.Laurent, 2004). Between 2006 and 2012, the file formats became an open

standard called Office Open XML1 (OOXML) (International Organization for

Standardization, 2011; Ngo, n.d.). The OOXML standard defines “strict” and

“transitional” forms, and Microsoft Officer versions released during that timeframe

progressed toward full compliance with the standard. As of the Office 365 release, the

software gives users the option to save files in “strict” OOXML format (Thatcher &

Knowlton, 2012).

The .xlsx, .pptx, and .docx files generated by Excel, PowerPoint and Word,

respectively are Zip archives containing multiple subdirectories and multiple XML files,

alongside a media directory containing any binary data in the document, such as images

and video clips. To test the compaction performance of EXI on the XML portion of these

file formats, the author collected several documents of varying size and complexity in

each format, then created a script that expands the Zip archive, applies EXI to each XML

document inside, and finally compresses the archive using Zip. A corresponding script

reversed the sequence of operations to verify round-trip compatibility. To provide a basis

for comparison, the author collected file sizes for native OOXML files further

compressed with Zip. To focus on the impact of EXI compaction, the author removed all

images and binary data from the files. Figure 61 presents preliminary compaction results.

1 Note that OOXML here should not be confused with the similar Open Document Format (ODF)

specification used in many office productivity applications.

 96

Excel PowerPoint Word

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●●

●
●

●

●
●●●

●●
●

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

10K 100K 1M 10K 100K 1M 10K 100K 1M
Original OFFICE size (bytes, log scale)

 (Baseline is OFFICE : 100% indicates full OFFICE size)

C
om

pa
ct

io
n

(%
 O

FF
IC

E
 s

ize
)

Encoding

●

office.zip
exi

Figure 61. Comparison of EXI and Zip compaction of Microsoft Office
documents.

Overall, the proposed method of applying EXI to Microsoft Office documents

reduced them to 80% of original size or better—for files containing only XML data. For

files with embedded images, compaction was significantly less, and in many cases

negligible. The proposed method performed best on Excel documents, compacting them

to as little as ~33% of original OOXML size. One result for Excel compaction was ~15%

of original OOXML size, though this is likely an outlier. The document contained

borders around thousands of empty worksheet cells, resulting in long stretches of highly

repetitive XML tags and thus high compaction.

Several avenues for improving on this methodology are to: (1) include image

processing functionality to reduce the resolution of media files to that of the anticipated

briefing screen; (2) to adjust or extend the OOXML XSDs; (3) to aggregate the XML

files inside an OOXML archive prior to EXI encoding to achieve better compaction

during the DEFLATE phase of EXI compression. This final approach is promising

because, for example in a PowerPoint presentation, each slide is as a separate and

relatively small XML file.

 97

APPENDIX B. SOURCE CODE

The source code for all format conversion, data processing and plotting conducted

in this research may be retrieved from GitHub at https://github.com/hillbw/exi-test and

https://github.com/hillbw/exify-office. Each repository’s README.md file provides

documentation on the general organization and usage of the test suite, and comments in

each source file describe its function. All sample XML and JSON files for the GPX and

OpenWeatherMap use cases are included in the repository. A few sample files for the

Microsoft Office tests are included, but most are not as they contained sensitive

information.

Files from the AIS use-case are not licensed for open distribution, and are

available from https://savagedefense.nps.navy.mil/exi/BruceHillThesis. Sample files

from the OpenStreetMap, DFXML and PDML use cases, which are too large for GitHub

hosting, are also available at that address

 98

THIS PAGE INTENTIONALLY LEFT BLANK

 99

APPENDIX C. BEING EFFICIENT WITH BANDWIDTH

As part of this research, the author of this thesis, along with colleagues at the

Naval Postgraduate School, published an article entitled “Being Efficient with

Bandwidth” in the July 2014 issue of Proceedings, published by the United States Naval

Institute (Debich, Hill, Miller, & Brutzman, 2014). The article, which explores

foundational concepts from this research, is available online at

http://www.usni.org/magazines/proceedings/2014-07/professional-notes, and the

enclosed version in this appendix is reprinted from Proceedings with permission;

Copyright © 2014 U.S. Naval Institute (http://www.usni.org).

 100

Published on U.S. Naval Institute (http://www.usni.org)
Home > Magazines > Proceedings Magazine - July 2014 Vol. 140/7/1,337 > Professional Notes

Being Efficient with Bandwidth

By Lieutenant Commander Steve Debich, Lieutenant Bruce Hill, Captain Scot Miller (Retired), U.S. Navy, and
Dr. Don Brutzman
Naval information dominance hinges on three fundamental capabilities: assured command and control (C2),
battlespace awareness, and integrated fires. None of these are possible without effective communications links.
Networks—and more specifically, the information flowing through them—are now a center of gravity for the Fleet. 1
Maritime tactics and operational plans rely on levels of synchronization only possible through high-bandwidth
communications. Satellite communication (SATCOM) is the Fleet’s primary path for high-bandwidth C2. However,
afloat units may be denied access due to equipment failure, technical problems, weather phenomenon, or enemy
actions, forcing reliance on lower-bandwidth alternatives.
For afloat units, bandwidth has become a critical but painfully finite resource that must be conserved. SATCOM
carries data from a large number of disparate systems often referred to as “stovepipes.” These systems vary in
function from tactical to administrative, and the data formats for each application vary greatly. The result is
communications only occurring vertically within a system, but not across the breadth of different systems. When
many such stovepipes contend for access to the same ship-to-shore transport path, even the largest SATCOM
channels can become congested. Future assured C2 requires interoperability between stovepipes and better
prioritization of network traffic.
Before identifying the solution, we must understand the factors that impose constraints on the transmission path:
bandwidth, latency, and throughput.

