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ABSTRACT 

Current and emerging Navy information concepts, including network-centric warfare and 

Navy Tactical Cloud, presume high network throughput and interoperability. The 

Extensible Markup Language (XML) addresses the latter requirement, but its verbosity is 

problematic for afloat networks. JavaScript Object Notation (JSON) is an alternative to 

XML common in web applications and some non-relational databases.  

Compact, binary encodings exist for both formats. Efficient XML Interchange 

(EXI) is a standardized, binary encoding of XML. Binary JSON (BSON) and Compact 

Binary Object Representation (CBOR) are JSON-compatible encodings. This work 

evaluates EXI compaction against both encodings, and extends evaluations of EXI for 

datasets up to 4 gigabytes. Generally, a configuration of EXI exists that produces a more 

compact encoding than BSON or CBOR. Tests show EXI compacts structured, non-

multimedia data in Microsoft Office files better than the default format.  

The Navy needs to immediately consider EXI for use in web, sensor, and office 

document applications to improve throughput over constrained networks. To maximize 

EXI benefits, future work needs to evaluate EXI’s parameters, as well as tune XML 

schema documents, on a case-by-case basis prior to EXI deployment. A suite of test 

examples and an evaluation framework also need to be developed to support this process. 
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I. INTRODUCTION 

Network-centric warfare hinges on the dual criteria of interoperable systems and 

timely information flows, but oftentimes these criteria are at odds. The Extensible 

Markup Language (XML) is a common data format for systems communicating across 

the web, and its structure and ubiquity enable both syntactic and semantic 

interoperability. However, it is verbose by design (Bos, 2001). In network environments 

with low bandwidth and intermittent connectivity, verbose file formats are undesirable. 

File compression before transmission alleviates this issue, but until recently, there has 

been no open standard for an XML-specific compression algorithm. In 2004, the World 

Wide Web Consortium (W3C) began addressing this issue, and in 2014 it released the 

Efficient XML Interchange (EXI) Format Recommendation (Schneider, Kamiya, 

Peintner, & Kyusakov, 2014). EXI is an alternate encoding of XML data, which, in some 

cases, results in files that are less than 10 percent, the size of the original XML file 

(Bournez, 2009). The potential performance and impacts of EXI in limited-throughput 

network environments, such as those regularly encountered by afloat naval units, is 

significant and warrants investigation through use-case analysis. 

A. PROBLEM STATEMENT 

Networks with intermittent uptime and limited throughput must maximize 

utilization of network resources. These constraints are problematic for applications where 

large, monolithic data sets must be transmitted. In such scenarios, file compression prior 

to transmission can decrease transfer time. EXI compaction performance has been 

measured for XML file sizes up to 100 megabytes (MB), and results indicate it offers 

higher compaction rates than the Zip and Gzip algorithms. However, some applications 

require larger amounts of data to be transferred, and research is necessary to evaluate the 

performance of EXI compression in such cases. 

Similarly, XML is commonly used by web-based applications and web services to 

transmit small data exchanges between a client and server as requested by the user. The 

performance of EXI for these cases is well documented (Bournez, 2009; Kyusakov, 2014; 
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D. Peintner, Kosch, & Heuer, 2009; J. Schneider, personal communication, October 20, 

2014). However, many web applications use the JavaScript Object Notation (JSON) 

format as an alternative to XML, and compact binary encodings of JSON also exist. 

Given that these binary encodings are analogous to EXI, research is necessary to evaluate 

the performance and tradeoffs between the two formats. 

The EXI standard defines multiple configuration options that can dramatically 

affect the performance of an EXI encoding, both in speed and compactness. Though 

much research and time has been invested in developing the EXI standard and its 

descriptions of the various configurations, there is little open documentation of best 

practices or empirical results that can inform developer decisions for configuring an EXI 

codec. 

B. PURPOSE AND MOTIVATION 

This research re-evaluates and extends previous work of the W3C EXI Working 

Group and NPS researchers to explore the use of EXI in transmitting large XML files and 

database information over networks with intermittent connectivity (Bournez, 2009; 

Snyder, McGregor, & Brutzman, 2009; Snyder, 2010). It extends the NPS test-corpus of 

XML documents to include additional datasets representative of real-world naval 

operations. First, it measures EXI compaction performance for large native XML files 

from 100 MB to 4 gigabytes (GB) and compares the results to conventional compression 

algorithms. Second, it measures compaction of both EXI and binary JSON encodings for 

small data transfers representative of those found in web applications. During both of 

these threads of inquiry, the methodology explores various configurations of the EXI 

codec and XML schemas to assess their impact on EXI encodings with the goal of 

identifying best practices supported by real-world data. 
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C. RESEARCH QUESTIONS 

Four research questions form the basis for inquiry and organization in this thesis. 

They are: 

• For large XML files between 100MB and 4GB, does the EXI format offer 
compaction rates superior to Gzip? 

• Does the EXI format offer compaction rates superior to Gzip-compressed 
JSON? 

• Does the EXI format offer compaction rates superior to BSON and 
CBOR? 

• What impact do the various EXI configurations have on compaction rates? 

D. THESIS ORGANIZATION 

This thesis is comprised of five chapters. Chapter I provides an introduction, 

purpose and outline of research questions. Chapter II is a review of relevant scholarly and 

professional literature on: the United States Navy's information and communications 

environments; data serialization formats and interoperability; and binary and compressed 

encodings for compact representation of serialized data. Chapter III describes the 

methodology for data collection and format conversions for comparing binary and 

compressed encodings of XML and JSON. Chapter IV presents and discusses empirical 

test results. Chapter V lists major findings of this research and recommendations for 

future work. 

A portion of Chapter II (specifically, Chapter II, Section D) addressing XML 

Verbosity and binary XML encodings is a collaborative, co-written product and also 

appears in The Role of Efficient XML Interchange in Navy Wide Area Network 

Optimization (Debich, 2015). For additional information on EXI and its role in wide area 

network (WAN) optimization, refer to that document. 
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II. BACKGROUND AND RELATED WORK 

To meet increased demands and network-centric and cloud-based operating 

models for pushing real-time information to forward-deployed tactical and afloat units, 

the Navy must meet the twin criteria of data interoperability and efficient delivery. The 

Extensible Markup Language (XML) provides the former at the expense of the latter, but 

the Efficient XML Interchange (EXI) standard allows for compact binary representations 

of XML data. An alternative to XML commonly used in web-based applications is 

JavaScript Object Notation (JSON), which is commonly used for data interchange in web 

applications and in some modern database systems, and also has spurred development of 

multiple binary encodings. This chapter reviews the literature concerning the Navy’s 

information landscape and technical limitations for high-bandwidth applications, as well 

as the tradeoffs between and performance of XML, JSON and their derivative binary 

encodings. 

A. THE NAVY INFORMATION LANDSCAPE 

Several operational and architectural concepts are defining and changing the road 

ahead for U.S. Navy communications. Each presents potential benefits, as well as distinct 

challenges in afloat environments. 

1. Network-Centric Warfare 

The network-centric warfare (NCW) concept is, and has been for several years, 

fundamental to the U.S. Navy’s operations and information technology (IT) strategy. As 

originally proposed, NCW derives value “from the content, quality, and timeliness of 

information moving between nodes on the network” (Cebrowski & Garstka, 1998, “The 

Business of America”, para. 1). “Speed of Command” (Cebrowski & Garstka, 1998, 

"How Can the Military," para. 4) is one such benefit of modern information flows, and 

stems directly from timeliness of information. With rapid access to networked 

information, military commanders can make more effective decisions. 
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Though modern network speeds continually increase, information timeliness is a 

problematic and ever-advancing goal for afloat units. First, the capacity of network links 

available to U.S. Navy ships pales in comparison to terrestrial lines. Second, advances in 

distributed sensor networks and unmanned vehicles will likely continue to drive 

exponential growth in data transiting U.S. Navy networks from ship to shore (Chief of 

Naval Operations for Information Dominance, 2013, p. 10). Large-scale data transfer 

paired with significant time delay over limited-bandwidth links makes information 

dominance at sea a challenge. 

2. Cloud-Based Architecture 

Cloud-based architectures are gaining ground in the public sector, and the U.S. 

Navy, along with the Department of Defense, is following suit and incorporating the 

cloud in current policy and IT planning (Department of the Navy Chief Information 

Officer, 2013). Navy IT leadership expects to reap benefits in performance, security and 

life cycle costs through a cloud architecture compatible with other military branches and 

government agencies (Deputy Chief of Naval Operations for Information Dominance 

[DCNO(ID)], 2014). However, the same document addresses the unique needs of afloat 

units in a cloud architecture, particularly complications associated with anti-access/area 

denial (A2/AD) threats. 

3. Sensor Networks 

The U.S. Navy’s Task Force Cloud Charter identifies sensor and combat systems 

data as initial focus points for the U.S. Navy cloud (DCNO[ID], 2014). These systems 

tend to generate small, repetitive transmissions, which, in aggregate, offer commanders 

unprecedented situational awareness. Such awareness, however, comes at a price: as the 

U.S. Navy deploys more systems to its networks, the collective data load stresses network 

capacity (Porche, Wilson, Johnson, Tierney, & Saltzman, 2014). Porche et al. (2014, p. 

14) note that afloat analysts are crippled by slow transfer speeds when working with 

sensor data—download limits often prevent them from ever seeing the information. 

Current cloud approaches may be insufficient to meet the challenging topologies and 

performance variability facing afloat networks. 
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4. Network-Optional Warfare 

Though network-centric warfare is the basis for much of the fleet’s current 

command and control (C2), A2/AD threats mean that the electromagnetic spectrum will 

likely be contested in conflicts with technologically advanced opponents (Rowden, 

Gumataotao, & Fanta, 2015). Alternate C2 models, not predicated on high-throughput 

radio frequency (RF), are possible. Network Optional Warfare seeks to achieve stealth 

and surprise through the use of data transmission via visible light, acoustic, free-space 

optics and other unconventional media (Goff, 2014; Hughes, 2014). As these media are 

likely low-bandwidth in comparison to existing RF-based channels, efficient, compressed 

communications technologies are a key enabler (Brutzman, Hughes, Kline, Buettner, & 

Ekelund, 2014). 

5. Network Limitations 

The Navy draws heavily on commercially developed technologies to run its 

information systems. Often, those technologies are designed for use on terrestrial 

networks with far higher bandwidth than is available for afloat communications channels. 

As such, terse data exchange formats are not always first priority in commercial 

technology development. For perspective, a one-terabyte download over a terrestrial fiber 

line takes a matter of minutes, while the same download over Wideband Global 

SATCOM link requires a few days (Porche et al., 2014). Similarly, commercial 

technologies are designed for low-latency networks. Round-trip delays for 

transcontinental and inter-continental links are approximately 200 to 400ms, but for a 

ship-to-shore transmission via a satellite in geosynchronous orbit, the delay can be closer 

to 900ms (Bentrup, Otte, Chan, Vavrichek, & Gingras, 2012). With this degree of 

disparity, many commercial technologies are not viable for afloat applications. 

Intermittent network availability is another issue facing Navy communications. 

For some applications, such as undersea and remote sensors or unmanned vehicles, 

continuous data transmission is not feasible or desirable. In these cases, nodes collect and 

store sensor data for a period of time and transmit once connected to the larger network. 

Fall (2003) discusses alternate techniques for improving performance in these 
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environments, including military ad-hoc networks, through a delay-tolerant network 

architecture. Other work explores data mules, or mobile nodes in a static sensor network, 

to periodically harvest data from nodes and move it to a wide-area network access point 

(Anastasi, Conti, & Di Francesco, 2008). In either scenario, consolidated bursts of sensor 

data may spike network traffic, reflecting a tradeoff space between bandwidth 

consumption and sensor granularity. 

6. Solution Approaches 

Given these challenges facing afloat network and system designers, there are 

several general approaches to the Navy’s limited network problem, none of which are 

mutually exclusive. 

a. Say Less 

Though a trivial solution, reducing or eliminating data transmission is a simple 

way to conserve network resources, though it is problematic. The approach appears in 

fleet procedures such as RIVER CITY and EMCON with different motivations, such as 

operational security and detection avoidance. However, it is incompatible with the fleet’s 

preference for network-centric operations and shift to cloud architecture. If the American 

tactical advantage comes from fast information flows as suggested by Cebrowski and 

Garstka (1998), reducing transmissions means ceding that advantage—information 

ceases to be timely, the crux of NCW. Though useful in certain situations, saying less is 

generally not the preferred solution. 

b. Buy More 

Expanding the available network capacity for afloat units is a viable solution, 

though not without its drawbacks. Adding capacity invariably incurs major costs. The 

cost may come in systems development and acquisition satellite constellations, measured 

in billions of dollars (Chaplain, 2009). It can come from using more energy at the cost of 

fuel, and for battery-constrained systems such as sensor networks, additional power may 

be technically infeasible. Regardless of cost, additional satellite capacity may not be 
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available when needed, and in fiscally constrained times, less costly solutions are 

desirable, particularly if they work in conjunction with new system acquisitions. 

c. Use It All 

Network throughput, or the amount of data passing over a network in a unit of 

time, is dependent on time (Kurose & Ross, 2013, p. 35). Systems that send network 

traffic in intermittent bursts leave the networks underutilized during downtimes and over-

utilized during others, making time the critical resource. This leads to another approach 

to the issue: traffic shaping and network optimization, which seek to smooth out the flow 

of network traffic, holding excess transmissions until later, and sending them during lulls. 

Navy afloat units are working to adopt these technologies. 

d. Say the Same Thing in Fewer Words 

Similar to human languages and communication, digital communications provide 

many ways to send the same message, some more concise than others. At the simplest 

level, this category of approaches seeks the digital equivalents of acronyms and 

contractions, implemented through alternate data encodings and compression. The 

fundamental drawback to this approach is that the receiver of a message must be able to 

decode, or make sense of, the message, and they should be able to do so quickly. This 

work focuses on this area and expands the underlying concepts in subsequent sections. 

7. Interoperability Considerations 

Network-centric information sharing in a tactical environment hinges also on 

hundreds or thousands of networked systems communicating. Just as humans must 

communicate in a shared language, so must the computer systems they use. In broad 

terms, there are two avenues toward this interoperability: deploy homogeneous systems at 

all network nodes, or focus on interfaces and data formats. 

Homogeneous systems are unviable for the fleet for several reasons. The Navy 

constantly designs and acquires new systems, which means that synergy requires 

forward, reverse and sideways compatibility. This is an ongoing challenge for the Navy. 

The challenge stems in part from human factors such as bureaucracy, acquisition 
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procedures and the sheer size of the organization (Wong & Gonzales, 2014). Another 

pain point lies in technical issues—operational systems in the Navy’s massive IT 

portfolio span decades of technology. A full technology refresh to a homogeneous 

baseline is prohibitively expensive and time consuming. 

For the Navy, interoperability is best achieved through well-defined data formats 

and system interfaces. In this paradigm, modular, black-box functionality is acceptable as 

long as developers incorporate open specifications for the system’s data format and 

interface. Efficient XML Interchange, the subject of this research, maintains XML’s 

lingua franca functionality alongside significant benefits to network throughput, by 

providing a compact way to transmit XML. 

B. DATA SERIALIZATION 

When a computer exchanges data over a network, it converts the data from a non- 

linear form in main memory to a sequential series of bits to send over the communication 

medium in a process called serialization (Eck, 2011, p. 533). The receiver deserializes the 

bits back into a data structure in main memory, which it can then process further (Eck, 

2011). It is important to note both that the in-memory data structure at either end of the 

communication may differ while the serialization over the medium remains constant, and 

that there are multiple possible serializations of any data structure. Serialization ties 

closely to interoperability and compression. 

1. Semantic Interoperability 

At the core of interoperability is the notion that an idea needs to move from one 

human mind to another, and that, regardless of transfer mechanism, it is semantically 

identical at both ends. In practice, the transfer is rarely precise; people may not express 

themselves clearly, and two listeners might come to different understandings of the same 

message. When the communication between people occurs over a network, the message 

is often distorted in the conversion from idea in mind to serialized bits on a wire. 

In computing, semantic interoperability is the ability to clearly convey meaning 

regardless of its exact data format (Sheth, 1999). Semantically interoperable systems 
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facilitate clear conveyance of ideas between the humans using them—in a network-

centric operating paradigm, digital semantics enhance mission capability through higher-

quality information. As Shannon (1948) notes, semantics in communication is a separate 

issue from the engineering issue of syntax. Though clear semantic exchange is a 

cornerstone of the NCW and information dominance concepts, this work focuses on its 

prerequisite: syntactic interoperability. 

