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Abstract 

The United States Department of Homeland Security (DHS) is charged with “build[ing] 
a safer, more secure, and more resilient America by enhancing protection of the Nation’s 
Critical infrastructure and key resources (CI/KR) …”  using an all-hazards approach.   
The effective implementation of this strategy hinges upon our understanding of 
catastrophes and their potential effect on the functioning of our infrastructure.  
Unfortunately, there has been no unifying theory of catastrophe to guide decision-
making, preparedness, or response. We do not know, for example, why some catastrophes 
are “worse” than others, or if the rate of catastrophes is increasing or decreasing.   
Furthermore, DHS has adopted a risk-informed decision-making process, but has done 
so without defining key terms, such as “risk”, or quantifying the primary elements of risk 
– definitions that are badly needed before setting a course of action and allocating 
resources.  We present a framework, based upon network science and normal accident 
theory that can be used to guide policy decisions for homeland security. We show that 
exceedance probability, which is commonly used by the insurance industry to set hazard 
insurance premiums, provides a unifying policy framework for homeland security 
investments.  Furthermore, since the exceedance probability for catastrophic 
consequences obeys a power law, we define resilience, explicitly, as the exponent of that 
power law.  This allows a mathematical definition of resilience that resonates with our 
innate sense of resilience.  That is, the more resilient a given system, the larger it’s 
resiliency exponent.   Such an approach also allows one to classify hazards as ‘high’ or 
‘low’ risk, according to the resiliency exponent, and to guide investments towards 
prevention or response.  This framework provides a more rigorous foundation for 
Federal investment decisions and a rational basis for policies to best protect the Nation’s 
infrastructure. 



 

A strategy without a theory 

The United States Department of Homeland Security (DHS) is charged with the 

responsibility of “build[ing] a safer, more secure, and more resilient America by 

enhancing protection of the Nation’s Critical infrastructure and key resources (CI/KR) to 

prevent, deter, neutralize, or mitigate the effects of deliberate efforts by terrorists to 

destroy, incapacitate, or exploit them; and to strengthen national preparedness, timely 

response, and rapid recovery in the event of an attack, natural disaster, or other 

emergency.”i The homeland security strategy is considered all-hazards because it 

embraces both natural and human-made catastrophes such as Hurricane Katrina, and the 

9/11 Terrorist attacks.  

 

The effective implementation of the all-hazards strategy hinges upon our understanding 

of catastrophes: earthquakes and wild fires in Southern California; hurricanes in Florida; 

terrorist attacks on infrastructure; and pandemic threats such as the H1N1 influenza. 

Unfortunately, there has been no unifying theory of catastrophe to guide decision-

making, preparedness, or response. We do not know, for example, why some 

catastrophes are “worse” than others, or if the rate of catastrophes is increasing or 

decreasing. Moreover, we do not know what properties of a human or natural system 

contribute to fragility or resilience. 

 

This lack of understanding has led to organizational confusion (what is the goal?), 

duplication of effort (different agencies doing the same thing), and poor utilization of 

limited resources (inadequate identification of the most at-risk assets, maximal return on 

investment, and resourcing of adequate response capability).   DHS has adopted a risk-

informed decision-making process, but  has done so without defining key terms such as 

“risk” or quantifying the primary elements of risk: “threat”, “vulnerability”, “resilience”, 

and “consequence” – terms used throughout DHS policy and strategy documents. Risk-

informed decisions are difficult to make without operational definitions of risk and 

resiliency! 



 

For example, the National Strategy for the Physical Protection of Critical Infrastructure 

and Key Assetsii recommends, “the first objective of this strategy is to identify and assure 

the protection of those assets, systems, and functions that we deem most ‘critical’ in 

terms of national-level public health and safety, governance, economic and national 

security, and public confidence. We must develop a comprehensive, prioritized 

assessment of facilities, systems, and functions of national-level criticality and monitor 

their preparedness across infrastructure sectors.” This is a laudable objective, but since 

2003 DHS has not been able to define ‘critical’, ‘prioritization’, or ‘preparedness’ – 

definitions that are badly needed before setting a course of action and allocating precious 

resources. The authors claim this malady will continue to persist until a suitable theory of 

catastrophe is developed and turned into practice. 