Bandwidth: Not The Same As “Throughput”

Bandwidth is literally the “width” of the frequency band used to carry a data signal. It is more often described as the
transmission capacity of the communications medium, measured in terms of bits per second. 2 To increase the
capacity of an electromagnetic communications channel, modulation technologies and methods would need
improvement, or an additional antenna could be installed. Both approaches illustrate significant engineering and
financial constraints associated with increasing bandwidth, particularly in the shipboard environment.
SATCOM connections are often depicted as lightning bolts connecting deployed units with relay systems. These
lightning bolts convey the impression that data are instantaneously transmitted from unit A to unit B through an
optimally placed satellite node. Unfortunately SATCOM transmissions are far from instantaneous: They incur
significant delays in comparison to terrestrial communications paths. The combined delay is known as latency.
Latency is an accumulated series of delays that can occur in each step of the communications path between the
sender and receiver. Such delays occur as part of propagation delay during signal transmission, network processing
and interface delays, varying methods for buffering and queuing, and cumulative router and switch delays. 3 Latency
from the perspective of network traffic is the delay from the time of the start of packet transmission at the sender
host to the time of the end of packet reception at the receiver host.
Unfortunately latency has significant effects on throughput. This is due in part to the degradation experienced by the
primary networking protocol TCP when operating over a high latency network. 4 SATCOM channels routinely
operate with latency between 500 to 800 milliseconds. Response “waiting time” is a particular problem for
communications protocols like TCP that includes frequent acknowledgement among participants. Increased latency
ultimately results in decreased throughput.
Throughput is the rate at which new data—actual information—is transferred through a system. Like bandwidth, it is
measured in bits per second and can be considered the actual effective capacity of a channel or the “rate of
successful message delivery” being achieved. A common misconception is that bandwidth and throughput are
synonymous. Numerous additional constraints can limit the amount of data that can be transferred between two
points, such as the overhead of communication protocols and latency delays, which may keep a channel idle. Thus
bandwidth indicates the maximum possible data-transfer capacity, while throughput is what capacity actually occurs.
Throughput is often significantly lower than the communications channel’s bandwidth capacity. Ultimately round-trip-
time dominates performance more than bandwidth does. 5

Reprinted from Proceedings with permission; Copyright © 2014 U.S. Naval Institute (http://www.usni.org)

 101

Common Practice: SATCOM

For Navy ships at sea, the only access to high bandwidth is through SATCOM systems. In our increasingly
connected world, the value placed on access to high bandwidth continues to rise. As bandwidth increases, the
amount of data that can be transferred between two points also increases. As bandwidth is increased, additional
capacity is quickly consumed by ever-more sophisticated sensors, unmanned vehicles, and other network-centric
dependencies. 6 Most high-bandwidth paths utilize the super- and extremely-high frequency (SHF/EHF) spectrum
for SATCOM communications. Though data and voice circuits exist in other portions of the spectrum, SHF and EHF
carry the brunt of Navy traffic, with SHF (C/Ku/X band) ultimately providing the biggest “pipe” for data flows.
In the past, the solution to demand for increasing data transfer was to increase bandwidth, and thereby capacity. As
the DoD throttles back spending, many areas must become more efficient in order to accomplish defense missions.
Similar approaches for efficiency must be applied with respect to communication systems. The amount of
information to be shared is not expected to decrease. Because constraints on SATCOM bandwidth make even
marginal increases a costly venture, the Navy must explore new tactics. Perhaps solutions lie not in the channel
itself, but in the format of data transmitted. What if we can convey the same information using just a fraction of the
original zeros and ones, while at the same time connecting stovepipes through data interoperability?

XML: The Language of Interoperability

Interoperability is essential to the key information dominance capabilities. Shipboard computers must talk to each
other, computers from other service branches, and computers from partner nations. To facilitate interoperability, an
open-standards approach is critical. The Department of the Navy’s chief information officer has designated the
extensible markup language (XML) as the data-definition language of choice for information standardization, and for
good reason: It is the de facto standard format for systems talking across the web. 7 By design, XML adds structure
to data, which in turn facilitates validation of correctness and system interoperability. XML is the lingua franca of the
world’s computers.
Though XML is a path to both technical and semantic interoperability, it has an Achilles heel: It was never intended
to be compact. 8 In terrestrial networks with low latency contributing to massive throughput, this is usually
unimportant. For the Navy, however, large messages mean slower connections and less information to forward-
deployed units relying on SATCOM. Transmitting large messages also draws more power, so XML isn’t ideal for
mobile or unmanned devices running on batteries. Viewed in this light, XML is less attractive, but it doesn’t have to
be that way. Recent advances in data compression are providing new design options.