2. Syntactic Interoperability 

Syntactic interoperability, analogous to human language, is the process of taking 

two semantically identical messages, and converting them into a compatible set of bits 

that can be ingested and exported by heterogeneous computers (Sheth, 1999). The in-

memory format on each computer may be different, as long as the computer can make the 

necessary conversions. 

3. Coding 

Encoding is the process of transforming one message into another, semantically 

identical yet syntactically different, message, and doing so in a predefined manner 

(Salomon, 2008). Decoding reverses the processing into the original message, and a 

device, system or program that enacts either change is a codec (Salomon, 2008). This 

work compares two broad categories of encodings: plain text and binary. 

Plain-text encodings store data as a sequence of human-readable characters, 

including numbers (“3” or “9”), letters (“x” or “Z”) and special symbols (“>” or “%”). 

Computers, however, can only store binary 0s and 1s, so a preset sequence of bits 

represents each character inside the computer. For example, in a plain-text encoding 

scheme, a computer stores the number “13” as the character “1” followed by the 

character “3.” Under the common Universal Transformation Format 8-bit (UTF-8) 

scheme, this is 8 bits per character, for 16 total: 00110001 00110011 (Asanov, Oleg, 

Palashina, Krivonosova, & Namjittrong, 2014). As binary arithmetic differs from decimal 

arithmetic, the computer cannot immediately perform math operations on these bits; they 

must be converted to a native computer format first. 
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The alternative to a plain-text encoding is a binary encoding, which represents 

data in a format more natural to computers. “13” encoded as a basic unsigned binary 

value uses four bits: 1101. Though simplistic, this example illustrates that data (here the 

number thirteen) can be represented, or encoded, in multiple formats, and those formats 

are not all of identical size. Bormann & Hoffman (2013) note there are hundreds of 

binary encoding formats used in various computing systems. This diversity contributes 

greatly to the challenges of syntactic interoperability. 

4. Data Types 

A data type is a set of distinct values with related properties (International 

Organization for Standardization [ISO], 2007). Data types are a basic method that 

programmers use to describe their data, and help define which operations the computer 

performs on those bits (ISO, 2007). For example, if the number 13 is stored as a positive 

integer data type, a program can deduce that only mathematical functions are valid, that 

subtracting 14 produces an invalid negative integer, and that 13 cannot be multiplied by 

the letter “z.” Programming languages use data types to decide how exactly to encode 

data as 1s and 0s. In many cases, there are multiple data types syntaxes for the same 

abstract idea. A timestamp in some systems is stored as the number of seconds since 

January 1, 1970; in others, it is stored as year, month, day, hour, minute and second 

according to the Gregorian calendar; another system may store a timestamp using the 

Julian date system. As the above discussion of encoding suggests, some data types are 

more compact than others carrying the same semantic value. For many data serialization 

scenarios, selection of data type can significantly impact the size of message transmitted. 

5. Compression 

Network throughput benefits from more concise encodings—fewer bits require 

less time to send. To this end, data compression algorithms leverage the principle that a 

message can be encoded in many ways, turning a given message into a semantically 

identical but syntactically different message of smaller size before storage or network 

transmission. 
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Since truly random data has no semantic value, or meaning, in the human mind, 

data useful to humans often has patterns and redundancy. Compression algorithms find 

those redundancies and select shorter encodings to express them (Salomon, 2008, p. 7). 

To do so, they need prior knowledge of the data, meaning that most specialize in certain 

applications, and no existing compression system is a panacea (Salomon, 2008, p. 7). 

This work addresses such a specific compression scheme, targeted at data formatted in 

the Extensible Markup Language (XML). 

For some media types, such as audio or video, the receiving end need not receive 

exactly the message sent. Lossy compression, in which the encoding sacrifices details for 

conciseness, is acceptable for these applications. Much research has addressed 

compression methods for imagery and audio recordings that incorporate various degrees 

of data loss, and common file formats such as JPEG and MP3 fall in the lossy category 

(Gonzalez, Woods, & Eddins, 2009, p. 420). For the textual or numeric data in XML, 

however, lossy compression is unacceptable. 

Lossless compression algorithms, however, allow perfect recreation of the 

original message at the receiver. Methods used in lossless compression for plain-text 

encodings include variable-length codes and dictionaries. Variable-length codes use 

shorter series of bits to represent more common characters, and dictionaries replace 

reoccurring sequences of characters, or words, with shorter codes (Salomon, 2008, p. 

21,47). 

Of particular relevance to this research is the LZ77 universal compression 

algorithm proposed by Lempel and Ziv (1977). The algorithm sequentially scans a data 

stream and uses a dictionary technique to select short representations for previously- 

scanned sequences of symbols (Sayood, 2005). Based on its sliding window, or the 

portion of the data being scanned, it favors data streams where repeated sections are 

relatively close together (Salomon, 2008, p. 50). LZ77, combined with variable-length 

Huffman coding, is the basis for the DEFLATE compression standard (Deutsch, 1996; 

Salomon, 2008, p. 50). DEFLATE is implemented by the common Zip and Gzip 

compression tools (Sayood, 2005). 
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Many compression algorithms, called composite algorithms, incorporate multiple 

techniques in series to transform data in multiple steps, giving an overall improvement in 

compaction (Kattan, 2010). An example is the Bzip2 algorithm, which first rearranges 

strings of characters into a new string in which identical characters are close together, and 

afterwards applies variable-length Huffman coding for compression (Salomon, 2008; 

Seward, 2000). The Lempel-Ziv Markov-chain Algorithm (LZMA) algorithm 

implemented by 7-Zip is another example of a composite compression scheme; it applies 

the LZ77 algorithm followed by range encoding (Kattan, 2010; Pavlov, 2014). 

Compression algorithm selection for any application involves a broad tradeoff 

space. Compactness, or the relationship of compressed to uncompressed message size, is 

the simplest to measure. Another factor is compression speed, measured in the time 

required to compress a message, which varies between algorithms, and also between 

implementations and platforms for the same algorithm. Some algorithms are, speed wise, 

asymmetric. For example, Bzip2 decompresses much faster than it compresses (Kattan, 

2010). Parallel processing and hardware implementations can also improve the speed of 

compression algorithms for some systems (Gilchrist, 2003; Szecówka & Mandrysz, 

2009). Choice of algorithm, configuration, and implementation affect energy efficiency, a 

concern in mobile devices operating on batteries (Dzhagaryan, Milenkovic, & Burtscher, 

2013). In general, the choice of compression algorithm is application and scenario 

dependent, and developers must understand their data, the available compression 

schemes, and what factor they wish to optimize. 

C. XML AND DATA INTEROPERABILITY 

The development of networked computer systems, and later the web, precipitated 

a need for a common, syntactically interoperable data exchange format. Without one, 

programmers spend significant time implementing data input and output capabilities, 

rather than core system function. In the early 1990s, available options included 

proprietary binary formats and the powerful, but complicated and little used, Standard 

Generalized Markup Language (Fawcett, Ayers, & Quin, 2012). To address this need, a 

working group of the World Wide Web Consortium (W3C) developed a simpler rendition 
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of SGML, the Extensible Markup Language, and finalized the recommendation in 1998 

(Fawcett et al., 2012). Today, XML is the W3C-endorsed lingua franca of the web. 

1. Key Attributes of XML 

Two core features of XML that lend it to both syntactic and semantic 

interoperability, are metadata and structure. Metadata adds semantic value, or meaning, 

to raw data, which means that with metadata, a file describes itself. In XML, metadata is 

added to a file via tags (simply words enclosed with < and > symbols, such as <tag>) 

surrounding the data they describe. An XML document arranges the tags in a 

hierarchical, tree based structure. To the human reader, this indicates how different pieces 

of data within the document relate to one another, even without associated metadata. 

Also, computers can easily processing XML’s tree structure without prior data 

descriptions. Figure 1 and Figure 2, both adapted from a similar example by Fawcett et 

al. (2012), illustrate the difference that metadata and structure add to data. In the first 

figure, there is no context for the four numbers and two words to suggest what they mean 

or how they are connected. In the second, with metadata in XML format added, it is clear 

that the final three numbers are attributes of the Vandegrift, which is a frigate in the 3rd 

Fleet. 

3 
Vandegrift 
Frigate 
445 
4100 
22 

Figure 1. Unstructured data about a ship without metadata. It is unclear 
what the purposes of the values are, and how the relate to one 

another. 
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<fleet number=“3”> 
  <ship name=“Vandegrift” class=“Frigate”> 
    <length>445</length> 
    <displacement>4100</displacement> 
    <draft>22</draft> 
  </ship> 
  <!-- Other ship elements may follow ... --> 
</fleet> 

Figure 2. XML structured data about the same ship, with metadata 
describing the purpose of each value and how they are related. 

2. Why XML Supports Interoperability 

XML is the lingua franca of the web for several reasons. First, it is a proven, 

stable technology with broad software ecosystem supporting it. In the 16 years since the 

XML recommendation was first published, the W3C has created numerous supporting 

standards, each adding new capabilities to the core technology. Every major 

programming language has commonly available modules for ingesting, validating, 

processing and exporting XML. Second, as a result, XML is platform independent and 

well suited for heterogeneous environments across the web (Bos, 2001; Maeda, 2012, p. 

177). By default XML includes metadata that adds semantics to the raw data, and through 

the XML Schema standard, it can use a common set of data types. The metadata can be 

scoped through namespaces to add context. Third, the modular, extensible nature of XML 

means that nearly any data or information can be expressed in an XML document (Bos, 

2001). Finally, it is an open standard published by an international organization with 

many major organizations worldwide invested in continuing it at a global scale. 

3. Relevant Applications of XML 

XML can express an immense spectrum of information types. The following 

section outlines general categories of XML applications relevant to this research. 

a. Web Applications and Services 

XML is a key technology in the computing paradigm of web services and service- 

oriented architectures (SOA). In such an architecture, effectively a client-server model, a 

client requests data or processing from a server, and receives a response. The server is a 



 17 

central data repository and performs much of the processing. Since it is platform- 

independent, XML enables this architecture to function for nearly any combination of 

devices and applications. 

A common technique for implementing a service architecture in web applications 

is Asynchronous JavaScript and XML, or Ajax. Ajax uses JavaScript code on a client 

device to send and receive small exchanges of XML data between the client and server, 

then updates the web page on the client end with the new information (Garret, 2005). The 

result is an interactive web application capable of many things once left to desktop 

applications, partly because the XML transfers encompass only the changing data, rather 

than refreshing the entire web page (Paulson, 2005). However, as the technology 

improves and network throughput increases, application developers push its limits and 

increase the number of transfers. 
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Figure 3. Ajax system process diagram showing movement of XML in a 

web application (after Garret, 2005 and Paulson, 2005). 
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The XML-based SOAP format and associated Web Services group of 

specifications offer a standardized protocol for moving information amongst 

decentralized systems (Cerami, 2002, p. 49; Gudgin et al., 2007). The specification, 

currently maintained by the W3C, evolved from Winer’s (1999) XML-Remote Procedure 

Call (XML-RPC) standard, adding extended capability and conformance to the XML 

Schema specification (Jepsen, 2001). A SOAP message, or envelope, is generic and 

extensible, meaning it can hold pure data, remote procedure calls, or nearly any message. 

In a SOAP architecture, shown in Figure 4, both clients and servers format their messages 

as SOAP XML envelopes. 

62$3
FOLHQW

62$3�UHTXHVW�
ŗ&RXUVH�VSHHG
IRU�WUDFN��"Ř

62$3�UHVSRQVH�
ŗ�������NWVŘ

62$3
VHUYHU�V�

+773

+773

 
Figure 4. SOAP request and response cycle (after Cerami, 2002, p. 51). 

The Web Service Description Language (WSDL) is an XML format describing 

what information a server provides, and how another system should request it (Cerami, 

2002). In practice, a server responding to a SOAP request often builds part of the 

response, then passes the SOAP message to another server for additional processing prior 

to transmitting back to the client. Through this mechanism, a client can receive data from 

multiple sources via a single request. Proper WSDL descriptions can automate the 

process of establishing connections between computers in a SOAP environment. 

Publish-subscribe systems present an alternative to the request-response model 

implemented in Ajax and SOAP. In a publish-subscribe environment, a client subscribes 

to a publisher, often via an intermediary. Afterwards, whenever the publisher has new 

information to disperse, it transmits the message to all subscribers without waiting for a 
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request (Baldoni, Querzoni, & Virgillito, 2005). Prevalent in news syndications, 

workflow systems, and other event-driven applications, publishers often transmit in XML 

formats such as Really Simple Syndication (RSS) or Atom (Winer, 2003). XML’s 

platform-independence lends itself to such systems: subscribers and publishers are often 

heterogeneous and connected over the web. 

b. Sensor Networks 

As the World Wide Web (WWW) grows in ubiquity and mobile technologies 

expand, new classes of devices such as remote sensors are moving onto networks, 

creating the Internet of Things (IoT). Applications range from radiation and biochemical 

detection to meteorology and oceanography (Ling, Durbha, & King, 2006; Sheth, 

Henson, & Sahoo, 2008). While the IoT facilitates low-level connections between 

devices, it does not necessarily convey the semantics of data exchanged. Data spread 

across isolated sensor networks is problematic to combine and process meaningfully 

(Sheth et al., 2008). 

The Web of Things (WoT) concept seeks to address the issue of interoperability 

in the IoT by applying proven technologies and techniques from the Web to mobile and 

micro-scale devices. XML will likely be a core data exchange format in the distributed 

systems populating the WoT (Kangasharju, 2008, pp. 3–4). Since the metadata in XML 

documents merges semantics and context with raw data in a standard way, XML can 

bridge stovepipes of single-purpose micro devices. Combining these existing information 

sources in new ways may offer value beyond the original design (Raggett, 2010). 

Furthermore, the EXI standard, discussed in the following section, is a key enabling 

technology for transforming the IoT into the WoT by allowing resource-constrained 

devices to communicate and interoperate on the WWW (Brutzman, personal 

communication, March 12, 2015). 

D. XML VERBOSITY 

For networked systems with limited throughput, memory or battery power, XML 

has an Achilles heel: it is not, and was never designed to be, a compact encoding. This 

section summarizes the design decisions leading to XML’s verbosity, and previous 
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working addressing the issue. As described in Chapter I, subsection D, this section was 

co-written with S. Debich (2015) and therefore also appears in his thesis. 

1. Verbose by Design 

XML’s designers aimed largely to streamline data transfer on the web and to 

eliminate the complexities of its predecessor, SGML (Kangasharju, 2008, pp. 13–14). 

They built XML to be simple for humans to use, write and read, implying that it must be 

a plain-text format - reading and debugging binary documents is near impossible without 

computer assistance (Bos, 2001; Bray, Paoli, & Sperberg-McQueen, 1998). The 

specification met its goals, and the plain-text encoding of XML is part of the reason 

behind it success. 

A drawback to the simplicity of plain-text encoding is an associated size increase. 

The original XML specification states that “terseness in XML markup is of minimal 

importance” (Bray et al., 1998). In practice, however, computers are often the only 

entities processing XML messages, so for many applications, terseness is more desirable 

than human-readability. To clarify the issue, consider the word “Efficient.” Encoded in 

plain text using UTF-8, each of its nine letters uses 1 byte, or 8 bits, for a total of 72 bits. 

In a binary encoding, those 72 bits can represent 4,722,366,482,869,645,213,696 (272) 

different words, which is approximately 7.9 trillion times as many words as there are in 

the English language (Oxford University Press, 2013). Considering this overhead, there 

certainly are more efficient ways to communicate the word “Efficient.” 

2. Generic Compression Approaches 

A common approach to reducing XML transfer sizes is to apply a generic, lossless 

compression algorithm for which both the sender and receiver have a codec. Nearly all 

operating systems include software implementations of the DEFLATE algorithm and can 

process file formats such as Zip and Gzip, so those are common in practice. In general, 

Gzip compression offers significant compaction over plain-text XML, decreasing it to 

50% or less of original size, though the compaction rate varies based on the XML 

contents (Bournez, 2009). In a few cases, however, Gzip encodings increase the file size 

(Bournez, 2009). 
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When clients on the web send hypertext transfer protocol (HTTP) requests to 

servers, they may specify that they accept responses in specific encodings (Fielding & 

Reschke, 2014, p. 40). If the server supports that encoding, it applies the requested 

compression prior to sending its response. The Internet Assigned Numbers Authority 

(IANA) maintains an official list of formats, though clients may choose to request others 

(Internet Assigned Numbers Authority, 2014). Both the Apache HTTP server and 

Microsoft Internet Information Services (IIS) server support Gzip compression without 

extensions (Microsoft, 2014; The Apache Software Foundation, 2014). If the server does 

not store compressed copies of requested resources, it must spend time applying 

compression before responding, which presents a series of tradeoffs based on network 

speed, server capabilities, and traffic load (Morse, 2005). 