 

We propose a theory of all-hazards catastrophe, the results of which can be used to guide 

policy decisions for homeland security.  Our theory is based on network scienceiii,iv,v,vi,vii 

and normal accident theory.viii In a related approach, Ramoix borrows on ideas taken from 

physical science to explain how political disasters happen. Ramo’s ideas were previously 

explored and illustrated by Buchanan in a broader context.x  Similarly, Taleb’s highly 

popular book on randomnessxi lays the foundation for some of the ideas expressed in the 

author’s theory of catastrophexii – specifically addressing the claim that many 

catastrophes are the result of random processes, rather than deterministic cause-and-

effects. While Taleb focuses on “black swans” – highly unlikely, highly consequential, 

unpredictable events, we argue that black swans are statistically predictable and follow a 

power law exceedence probability distribution. Lewis34 applied the theory of complex 

systems to critical infrastructure and showed the relationship between power laws, black 

swans, and normal accident theory to critical infrastructure systems. Thus, power laws 

appear to be fundamental to catastrophe theory, which raises the question of “why”? Our 

answer: catastrophic events, including black swans, are normal accidents that increase 

with increasing self-organization. 



Normal accidents 

The authors claim that natural and human-caused catastrophes are a byproduct of routine 

complex system behaviors, which, ironically, contain the seeds of their own destruction.  

Catastrophic consequences arise when these systems operate at or near their critical state 

where small, otherwise insignificant perturbations give rise to unexpectedly large 

consequences.  Perrow called these unanticipated incidents normal accidents.xiii Normal 

accidents have three fundamental properties: (1) small failures can lead to large 

consequences, (2) nearly all large failures are triggered by a cascade of small failures, and 

(3) failure propagation is enabled by coupling of parts within the system.   These 

attributes are associated with systems in a state of Self-Organized Criticality (SOC).xiv 

 

Bak, Tang, and Weisenfeld (BTW)14 showed, through a simple sand pile simulation, how 

small events lead to large consequences. Bak and associates simulated and recorded 

carefully the size, frequency, and timing of landslide catastrophes, but concluded they 

could not predict the timing nor the size of individual avalanches.  The first property of 

normal accidents has been observed in a variety of phenomena. For example, Ramo’s 

recent book on social and political upheaval describe the BTW property in simple terms 

as “small things can have huge impact”9. Ramo used the BTW experiment to explain the 

sudden and unexpected collapse of the Soviet Union. Taleb used this theory to anticipate 

the 2008 financial meltdown two years before it happened, writing, “The electricity 

blackout experienced in the northeastern United States during August 2003, with its 

consequential mayhem, is a perfect example of what could take place if one of the big 

banks went under today”.xv The 2003 Blackout started by a relatively small incident in 

August 2003, and the 2008 financial catastrophe started with the default of a small bank 

in southern California.xvi 

 

The second and third properties of normal accidents are more subtle: Perrow suggested 

that incidents, such as the Three Mile Island nuclear power disaster, do not end in disaster 

every time a small accident occurs. Instead, such accidents must propagate and magnify 

through a series of connections that link small accidents, or flaws, together.  Links are the 

vectors of contagion. They transmit faults to neighboring systems, magnifying them as 



the faults spread through the system. In reference to Three Mile Island, Perrow says, 

“The cause of the accident is to be found in the complexity of the system…. It is the 

interaction of the multiple failures that explains the accident.”  Though Perrow explains 

how catastrophes happen, he does not explain why some complex systems collapse, while 

others do not. The difference between insignificant and magnificent collapses remained 

unexplained by normal accident theory until Lewis33. Today we know that the ‘invisible 

coupling” in normal accident theory is actually a build up of self-organized criticality, 

SOC. An easy way to understand SOC is to model complex systems such as the electrical 

power grid, telecommunications networks, water supply systems, and supply chain 

networks in general, as complex networks. Nodes are the assets or components of interest 

and links are the connections that transmit normal accidents through a complex system. A 

network is a set of nodes, links, and a mapping function that expresses the topology of the 

network in terms of a “wiring diagram.” Figure 1 illustrates the use of networks to model 

the mid-Atlantic power grid. Nodes are power stations, substations, and interconnections. 

Links are the transmission power lines connecting them.  

 

 

 
Figure 1.  Graphical mapping of a portion of the mid-Atlantic power grid showing a vast 

collection of nodes and links. 