Shrinking Data, Broadening the Web

In 2004, the World Wide Web Consortium began to address this issue, and in 2014 released the Efficient XML
Interchange (EXI) Format Recommendation. 9 EXI is an alternate encoding of XML data that leverages the inherent
structure of XML to tightly compress it. Since it is designed specifically for XML, the results are superior to generic
compression methods. In some cases, EXI compression results in files that are less than 10 percent the size of the
original XML file. 10 Perhaps even more surprising is that EXI decompresses faster, using fewer computations and
therefore drawing less power than plain text-based ZIP and GZIP compression.
Given that XML enables interoperability, and that EXI shrinks it, Fleet communications architects and program
managers should be interested. 11 Systems could potentially convert and transmit information in XML format, and
with EXI they could send more information in less time. By incorporating EXI, web-based architectures such as
CANES and C4I systems using service-oriented architectures may be viable over constrained SATCOM links.
Unmanned systems and remote sensors might use EXI to conserve batteries on extended missions. A single file cut
to a tenth of its original size is useful in itself, but the aggregate impact over thousands of nodes in a cloud, each
sending thousands of files, could be immense.
Other impacts pertain as well. For example, encryption is usually considered independent of compression. However,
by randomizing a bit stream, encryption scrambles the structure necessary for effective compression. That means
encrypted streams cannot be compressed. Compression must occur before encryption when transmitting, and
decompression after decryption on the receiving end. This principle is so important that the order should be checked
for all Navy communications channels.
Since message size is just one of many factors in network throughput, EXI is not a silver-bullet for Navy bandwidth
woes, but it certainly can’t hurt. It is not mutually exclusive of other attempts to address the issue. Navy
communications designers need not choose between a new SATCOM constellation and EXI, or between
commercial network accelerators and EXI; they can have both. Considering that EXI is open standard, supports
interoperability, and shrinks data the Navy is already sending over its networks, there is little to lose and much to
gain. The Navy can be more efficient with a precious afloat resource: bandwidth.

Reprinted from Proceedings with permission; Copyright © 2014 U.S. Naval Institute (http://www.usni.org)

 102

1. Chief of Naval Operations Information Dominance, Navy Strategy for Achieving Information Dominance, 2013-
2017, 1 January 2013, www.dtic.mil/docs/citations/ADA571217 [6] .
2. Anu A. Gokhale, Introduction to Telecommunications (Cengage Learning, 2004), http://books.google.com/books?
id=QowmxWAOEtYC&pgis=1 [7] , 455.
3. Rony Kay, “Pragmatic Network Latency Engineering Fundamental Facts and Analysis” (cPacket Networks Inc,
2009), http://cpacket.com/wp-content/files_mf/introductiontonetworklatencyengin... [8] .
4. Thomas R. Henderson, Randy H. Katz, TCP Performance over Satellite Channels (Berkeley, CA: University of
California at Berkeley, 1999), www.eecs.berkeley.edu/Pubs/TechRpts/1999/CSD-99-1083.pdf [9] .
5. Mike Belshe, “More Bandwidth Doesn’t Matter (Much),” 2010, www.chromium.org/spdy [10] .
6. Isaac R. Porche, Bradley Wilson, Erin-Elizabeth Johnson, Shane Tierney, Evan Saltzman, RAND Corporation,
“Data Flood: Helping the Navy Address the Rising Tide of Sensor Information,” 2014,
www.rand.org/pubs/research_reports/RR315.html [11] .
7. Department of the Navy Chief Information Officer, “DON policy on the use of extensible markup language (XML),”
2012, http://xml.coverpages.org/DON-XMLPolicy200212.pdf [12] .
8. Mike Cokus, Santiago Pericas-Geertsen, “XML binary characterization properties,” 2005, www.w3.org/TR/xbc-
properties/#xml-design-goals [13] .
9. Takuki Kamiya, Efficient XML Interchange Working Group, 2014, www.w3.org/XML/EXI [14] .
10. Sheldon Snyder, Don McGregor, Don Brutzman, “Efficient XML interchange: Compact, efficient, and standards-
based XML for modeling and simulation,” 2009, http://calhoun.nps.edu/public/handle/10945/5422 [15] .
11. Jeffrey Williams, “Document-based message-centric security using XML authentication and encryption for
coalition and interagency operations,” master’s thesis, Naval Postgraduate School, 2009,
http://calhoun.nps.edu/public/handle/10945/4610 [16] .

Lieutenant Commander Debich and Lieutenant Hill are information professional officers studying network
operations at the Naval Postgraduate School (NPS).
Captain Miller is a retired information professional officer serving as a research associate at NPS. He is the
former commanding officer of the Navy Center for Tactical Systems Interoperability.
Dr. Brutzman is a retired submarine officer working in the information sciences department, Undersea
Warfare Academic Group, and MOVES Institute at NPS. Additional insights by Dr. Dan Boger, Captain Louis
Unrein (U.S. Navy) and other reviewers are gratefully acknowledged.

Source URL: http://www.usni.org/magazines/proceedings/2014-07/professional-notes

Reprinted from Proceedings with permission; Copyright © 2014 U.S. Naval Institute (http://www.usni.org)

 103

LIST OF REFERENCES

Anastasi, G., Conti, M., & Di Francesco, M. (2008). Data collection in sensor networks
with data mules: An integrated simulation analysis. In 2008 IEEE Symposium on
Computers and Communications (pp. 1096–1102). IEEE.
doi:10.1109/ISCC.2008.4625629

The Apache Software Foundation. (2014). Apache module mod_deflate. Retrieved from
http://httpd.apache.org/docs/2.4/mod/mod_deflate.html

Asanov, S., Oleg, G., Palashina, A., Krivonosova, A., & Namjittrong, T. (2014). Unicode
character table. Retrieved from http://unicode-table.com/en/

Baldoni, R., Querzoni, L., & Virgillito, A. (2005). Distributed event routing in publish/
subscribe communication systems  : A survey. DIS, Universita di Roma La
Sapienza, Tech. Rep. Retrieved from
http://www.diag.uniroma1.it/~midlab/articoli/BV.pdf

Bartel, M., Boyer, J., Fox, B., LaMacchia, B., Simon, E., Eastlake, D., … Yiu, K. (2013).
XML signature syntax and processing. Retrieved March 9, 2015, from
http://www.w3.org/TR/2013/REC-xmldsig-core1-20130411/

Bennett, J. (2010). OpenStreetMap: Be your own cartographer. Birmingham, UK: Packt
Publishing.