3. Binary Encoding Approaches 

Binary encodings are another group of techniques for compacting XML data. 

Generic compression algorithms such as Gzip make no assumptions about the data being 

compressed - they work on any stream of bytes. XML documents, however, have a well- 

defined tree structure. Binary encoding algorithms designed specifically for XML 

documents leverage use a priori knowledge of this structure to achieve greater 

compaction than generic algorithms (Sakr, 2009). Between the publishing of the XML 

recommendation in 1998 and 2014, multiple standards and formats emerged, each 

specifying such a binary representation of XML. The following paragraphs briefly 

describe select methods illustrating techniques relevant to this research. Sakr (2009) 

provides a broader survey of formats along with comparative test results. 

One category of XML compression methods works by substituting short binary 

tokens for longer plain-text elements in a process called tokenization. The Wireless 

Application Protocol (WAP), developed by the WAP Forum, was an early such solution 

in this group. WAP is a group of standards that define a complete architecture optimized 

for low-memory mobile devices connected by low-capacity wireless networks (The WAP 

Forum, 2000). A WAP system routes client requests through a gateway device between a 

web server and end client. The WAP gateway transforms the requested web page or 
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information into a Wireless Markup Language (WML) document, an XML format. In a 

process called tokenization, the gateway converts longer plain-text elements from the 

WML document into short, binary tokens that consume less space on the final wireless 

hop - a format called WAP Binary XML (WBXML) (Martin & Jano, 1999). The Fast 

Infoset (FI) specification takes a similar approach to WBXML. It uses binary tokens to 

encode XML structural elements, and builds dynamic vocabulary tables that hold 

recurring strings of characters (ISO, 2007b). 
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Figure 5. WAP system diagram showing XML transformation into WML 
via a gateway architecture (after Saha, Jamtgaard, & Villasenor, 

2001). 

Another common approach to XML compression is to use knowledge of both the 

XML structure and the mechanics of one or more generic compression algorithms to pre- 

process the XML document so that conventional compression algorithms such as Gzip 

perform better as a final processing step (Sakr, 2009). An early example of this method is 

the XMill compression method, developed by Liefke and Suciu (2000). It separates data 

from structure, reorganizes the XML document to group similar items together, and 

finally applies customizable semantic compression if the specific contents of an element 

are known (Liefke & Suciu, 2000). A possible limitation of this approach is poor 

compaction for small files—in Liefke and Suciu’s (2000) work, files below 

approximately 20 kilobytes suffered from pre-processing overhead and were better 

compressed with only Gzip. 
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4. Efficient XML Interchange 

Between 2000 and 2011, a wide variety of XML-specific compression techniques 

were developed; different methods optimized for memory footprint, difficulty of 

implementation, encoding speed, decoding speed, random access and compactness 

(Kangasharju, 2008; Sakr, 2009). In light of this complexity, two W3C working groups 

evaluated a variety of binary XML encodings for adoption as the consortium’s 

recommended standard. The XML Binary Characterization (XBC) Working Group 

enumerated a list of target use-cases and an associated list of more than 25 requisite 

properties for a binary XML standard (Cokus & Pericas-Geertsen, 2005a, 2005b). 

Beginning in 2005, the successor Efficient XML Interchange Working Group compared a 

variety of candidate compression algorithms against the properties, ultimately settling on 

AgileDelta’s Efficient XML (Le Hegaret, 2005; Schneider & Kamiya, 2011). In March 

2011, the Efficient XML Interchange Format (EXI) reached official W3C 

recommendations status (Schneider & Kamiya, 2011). 

Table 1.   Minimum requirements for a binary XML format as determined by 
XBC Working Group (after Goldman & Lenkov, 2005). 

MUST Support MUST NOT Prevent 

Directly Readable and Writable Processing Efficiency 

Transport Independence Small Footprint 

Compactness Widespread Adoption 

Human Language Neutral Space Efficiency 

Platform Neutrality Implementation Cost 

Integratable into XML Stack Forward Compatibility 

Royalty Free  

Fragmentable  

Streamable  

Roundtrip Support  

Generality  

Schema Extensions and Deviations  

Format Version Identifier  

Content Type Management  

Self Contained  
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EXI capitalizes on multiple techniques to improve compression, and they vary 

depending on a set of EXI options passed to the codec. This section briefly discusses core 

compression techniques available in the EXI specification, while a discussion of various 

option configurations is included in the methods chapter. Kyusakov (2014) and Peintner 

and Pericas-Geertsen (2007) offer concise explanations of the EXI algorithm, and the 

official EXI Specification presents a normative description (Schneider et al., 2014). 

a. Grammar-Based Encoding 

XML documents have a set of rules governing their structure. While processing 

an XML document, an XML parser interprets the various tags as events, which can be 

considered as state transitions in a grammar. At any given point in a document, an XML 

parser can expect the next event to be one of a finite set of possibilities with different 

probabilities. An EXI encoder builds an internal model of the document as a set of such 

grammars, and assigns short, variable-length, numeric codes to each event (Schneider et 

al., 2014). The short codes replace longer tag structures in the encoded stream. 

b. String Table 

While parsing an XML document, an EXI encoder builds a table of character 

strings, which can be thought of as words. The first time the encoder encounters a word, 

it writes it in full and assigns it a short numeric code and every time afterwards, the 

encoder replaces the full word with the shorter code. This technique addresses the 

repetition of opening and closing tags in XML, as well as documents where the data itself 

is repetitive. 

c. Data Types 

If an XML document has a corresponding XML Schema describing the data type 

of its elements, an EXI encoder can use that information to encode data in a compact 

format. Without a schema, the EXI encoder treats all element contents as plain-text 

character strings. For example, consider an XML attribute with a value of “false.” As a 

plain-text string, its five characters each fill 8 bits, for a total of 40 bits. However, with a 

schema identifying the attribute as a Boolean, the EXI encoder knows that the attribute 
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can only take one of two logical alternative values: “true” or “false.” Since 1 bit can 

encode 2 different values, the encoder uses that information to shorten “false” from 40 

bits to 1 (Schneider et al., 2014). 

d. Range Restrictions 

In addition to specifying an element’s data type, an XML Schema can define a set 

of restrictions on its possible values. For example, consider an XML attribute defined as 

an integer, with a value of 15,009. An EXI encoder by default encodes it with 2 bytes, or 

16 bits. However, if the schema restricts the attributes values to the set of integers 

between 15,000 and 16,000, the EXI encoder simply writes its offset from 15,000 (i.e., 

the value 9), which uses only 4 bits. 

e. Channelization 

An EXI encoder can reorganize the contents of an XML document such that 

similar elements are close together in the output stream, a process called channelization. 

Since many compression algorithms identify recurring strings of characters, and perform 

better when the recurrences are localized rather than scattered throughout a document, the 

reorganization optimizes the document for later compression (Salomon, 2008; Schneider 

et al., 2014). By default, EXI applies the DEFLATE algorithm for the final compression 

step, although others can be used. 

E. JAVASCRIPT OBJECT NOTATION 

JavaScript Object Notation (JSON) is a widely used alternative to XML, often 

referred to as a lightweight data exchange format (G. Wang, 2011; P. Wang, Wu, & 

Yang, 2011). The JSON syntax stems from the syntax for defining objects in JavaScript. 

In 2001, Douglas Crockford self-published a standard for JSON after finding it useful in 

developing client-server exchanges in JavaScript web application (Crockford, n.d.). Both 

Ecma International and the Internet Engineering Task Force (IETF) have since published 

standards documents describing the format (Crockford & Bray, 2014; Ecma International, 

2013). Like XML, JSON is plain-text encoded and independent of any specific 

programming language and thus platform independent. 
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1. Relationship between JSON and XML 

In many situations, the JSON interchange format is functionally equivalent to 

XML. XML parsers build in-memory representations as a tree, whereas JSON parses into 

a series of key-value pairs. Wang (2011) notes that, because both formats are similar and 

widely used, web service developers may need to incorporate both into their systems. 

Some web services maintain dual application programming interfaces (API) that return 

data in either JSON or XML. 

Given the shared purpose of data interchange and application domain of data 

exchange over networks, several conversion techniques between XML and JSON exist 

(Lee, 2011; G. Wang, 2011). In general, the conversion is not a one-to-one process; there 

are multiple semantically identical and syntactically correct methods for converting one 

to the other. Some are unidirectional conversions; others can be converted in both 

directions with no fidelity loss. Some conversions preserve all data while others discard 

information. Examples include dropping namespaces from an XML document because 

JSON has no concept of namespaces, or discarding unique keys for child elements. Lee 

(2011) provides a survey of various translation methods, none of which are standardized. 

2. Tradeoff Space 

The decision between XML and JSON as a data interchange format presents a 

multidimensional tradeoff space. This section reviews the key variables and with support 

from the literature where possible. 

a. Expressive Differences 

Due to differences in their standards and their underlying structural differences as 

tree and key-value pairs, JSON and XML express information differently. JSON does not 

use comments, while XML does (Crockford & Bray, 2014). In general, JSON is well-

suited for transmitting atomic values and lists of data, but it cannot handle mixed-content 

messages where semantic markup intermingles with data content (Walsh, 2010). As there 

is no standardized method for commuting data between XML and JSON formats, 

interoperability between the two is not guaranteed—work by the Web3D Consortium on 
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the X3D graphics standard has underscored this challenge in development of parallel 

standards supporting both formats. (Brutzman & X3D Working Group, 2014). Through 

XSDs, developers have more options for defining the data types using in their XML, and 

those data types can be further delineated through range restrictions (Evjen et al., 2007). 

JSON, by contrast, uses only objects, arrays, numbers, strings and Boolean values 

(Crockford, 2008). The post-schema-validation-infoset is a useful reference for 

delineating the descriptive power of XML and EXI documents (Thompson, Beech, 

Maloney & Mendelsohn, 2004). JSON’s descriptive capability is a subset of XML and 

EXI (Brutzman, personal communication, March 12, 2015). 

b. Quantitative Differences 

JSON is generally considered to be faster than XML for data interchange, though 

speed in networking is multivariate in itself. Wang, Wu, and Yang (2011) measured parse 

times for batches of objects in both JSON and XML format, with batch sizes increasing 

from 100 to 10,000. In all batches, the average parsing time per object for JSON was 

between 24 and 34% less than for XML (P. Wang et al., 2011). Maeda (2012) measured 

object serialization and deserialization times to JSON, XML and other binary formats 

using a variety of Java libraries. JSON serialized between 3 and 19 times faster than 

XML, while JSON deserialization ranged from 34 times faster to 30 times slower, 

depending on the serialization library (Maeda, 2012). Lee (2013) investigated round-trip 

times for interactions in a client-server application, both in XML and JSON. The test 

incorporated a variety of client devices and transmission mediums (mobile through 

wired), and results found negligible difference in speed between the two formats (Lee, 

2013). Overall, the inconsistency in results suggests that a wide array of variables affect 

the speed tradeoff, including programming language, hardware specification, network 

bandwidth and latency, and software implementation. 

For applications concerned with storage, with minimizing lower-layer protocol 

overhead, or with per-byte pricing plans (e.g., mobile devices), file size can be an 

important factor. Sumaray and Makki (2012) and Maeda (2012) reported size 

comparisons with JSON ranging from less than 50% up to 89% the size of XML. Lee 
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(2013) created multiple JSON and XML files from the same abstract document, and 

noted cases where JSON was both larger and smaller than XML, depending on 

formatting conventions. Also, considering that network interactions often apply 

compression, a document’s compressed size must be considered when comparing 

formats. In Lee’s (2013) research, the size difference between XML and JSON, post- 

compression, was negligible. 

c. Qualitative Differences 

An array of unquantifiable traits also differentiates XML from JSON. Perhaps the 

most salient of these is the large ecosystem of standards built on the XML specification, 

along with their corresponding software implementations. Common data functions such 

as security, processing, querying and format translations are well defined and 

implemented. JSON, by contrast, aims for overall simplicity and processing of JSON 

documents is generally not standardized. 

W3C standards such as XML Signature, XML Encryption, and XML Key 

Management Specification (XKMS) define procedures for encrypting and digitally 

signing XML documents to provide the confidentiality, integrity and authentication 

components of security (Bartel et al., 2013; Hallam-Baker & Mysore, 2005; Imamura et 

al., 2013). JSON has no analogs to these standards, and security functions are left for 

developers to implement outside of the JSON standard. 

Of particular interest in this research is the notion of interoperability. For 

heterogeneous systems to communicate, the message exchange format must be well 

defined, and be capable of validation. Technologies such as XML Schema, Document 

Type Definition (DTD), RELAX NG and Schematron are all schema languages that 

allow a developer to formally describe a family of XML documents, nominally those 

documents that available for import or export by that system. With this definition, 

another system can be certain of how it should communicate, or interoperate. At present, 

there are no widespread technologies for formally describing a JSON document, though 

the language is capable of such (Nurseitov, Paulson, Reynolds, & Izurieta, 2009). Nogatz 

and Fruhwirth (Nogatz & Frühwirth, 2013) developed a prototype tool for converting an 
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XML Schema Document (XSD) into a corresponding JSON Schema. Their work built 

upon the unfinalized IETF JSON Schema specification, which has multiple 

implementations despite its draft status (Galiegue, Zyp, & Court, 2013). Robust 

validation capabilities may become increasingly available for JSON. 

Another XML capability critical for interoperable systems is namespaces. A 

namespace is a method for disambiguating XML metadata tags by breaking them into 

groups (Fawcett et al., 2012). As an example, consider a supply system that combines 

inventory information between branches of the military. A tank in an army system could 

be a rather different item than in a navy system. Figure 6 and Figure 7 demonstrate the 

concept of XML namespaces for the tank example. By design, JSON does not use 

namespaces, relying instead on developers to use a unique set of keys in JSON 

documents (Crockford, 2006). XML namespaces are thus advantageous for complex 

system-of-system scenarios where a developer only controls a small portion. However, 

the W3C JSON-Linked Data (JSON-LD) recommendation adds a similar capability for 

adding context to JSON documents (Sporny, Longley, Kellog, Lanthaler, & Lindstrom, 

2014). 

<lineitem> 
  <tank> 
    <quantity>3</quantity> 
  </tank> 
</lineitem> 

Figure 6. Ambiguous tank line item in a cross-service stock system. It is 
unclear whether the tank is a fuel tank or an armored vehicle. 

<lineitem> 
  <tank xmlns=“http://navy.mil/supply”> 
    <quantity>3</quantity> 
  </tank> 
</lineitem> 

Figure 7. Unambiguous tank line item in the http://navy.mil/supply 
namespace. Adding the Navy namespace suggests what sort of tank 

it is. 
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3. Binary Encoding Approaches 

Though JSON is typically smaller than XML, just like XML it is plain-text 

encoded, which leaves room for additional compaction efforts. Just as with XML, 

networked systems commonly compress JSON messages with Gzip before transmitting. 

Studies by Lee (2013) and Gil and Trezentos (2011) show that Gzip performs well on 

most JSON files, compressing them to between 1% and 30% of plain-text size. One file 

sample in Lee’s (2013) test corpus increased to 148% of original size, likely because it 

was less than 100 bytes as plain text and Gzip’s overhead outweighed the compression 

benefit. The variation in compression also derives from the contents of each file, because 

Gzip performs well on repeating character strings. Compression and decompression with 

Gzip also adds processing time, which may outweigh the benefits realized from smaller 

file sizes, depending on performance metrics. 

Just as EXI addresses the verbosity inherent to plain-text XML, multiple 

standards have emerged to represent plain-text JSON in a binary format, with varying 

objectives, strengths, and limitations (Bormann & Hoffman, 2013). Tiller and Harman 

(2014) researched binary serializations for JSON, including Smile, Universal Binary 

JSON (UBJSON) and Binary JSON (BSON) and noted that the JSON community lacks 

consensus on the issue. The Concise Binary Object Representation (CBOR) format is an 

IETF standard for serializing generic data objects, and is designed for full compatibility 

with the JSON format (Bormann & Hoffman, 2013). This work focuses on BSON and 

CBOR. 

A comparison of the BSON and CBOR formats highlights a complicated set of 

engineering challenges. BSON is a byproduct of the MongoDB project, which uses it as 

the internal storage format for its Not only Structured Query Language (NoSQL) 

database (MongoDB Documentation Project, 2014). Its stated design goals are to be 

lightweight or compact, quickly traversed by computers, and efficiently encoded and 

decoded (“BSON,” 2014). CBOR’s design objectives are to: (1) be capable of encoding 

most standardized data formats on the network; (2) allow for compact, memory-

inexpensive codec implementations; (3) require no schema for decoding; (4) serialize 

compactly; (5) minimize CPU usage; (6) convert to and from JSON; and (7) be extensible 
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(Bormann & Hoffman, 2013). Overall, the two formats emphasize processing speed and 

resource usage, with compaction a secondary goal. 