 

 



Risk, resiliency, and networks 
 

Resiliency – a property of complex systems that makes them more or less tolerant of 

faults – may be explained by network analysis. The Network’s mapping function is key 

to understanding the relationship between the BTW and SOC properties of the grid, and 

SOC is key to understanding resiliency. Specifically, it turns out that the spread or 

‘cascade’ to other nodes in the network from a single node or link failure is magnified by 

self-organized criticality (SOC). The higher SOC is, the larger the effect of a cascade 

failure. We show that this criticality is associated with the exponent of a power law fit to 

the exceedance probability curve for fault consequences associated with the network.  We 

ran computer simulations of network failures by disabling a random node in the network 

shown in Figure 1. We propagated that failure to neighboring nodes using a 25% 

probability that any node linked directly to a failed node would, in turn, fail.  Counting 

the number of disabled nodes for each such simulation and dividing by the total number 

of nodes in the network produced a measure of failure consequence.  Consequence 

percentages were tabulated for each of 10,000 computer simulations and used to 

construct a fault histogram.  We constructed the exceedance probability, Figure 2, from 

those data, as follows: 

 

1. Rank the n consequences from greatest to least. 

2. Calculate the exceedance probability, EP, using:

€ 

EP =
rank
n +1( )

 

 

Figure 2 shows the exceedance probability plot of the simulated consequences of an 

attack on the Mid-Atlantic power grid shown in Figure 1.  These data are well described 

by a power-law fit.   In this plot, the exceedance probability obeys a power law: EP(x ≥ c) 

~ x-q, where x and c are a measure of consequences, and q is the exponent of a least-

squares fit to the data. We call q the resilience exponent, or simply ‘resilience’. The 

larger q is, the higher the resilience is, because the tail of the exceedence probability 

distribution decreases with increasing q. In the limit, a very high q implies a very low 

consequence. 



 

CONSEQUEN
CE (% of 

failed nodes)

Exceedence 
Probability

Power Law

0 100.00% 100.00%
1 23.70% 17.00%
2 11.60% 6.00%
3 7.30% 2.90%
4 5.70% 1.60%
5 4.70% 1.00%
6 4.00% 0.70%
7 3.60% 0.50%
8 3.30% 0.40%
9 3.00% 0.30%

10 2.70% 0.20%
11 2.50% 0.20%
12 2.20% 0.10%
13 2.10% 0.10%
14 2.10% 0.10%
15 1.90% 0.10%
16 1.80% 0.10%
17 1.70% 0.10%
18 1.70% 0.10%
19 1.70% 0.00%
20 1.60% 0.00%
21 1.60% 0.00%
22 1.50% 0.00%
23 1.50% 0.00%
24 1.40% 0.00%
25 1.40% 0.00%
26 1.30% 0.00%
27 1.30% 0.00%
28 1.30% 0.00%
29 1.20% 0.00%
30 1.10% 0.00%
31 1.10% 0.00%
32 1.10% 0.00%
33 0.90% 0.00%
34 0.90% 0.00%
35 0.90% 0.00%
36 0.90% 0.00%
37 0.80% 0.00%
38 0.80% 0.00%
39 0.80% 0.00%
40 0.80% 0.00%
41 0.80% 0.00%
42 0.80% 0.00%
43 0.80% 0.00%
44 0.80% 0.00%
45 0.80% 0.00%
46 0.80% 0.00%
47 0.80% 0.00%
48 0.70% 0.00%
49 0.70% 0.00%
50 0.70% 0.00%
51 0.70% 0.00%
52 0.70% 0.00%
53 0.60% 0.00%
54 0.60% 0.00%
55 0.60% 0.00%
56 0.60% 0.00%
57 0.60% 0.00%
58 0.60% 0.00%
59 0.50% 0.00%
60 0.50% 0.00%
61 0.50% 0.00%
62 0.50% 0.00%
63 0.50% 0.00%
64 0.50% 0.00%
65 0.40% 0.00%
66 0.40% 0.00%
67 0.40% 0.00%
68 0.30% 0.00%
69 0.30% 0.00%
70 0.30% 0.00%
71 0.30% 0.00%
72 0.30% 0.00%
73 0.30% 0.00%
74 0.30% 0.00%
75 0.30% 0.00%
76 0.30% 0.00%
77 0.30% 0.00%
78 0.30% 0.00%
79 0.30% 0.00%
80 0.30% 0.00%
81 0.30% 0.00%
82 0.30% 0.00%
83 0.30% 0.00%
84 0.30% 0.00%
85 0.30% 0.00%
86 0.30% 0.00%
87 0.30% 0.00%
88 0.30% 0.00%
89 0.30% 0.00%
90 0.20% 0.00%
91 0.20% 0.00%
92 0.20% 0.00%
93 0.20% 0.00%
94 0.20% 0.00%
95 0.10% 0.00%
96 0.10% 0.00%
97 0.10% 0.00%
98 0.10% 0.00%
99 0.10% 0.00%