Bentrup, J., Otte, E., Chan, B., Vavrichek, D., & Gingras, D. (2012). At-sea testing of a
wide area network optimization device (U). Center for Naval Analyses
Corporation. DRM-2012-U-002246-Final.

Bormann, C., & Hoffman, P. (2013). Concise binary object representation. Internet
Engineering Task Force.

Bos, B. (2001). XML in 10 points. Retrieved from http://www.w3.org/XML/1999/XML-
in-10-points

Bournez, C. (2009). Efficient XML interchange evaluation (Working Draft). Retrieved
from http://www.w3.org/TR/2009/WD-exi-evaluation-20090407/#compactness-
results

Bray, T., Paoli, J., & Sperberg-McQueen, C. M. (1998). Extensible markup language
(XML) 1.0. Retrieved from http://www.w3.org/TR/1998/REC-xml-19980210

Bremer, N. (2013). Radar chart or spider chart. Retrieved February 2, 2015, from
http://bl.ocks.org/nbremer/6506614

 104

Brutzman, D., Hughes, W., Kline, J., Buettner, R., & Ekelund, J. J. (2014). Network-
optional warfare (NOW) operational concepts. Monterey, CA: Naval
Postgraduate School. Retrieved Mar 10, 2015, from
https://wiki.nps.edu/display/NOW/Network+Optional+Warfare

Brutzman, D., & X3D Working Group. (2014). X3D JSON encoding. Retrieved March 9,
2015, from http://www.web3d.org/wiki/index.php/X3D_JSON_Encoding

BSON. (2014). Retrieved from http://bsonspec.org/

BSONSpec.org. (2014). Specification version 1.0, Retrieved from
http://bsonspec.org/spec.html.

Burtscher, M., Livshits, B., Zorn, B. G., & Sinha, G. (2010). JSZap: Compressing
JavaScript code. In 2010 USENIX Conference on Web Application Development
(pp. 39–50). Boston, MA. Retrieved from
https://www.usenix.org/legacy/event/webapps10/tech/full_papers/webapps10_pro
ceedings.pdf#page=29

Cebrowski, A. K., & Garstka, J. J. (1998). Network-centric warfare: Its origin and future.
United States Naval Institute Proceedings, 124(1), 28–35. Retrieved from
http://search.proquest.com/docview/205987210

Cerami, E. (2002). Web services essentials. Sebastopol, CA: O’Reilly & Associates.

Chaplain, C. (2009). Space acquisitions: Government and industry partners face
substantial challenges in developing new DoD space systems (GAO-09-648T).
Washington, DC: Government Accountability Office. Retrieved from
http://www.dtic.mil/dtic/tr/fulltext/u2/a499151.pdf

Chief of Naval Operations for Information Dominance. (2013). Navy strategy for
achieving information dominance: 2013-2017. Washington, DC: Author.
Retrieved from http://www.dtic.mil/docs/citations/ADA571217

Cokus, M., & Pericas-Geertsen, S. (2005a). XML binary characterization properties.
Retrieved from http://www.w3.org/TR/xbc-properties/#xml-design-goals

Cokus, M., & Pericas-Geertsen, S. (2005b). XML binary characterization use cases.
Retrieved from http://www.w3.org/TR/2005/NOTE-xbc-use-cases-20050331

Cokus, M., & Vogelheim, D. (2007). Efficient XML Interchange (EXI) Best Practices.
Retrieved from http://www.w3.org/TR/exi-best-practices/

Crockford, D. (n.d.). The JSON saga [Video file]. Retrieved from
https://www.youtube.com/watch?v=x92vbAN_j1k

 105

Crockford, D. (2006). JSON: The fat-free alternative to XML. Retrieved from
http://www.json.org/fatfree.html

Crockford, D. (2008). JavaScript: The good parts. Sebastopol, CA: O’Reilly Media.

Crockford, D., & Bray, T. (2014). RFC 7159: The JavaScript Object Notation (JSON)
Data Interchange Format. Internet Engineering Task Force. Retrieved from
http://www.rfc-editor.org/rfc/rfc7159.txt

Debich, S. (2015). The role of efficient XML interchange in navy wide area network
optimization. Master’s thesis, Naval Postgraduate School, Monterey, CA.

Debich, S., Hill, B., Miller, S., & Brutzman, D. (2014). Being efficient with bandwidth.
United States Naval Institute Proceedings, 140(7), 76-77.

Department of the Navy Chief Information Officer. (2013). Update to department of the
navy approach to cloud computing. Washington, DC: Author. Retrieved from
http://www.doncio.navy.mil/ContentView.aspx?id=4695

Deputy Chief of Naval Operations for Information Dominance. (2014). Task force cloud
charter. Department of the Navy.