F. CHAPTER SUMMARY 

To maintain information superiority with network-centric operating concepts over 

constrained networks, the Navy must seek to use its limited bandwidth as efficiently as 

possible while maintaining interoperability between systems. XML and JSON are both 

commonly used data interchange formats, but neither is particularly compact. Binary 

representations of each exist: EXI for XML, and CBOR and BSON among others for 

JSON. Previous work has shown that binary data encodings can significantly improve 

compactness of data payloads for networked applications, thereby improving overall 

system throughput. 
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III. METHODS 

This research investigated the performance of EXI, in terms of compaction, for 

two broad categories: small and large files. The small-file category included applications 

with frequent data transactions or where JSON would likely be used as an alternative to 

XML, and data collection focused on comparing EXI to the binary JSON encodings 

CBOR and BSON for files smaller than 1MB. For the large-file category, the datasets 

came from applications that store large amounts of data in XML format, with the primary 

intent of validating and extending past performance measurements of EXI to include files 

larger than 100MB, up to 4GB. This chapter outlines experimentation methods for this 

research.  

A. SINGLE-APPLICATION FOCUS 

Previous evaluations of EXI compression cover a broad spectrum of use cases and 

applications. Some focus on EXI performance in general (across multiple applications), 

and some on various aspects of EXI performance for a specific application. The W3C 

EXI Working Group compiled a corpus of over 10,000 XML files, and culled it down to 

a representative subset of 88 documents (White, Kangasharju, Brutzman, & Williams, 

2007). They aimed to select a candidate implementation for adoption and adaptation as 

the EXI standard, so the corpus reflected the standards wide scope. Snyder (2010) 

extended the corpus to include DOD-relevant sample files, and explored several 

characteristics of the XML documents to develop a generalized, predictive model for EXI 

compaction. Both result sets suggest that EXI never increases the size of XML files, and 

in practically all cases produces smaller files than Gzip. 

Other research addresses EXI performance for specific applications. Kyusakov, 

Makitaavola, Delsing, and Eliasson (2011) and Sundin (2013) each selected a specific 

embedded-systems application, collected several files for that application, and measured 

EXI compaction. Liefke and Suciu (2000) used a similar methodology for assessing 

XMill performance. This single use case perspective on XML compression provides 

deeper, but less general, insight. The testing method used in this work falls into the single 
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use case focus category, and drew on the methods from Liefke and Suciu (2000) and 

Sundin (2013) for assembling sample file sets and presenting results. For the purposes of 

this work, two files were considered to be from the same use case if they validated 

against the same XSD, and the following sections use the term use case interchangeably 

with application. 

The author selected sample files from real-world applications to avoid two 

potential pitfalls in compression testing. First is the copy-paste issue, in which the tester 

creates a large file by repeatedly copying and appending a smaller file to itself. In most 

cases, the repeated data adds little information, but dramatically increases compaction. 

Second is the random issue, in which a researcher generates a file using a pseudo-random 

number generation program. The resulting file compacts poorly because it has little 

repetition and may not represent realistic application traffic, though in cases such as 

transmitting cryptographic hashes, it may. Either of the copy-paste or random issue tend 

to misrepresent an application’s data, and therefore misrepresent the compression 

algorithm’s performance (J. Schneider, personal communication, October 20, 2014). 

B. CONFIGURATION FOCUS 

The EXI standard defines many options users can set when encoding XML 

documents into EXI (Schneider et al., 2014). Though the default option-set works for all 

XML documents, it does not necessarily produce the smallest possible encoding. Other 

configurations offer greater compaction, faster processing, smaller implementation 

footprint and other advantages and disadvantages desirable in different scenarios. Also, 

the impact of various options depends on the nature of the XML data and the XML 

schema describing that data. Both the W3C’s draft EXI Best Practices document and the 

EXI specification itself mention the impacts of the various configurations, but neither 

provides in-depth empirical results for those impacts (Schneider et al., 2014; Cokus & 

Vogelheim, 2007). Such results could offer insight for developers optimizing applications 

to use EXI. 

This research uses a systematic approach to explore many of the EXI 

configuration permutations, as applied to each of six use cases. In all cases, the final 
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recorded metric is file size, or compactness, generally achieved at the cost of additional 

processing time. Table 2 presents a list, with non-normative descriptions, of the EXI 

options explored in this research. 

Table 2.   A summary of the EXI options explored in this research (after 
Schneider et al., 2014). 

Option Description 

Alignment The alignment of grammar event codes and data content in the EXI stream. Can 
be either bitpacked, byte-aligned or precompress. In conjunction with the 
‘Compression’ option, this field indicates which of the 4 EXI modes is to be used. 

Compression Whether or not EXI should apply DEFLATE compression to the stream, i.e., 
whether compress mode should be used. Mutually exclusive with the Alignment 
option, and in conjunction with the Alignment option, indicates which of the 4 
primary EXI modes is to be used. 

Strict Indicates if deviations from the given schema document are acceptable. Only 
available for schema-informed encodings. 

Schema ID Indentifies the XML schema used to inform the encoding. If not specified, the 
encoding will be schemaless. 

Preserve A series of Boolean flags indicating whether or not comments, processing 
instructions, DTDs, namespace events/prefixes, and the lexical form of element 
and attribute values should be preserved. 

 

EXI encodings may use either one of three alignment options or a compression 

option. Together, these effectively create a single set of four mutually exclusive ‘modes’ 

that an EXI encoder may use. In bitpacked mode, the encoder writes each event code and 

value to the stream, in the original document order, with the fewest possible bits rather 

than adding padding bits to align EXI events on byte boundaries. Since compression 

algorithms process data streams by bytes, bitpacked encodings do not lend themselves to 

post-compression (Schneider et al., 2014). A byte-aligned encoding writes each event 

code and value to the stream, in the original document order, adding padding as necessary 

to align events on byte boundaries. The EXI specification includes the byte- aligned 

mode primarily for troubleshooting and debugging purposes (Schneider et al., 2014). In 

precompress mode, the EXI encoder breaks the stream of EXI events into blocks, and 

then rearranges the events within each block into channels such that similar events are 

close together. This step optimizes the stream for additional compression via algorithms 

such as Zip, Gzip, Bzip2 or 7zip (Schneider et al., 2014). The encoder aligns events in 
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precompress EXI streams on byte boundaries. An EXI encoder in compress mode 

performs the set of transformations defined in precompress, then applies the DEFLATE 

algorithm to further reduce the stream size at the expense of additional processing time. 

This research captured results for each of these four modes (bitpacked, byte-aligned, 

precompress, compress), as they tend to have the greatest impact on compactness. 

If an XML document conforms to a corresponding XSD, the EXI encoder may 

use information from that XSD to increase compactness. This is called a schema- 

informed encoding, whereas an EXI encoding that uses no XSD is schemaless (Schneider 

et al., 2014). Schema-informed EXI streams may additionally use the strict option, which 

prohibits XML events not conforming to the XSD and results in more compact 

encodings. This research includes results for schemaless, schema-informed and schema-

informed with strict option set (hereafter referred to as strict) encodings for all file 

samples. 

For schema-informed and strict encodings, an EXI encoder can use any XSD that 

the XML document validates against. However, many XSDs may describe the same 

XML document, and the specific characteristics of the information in an XSD can affect 

the compactness of an EXI encoding. If an XSD indicates that an element has a data type, 

the EXI encoder uses that information to write the element’s value in a data type-specific 

binary format. If the XSD does not specify a data type, the EXI encoder treats the 

element as a string. Also, XSDs may set maximum and minimum values that an element 

may take, and if that information is available, an EXI encoder uses it to write the value in 

fewer bits. For one application, this research presents results of schema-informed 

encodings for various XSDs. 

C. SMALL-FILE CATEGORY 

To compare compactness of plain text and binary XML encodings to 

corresponding JSON-based encodings, this researcher compiled a collection of files, or 

file sets, from each of three use cases. Each file set comprised a series of semantically 

equivalent JSON and XML files of varying sizes representing abstract messages from 

that application. Each plain-text file in a file set was encoded to multiple binary formats 
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using various permutations of encoding options and post-compression algorithms. This 

section summarizes the applications, describes the XML to JSON conversion process, 

and lists the derivative file formats. As JSON is commonly used to transfer ‘small’ 

messages, plain-text file sizes range from 303B to 584KB in this category, hereafter 

referred to as the small-file category. 

1. Subsetting 

In web applications, a client often requests or transmits a group of objects from or 

to a server where all objects have the same type. Examples could be a list of server-log 

entries or a group of stock orders. Depending on the application and the client’s needs, 

the group size may range from a single object to hundreds of objects or more. Sundin 

(2013), as well as Liefke and Suciu (2000) explore the impact of this variation on 

compression of a related set of files. Their results indicate that compaction varies with 

file size, and that larger files tend to compact more than smaller files. Given that 

compression algorithms work by eliminating redundant data, it makes sense that a file 

with many similar objects and thus high repetition would compress more than one with 

few objects. 

To explore the impact of varying file sizes for applications in the small-file 

category, this researcher used a master file containing between 750 and 1,000 objects, in 

XML format, from each application. From the master set, XSLT transformations were 

used to generate progressively larger files containing a subset of the master file. The n-th 

subset file contained the XML header, the root element and root-level metadata, and the 

first n objects. For n < 10, every subset file was created, and for n ≥ 10, every 10th subset 

file was created. Thus, for a master file with 1,000 objects, subset files were created for n 

= {1, 2, 3 ... 8, 9} ⋃ {10, 20, 30 ... 980, 990, 1000}. This resulted in between 84 and 109 

subset files per use case.  

2. Format Conversions 

All encodings tested in the small-file category derived from the n-object subset 

files in XML format, requiring a series of software conversions to produce syntactically 

different files containing, as much as was practical, semantically equivalent information. 
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This section addresses the methodology and software used for each conversion. A series 

of Bash shell scripts performed all task automation functions. 

(1) XML to JSON 

Since the XML to JSON conversion process is not one-to-one, this work 

incorporated a generic, automated methodology to facilitate repeatability, speed up data 

collection, and to create a “fair” comparison between applications. XML to JSON 

conversions used the XSLTJSON stylesheet processed with the Saxon9 XSLT processor 

(Kay, 2009; Stein, 2014) XSLTJSON allows the user to select one of four possible 

transformation conventions (Stein, 2014). This research used the default, which is the 

most compact but neither preserves namespaces nor allows for lossless round-trip 

conversions from XML to JSON and back to XML (Stein, 2014). Though conventions 

such as the BADGERFISH convention support do support lossless round-trip 

conversions, this work favored the more compact method. Some degree of information is 

lost in the process, but including content such as namespaces in a JSON document does 

not reflect its use in practice and adds a bias toward XML by saddling JSON with 

irrelevant information. Instead, this approach aims to inform development decisions of 

whether to use JSON or EXI, or client decisions in situations where a web service offers 

both JSON and XML API responses. 

(2) XML to EXI 

All XML to EXI encodings used the EXIficient library (Daniel Peintner & Heuer, 

2014). To invoke various options in EXIficient, the ExiProcessor interface was used 

(Garrett, 2012)(Garrett, 2012). Both EXIficient and ExiProcessor are written in Java. 

(3) JSON to BSON 

Unlike the above conversions, JSON to BSON is a one-to- one mapping. The 

BSON codec included with Pythomnic3k framework performed all JSON to BSON 

conversions (Dvoinikov, 2014). Pythomnic3k is written in Python. The conversion 

process reads a JSON file into a Python dictionary object, then serializes the object in 

binary format as BSON. 
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(4) JSON to CBOR 

The process for converting from JSON to CBOR was similar to that in (3) above, 

but used a CBOR codec written in Python (Olson, 2014). JSON to CBOR conversions are 

a one-to-one mapping. 

(5) Zip, Gzip and Bzip2 Compression 

Three BSD command-line utilities, Zip, Gzip and Bzip2, performed all 

conventional compression encodings where applicable. For each, the version was the 

default one included in a base installation of OS X 10.9 with Apple Developer Tools. The 

encodings used default settings in all cases. 

0 is a structured diagram of all format conversions for the large-file category. The 

root node on the left represents an abstract piece of data, for which all other encodings 

are semantically equivalent. Each leaf node on the right is a final encoding format written 

as a string of filename extensions indicating the sequence of conversions. For example, 

“.xml.strict_precompress_exi.bz2” denotes an XML file encoded first with EXI in 

precompress mode with strict schema adherence, then encoded with the Bzip2 

compression algorithm. 
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Figure 8. A categorized representation of all small-file category encodings 

derived from the same data. 
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3. Focus Questions 

For each of the approximately 109 files in a small-file application file set, the test 

suite generated 55 different encodings, resulting in a total of 5,995 different file size 

records per file set. Though preliminary review of compression literature and early test 

results indicated that many of the encodings were not ideal, this researcher conducted the 

tests for thoroughness. With such a large number of choices, a winnowing method was 

critical. To facilitate analysis and presentation of results, this research incorporated a 

series of six focus questions addressing various facets of the XML to JSON comparison 

space, as well as the various configurations of EXI. The questions derive both from the 

researchers course of inquiry into the capabilities and traits of EXI, and well as potential 

questions from developers considering EXI integration. In Chapter IV, a plot relating 

compaction to original file size for a group of encodings formats answers each of the 

focus questions. 

All plots display compaction as a percentage, calculated as Compaction = original 

size (in bytes) / compressed size (in bytes). Using this formula, a value of 100% on the 

y-axis indicates no change in file size. Values greater than 100% on the y-axis indicate 

the file size increased, and values less than 100% indicate the file size decreased. In other 

words, a compaction rate of 25% means that the compressed file is 1/4 the size of the 

original. The original size, or baseline, for most questions is plain-text XML size, though 

some questions require alternate baseline formats. For example, though an EXI encoding 

of plain-text XML may be 10% of original size, the result does not reflect the impact of 

EXI for a network already using Gzip compression. In that case, the Gzip encoding of 

XML is a more realistic baseline. Table 3 outlines the group of encodings associated with 

each focus question and the baseline format for comparison. Chapter IV presents the plots 

for all these questions, with the results grouped by focus question, and in the same 

question order presented here. 
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Table 3.   Focus questions for small-file category, relevant encodings, and 
baseline for comparison. 

Question Baseline Encodings Compared 

A. Is JSON more compact than XML either when both are 
plain-text encoded or when both are compressed with 
conventional compression algorithms? 

.xml .json 
.json.gz 
.json.bz2 
.xml.gz 
.xml.bz2 

B. Does post-compression with conventional algorithms increase 
the compactness of BSON or CBOR? 

.json .json.bson 
.json.bson.gz 
.json.bson.bz2 
.json.cbor 
.json.cbor.gz 
.json.cbor.bz2 

C. How do the primary EXI modes compare for schemaless and 
schema-informed encodings? 

.xml .xml.bitpacked_exi 
xml.schema_bitpacked_exi 
xml.compress_exi 
xml.schema_compress_exi 

D. Is Bitpacked-mode EXI more compact than BSON or CBOR? .xml .xml.bitpacked_exi 
.xml.schema_bitpacked_exi 
.xml.strict_bitpacked_exi 
.json.cbor 
.json.bson 

E. Is Compress-mode EXI more compact than BSON or CBOR 
post-compressed with conventional compression algorithms? 

.xml .xml.compress_exi 
.xml.schema_compress_exi 
.xml.strict_compress_exi 
.json.cbor.gz 
.json.bson.gz 

F. For a network already using Gzip compression, do any of the 
tested binary encodings offer better compactness? 

.xml.gz .xml.strict_compress_exi 
.xml.strict_bitpacked_exi 
.xml.compress_exi 
.json.gz 
.json.cbor.gz 
.json.bson.gz 

G. Do restrictions on data types and range restrictions in an XSD 
significantly impact the compaction of schema-informed 
encodings? Only addressed for 1 use case. 