100 0.10% 0.00%
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Figure 2.  Exceedance probability plot for cascade consequences arising from 

simulations of random node failure of the Mid-Atlantic power grid. The 

horizontal x-axis is normalized to a percentage: 100 x #failed nodes/#nodes. 

 

More precise functional models of the grid have been developed by Overbyexvii that 

model the physics of grid function and cascading failure. The exceedance probability 

curves of actual cascade failuresxviii, such as the 2003 Blackoutxix, obey a power law with 

exponent near 1.0.  In fact, a great many natural and man-made hazards are found to obey 

power-laws when plotted as exceedance probabilities, EP.  Table I lists a variety of 

typical natural and human-caused catastrophes along with the exponents, q, extracted 

from power-law fits of the exceedance probability for each.  Power laws appear to be an 

integral part of catastrophe theory! 

 

We define the probable maximum loss risk as R = xEP(x).xx Then it is clear that R is 

bounded as x increases, for q ≥ 1; and unbounded for q < 1, because R ~ x(1-q). Thus, the 

hazards in Table I can be divided into two categories: low-risk and high-risk, depending 

on the value of q.  Using this definition for resilience allows one to clearly relate 

resilience to risk:  resilient systems are low risk while ‘non-resilient’ systems are high 

risk.  That is, catastrophes are either low- or high-risk depending on their resiliency 

exponent, q.  

 



Though this approach allows one to classify the hazard as resilient or not, it does not 

explain why the resiliency exponent, q, differs for different kinds of hazards.  We 

propose that the resiliency exponent, q, when derived from consequences associated with 

networked systems, is directly related to the topology of those networked systems. We 

illustrate this using additional simulations of various hazardous phenomena of interest to 

homeland security.  

 

 

Self-organized criticality in networks 

 
The authors claim that the resilience exponent, q, varies for different (network) systems 

because of the topologies of those systems.  We tested this claim by simulating the 

propagation of a single-node failure throughout both random and scale-free networks 

over a range of average link density, shown in Figure 3.  In our simulations, failure 

spreads to adjacent nodes, through links, with constant probability, pf,  (where, in this 

case pf = 25%). Consequence was calculated after each of 10,000 incidents, by recording 

the number of nodes affected by the propagated fault. The recorded consequences were 

placed into bins of increments of 1% each, tallied at the end of the simulation, and 

converted into an exceedence probability plot, EP(x).  Finally, resilience, q, was obtained 

by fitting a power law to EP(x). 

 

The experiment varied two properties of networks: the density of links, and the degree 

sequence distribution of each network.  In Figure 3, link density was varied from a mean 

of 2 to 6 links per node for both a randomly linked network and a scale-free network.  

This plot shows that the resiliency exponent, q, decreased exponentially with increasing 

link density for both random and scale-free networks   That is, networks with a higher 

density of links suffer greater loss due to link percolation.xxi  Put more simply, the number 

of adjacent nodes that would fail is directly related to the number of links, n, times the 

probability of failure of a node, pf, or npf.  Clearly, the more highly linked a network is, 

the greater the failure consequence. Link density (percolation) increases SOC, rendering 

the network less resilient. 



 

Figure 3 overlays these results for both random and scale-free networks, showing a 

similar exponential decline in resiliency versus link density for both, suggesting that 

degree sequence distribution affects resilience.  In addition, the plot shows that scale-free 

networks, regardless of link density, are less resilient than their random network 

counterparts. This is because of the highly connected hub, which transmits failures 

through more links. “Hubness” is another form of self-organized criticality that may 

explain why q differs for different systems.  

 

 
Figure 3.  Resilience, defined as the exponent of the power law that fits the exceedance probability, 

versus the density of links in random and scale-free networks containing 200 nodes. 

Resilience declines exponentially as link density increases. 