Deutsch, P. (1996). DEFLATE Compressed Data Format Specification version 1.3.
Internet Engineering Task Force. Retrieved from
http://tools.ietf.org/pdf/rfc1951.pdf

Dvoinikov, D. (2014). Pythomnic3k (Version 1.4.1) [Computer software]. Retrieved
from http://www.pythomnic3k.org/

Dzhagaryan, A., Milenkovic, A., & Burtscher, M. (2013). Energy efficiency of lossless
data compression on a mobile device: An experimental evaluation. In 2013 IEEE
International Symposium on Performance Analysis of Systems and Software (pp.
126–127). Austin, Texas: IEEE. doi:10.1109/ISPASS.2013.6557156

Eck, D. J. (2011). Introduction to programming using java (6th ed., Vol. 2011).
Retrieved from http://math.hws.edu/javanotes/

Ecma International. (2013). Ecma-404: The json data interchange format. Geneva,
Switzerland: Ecma International. Retrieved from http://www.ecma-
international.org/publications/files/ECMA-ST/ECMA-404.pdf

Evjen, B., Sharkey, K., Thangarathinam, T., Kay, M., Vernet, A., & Ferguson, S. (2007).
Professional XML. Indianapolis, IN: Wiley.

Fall, K. (2003). A delay-tolerant network architecture for challenged internets. In
Proceedings of the 2003 conference on Applications, technologies, architectures,

 106

and protocols for computer communications - SIGCOMM ’03 (pp. 27–34). New
York: ACM Press. doi:10.1145/863956.863960

Fawcett, J., Ayers, D., & Quin, L. (2012). Beginning XML (5th ed.). Somerset, NJ: John
Wiley & Sons.

Fielding, R., & Reschke, J. (2014). Hypertext transfer protocol (http/1.1): Semantics and
content. Internet Engineering Task Force. Retrieved from
http://tools.ietf.org/html/rfc7231

Fisteus, J. A., García, N. F., Fernández, L. S., & Fuentes-Lorenzo, D. (2014). Ztreamy: A
middleware for publishing semantic streams on the web. Journal of Web
Semantics, 25, 16–23. doi:10.1016/j.websem.2013.11.002

Foster, D. (n.d.). GPX: The GPS exchange format. Retrieved from
http://www.topografix.com/gpx.asp

Galiegue, F., Zyp, K., & Court, G. (2013). JSON schema: Core definitions and
terminology (No. draft-zyp-json-schema-04) (pp. 1–14). Retrieved from
http://tools.ietf.org/pdf/draft-zyp-json-schema-04.pdf

Garfinkel, S. L. (2009). Automating disk forensic processing with Sleuthkit, XML and
Python. Fourth International IEEE Workshop on Systematic Approaches to
Digital Forensic Engineering, 73–84. doi:10.1109/SADFE.2009.12

Garfinkel, S. L. (2011). Digital forensics tool integration [PowerPoint slides]. Retrieved
from http://simson.net/ref/2011/2011-12-07 DFXML.pdf

Garfinkel, S. L. (2012). Digital forensics innovation: Searching a terabyte of data in 10
minutes [Video file]. Harvard Center for Research on Computation and Society.
Retrieved from https://www.youtube.com/watch?v=pI_e-4eZ2Yg

Garret, J. J. (2005). Ajax: A new approach to web applications. Retrieved from
http://www.adaptivepath.com/ideas/ajax-new-approach-web-applications/

Garrett, C. (2012). ExiProcessor (Version 2012-03-22) [Computer software]. Retrieved
from https://sourceforge.net/projects/exiprocessor/

Geofabrik GmbH. (2014). OpenStreetMap Data Extracts. Retrieved September 24, 2014,
from http://download.geofabrik.de/

Gil, B., & Trezentos, P. (2011). Impacts of data interchange formats on energy
consumption and performance in smartphones. Proceedings of the 2011
Workshop on Open Source and Design of Communication - OSDOC ’11, 1.
doi:10.1145/2016716.2016718

 107

Gilchrist, J. (2003). Parallel data compression with bzip2. Retrieved from
http://gilchrist.ca/jeff/comp5704/Final_Paper.pdf

Goff, J. (2014). Wanted: An agile, low-cost, irregular-warfare surface combatant. United
States Naval Institute Proceedings, 140(10), 1340. Retrieved from
http://www.usni.org/magazines/proceedings/2014-10/professional-notes

Goldman, O., & Lenkov, D. (2005). XML Binary Characterization. Retrieved from
http://www.w3.org/TR/xbc-characterization/

Gonzalez, R., Woods, R., & Eddins, S. (2009). Digital image processing using matlab
(2nd ed..). Gatesmark Publishing.