.xml .xml.schema_compress_exi 
.xml.strict_compress_exi 
.xml.schema_bitpacked_exi 
.xml.strict_bitpacked_exi 

4. Use Cases 

The following sections describe the use cases included in the small-file category, 

including data collection and sample code for both XML and JSON file formats. Full file 

sets are included in the digital appendix. 
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a. Global Positioning System XML 

The Global Positioning System (GPS) Exchange (GPX) format is an XML format 

for representing GPS data, including waypoints, routes and tracks (Foster, n.d.). For this 

application, the master file is a GPS watch trace from a 10-mile trail run over 1 hour and 

40 minutes, with GPX fixes at 6-second intervals. It includes 870 total fix points (each 

with a latitude, longitude, elevation and timestamp), as well as general information about 

the application producing the GPX file. After subsetting, the n-th file includes the 

metadata and the first n GPS fixes. All subset files validated against the GPX 1.1 XSD 

(TopoGrafix, 2004). Figure 9 and Figure 10 are samples from corresponding XML and 

JSON files, respectively. Both code samples include whitespace and indentations for 

clarity, but compression tests use versions with unnecessary whitespace removed. Figure 

11 is a visual depiction of the GPX master file in Google Earth, with each yellow circle 

representing a single GPS fix. 

<?xml version=“1.0” encoding=“UTF-8”?> 
<gpx version=“1.1” creator=“Garmin Connect” 
     xmlns=“http://www.topografix.com/GPX/1/1”> 
  <metadata> 
    <link href=“connect.garmin.com”> 
      <text>Garmin Connect</text> 
    </link> 
    <time>2014-09-05T18:07:03.000Z</time> 
  </metadata> 
  <trk> 
    <name>Untitled</name> 
    <trkseg> 
      <trkpt lon=“-121.69120400212705” lat=“36.62711977958679”> 
        <ele>29.799999237060547</ele> 
        <time>2014-09-05T18:07:03.000Z</time> 
      </trkpt> 
      <!-- ... Series of trkpt’s continues ... --> 
    </trkseg> 
  </trk> 
</gpx> 

Figure 9. Sample code for GPX file, in XML format. 
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{ “gpx”: { 
    “creator”: “Garmin Connect,” 
    “metadata”: { 
        “link”: { 
            “href”: “connect.garmin.com,” 
            “text”: “Garmin Connect” 
        }, 
        “time”: “2014-09-05T18:07:03.000Z” 
    }, 
    “trk”: { 
        “name”: “Untitled,” 
        “trkseg”: { 
            “trkpt”: [ 
                { 
                    “ele”: 29.799999237060547, 
                    “lat”: 36.627119779586792, 
                    “lon”: -121.69120400212705, 
                    “time”: “2014-09-05T18:07:03.000Z” 
                } 
                /* ... Series of trkpt’s continues ... */ 
            ] } } } } 

Figure 10. Sample code for GPX file, in JSON format. 

 
Figure 11. Visualization of GPX master file in Google Earth. 
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b. OpenWeatherMap XML 

OpenWeatherMap aggregates weather data from a variety of sources worldwide 

and uses it for big-data analysis and weather modeling (OpenWeatherMap Inc., 2015b). 

The OpenWeatherMap API offers current, forecasted and historical data in both XML 

and JSON response formats (OpenWeatherMap Inc., 2015a). To assemble the master file 

for this application, the author selected 1,000 cities from the list cities available through 

the OpenWeatherMap API, made API queries for the current weather in those cities, and 

concatenated the results into a single XML file. After subsetting, the n-th file included the 

weather conditions for the first n cities in the master file. As OpenWeatherMap does not 

publish an XSD describing the XML responses, the author generated a schema to include 

reasonable data type information. Figure 12 and Figure 13 are samples from 

corresponding XML and JSON files, respectively. Both code samples include whitespace 

and indentations for clarity, but compression tests use versions with unnecessary 

whitespace removed. 

<?xml version=“1.0” encoding=“utf-8”?> 
<group> 
  <current> 
    <city id=“688532” name=“Yalta”> 
      <coord lon=“37.27” lat=“46.96”/> 
      <country>UA</country> 
      <sun rise=“2014-09-12T03:05:08” set=“2014-09-12T15:49:00”/> 
    </city> 
    <temperature value=“292.04” 
      min=“292.04” max=“292.04” unit=“kelvin”/> 
    <humidity value=“78” unit=“%”/> 
    <pressure value=“1014” unit=“hPa”/> 
    <wind> 
      <speed value=“1.54” name=““/> 
      <direction value=“306” code=“NW” name=“Northwest”/> 
    </wind> 
    <clouds value=“0” name=“clear sky”/> 
    <visibility/> 
    <precipitation mode=“no”/> 
    <weather number=“800” value=“Sky is Clear” icon=“01n”/> 
    <lastupdate value=“2014-09-12T21:54:18”/> 
  </current> 
  <!-- ... Series of cities continues ... --> 
</group> 

Figure 12. Sample code for OpenWeatherMap file, in XML format. 
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{ “group”: { “current”:  
  { “city”: { 
    “coord”: { “lat”: 46.960000000000001, “lon”: 
37.270000000000003 }, 
    “country”: “UA,” “id”: 688532, “name”: “Yalta,” 
    “sun”: { 
      “rise”: “2014-09-12T03:05:08,”  
      “set”: “2014-09-12T15:49:00” } }, 
  “clouds”: { “name”: “clear sky,” “value”: 0 }, 
  “humidity”: { “unit”: “%,” “value”: 78 }, 
  “lastupdate”: { “value”: “2014-09-12T21:54:18” }, 
  “precipitation”: { “mode”: “no” }, 
  “pressure”: { “unit”: “hPa,” “value”: 1014 }, 
  “temperature”: { 
    “max”: 292.04000000000002, “min”: 292.04000000000002, 
    “unit”: “kelvin,” “value”: 292.04000000000002 }, 
  “visibility”: null, 
  “weather”: { “icon”: “01n,” “number”: 800, “value”: “Sky is 
Clear” }, 
  “wind”: { 
    “direction”: { “code”: “NW,” “name”: “Northwest,” “value”: 306 
}, 
    “speed”: { “name”: null, “value”: 1.54 } 
  } }  
  /* … Series of cities continues … */ 
} } 

Figure 13. Sample code for OpenWeatherMap file, in JSON format. 

The collection method for this application introduces potential issues affecting 

compression. First, the API calls happened in rapid succession, so timestamp information 

in the master file reflecting last update all reflects the same date. Such repetition 

improves compaction for many compress algorithms. Second, a pseudorandom function 

selected the cities to include in the master file, meaning that the data set is not logically 

related in a geographic sense. Some fields in the API response, such as country code or 

wind direction, may express less redundancy than for a data set including only weather 

stations in a certain region, and thus compressing poorly. Though these issues do not 

invalidate the results, they suggest that a portion of compression performance depends on 

the underlying semantics of the information. 

c. Automated Identification System 

The Automated Identification System (AIS) is a distributed system for 

communicating maritime safety information over Very High Frequency (VHF) line-of- 

sight (LOS) links. Every two to ten seconds while underway, ship-borne transceivers emit 

messages including position, course, speed and identification data (United States Coast 
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Guard, 2014a). Nearby ships receive the messages and, using specialized charting 

software, overlay the data on radar plots or electronic navigation charts to build 

situational awareness. Systems such as National AIS (NAIS) and MSSIS collect feeds 

from ships via large networks of shore-based stations, and aggregate them for global-

scale intelligence and Maritime Domain Awareness (MDA) purposes (United States 

Coast Guard, 2015; United States Department of Transportation Volpe Center, n.d.). 

Though AIS encodes messages in a compact binary format, formats such as XML can 

assist in software analysis of large AIS datasets, as well as data interchange between 

heterogeneous storage databases and Geographic Information System (GIS) software. 

 
Figure 14. An operational view diagram of the NAIS system including 

information flows from ship-borne transceivers to intelligence fusion 
centers (United States Coast Guard, 2014b). 
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The AIS data in this test case came from the MSSIS AIS feed at the Naval 

Postgraduate School. To process the raw messages to XML, the author used 

EsiAisParser, a Java library for AIS feed parsing, to read individual messages into in-

memory Java objects, then write them to a file in XML format. Only Type 3 position 

report messages were included in the master file, which comprised 1,000 AIS position 

reports. In the absence of an openly available XSD describing AIS messages, the 

authored developed a simple XML format and a corresponding XSD with data type 

information based on the U.S. Coast Guard’s AIS specification (United States Coast 

Guard, 2014a). After subsetting, the n-th file included the first n position reports in the 

master file. Figure 15 and Figure 16 are samples from corresponding XML and JSON 

files, respectively. Both code samples include whitespace and indentations for clarity, but 

compression tests use versions with unnecessary whitespace removed. 

<?xml version=“1.0” encoding=“UTF-8”?> 
<positionReports> 
  <positionReport 
    messageId=“3” repeatIndicator=“0” 
    userId=“248859000” navStatus=“1” 
    rateOfTurn=“0” speedOverGround=“0” 
    positionAccuracy=“false” 
    longitude=“117.36497666666666” latitude=“-20.534186666666667” 
    courseOverGround=“3100” trueHeading=“310” 
    timeStamp=“53” specialManoeuvre=“0” /> 
  <!-- ... Series of positionReport’s continues ... --> 
</positionReports> 

Figure 15. Sample code for AIS file, in XML format. 

{ “positionReports”: { 
    “positionReport”: [ 
        { “courseOverGround”: 3100, 
          “latitude”: -20.534186666666667, 
          “longitude”: 117.36497666666666, 
          “messageId”: 3, “navStatus”: 1, 
          “positionAccuracy”: false, 
          “rateOfTurn”: 0, “repeatIndicator”: 0, 
          “specialManoeuvre”: 0, “speedOverGround”: 0, 
          “timeStamp”: 53, “trueHeading”: 310, 
          “userId”: 248859000 }, 
    /* Series of positionReports continues */  
    ] } } 

Figure 16. Sample code for AIS file, in JSON format. 
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D. LARGE-FILE CATEGORY 

To measure the compactness of EXI encodings of XML files larger than 100MB, 

this researcher compiled a collection of files, or file sets, from each of three use cases. 

Each plain-text file in a file set was encoded to EXI using various permutations of EXI 

options and post-compression algorithms. Plain-text file sizes in this collection range 

from 1KB to 3.34GB in this category, hereafter referred to as the large-file category. This 

section lists the tested file formats, introduces focus questions used to analyze the results, 

and summarizes the use cases. 

1. Format Conversions 

Encodings for the large-file category were performed using the same software 

tools as for the small-file category. However, the purpose of the large-file category was 

not to compare EXI compactness to binary JSON encodings, and thus no JSON-

derivative encodings were measured. That is, the large-file category only measured 

conversions of XML with conventional compression algorithms, XML to EXI, and EXI 

with conventional compression algorithms. Figure 17 is a structured diagram of all 

format conversions for the large-file category. The root node on the left represents the 

plain-text XML document for which all other encodings are semantically equivalent. 

Each leaf node on the right is a final encoding format written as a string of filename 

extensions indicating the sequence of conversions. For example, 

“.xml.strict_precompress_exi.bz2” denotes an XML file encoded first with EXI in 

precompress mode with strict schema adherence, then encoded with the Bzip2 

compression algorithm. 
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Figure 17. A categorized representation of all large-file category encodings 

derived from the same plain-text XML document. 

2. Focus Questions 

For each file in a large-file use case, the test suite generated 36 different 

encodings. As in the analyses for small-file applications, a series of six focus questions 

drove the data visualization process. A plot relating compaction rate to original file size 

for a group of encoding formats answers each focus question. In general, the focus 

XML 
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questions for large-file use cases are a subset of those asked for small-file cases; since the 

large-file tests examined only XML and EXI encodings, the large-file focus questions 

exclude all JSON comparisons. Table 4 outlines the group of encodings associated with 

each focus question and the baseline format for comparison. Chapter IV presents the plots 

for all these questions, with the results grouped by focus question, and in the same 

question order presented here. 

Table 4.   Focus questions for large-file category, relevant encodings, and 
baseline for comparison. 

Question Baseline Encodings Compared 

A. How do the primary EXI modes 
compare for schemaless and schema-
informed encodings? 

.xml .xml.bitpacked_exi 
xml.schema_bitpacked_exi 
xml.compress_exi 
xml.schema_compress_exi 

B. Does the ‘strict’ option significantly 
improve compaction for schema-
informed encodings? 

.xml .xml.schema_bitpacked_exi 
.xml.strict_bitpacked_exi 
.xml.schema_compress_exi 
.xml.strict_compress_exi 

C. Do any of the tested conventional 
compression algorithms better 
compact a schemaless, precompress 
EXI document than EXI’s default 
DEFLATE? 

.xml.compress_exi .xml.precompress_exi.zip 
.xml.precompress_exi.gz 
.xml.precompress_exi.bz2 

D. Do any of the tested conventional 
compression algorithms better 
compact a schema-informed, 
precompress EXI document than EXI’s 
default DEFLATE? 

.xml.schema_compress_exi .xml.schema_precompress_exi.zip 
.xml.schema_precompress_exi.gz 
.xml.schema_precompress_exi.bz2 

E. Which EXI encoding is the most 
compact? 

.xml .xml.strict_compress_exi 
.xml.strict_bitpacked_exi 
.xml.compress_exi 

F. For a network already using Gzip 
compression, do any of the EXI 
encodings offer better compactness? 

.xml.gz .xml.strict_compress_exi 
.xml.strict_bitpacked_exi 
.xml.compress_exi 

3. Use Cases 

The following sections describe the use cases included in the large-file category, 

including data collection and sample code. Full file sets are included in the digital 

appendix. 
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a. Digital Forensics XML 

Digital Forensics XML (DFXML) is an XML file format describing the results of 

forensic scans of digital media. The digital forensics field uses a many tools to automate 

various parts of the process, from data extraction to data fusion and correlation 

(Garfinkel, 2012). However, in many cases, these tools use disparate file formats to store 

results, which makes automating the process as a whole challenging (Garfinkel, 2011). 

DFXML is an interoperable, machine-readable format that addresses this issue of tool 

integration. 

A DFXML file describing a disk image includes information about the disk 

sectors, about each of the disk’s partitions, about each file on the disk, and the 

provenance of the DFXML file itself, such as information about the tool that created it 

and timestamp (Garfinkel, 2009). The file set for this application includes DFXML 

outputs from 51 disk images created by the program fiwalk. In plain-text XML format, 

they range from 1 KB to 563 MB. After minor manual editing, all files validated against 

the Digital Forensics XML Schema (Nelson & Digital Forensics XML Working Group, 

2014). 

<fileobject> 
  <filename>casper/filesystem.manifest-desktop</filename> 
  <filesize>32672</filesize> 
  <inode>651</inode> 
  <meta_type>1</meta_type> 
  <mode>511</mode> 
  <nlink>1</nlink> 
  <uid>0</uid> 
  <gid>0</gid> 
  <mtime>2008-12-29T01:33:32Z</mtime> 
  <atime>2008-12-28T05:00:00Z</atime> 
  <crtime>2008-12-29T01:33:32Z</crtime> 
  <byte_runs> 
    <byte_run file_offset=“0” fs_offset=“5577728” 
      img_offset=“5609984” len=“32672”/> 
  </byte_runs> 
  <hashdigest type=“md5”> 
    bd1b0831fcba1f22eff2238da96055b6</hashdigest> 
  <hashdigest type=“sha1”> 
    7e072af67f8d989cc85978487b948048ac3c7234</hashdigest> 
</fileobject> 

Figure 18. A DFXML element representing a single file, including 
information about the file name, size, hash codes, location on disk, 

and provenance (after Garfinkel, 2011). 
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b. Packet Details Markup Language 

The Packet Details Markup Language is an XML-based format for describing the 

details of decoded network packets (Risso, 2010). It combines XML elements for 

packets, protocols, and protocol fields, offering full details of a packet and all 

encapsulated protocols, sans the payload. Wireshark was used to decode two large .pcap- 

formatted packet traces from online repositories and export portions of them into PDML 

format, following a subsetting approach similar to that in the small-file category. After 

subsetting, the PDML files contained between 1 and 300,000 packet descriptions, and 

ranged from 9 KB to 3.1 Gigabytes (GB) in plain-text encoding. All files validated 

against a slightly modified version of the PDML schema (NetBee.org, n.d.). 

<pdml> 
  <packet caplen=“74” len=“74” num=“4” 
    timestamp=“963585313.991300”> 
    <proto longname=“Ethernet 802.3” 
      name=“Ethernet” pos=“1” size=“14”> 
      <field longname=“MAC Destination” name=“dst” pos=“1” 
        showdtl=“000629-992da3 Unicast address (Vendor 
        IBM RISC6000 system)” 
        showmap=“IBM RISC6000 system” showvalue=“000629-992da3” 
        size=“6” value=“000629992da3”/> 
      <field longname=“MAC Source” name=“src” pos=“7” 
        showdtl=“00e01e-ec3c84 Unicast address (Vendor Cisco)” 
        showmap=“Cisco” showvalue=“00e01e-ec3c84” 
        size=“6” value=“00e01eec3c84”/> 
      <field longname=“Ethertype” name=“type-length” pos=“13” 
        showvalue=“0800” size=“2” value=“0800”/> 
    </proto> 
    <proto longname=“IPv4 (Internet Protocol version 4)” 
      name=“IP” pos=“15” size=“20”> 
      <!-- Additional field elements --> 
    </proto> 
    <proto longname=“ICMP (Internet Control Message Protocol)” 
      name=“ICMP” pos=“35” size=“40”> 
      <!-- Additional field elements --> 
    </proto> 
  </packet> 
</pdml> 

Figure 19. A sample PDML element representing a single ICMP packet. 
Adapted from Risso (2010). 

 
 



 54 

c. OpenStreetMap XML 

The OpenStreetMap project aims to create a free database of geographic data for 

the every feature on the planet, leveraging crowdsourced inputs from hundreds of 

thousands of mappers to populate data (Bennett, 2010). After collecting raw GPS data, or 

traces, mappers upload them to the OpenStreetMap servers and use them to mark 

locations of, and metadata about, streets, waterways, paths, structures, signs and sundry 

other features. Commercial and government entities also provide geospatial data to 

OpenStreetMap under its license (Bennett, 2010). 

OpenStreetMap uses an XML format based around nodes (single points), ways 

(ordered lists of points), and relations (lists of nodes and ways that create complex 

features) for data exchange between applications that process OpenStreetMap data. As a 

single-file export, the entire OpenStreetMap database is over 498 GB in plain-text XML 

format. This research used 20 smaller extracts covering single countries with file sizes 

from 50 MB to 927 MB (Geofabrik GmbH, 2014). All files validated against a modified 

version of the OpenStreetMap XSD (OpenStreetMap contributors, 2012). 

<node id=“25270672”  
  lat=“39.6735751” lon=“-31.1131917” 
  version=“4” timestamp=“2014-08-08T22:35:03Z” 
  changeset=“24625291” uid=“1963239” user=“UserX”> 
  <tag k=“name” v=“Vila do Corvo”/> 
  <tag k=“place” v=“village”/> 
  <tag k=“population” v=“430”/> 
  <tag k=“population:date” v=“2011”/> 
</node> 
<way id=“185364122” version=“1” timestamp=“2012-10-11T22:17:36Z” 
  changeset=“13460710” uid=“179581” user=“UserY”> 
  <nd ref=“1863929971”/> 
  <nd ref=“1959512759”/> 
  <tag k=“highway” v=“path”/> 
</way> 

Figure 20. Sample XML fragments, in OpenStreetMap format, for node and 
way elements. 
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E. CHAPTER SUMMARY 

To extend and build upon previous research on EXI performance, this research 

methodology focused on measuring the impact of various EXI and conventional 

compression configurations on overall file size. It adopted an intra-use case focus, rather 

than comparing results across multiple use cases, and examined the relationship between 

file size and compaction rate within a single use case. This research identified three 

small-file use cases: GPX, OpenWeatherMap and AIS; as well as three large-file use 

cases: DFXML, PDML and OpenStreetMap. A systematic method, centered on a series 

of focus questions, for comparing the myriad configurations of EXI, BSON and CBOR 

was developed. 
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IV. EXPERIMENTAL RESULTS AND ANALYSIS 

This chapter presents experimental test results collected during compression 

testing. The first section explains the compaction metric used and comments on 

interpreting the plots and results. The second section presents results for the small-file 

category of use cases, grouped by focus question. A summary analysis follows each focus 

question that identifies common or generalizable trends across use cases. Finally, the 

third section presents results for the large-file category of use cases, group by focus 

question. Again, a summary analysis follows each focus question. 

A. INTERPRETING THE NUMBERS 

The following sections include compression test results for each focus question 

organized first by category (small-file and large-file) and then by use-case. Each figure is 

a scatterplot comparing the compaction rate of multiple encodings for all sample files in a 

use-case. Colors denote the various encodings. Solid lines connect the points in a series 

for visual clarity, but do not represent a parametric model of the trend. 

Compaction rate, shown as a percentage on the y-axis in each figure, is 

compressed size divided by original size, or more intuitively, percent of original size. 

Compaction = compressed size / original size * 100% 

With this measurement, smaller values indicate greater compaction (smaller is 

better). A compaction rate of 100% indicates that the compressed size is identical to the 

original size. Values less than 100% indicate the compressed size is less than the original 

size, and values greater than 100% indicate that compression increased the file’s size. 

In most figures, the baseline encoding for original size refers to the plain-text 

XML encoding, though some figures use different baselines. When a figure compares a 

mix of XML-based and JSON-based encodings, the baseline is plain-text XML. When a 

figure compares only JSON-based encodings, the baseline is plain-text JSON. Both of 

these baselines are appropriate for objectively comparing compression algorithms, they 

do not suggest how much benefit a compression algorithm will provide for a network 
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already using Zip or Gzip by default. Thus, some figures display compaction using Gzip-

compressed plain-text XML as a baseline. 

For all figures, the x-axis shows the original size of the file in the baseline 

encoding, in bytes, on a logarithmic scale. Though plotted identically, the file-size values 

differ slightly between small-file and large-file use cases. Since the sample files in the 

small-file use cases are all subsets of a master file, the points on the x-axis are subsets of 

the same file. For large-file use cases, the sample files vary in size, but are not necessarily 

subsets of one another. Thus, the plots in small-file use cases tend to create strictly 

increasing or strictly decreasing series, while the plots of large-file use cases do not. 

B. RESULTS BY FOCUS QUESTION—SMALL-FILE CATEGORY 

This section presents empirical data for each focus question in the small-file 

category. The focus question is reiterated, followed by corresponding plots from each of 

the three small-file use cases: GPX, OpenWeatherMap and AIS, in that order. A brief 

discussion follows, addressing results across the use cases in response to the focus 

question. 

1. Focus Question A: Base Comparison of JSON and XML 

Is JSON more compact than XML either when both are plain-text encoded or 

when both are compressed with conventional compression algorithms? 
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Figure 21. Plot for GPX use case, focus question A. 
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Figure 22. Plot for OpenWeatherMap use case, focus question A. 
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Figure 23. Plot for AIS use case, focus question A. 

For the GPX and AIS use cases, plain-text JSON was ~75-95% of XML size. 

Visual inspection of the files revealed the decrease occurred when identically named 

XML elements collapsed into a JSON array, thereby mitigating the penalty of repetitive 

opening and closing tags for repeated elements in XML format. In the OpenWeatherMap 

use case, JSON was approximately 98–106% of XML size. The increase in size came 

from conversion of XML elements with multiple attributes into several key-value pairs in 

JSON, as shown in Figure 24 and Figure 25. 

<temperature value=“292.04” min=“292.04” max=“292.04” 
unit=“kelvin”/> 

Figure 24. OpenWeatherMap temperature element in XML format, using 69 
characters. 

{“temperature”:{“value”:292.04,”min”:292.04,”max”:292.04,”unit”:”k
elvin”} 

Figure 25. Semantically equivalent data as JSON, using 73 characters. 
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For smaller subset sizes, JSON compressed with Gzip and Bzip2 produced more 

compact encodings than XML compressed with the same algorithm. For subsets larger 

than ~7KB, XML compressed with Gzip and Bzip2 was more compact than JSON 

compressed with the same algorithm. The Gzip and Bzip2 trend lines for all three use 

cases show that in general, as the size of the plain-text file increases, compaction 

improves. This is intuitive considering that Gzip and Bzip2 look for repeated strings of 

characters to compress a file. When a file is small, there are few, if any, repeated strings. 

As the subset size increase, there are more repeated strings, so compaction improves. 

However, the trend is asymptotic, and compaction rates flatten. This pattern of 

diminishing returns recurred in nearly all tests during experimentation. 

2. Focus Question B: Post-Compression of BSON and CBOR 

Does post-compression with conventional algorithms increase the compactness of 

BSON or CBOR? 
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Figure 26. Plot for GPX use case, focus question B. 
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Figure 27. Plot for OpenWeatherMap use case, focus question B. 
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Figure 28. Plot for AIS use case, focus question B. 
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In all three use cases, conventional compression algorithms significantly 

increased the compactness of both BSON and CBOR encodings, with the exception of 

the smallest file in the GPX and AIS use cases, where Gzip and Bzip2 increased the file 

size. Compaction demonstrated a curve of diminishing returns. After compression, 

compaction leveled out at ~11-21% of the corresponding BSON or CBOR size. 

3. Focus Question C: Primary EXI Modes 

How do the primary EXI modes compare for schemaless and schema-informed 

encodings? 

●● ● ● ● ● ● ● ● ● ●

●

●● ● ● ● ● ● ● ● ●●

●

●● ●●●●●●●●●

●

●● ●●●●●●●●●
●

●● ●●●●●●●●●
●

●● ●●●●●●●●●
●

●● ●●●●●●●●●
●

●● ●●●●●●●● ●●

0%

10%

20%

30%

40%

50%

60%

500B 1K 5K 10K 50K 100K
Original  XML  size (bytes, log scale)

 (Baseline is  XML : 100% indicates full  XML  size)

C
om

pa
ct

io
n 

(%
  X

M
L 

 s
ize

)

Encoding

●

xml.bitpacked_exi
xml.schema_bitpacked_exi
xml.compress_exi
xml.schema_compress_exi

 
Figure 29. Plot for GPX use case, focus question C. 
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Figure 30. Plot for OpenWeatherMap use case, focus question C. 
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Figure 31. Plot for AIS use case, focus question C. 
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For schemaless EXI encodings, compress mode was consistently more compact 

than bitpacked mode across all three use cases. The difference between bitpacked and 

compress mode encodings increased as subset size increased; compress mode performed 

better on large subsets than did bitpacked mode. 

Bitpacked encodings demonstrated significant compaction benefits from schema 

information because they use data type information in the schema to reduce the encoding 

size for those values. For the smallest subset in each use case, the schema-informed, 

bitpacked encoding compacted the file to ~11–36% of the schemaless bitpacked 

encoding, though this margin decreased as the subset size increased. 

In the AIS and GPX use cases, compaction for schema-informed bitpacked 

encodings decreased as subset size increased. It improved slightly for the 

OpenWeatherMap use case. For all three use cases, compaction for schema-informed 

compress encodings increased with subset size. For the 10 smallest subsets, schema-

informed, bitpacked encodings were smaller than schema-informed, compress encodings. 

Past that point, which was different for each use case, schema-informed, compress 

encodings were consistently smaller. 

4. Focus Questions D and E: Comparison of EXI, BSON and CBOR 

To simplify comparison and discussion, focus questions D and E are addressed in 

tandem here. They are, respectively: Is bitpacked EXI more compact than BSON or 

CBOR? Is compress-mode EXI more compact than BSON or CBOR post-compressed 

with conventional compression algorithms? 
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Figure 32. Plot for GPX use case, focus question D. 
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Figure 33. Plot for OpenWeatherMap use case, focus question D. 



 67 

●
●

● ●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ●

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

500B 1K 5K 10K 50K 100K
Original  XML  size (bytes, log scale)

 (Baseline is  XML : 100% indicates full  XML  size)

C
om

pa
ct

io
n 

(%
  X

M
L 

 s
ize

)

Encoding

●

xml.bitpacked_exi
xml.schema_bitpacked_exi
xml.strict_bitpacked_exi
json.bson
json.cbor

 
Figure 34. Plot for AIS use case, focus question D. 
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Figure 35. Plot for GPX use case, focus question E. 
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Figure 36. Plot for OpenWeatherMap use case, focus question E. 
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Figure 37. Plot for AIS use case, focus question E. 

A relevant comparison of EXI to binary JSON encodings must be divided into 

two categories. The first, addressed in focus question D, compares encodings with no 

post-compression, i.e., bitpacked EXI compared to plain CBOR and BSON, with no Gzip 

or other conventional compression applied. Here, schemaless, bitpacked EXI was more 
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compact than both CBOR and BSON in the AIS and OpenWeatherMap use cases. For the 

GPX use case, it was less compact than CBOR, but more compact than BSON. However, 

schema-informed, Bitpacked EXI was between ~15-50% of CBOR size for all three use 

cases, with an even larger margin over BSON. The trend-lines for BSON and CBOR are 

generally flatter than for EXI, because these formats do not reuse variable-name tokens as 

EXI does through grammar-based encoding. BSON is the least compact in all three use-

cases, presumably due to additional overhead incurred with string-length prefixing, a 

feature intended to improve parsing speed at the expense of compactness 

(BSONSpec.org, 2014). 

The second comparison category, addressed by focus question E, compares 

encodings with post-compression, i.e., compress-mode EXI compared to CBOR and 

BSON further compressed by Gzip or other conventional compression. Since applying 

conventional compression as a second step requires additional processing, this must be 

considered in a separate category. Here, schemaless, compress-mode EXI was more 

compact than both CBOR and BSON in the AIS and OpenWeatherMap use cases. For the 

GPX use case, it was less compact than both Gzip-compressed CBOR and BSON. 

Configured as schema-informed, compress-mode EXI was more compact than CBOR 

and BSON in the AIS and OpenWeatherMap use cases, particularly for smaller files 

where it was between ~15-50% of Gzip-compressed CBOR size, with an even larger 

margin over Gzip-compressed BSON. For the GPX use case, schema-informed, 

compress-mode EXI was more compact than both CBOR and BSON for small files, but 

for files larger than ~5KB, both Gzip-compressed CBOR and BSON were more compact 

at ~80-90% of schema-informed, compress-mode EXI size. 

The GPX use case represents an outlier: CBOR and BSON achieve superior 

compaction due to different encodings of high-precision decimal values. The GPX files 

used 13–15 decimal places of precision for elevation, latitude and longitude values, 

which comprise ~70% of the plain-text XML file. The corresponding XSD defined these 

with the decimal data type. In EXI, a decimal data type value between -180 and 180 with 

14 places of precision encodes as 66–82 bits, whereas in CBOR and BSON, it encodes as 

a 72 bits for the identifier tag and a 64-bit double. Given that 14 decimal places of 
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precision exceed the actual sensitivity of the GPS recording device or available GIS 

systems (for example, the GPX sample files recorded elevations at sub-millimeter 

precision), the truly useful information in the message could likely be represented with 

less precision, and thus fewer bits using EXI (J. Schneider, personal communication, 

October 20, 2014). The floating-point format used in CBOR and BSON is a potentially 

lossy representation of decimal values, but the author’s visual inspection of the decoded 

files showed no loss of fidelity. Further investigation using an XML float data type is 

warranted. 

5. Focus Question F: Improvement over Gzip 

For a network already using Gzip compression, do any of the tested binary 

encodings offer better compactness? 
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Figure 38. Plot for GPX use case, focus question F. 
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Figure 39. Plot for OpenWeatherMap use case, focus question F. 
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Figure 40. Plot for AIS use case, focus question F. 

The performance of binary formats varies with both the subset size and with 

various characteristics of a use-case. For the 10 smallest subsets, the schema-informed 

EXI encodings, in both bitpacked and compress modes, produced files ~10–50% the size 

of Gzip-compressed plain-text XML. For larger subsets, the schema-informed, compress-
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mode EXI encodings produced files ~60–75% the size of Gzip-compressed plain-text 

XML. By comparison, the JSON-based binary encodings for small subsets produced files 

~75–95% the size of Gzip-compressed plain-text XML, and for larger subsets they 

ranged from ~75–135%. 

6. Focus Question G: Schema Impact 

Do restrictions on data types and range restrictions in an XSD significantly impact 

the compaction of schema-informed encodings? This question is addressed only for the 

AIS use case. 
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Figure 41. Plot for AIS use case, focus question G. 

The sample files for the AIS use case were relatively simple, with few nested 

elements or complex structures. Modifications to the schema focused on proper selection 

of data types and ranges and the resulting variation in compaction hinged upon those 

changes. For each successive improvement in the schema, compaction for both bitpacked 

and compress-mode EXI encodings improved. The encoding with the most restrictive 

schema resulted in files ~45% the size of those encoded with the least restrictive schema. 
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C. RESULTS BY FOCUS QUESTION—LARGE-FILE CATEGORY 

This section presents empirical data for each focus question in the large-file 

category. The focus question is reiterated, followed by corresponding plots from each of 

the three large-file use cases: DFXML, PDML and OpenStreetMap, in that order. A brief 

discussion follows, addressing results across the use cases in response to the focus 

question. 

1. Focus Question A: Primary EXI Modes  

How do the primary EXI modes compare for schemaless and schema-informed 

encodings? 
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Figure 42. Plot for DFXML use case, focus question A. 
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Figure 43. Plot for PDML use case, focus question A.  
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Figure 44. Plot for OpenStreetMap use case, focus question A. 