Gudgin, M., Hadley, M., Mendelsohn, N., Moreau, J.-J., Nielsen, H. F., Karmarkar, A., &
Lafon, Y. (2007). Soap version 1.2 part 1: Messaging framework (second edition).
Retrieved from http://www.w3.org/TR/soap12-part1/

Hallam-Baker, P., & Mysore, S. H. (2005). XML key management specification (XKMS
2.0). Retrieved March 9, 2015, from http://www.w3.org/TR/2005/REC-xkms2-
20050628/

Hughes, W. P. (2014). A prophet for our times. Naval War College Review, 67(3), 96–97.
Retrieved from https://wiki.nps.edu/download/attachments/357662779/A-
Prophet-for-Our-
Times.pdf?version=1&modificationDate=1399566756000&api=v2

Imamura, T., Dillaway, B., Simon, E., Yiu, K., Nystrom, M., Eastlake, D., … Roessler,
T. (2013). XML encryption syntax and processing. Retrieved March 9, 2015,
from http://www.w3.org/TR/2013/REC-xmlenc-core1-20130411/

International Organization for Standardization. (2007a). ISO/IEC 11404:2007:
Information technology - general purpose datatypes (gpd). Geneva, Switzerland:
ISO/IEC. Retrieved from
http://standards.iso.org/ittf/PubliclyAvailableStandards/index.html

International Organization for Standardization. (2007b). ISO/IEC 24824-1:2007:
Information technology - generic applications of asn.1: Fast infoset. Geneva,
Switzerland: ISO/IEC. Retrieved from
http://standards.iso.org/ittf/PubliclyAvailableStandards/index.html

International Organization for Standardization. (2011). ISO/IEC 29500-
1INTERNATIONAL STANDARD ISO / IEC Information technology —
Document description and processing languages —, 2011.

Internet Assigned Numbers Authority. (2014). Hypertext transfer protocol (http)
parameters. Retrieved from http://www.iana.org/assignments/http-
parameters/http-parameters.xhtml

 108

Jepsen, T. (2001). Soap cleans up interoperability problems on the web. IT Professional,
(February), 52–55. doi:10.1109/6294.939937

Jordan, M. (2008). NxPowerLite Trident Warrior 2007 experimentation and results. San
Diego, CA: SPAWAR.

Kamiya, T. (2014). Applying exi encoding technique to json [Lecture and PowerPoint
presentation].

Kangasharju, J. (2008). XML messaging for mobile devices. Helsinki, Finland: Helsinki
University Printing House. Retrieved from
https://helda.helsinki.fi/bitstream/handle/10138/21347/xmlmessa.pdf?sequence=1

Kattan, A. (2010). Universal intelligent data compression systems: A review. 2010 2nd
Computer Science and Electronic Engineering Conference (CEEC).
doi:10.1109/CEEC.2010.5606482

Kay, M. H. (2009). Saxon XSLT and XQuery processor (Version 9.1.0.6) [Computer
software]. Retrieved from http://saxon.sourceforge.net/

Kurose, J. F., & Ross, K. W. (2013). Computer networking: A top-down approach (6th
ed.). Boston, MA: Pearson Education.

Kyusakov, R. (2014). Efficient web services for end-to-end interoperability of embedded
systems (Ph.D. dissertation). Retrieved from
http://pure.ltu.se/portal/files/100108844/Rumen_Kyusakov.pdf

Kyusakov, R., Makitaavola, H., Delsing, J., & Eliasson, J. (2011). Efficient XML
interchange in factory automation systems. IECON 2011 - 37th Annual
Conference of the IEEE Industrial Electronics Society, 4478–4483.
doi:10.1109/IECON.2011.6120046

Le Hegaret, P. (2005). Charter of the Efficient XML Interchange Working Group.
Retrieved from http://www.w3.org/2005/09/exi-charter-final.html

Lee, D. (2011). JXON: An architecture for schema and annotation driven JSON/XML
bidirectional transformations. In Proceedings of Balisage: The Markup
Conference 2011. Montreal, Canada. doi:10.424/BalisageVol7.Lee01

Lee, D. (2013). Fat markup: Trimming the fat markup myth one calorie at a time. In
Balisage: The Markup Conference 2013 (Vol. 10).
doi:10.4242/BalisageVol10.Lee01

Lenz, E., McRae, M., & St.Laurent, S. (2004). Office 2003 XML. Sebastopol, CA:
O’Reilly Media.

 109

Liefke, H., & Suciu, D. (2000). XMill  : An efficient compressor for XML data. In
Proceedings of the 2000 ACM SIGMOD International Conference on
Management of Data (pp. 153–164). Dallas, TX: Association for Computing
Machinery. doi:10.1145/342009.335405

Ling, Y., Durbha, S. S., & King, R. L. (2006). Sensor web enablement for coastal buoy
systems. American Geophysical Union. Retrieved from
http://adsabs.harvard.edu/abs/2006AGUFMIN23A1215L

Maeda, K. (2012). Performance evaluation of object serialization libraries in XML, JSON
and binary formats. In 2012 Second International Conference on Digital
Information and Communication Technology and its Applications (DICTAP)
(177–182). Ieee. doi:10.1109/DICTAP.2012.6215346

Martin, B., & Jano, B. (1999). WAP binary XML content format. Retrieved from
http://www.w3.org/1999/06/NOTE-wbxml-19990624

Microsoft. (2014). Http compression <httpCompression>. Retrieved from
http://www.iis.net/configreference/system.webserver/httpcompression

MongoDB Documentation Project. (2014). Mongodb documentation. Retrieved from
http://docs.mongodb.org/master/MongoDB-manual.pdf

Morse, K. G. (2005, July). Compression tools compared. Linux Journal, 2005(137).
Retrieved from http://www.linuxjournal.com/node/8051/print

Nelson, A., & Digital Forensics XML Working Group. (2014). Digital Forensics XML
Schema Document (Version 1.1.1) [Computer software]. Retrieved from
https://github.com/dfxml-working-group/dfxml_schema

NetBee.org. (n.d.). PDML XML schema document [Computer software]. Retrieved from
http://nbee.org/doku.php?id=netpdl:schema