Across all three use cases, compress mode consistently produced the smallest 

files, ~1–10% of plain-text XML size for original file sizes larger than 1 MB, and ~16–

35% the size of the corresponding bitpacked encoding. With schema-informed encodings, 

all results were equal to or more compact than their schemaless counterparts. In the 
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DFXML and PDML use cases, the schema information impacted files larger than 1MB 

less than it did for files below 1MB. For plain-text file sizes greater than 1GB, the 

difference between schemaless and schema-informed compress-mode encodings was 

insignificant. 

2. Focus Question B: Strict Schema Conformance 

Does the strict option significantly improve compaction for schema-informed 

encodings? 
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Figure 45. Plot for DFXML case, focus question B. 



 76 

●

●

●

●

●

●

●
●

●
●

●

● ●

● ●
● ●

●
●

●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

●

●
●

●

●

● ●
●
●

●

●
● ● ●

● ● ● ●
●

● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

0%

10%

20%

30%

40%

5K 10K 50K 100K 500K 1M 5M 10M 50M 100M 500M 1G 5G
Original  XML  size (bytes, log scale)

 (Baseline is  XML : 100% indicates full  XML  size)

C
om

pa
ct

io
n 

(%
  X

M
L 

 s
ize

)
Encoding

●

xml.schema_bitpacked_exi
xml.strict_bitpacked_exi
xml.schema_compress_exi
xml.strict_compress_exi

 
Figure 46. Plot for PDML use case, focus question B. 
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Figure 47. Plot for OpenStreetMap use case, focus question B. 
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In all three use cases, regardless of whether bitpacked or compress modes were 

used, the strict option made only minor impacts on compaction. It resulted in files ~97–

100% the size of their non-strict counterparts. EXI encodings created without the strict 

option set will accept XML that does not conform to the given schema. The difference in 

compaction in these plots shows the benefits associated with configuring systems to 

generate schema-valid XML. 

3. Focus Questions C and D: Post-Compression other than DEFLATE 

As these two questions are closely related with similar outcomes, they are 

presented together here for simplicity. They are, respectively: Do any of the tested 

conventional compression algorithms better compact a schemaless, precompress EXI 

document than EXI’s default DEFLATE? Do any of the tested conventional compression 

algorithms better compact a schema-informed, precompress EXI document than EXI’s 

default DEFLATE?  
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Figure 48. Plot for DFXML case, focus question C. 
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Figure 49. Plot for PDML use case, focus question C. 
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Figure 50. Plot for OpenStreetMap use case, focus question C. 
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Figure 51. Plot for DFXML case, focus question D. 
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Figure 52. Plot for PDML use case, focus question D. 
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Figure 53. Plot for OpenStreetMap use case, focus question D. 

In general, Gzip and Zip did not perform better on either schemaless or schema-

informed documents than the EXI’s DEFLATE algorithm. The one exception was in the 

PDML use case, where Gzip compacted files with original XML sizes of ~2.5–25KB to 

~92–99% of precompress EXI using DEFLATE. For files larger than 1MB, Bzip2 

improved compaction in the DFXML and PDML use cases, but decreased compaction in 

the OpenStreetMap use case.  
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4. Focus Question E: Most Compact EXI Configuration 

Which EXI encoding is the most compact? 
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Figure 54. Plot for DFXML case, focus question E. 
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Figure 55. Plot for PDML use case, focus question E. 
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Figure 56. Plot for OpenStreetMap use case, focus question E. 

For sample files across all three use cases with original XML size greater than 

10KB, bitpacked EXI with the strict option set was the least compact encoding, and 

produced files two or more times the size of the closest compress-mode EXI encoding.  

Overall, compress-mode and strict compress-mode encodings were the smallest 

for large files. For sample files in the DFXML and PDML use cases with original XML 

size greater than ~1–5MB, compaction for compress-mode EXI with and without the 

strict option set was nearly identical, but for smaller sizes diverged, with the strict option 

adding significant compaction to smaller sample files. In the DFXML use case, the strict 

option reduced a 1KB sample file to 54% the size of the encoding without the strict 

option. For all sample files in the OpenStreetMap use case, whose original XML size 

ranged from ~50MB–1GB, the strict option increased compaction, reducing the size of 

compress-mode EXI encodings by ~17–20%. 

5. Focus Question F: Improvement over Gzip 

For a network already using Gzip compression, do any of the EXI encodings offer 

better compactness? 
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Figure 57. Plot for DFXML case, focus question F. 
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Figure 58. Plot for PDML use case, focus question F. 



 84 

●
● ●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●
●

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%
110%
120%
130%
140%
150%
160%
170%
180%
190%
200%
210%
220%
230%
240%
250%
260%
270%

5M 10M 50M 100M
Original  XML.GZ  size (bytes, log scale)

 (Baseline is  XML.GZ : 100% indicates full  XML.GZ  size)

C
om

pa
ct

io
n 

(%
  X

M
L.

G
Z 

 s
ize

)

Encoding

●

xml.strict_compress_exi
xml.strict_bitpacked_exi
xml.compress_exi

 
Figure 59. Plot for OpenStreetMap use case, focus question F. 

For all three use cases, bitpacked EXI using the strict option generally resulted in 

files two or more times the size of plain-text XML compressed with Gzip. 

Compress-mode EXI, both with and without the strict option, resulted in 

significant improvements. In the DFXML use case, the compress-mode EXI encodings 

were ~30-85% the size of plain-text XML compressed with Gzip for files larger than 

1MB. The corresponding results for the PDML and OpenStreetMap use cases were ~40–

95% and ~60–75%, respectively. 

D. CHAPTER SUMMARY 

Experimental results for small-file use cases showed significant variance in EXI 

encoding size depending on the structure of the XML data itself, the data type 

information in the associated XSD, and the configuration of the EXI codec itself. In 

general, for any sample file in the small-file category, there was at least one EXI 

configuration that produced a more compact encoding than BSON or CBOR while 

maintaining semantic equivalence. Results for large-file category suggest that performs 

no worse on large XML files than suggested by previous work, but that beyond 1MB file 

sizes, compaction rates remain static within a use case as file size increases. 
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V. CONCLUSIONS AND RECOMMENDATIONS 

This chapter presents broad conclusions from comparing EXI to binary JSON 

formats and from testing EXI compaction of large XML files, and presents the author’s 

recommendations for future work identified in the course of the research. 

A. SMALL-FILE CATEGORY 

The following section outlines the major findings of this research stemming from 

the small-file use cases: diminishing gains from compressing larger files suggest an 

optimal point to begin transmission to maximize network throughput; the configuration 

of EXI options as well as an XSD make significant differences in the final size of an EXI 

encoding; and in most cases there is at least one EXI configuration that produces smaller 

files than BSON and CBOR. 

1. When To Send? 

A common metric for a web-application’s performance is responsiveness, or how 

quickly a user receives a response after making a request. The size of data transmitted in 

an AJAX-style web application is one of myriad factors affecting response time. For 

applications using AJAX for frequent data exchanges between the client and server, 

intentionally waiting to aggregate multiple responses prior to transmission can decrease 

overall data size. Tsai, Chen, Huang and Hu (2011) investigated this in the context of 

image aggregation through a proxy server for mobile mashup applications, and found that 

it increases performance and reduces HTTP overhead. Liefke and Suciu (2000) also 

explored the relationship between file size and XMill compression ratio with results 

suggesting that more messages, if aggregated, compact more. Only one of their datasets, 

Weblog, had a temporal component relevant to this concept, i.e., the increasing file size 

reflected more data generated over time. For the AIS and GPX use cases analyzed in this 

research, there is a similar temporal relationship between each “message” that extends 

their results for the EXI algorithm. 
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By compressing sequential subsets of a larger file, this experiment investigates 

this aggregation for textual data in conjunction with conventional compression. The 

results suggest that similar responses, when combined, tend to create additional 

redundancy in the data and improve compaction when compressed with generic lossless 

compression algorithms such as DEFLATE, Gzip, or Zip. Beyond web applications, the 

notion of aggregation has potential for remote sensor networks collecting real-time 

information and transmitting back to a central node. In such a scenario, the decision to 

transmit data every 5ms, 5s or 5min presents a tradeoff in overall timeliness of 

information versus bandwidth consumption. In tests of a single-server streaming 

architecture over HTTP, a buffering delay of 0.5 seconds, both improved compression 

and decreased processor utilization for a high-capacity web server (Fisteus, García, 

Fernández, & Fuentes-Lorenzo, 2014). 

However, the intentional delay during aggregation may decrease responsiveness 

in a situation where available bandwidth is not the limiting factor. Also, the results 

indicate that for a specific use case, compaction increases quickly for small aggregations, 

and then flattens as subset sizes increase. Thus, delaying transmission too long is not 

likely to increase performance. As the compaction curve flattened at different points for 

each of the small-file use cases, the optimal ‘when to send’ point is likely a function of 

the application’s data, the needs of the application, and the characteristics of the larger 

network. The variation across use cases in this research suggests empirical investigation 

is the best method for identifying the balancing point between compaction benefits and 

operational requirements. 

2. Significance of EXI Configurations 

EXI encodings are highly configurable, and no single configuration is the best for 

all use cases. The EXI standard defines several options that affect the final size of an EXI 

encoding, as well as memory footprint, implementation simplicity, and processing speed 

(Schneider et al., 2014). It lists default settings for each option that decrease the size of 

XML documents in all cases. However, as this experiment’s results indicate, in many 

cases those defaults do not produce the smallest possible file size, and may not produce 
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files smaller than conventional Gzip compression. A default configuration meeting both 

of those criteria for all possible XML documents is simply not possible. Configuration of 

the EXI codec, informed by empirical testing on a case-by-case basis, is necessary to 

achieve the best compaction. Each adjustment thus made will also affect other factors 

such as memory consumption or encode and decode speed, which are not addressed in 

this research. 

Even within a single use-case or application, there may not be a single best EXI 

configuration. As the three small-file use case results indicate, there can be a transition 

point in file sizes where Compress-mode begins to produce more compact files than 

Bitpacked. If an application transmits messages on both sides of this divide, a static EXI 

configuration for all transmissions is not optimal. Another scenario could be where a 

server transmits EXI documents to some clients with memory limitations and others 

without, where DEFLATE decompression for large block sizes may not be feasible. In 

such cases, a dynamic, mixed-mode encoder could adjust the EXI parameters on a per-

message basis and achieve better results overall. 

3. Significance of XML Schema 

The XML Schema specification identifies the purposes of XSDs as primarily 

definition, documentation and robust validation of XML documents (W3C, W3C). 

However, the role of the XSD in EXI compression adds a new function to this list. The 

empirical results in this work, both for the small and large-file use cases, reinforce the 

notion that XSDs improve EXI compaction regardless of which mode EXI is configured 

for, particularly true for small XML files and Bitpacked encodings. 

The simple presence of a schema, however is not sufficient to maximize EXI 

compression. Rather, as suggested in the EXI Specification and validated through the 

empirical results in this work, selection of data types and range restrictions in an XSD 

can significantly improve compaction for Bitpacked encodings (Schneider et al., 2014). 

For the AIS use case, a schema with well defined, restricted data types resulted in 

Bitpacked file-sizes less than half that produced with no data types at all. An XSD 

schema, formerly a tool strictly for validation of data, serves also a tool for compression 
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with EXI. This also presents a tradeoff space between maintaining generality of a 

schema, or tightly restricting it to achieve maximum compaction. Data type 

representation maps, described in the EXI specification but not tested during this 

research, provide another method for efficiently representing custom data types that do 

not conform to the basic data types included in the EXI specification (Schneider et al., 

2014). 

In general, the author believes that for all of the sample files tested, there likely 

exists an alternate combination of XSD and EXI codec configurations that could produce 

semantically equivalent but more compact encodings than found in this research. The 

implication for developers working with EXI is that though the default options are indeed 

more efficient than plain-text transmission, the true potential of EXI lies in an in-depth 

understanding of one’s own data, the EXI specification, and a customized marriage of the 

two. 

4. EXI and Binary JSON Encodings 

The process of collecting sample files and testing compression figurations to 

highlighted a major challenge, compounded with the introduction of multiple binary 

formats and configurations, inherent to any comparison of XML to JSON: conversions 

from XML to JSON and vice-versa are not one to one. Many configurations exist which 

this work did not examine. Also, the tested binary encodings of JSON differ from EXI in 

that specific data type encodings for CBOR and BSON are limited, relative to the impact 

XSD information makes on EXI encoding sizes. Technologies such as JSON Schema, if 

incorporated into the BSON/CBOR representations, could provide similar benefits. 

As tested, however, a properly parameterized EXI encoding is more compact that 

JSON in the majority of cases. However, identifying such parameters may require 

examination and adjusting of data on a per-use case basis. This shows a need for defining 

best-practice EXI properties for common XML documents and schemas, both in the fleet 

and in industry. 
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B. LARGE-FILE CATEGORY 

The findings from the large-file use cases, in addition to reinforcing the 

previously statements about significance of EXI configurations and schema, provided 

two additional findings. First, EXI performs as well on files between 100MB and 4GB as 

it does on files less than 100MB, but it does not necessarily perform better. Second, large 

XML files can be computationally expensive to process and applications that must 

transfer them over networks may be better served to break them into multiple, smaller 

files. 

1. EXI Performs Well on Large Files 

The results from the three large-file use cases both extend and validate work by 

the W3C working group and previous NPS research indicating that EXI consistently 

produces more compact encodings than Gzip for plain-text XML files up to 100MB 

(Snyder, 2010; White et al., 2007). In brief, this work found that across the three use 

cases, EXI consistently produced more compact encodings than conventional 

compression algorithms for plain-text XML files between 100MB and 4GB. For the three 

use cases tested, schemaless EXI in Compress mode produced files between ~35–75% 

the size of Gzip. Schema-informed EXI in Compress mode offered equivalent or better 

results, generally ~30–60% the size of their schemaless counterparts. As noted in the EXI 

standard, Bitpacked mode is not ideal for large files, and in all three use cases, produced 

encodings significantly larger than Gzip (Schneider et al., 2014). 

2. Compaction Plateaus as Size Increases 

Though EXI does perform well on large documents, the test results did not 

indicate that, within a given use case, EXI performs better on plain-text files larger than 

100MB documents than on files between 1MB and 100MB. Trends from all three use 

cases suggest that EXI compaction for a given use case plateaus as plain-text file size 

grows past ~1MB. The author’s experience with testing EXI compression for large files 

during this research was that large XML files can be memory intensive and slow to 

process, not solely for EXI compressors but other software tools as well. Thus, since 

large XML files can be difficult to process and EXI compaction doesn’t improve with 
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additional file size beyond 1MB, it may be better to identify the point of diminishing 

compaction gains and use that to break an XML file into chunks prior to EXI encoding 

and transmission. For applications performing just-in-time compression immediately 

prior to transmission this approach could provide a balance between file-manageability 

and compression—it would begin transmission sooner and thereby reduce unutilized 

bandwidth. However, for applications that maintain large files in persistent storage prior 

to transmission, EXI compression overhead incurred once could pay dividends over the 

course of many downloads. 

C. RECOMMENDATIONS FOR FUTURE WORK 

Since the EXI standard is well suited for optimizing machine-readable, 

interoperable data moving over constrained networks such as those in afloat Navy units, 

the technology warrants future research. The below recommendations summarize issues 

identified in this research that could help to speed fleet adoption of EXI and once 

adopted, ensure its potential is maximized. 

1. Conventions for JSON/XML Interoperability 

Given that JSON and XML are commonly used for identical functions in web 

services and applications, and that the tradeoff space between the two is multivariate, 

selecting one over the other should be a matter of picking the best tool for the application 

under consideration. Further work to clarify and compare their respective capabilities and 

limitations in terms of security, expressive power, performance and other dimensions 

relevant to Navy information systems would provide insight and best practices for future 

systems development. Such work might explore consistent conventions for expressing 

XML as JSON and vice versa in the context of Navy web applications. With such 

conventions in place, maintaining parallel development tracks to implement both 

technologies may become unnecessary. 
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2. Holistic Profiling 

In comparing EXI to BSON and CBOR, this work only measured file sizes, but 

file size is only one of many factors to consider in selecting a data serialization format. 

Extending this research to include profiling capabilities across other dimensions would 

allow for a more holistic comparison of EXI to other serialization formats, as well as 

between various EXI configurations. Additional variables identified in this research 

include: serialization, deserialization, and round-trip memory-to-memory transmission 

times; memory consumption; power consumption; fidelity; and transmission size with 

layer 4 and below overhead included. 

Serialization Speed

Deserialization Speed

Memory Usage

Power Consumption

Fidelity

Compaction

Encoding
A
B

 
Figure 60. Radar chart comparing hypothetical, multivariate profiles for two 

data exchange encodings. Presents potential opportunities for further 
work. Visualization adopted from Bremer (2013) and Brutzman 

(personal communication, December 2, 2014). 
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3. Need for Best Practices 

As the EXI algorithm is highly configurable, and each configuration parameter 

affects various attributes of the encoding, a semi-formalized best practices methodology 

is needed to effectively incorporate it into an existing or developing system. The process 

could begin with requirements collection defining which parameters the system should be 

optimized for, perhaps leveraging an instrument similar to Figure 60. Next, it would 

address the optimizing from two angles: adjusting the system’s XML format and XSD to 

best leverage EXI, and then adjusting EXI’s configuration parameters to find a sensible 

default that fits the system requirements and constraints. 

This research approached part of this problem through a brute-force approach, 

trying all possible configuration permutations and comparing the results. More 

sophisticated approaches are possible, such as automating tools to examine the data types 

present in an XML document based on information from its XSD as well as regular 

expressions, and locate areas that could benefit from additional schema tuning, custom 

data type representation maps, or other configurations. Also, such an approach applied 

across many Navy or DOD systems could result in a library of EXI patterns available for 

reuse across the organization. 

4. Expanding EXI across the Open Web Platform 

At present, the EXI specification targets only XML, but the Open Web Platform 

includes many other formats for moving data across web applications. Prototype 

implementations by Kamiya (2014) and Peintner (2015) show that the grammar-based 

EXI algorithm can be applied directly to JSON, rather than converting between XML and 

JSON, with excellent results. Additionally, HTML5, CSS3, and JavaScript code can 

potentially be compressed with EXI-like, grammar-based algorithms (Burtscher, Livshits, 

Zorn, & Sinha, 2010). Finally, a JavaScript implementation of EXI could simplify 

deployment for web applications, as the client would not need to have an EXI codec pre-

installed. 
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5. EXI Streaming Protocols 

Given results from this and other research showing that combining multiple small 

transmissions prior to compression yields compaction benefits, EXI applied to streaming 

XML protocols could capitalize on these results (Fisteus et al., 2014). Work at the XML 

Messaging and Presence Protocol (XMPP) Standards Foundation is developing an EXI-

based streaming protocol for XMPP (Waher & Doi, 2014). The implications of this for 

the fleet, both in terms of chat tools, sensor networks and other store and forward 

situations, warrants further research. 

6. Fleet Adoption 

The EXI standard is a powerful tool for compressing and optimizing XML data 

which could significantly benefit constrained Navy networks afloat, but is not widely 

adopted in fleet systems. A mix of technological and administrative efforts is required to 

leverage EXI. Also, a high-profile proof of concept implementation directly impacting 

daily Navy business could support technology adoption. One such possibility is the 

Microsoft Office suite’s files, which are a ubiquitous format for sharing ideas and 

documents in the fleet and DOD. In practice, they are commonly transmitted over 

networks as downloads from web portals or as attachments to emails. Past research by 

SPAWAR has addressed compression of these files using NXPowerLite, a commercial 

utility that targets unnecessary data in these files, such as excessive resolution and 

metadata in embedded images (Jordan, 2008; Neuxpower Solutions Ltd., 2015). Though 

image data inside Microsoft Office files can comprise a large portion of the file size, EXI 

can target the remaining structured data in XML format. EXI, in conjunction with image 

manipulation libraries, could provide a completely open-source tool, transparent to users, 

that provides similar functionality to NXPowerLite and demonstrates the potential impact 

of EXI in the fleet. Appendix B includes preliminary compaction results for such an 

approach. 

Also, unlike Zip and Gzip, the major operating systems do not by default include 

an EXI codec, so integrating EXI into Navy systems requires additional work, be it 

through gateway-based architecture compressing all XML data prior to transmission over 
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SATCOM links, or on individual clients and servers. Future work toward developing a 

widely integrated, open source codec pre-integrated at the operating system level could 

decrease the entry cost for Navy system developers considering EXI. Approaches include 

ongoing work by NPS faculty, students and industry partners to include the Apache-

licensed OpenEXI codec in the Apache Software Foundation codebase, or to work 

toward inclusion into common development utilities, such as Apache Ant task or an 

Apache Maven repository (OpenEXI Project, 2014). 

D. CLOSING THOUGHTS 

EXI is a powerful enabling technology for interoperable, efficient 

communications over constrained or degraded networks. In the short-term, EXI can be 

incorporated into the Navy’s tactical infrastructure via gateways or filters deployed near 

edge routers, prior to transmission over SATCOM links. A longer-term solution that 

eliminates a gateway bottleneck and maximizes performance everywhere is to deploy 

EXI natively into applications, both on client and server nodes. Further developments 

will soon change diverse IoT sensors into coherent WoT devices, with accompanying 

improvements in power consumption and platform endurance. EXI provides major 

benefits that deserve broad adoption to benefit the fleet. 
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APPENDIX A.  EXI AND MICROSOFT OFFICE 

In 2003, Microsoft introduced an XML-based file formats into its Microsoft 

Office suite that enabled interoperability with a wide array of external applications (Lenz, 

McRae, & St.Laurent, 2004). Between 2006 and 2012, the file formats became an open 

standard called Office Open XML1 (OOXML) (International Organization for 

Standardization, 2011; Ngo, n.d.). The OOXML standard defines “strict” and 

“transitional” forms, and Microsoft Officer versions released during that timeframe 

progressed toward full compliance with the standard. As of the Office 365 release, the 

software gives users the option to save files in “strict” OOXML format (Thatcher & 

Knowlton, 2012). 

The .xlsx, .pptx, and .docx files generated by Excel, PowerPoint and Word, 

respectively are Zip archives containing multiple subdirectories and multiple XML files, 

alongside a media directory containing any binary data in the document, such as images 

and video clips. To test the compaction performance of EXI on the XML portion of these 

file formats, the author collected several documents of varying size and complexity in 

each format, then created a script that expands the Zip archive, applies EXI to each XML 

document inside, and finally compresses the archive using Zip. A corresponding script 

reversed the sequence of operations to verify round-trip compatibility. To provide a basis 

for comparison, the author collected file sizes for native OOXML files further 

compressed with Zip. To focus on the impact of EXI compaction, the author removed all 

images and binary data from the files. Figure 61 presents preliminary compaction results.

                                                
1 Note that OOXML here should not be confused with the similar Open Document Format (ODF) 

specification used in many office productivity applications. 
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Figure 61. Comparison of EXI and Zip compaction of Microsoft Office 
documents. 

Overall, the proposed method of applying EXI to Microsoft Office documents 

reduced them to 80% of original size or better—for files containing only XML data. For 

files with embedded images, compaction was significantly less, and in many cases 

negligible. The proposed method performed best on Excel documents, compacting them 

to as little as ~33% of original OOXML size. One result for Excel compaction was ~15% 

of original OOXML size, though this is likely an outlier. The document contained 

borders around thousands of empty worksheet cells, resulting in long stretches of highly 

repetitive XML tags and thus high compaction. 

Several avenues for improving on this methodology are to: (1) include image 

processing functionality to reduce the resolution of media files to that of the anticipated 

briefing screen; (2) to adjust or extend the OOXML XSDs; (3) to aggregate the XML 

files inside an OOXML archive prior to EXI encoding to achieve better compaction 

during the DEFLATE phase of EXI compression. This final approach is promising 

because, for example in a PowerPoint presentation, each slide is as a separate and 

relatively small XML file. 
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APPENDIX B.  SOURCE CODE 

The source code for all format conversion, data processing and plotting conducted 

in this research may be retrieved from GitHub at https://github.com/hillbw/exi-test and 

https://github.com/hillbw/exify-office. Each repository’s README.md file provides 

documentation on the general organization and usage of the test suite, and comments in 

each source file describe its function. All sample XML and JSON files for the GPX and 

OpenWeatherMap use cases are included in the repository. A few sample files for the 

Microsoft Office tests are included, but most are not as they contained sensitive 

information. 

Files from the AIS use-case are not licensed for open distribution, and are 

available from https://savagedefense.nps.navy.mil/exi/BruceHillThesis. Sample files 

from the OpenStreetMap, DFXML and PDML use cases, which are too large for GitHub 

hosting, are also available at that address 
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APPENDIX C.  BEING EFFICIENT WITH BANDWIDTH 

As part of this research, the author of this thesis, along with colleagues at the 

Naval Postgraduate School, published an article entitled “Being Efficient with 

Bandwidth” in the July 2014 issue of Proceedings, published by the United States Naval 

Institute (Debich, Hill, Miller, & Brutzman, 2014). The article, which explores 

foundational concepts from this research, is available online at 

http://www.usni.org/magazines/proceedings/2014-07/professional-notes, and the 

enclosed version in this appendix is reprinted from Proceedings with permission; 

Copyright © 2014 U.S. Naval Institute (http://www.usni.org). 
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Home > Magazines > Proceedings Magazine - July 2014 Vol. 140/7/1,337 > Professional Notes

Being Efficient with Bandwidth

By Lieutenant Commander Steve Debich, Lieutenant Bruce Hill, Captain Scot Miller (Retired), U.S. Navy, and
Dr. Don Brutzman
Naval information dominance hinges on three fundamental capabilities: assured command and control (C2),
battlespace awareness, and integrated fires. None of these are possible without effective communications links.
Networks—and more specifically, the information flowing through them—are now a center of gravity for the Fleet. 1
Maritime tactics and operational plans rely on levels of synchronization only possible through high-bandwidth
communications. Satellite communication (SATCOM) is the Fleet’s primary path for high-bandwidth C2. However,
afloat units may be denied access due to equipment failure, technical problems, weather phenomenon, or enemy
actions, forcing reliance on lower-bandwidth alternatives.
For afloat units, bandwidth has become a critical but painfully finite resource that must be conserved. SATCOM
carries data from a large number of disparate systems often referred to as “stovepipes.” These systems vary in
function from tactical to administrative, and the data formats for each application vary greatly. The result is
communications only occurring vertically within a system, but not across the breadth of different systems. When
many such stovepipes contend for access to the same ship-to-shore transport path, even the largest SATCOM
channels can become congested. Future assured C2 requires interoperability between stovepipes and better
prioritization of network traffic.
Before identifying the solution, we must understand the factors that impose constraints on the transmission path:
bandwidth, latency, and throughput.

Bandwidth: Not The Same As “Throughput”

Bandwidth is literally the “width” of the frequency band used to carry a data signal. It is more often described as the
transmission capacity of the communications medium, measured in terms of bits per second. 2 To increase the
capacity of an electromagnetic communications channel, modulation technologies and methods would need
improvement, or an additional antenna could be installed. Both approaches illustrate significant engineering and
financial constraints associated with increasing bandwidth, particularly in the shipboard environment.
SATCOM connections are often depicted as lightning bolts connecting deployed units with relay systems. These
lightning bolts convey the impression that data are instantaneously transmitted from unit A to unit B through an
optimally placed satellite node. Unfortunately SATCOM transmissions are far from instantaneous: They incur
significant delays in comparison to terrestrial communications paths. The combined delay is known as latency.
Latency is an accumulated series of delays that can occur in each step of the communications path between the
sender and receiver. Such delays occur as part of propagation delay during signal transmission, network processing
and interface delays, varying methods for buffering and queuing, and cumulative router and switch delays. 3 Latency
from the perspective of network traffic is the delay from the time of the start of packet transmission at the sender
host to the time of the end of packet reception at the receiver host.
Unfortunately latency has significant effects on throughput. This is due in part to the degradation experienced by the
primary networking protocol TCP when operating over a high latency network. 4 SATCOM channels routinely
operate with latency between 500 to 800 milliseconds. Response “waiting time” is a particular problem for
communications protocols like TCP that includes frequent acknowledgement among participants. Increased latency
ultimately results in decreased throughput.
Throughput is the rate at which new data—actual information—is transferred through a system. Like bandwidth, it is
measured in bits per second and can be considered the actual effective capacity of a channel or the “rate of
successful message delivery” being achieved. A common misconception is that bandwidth and throughput are
synonymous. Numerous additional constraints can limit the amount of data that can be transferred between two
points, such as the overhead of communication protocols and latency delays, which may keep a channel idle. Thus
bandwidth indicates the maximum possible data-transfer capacity, while throughput is what capacity actually occurs.
Throughput is often significantly lower than the communications channel’s bandwidth capacity. Ultimately round-trip-
time dominates performance more than bandwidth does. 5
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Common Practice: SATCOM

For Navy ships at sea, the only access to high bandwidth is through SATCOM systems. In our increasingly
connected world, the value placed on access to high bandwidth continues to rise. As bandwidth increases, the
amount of data that can be transferred between two points also increases. As bandwidth is increased, additional
capacity is quickly consumed by ever-more sophisticated sensors, unmanned vehicles, and other network-centric
dependencies. 6 Most high-bandwidth paths utilize the super- and extremely-high frequency (SHF/EHF) spectrum
for SATCOM communications. Though data and voice circuits exist in other portions of the spectrum, SHF and EHF
carry the brunt of Navy traffic, with SHF (C/Ku/X band) ultimately providing the biggest “pipe” for data flows.
In the past, the solution to demand for increasing data transfer was to increase bandwidth, and thereby capacity. As
the DoD throttles back spending, many areas must become more efficient in order to accomplish defense missions.
Similar approaches for efficiency must be applied with respect to communication systems. The amount of
information to be shared is not expected to decrease. Because constraints on SATCOM bandwidth make even
marginal increases a costly venture, the Navy must explore new tactics. Perhaps solutions lie not in the channel
itself, but in the format of data transmitted. What if we can convey the same information using just a fraction of the
original zeros and ones, while at the same time connecting stovepipes through data interoperability?

XML: The Language of Interoperability

Interoperability is essential to the key information dominance capabilities. Shipboard computers must talk to each
other, computers from other service branches, and computers from partner nations. To facilitate interoperability, an
open-standards approach is critical. The Department of the Navy’s chief information officer has designated the
extensible markup language (XML) as the data-definition language of choice for information standardization, and for
good reason: It is the de facto standard format for systems talking across the web. 7 By design, XML adds structure
to data, which in turn facilitates validation of correctness and system interoperability. XML is the lingua franca of the
world’s computers.
Though XML is a path to both technical and semantic interoperability, it has an Achilles heel: It was never intended
to be compact. 8 In terrestrial networks with low latency contributing to massive throughput, this is usually
unimportant. For the Navy, however, large messages mean slower connections and less information to forward-
deployed units relying on SATCOM. Transmitting large messages also draws more power, so XML isn’t ideal for
mobile or unmanned devices running on batteries. Viewed in this light, XML is less attractive, but it doesn’t have to
be that way. Recent advances in data compression are providing new design options.

Shrinking Data, Broadening the Web

In 2004, the World Wide Web Consortium began to address this issue, and in 2014 released the Efficient XML
Interchange (EXI) Format Recommendation. 9 EXI is an alternate encoding of XML data that leverages the inherent
structure of XML to tightly compress it. Since it is designed specifically for XML, the results are superior to generic
compression methods. In some cases, EXI compression results in files that are less than 10 percent the size of the
original XML file. 10 Perhaps even more surprising is that EXI decompresses faster, using fewer computations and
therefore drawing less power than plain text-based ZIP and GZIP compression.
Given that XML enables interoperability, and that EXI shrinks it, Fleet communications architects and program
managers should be interested. 11 Systems could potentially convert and transmit information in XML format, and
with EXI they could send more information in less time. By incorporating EXI, web-based architectures such as
CANES and C4I systems using service-oriented architectures may be viable over constrained SATCOM links.
Unmanned systems and remote sensors might use EXI to conserve batteries on extended missions. A single file cut
to a tenth of its original size is useful in itself, but the aggregate impact over thousands of nodes in a cloud, each
sending thousands of files, could be immense.
Other impacts pertain as well. For example, encryption is usually considered independent of compression. However,
by randomizing a bit stream, encryption scrambles the structure necessary for effective compression. That means
encrypted streams cannot be compressed. Compression must occur before encryption when transmitting, and
decompression after decryption on the receiving end. This principle is so important that the order should be checked
for all Navy communications channels.
Since message size is just one of many factors in network throughput, EXI is not a silver-bullet for Navy bandwidth
woes, but it certainly can’t hurt. It is not mutually exclusive of other attempts to address the issue. Navy
communications designers need not choose between a new SATCOM constellation and EXI, or between
commercial network accelerators and EXI; they can have both. Considering that EXI is open standard, supports
interoperability, and shrinks data the Navy is already sending over its networks, there is little to lose and much to
gain. The Navy can be more efficient with a precious afloat resource: bandwidth.
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