Neuxpower Solutions Ltd. (2015). File optimization technology. Retrieved from
http://www.neuxpower.com/technology/

Ngo, T. (n.d.). Office open XML overview. Ecma International. Retrieved from
http://www.ecma-international.org/news/TC45_current_work/OpenXML White
Paper.pdf

Nogatz, F., & Frühwirth, T. (2013). From XML schema to JSON schema: Comparison
and translation with constraint handling rules (Bachelor’s thesis). Retrieved from
http://www.informatik.uni-ulm.de/pm/fileadmin/pm/home/fruehwirth/drafts/Bsc-
Nogatz.pdf

Nurseitov, N., Paulson, M., Reynolds, R., & Izurieta, C. (2009). Comparison of JSON
and XML data interchange formats  : A case study. Bozeman, MN: Montana State

 110

University. Retrieved from
http://www.cs.montana.edu/izurieta/pubs/caine2009.pdf

Olson, B. (2014). CBOR (Version 0.1.12) [Computer software]. Retrieved from
https://code.google.com/p/cbor/

OpenEXI Project. (2014). OpenEXI. Retrieved from http://openexi.sourceforge.net

OpenStreetMap contributors. (2012). XSD for SSIS. Retrieved from
http://wiki.openstreetmap.org/w/index.php?title=API_v0.6/XSD_for_SSIS&oldid
=807462

OpenWeatherMap, Inc. (2015a). Current weather data. Retrieved February 9, 2015, from
http://openweathermap.org/current

OpenWeatherMap, Inc. (2015b). OpenWeatherMap big data + weather technology.

Oxford University Press. (2013). About. Retrieved February 10, 2015, from
http://public.oed.com/about/

Paulson, L. D. (2005). Building rich web Applications with ajax. Computer, 38(10), 14–
17. doi:10.1109/MC.2005.330

Pavlov, I. (2014). 7-Zip. Retrieved from http://www.7-zip.org

Peintner, D. (2015). EXI 4 JSON [PowerPoint Presentation].

Peintner, D., & Heuer, J. (2014). EXIficient (Version 0.9.3) [Computer software].
Retrieved from http://exificient.sourceforge.net/

Peintner, D., Kosch, H., & Heuer, J. (2009). Efficient XML Interchange for rich internet
applications. 2009 IEEE International Conference on Multimedia and Expo.
doi:10.1109/ICME.2009.5202458

Peintner, D., & Pericas-Geertsen, S. (2007). Efficient XML interchange primer.
Retrieved from http://www.w3.org/TR/2007/WD-exi-primer-20071219

Porche, I., Wilson, B., Johnson, E.-E., Tierney, S., & Saltzman, E. (2014). Data flood:
Helping the navy address the rising tide of sensor information. Santa Monica,
CA: RAND National Defense Research Institute. Retrieved from
http://www.rand.org/pubs/research_reports/RR315.html

Raggett, D. (2010). The web of things  : Extending the web into the real world. In J. van
Leeuwen, A. Muscholl, D. Peleg, J. Pokorny, & B. Rumpe (Eds.), SOFSEM 2010:
Theory and Practice of Computer Science (96–107). Berlin: Springer Berlin
Heidelberg. doi:10.1007/978-3-642-11266-9_8

 111

Risso, F. (2010). NetPDL Language Specification. Retrieved from
http://www.nbee.org/doku.php?id=netpdl:pdml_specification

Rowden, T., Gumataotao, P., & Fanta, P. (2015). Distributed lethality. United States
Naval Institute Proceedings, 141(1), 18–23.

Saha, S., Jamtgaard, M., & Villasenor, J. (2001). Bringing the wireless internet to mobile
devices. Computer, 34(6), 54–58. doi:10.1109/2.928622

Sakr, S. (2009). XML compression techniques: A survey and comparison. Journal of
Computer and System Sciences, 75(5), 303–322. doi:10.1016/j.jcss.2009.01.004

Salomon, D. (2008). A concise introduction to data compression. London: Springer-
Verlag.

Sayood, K. (2005). Introduction to data compression (ProQuest e.). Burlington, MA:
Morgan Kaufmann.

Schneider, J., & Kamiya, T. (2011). Efficient XML Interchange (EXI) Format 1.0 (First
Edition). Retrieved from http://www.w3.org/TR/2011/REC-exi-20110310/

Schneider, J., Kamiya, T., Peintner, D., & Kyusakov, R. (2014). Efficient XML
Interchange (EXI) Format 1.0 (Second Edition). Retrieved from
http://www.w3.org/TR/2014/REC-exi-20140211/

Seward, J. (2000). Bzip2 and libbzip2: A program and library for data compression.
Retrieved from http://bzip.org/docs.html

Shannon, C. (1948). A mathematical theory of communication. The Bell Systems
Technical Journal, 27(3), 379–423.

Sheth, A., Henson, C., & Sahoo, S. S. (2008). Semantic sensor web. IEEE Internet
Computing, 12(4), 78–83. doi:10.1109/MIC.2008.87

Sheth, A. P. (1999). Changing focus on interoperability in information systems: From
system, syntax, structure to semantics. In M. Goodchild, M. Egenhofer, R.
Fegeas, & C. Kottman (Eds.), Interoperating Geographic Information Systems
(pp. 5–29). Springer US. doi:10.1007/978-1-4615-5189-8

Snyder, S. (2010). Efficient XML interchange compression and performance benefits:
Development, implementation and evalution (Master’s thesis). Retrieved from
Calhoun https://calhoun.nps.edu/public/handle/10945/30774

Snyder, S., McGregor, D., & Brutzman, D. (2009). Efficient XML interchange: Compact,
efficient, and standards-based XML for modeling and simulation. Retrieved from
http://hdl.handle.net/10945/30774

 112

Sporny, M., Longley, D., Kellog, G., Lanthaler, M., & Lindstrom, N. (2014). JSON-LD
1.0: A json-based serialization for linked data. Retrieved from
http://www.w3.org/TR/2014/REC-json-ld-20140116/

Stein, B. (2014). XSLTJSON (Version 1.0.93) [Computer software]. Retrieved from
http://www.bramstein.com/projects/xsltjson/

Sumaray, A., & Makki, S. K. (2012). A comparison of data serialization formats for
optimal efficiency on a mobile platform. In Proceedings of the 6th International
Conference on Ubiquitous Information Management and Communication -
ICUIMC ’12 (p. 1). New York: ACM Press. doi:10.1145/2184751.2184810

Sundin, S. (2013). Evaluation of wireless interfaces for vehicles and applications
(Master’s thesis). Retrieved from https://pure.ltu.se/portal/files/43309095/LTU-
EX-2013-43243354.pdf

Szecówka, P., & Mandrysz, T. (2009). Towards hardware implementation of bzip2 data
compression algorithm. In 16th International Conference on Mixed Design of
Integrated Circuits and Systems (pp. 337–340). IEEE. Retrieved from
http://ieeexplore.ieee.org/articleDetails.jsp?arnumber=5289605

Thatcher, J., & Knowlton, G. (2012). New file format options in the new office [Blog
post]. Retrieved March 9, 2015, from http://blogs.office.com/2012/08/13/new-
file-format-options-in-the-new-office/

Thompson, H. S., Beech, D., Maloney, M., & Mendelsohn, N. (2004). XML schema part
1: Structures second edition. Retrieved from http://www.w3.org/TR/xmlschema-
1/

Tiller, M., & Harman, P. (2014). Web and network friendly simulation data formats. In
Proceedings of the 10th International Modelica Conference, 96, 1081–1093.
Lund, Sweden. doi:10.3384/ecp140961081

TopoGrafix. (2004). GPX Schema (Version 1.1) [Computer software]. Retrieved from
http://www.topografix.com/gpx/1/1/gpx.xsd

Tsai, C.-L., Chen, H.-W., Huang, J.-L., & Hu, C.-L. (2011). Transmission reduction
between mobile phone applications and RESTful APIs. In Proceedings of the
2011 ACM Symposium on Applied Computing - SAC ’11 (pp. 445–450). New
York: ACM Press. doi:10.1145/1982185.1982280

United States Coast Guard. (2014a). Class A AIS position report. Retrieved February 9,
2015, from http://www.navcen.uscg.gov/?pageName=AISMessagesA

United States Coast Guard. (2014b). Nationwide automatic identification system.
Retrieved December 3, 2014, from
http://www.navcen.uscg.gov/?pageName=NAISmain

 113

United States Coast Guard. (2015). Nationwide automatic identification system.
Retrieved from http://www.uscg.mil/acquisition/nais/

United States Department of Transportation Volpe Center. (n.d.). Maritime safety and
security information system. Retrieved February 6, 2015, from
https://mssis.volpe.dot.gov/Main/

Waher, P., & Doi, Y. (2014). XEP-0322: Efficient XML interchange (EXI) format.
Retrieved from http://xmpp.org/extensions/xep-0322.pdf

Walsh, N. (2010). Deprecating XML [Blog post]. Retrieved from
http://norman.walsh.name/2010/11/17/deprecatingXML

Wang, G. (2011). Improving data transmission in web applications via the translation
between XML and JSON. In 2011 Third International Conference on
Communications and Mobile Computing, 182–185. IEEE.
doi:10.1109/CMC.2011.25

Wang, P., Wu, X., & Yang, H. (2011). Analysis of the efficiency of data transmission
format based on Ajax applications. In 2011 International Conference of
Information Technology, Computer Engineering and Management Sciences, 265–
268. doi:10.1109/ICM.2011.199

The WAP Forum. (2000). Wireless application protocol: Wireless Internet today.
Retrieved from http://www.wapforum.org/what/whitepapers.htm

White, G., Kangasharju, J., Brutzman, D., & Williams, S. (2007). Efficient XML
interchange measurements note. Retrieved from
http://www.w3.org/TR/2007/WD-exi-measurements-20070725/#context

Winer, D. (1999). XML-RPC specification. Retrieved from
http://xmlrpc.scripting.com/spec#update1

Winer, D. (2003). RSS 2.0 specification. Retrieved from
http://cyber.law.harvard.edu/rss/rss.html

Wong, C., & Gonzales, D. (2014). Authority to issue interoperability policy. Santa
Monica, CA: RAND. Retrieved from
http://www.dtic.mil/docs/citations/ADA593558

Ziv, J., & Lempel, A. (1977). A universal algorithm for sequential data compression.
IEEE Transactions on Information Theory, 23(3). Retrieved from
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.118.8921

 114

THIS PAGE INTENTIONALLY LEFT BLANK

 115

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
 Ft. Belvoir, Virginia

2. Dudley Knox Library
 Naval Postgraduate School
 Monterey, California