 

The authors have calculated the resilience of numerous infrastructure systems ranging 

from the Washington State Ferry system, Washington D.C. water network, Hetch-Hetchy 

water and power network, Mid-Atlantic power grid, the 9/11 Terrorist network, and 

major oil pipeline supply chains running from the Gulf of Mexico to New Jersey.6 

Resilience exponents can be computed for each infrastructure and compared against our 

low- and high-risk threshold.  These simulations of real-world networks suggest that 

catastrophe is a combination of self-organized criticality, random incidents, and self-

similar system architecture. This confirms the work by others. For example, the Amaral-

Meyer network described by Buchananxxii illustrates the impact of criticality in a 



dynamically evolving connected system, whereby catastrophic failure is intrinsic to the 

system. Dynamic network systems can fail without any outside influence, simply by 

reconfiguring themselves into critical states.  

 

These simulations also support Perrow’s normal accident theory.  SOC is the “invisible 

coupling” described by Perrow and further elucidated by Lewis34. Perrow’s normal 

accident theory predicts that black swan catastrophes occur whenever a series of force-

multiplying accidents unpredictably align themselves to bring down the entire system. 

Many of these systems obey a power law when plotting exceedence probability versus 

consequence. 

 

The authors claim that financial system meltdowns, earthquakes, power grid blackouts, 

and epidemics are largely the result of random small failures in systems that are in a state 

of self-organized criticality, SOC. Alarmingly, many of our critical infrastructure sectors 

have reached self-organized criticality.xxiii,xxiv Typical signs of SOC include link density, 

large hubs, and betweeness (number of paths running through a node). Overly connected 

nodes are found in the public switched telecommunications network, high betweeness in 

near-capacity tie lines in the power grid, congestion on highways, lack of surge capacity 

in hospitals, and viruses worming their way through the Internet. 

 

 
 



Figure 4.  Number of computers infected by cyber exploits reported by http://www.securelist.com for 

one month during 2011.  

 

 
 

Figure 5.  Levy Flight power law for DDOS exploits between August 1999 and August 2009. Time 

intervals between subsequent attacks follow an exceedence probability power law with 

exponent of negative 0.8. Data provided by Mark Schuchter, www.parabon.com/faqs/ddos-

timeline.html 

 

Application to cyber security 

 

Does the forgoing theory of infrastructure as complex emergent systems apply to cyber 

security? Self-organized criticality, if it is present in networked computer systems such as 

the Internet, will manifest in the form of highly connected nodes (servers, autonomous 

systems), power law-shaped probability curves, or black swan incidents – rare, 

unpredictable, and high-consequence “accidents”. The authors provide an initial, but 

perhaps incomplete, test of this hypothesis: the Internet and its corresponding 

infrastructure exhibits traits of a complex emergent system with self-organized criticality. 

It is a high-risk infrastructure, because of its exceedence probability “signature”, and its 

high susceptibility to exploits. 

 

For example, the Internet’s web graph has been shown to be scale-free (containing major 

hubs) by many researchers over the past decade35,36. This form of self-organized criticality 



contributes to its vulnerability. Additionally, the underlying telecommunication 

infrastructure in the US is organized around a small number of very large and critical 

carrier or telecom hotels25. These are critical to the continuity of operation of the 

communications backbone of the nation. The black swan event – often called the “Pearl 

Harbor of cyber” – has yet to happen, but its possibility cannot be ignored. 

 

The data of Figure 4 shows the impact of cyber exploits for a one-month period during 

2011. It follows the familiar power law characteristic of normal accidents and sand pile 

behavior. Figure 5 shows that the time interval between subsequent Distributed Denial of 

Attack (DDOS) exploits also obey a power law. Apparently, DDOS exploits are Levy 

Flights – another characteristic of sand pile behavior. These “signatures” are familiar 

markers of complex systems.  

 

While the data cited here is not conclusive, it does provide a preliminary verification of 

the theory proposed here: that infrastructures ranging from power grids to the Internet are 

subject to sand pile effects. Surprising adherence to power laws, and network properties 

found in many self-organized systems are also present in cyber systems. The proposed 

theory is slowly being validated by current cyber events, but more data is needed to 

complete the claim. 

 

A strategy backed up by a theory 
 

A scientifically sound theory of catastrophe is now available for policy-makers to enable 

risk-informed decision-making by the department of homeland security. Rather than 

spending billions of dollars on securing already resilient systems, the nation’s treasury 

should be used to increase the resiliency of high-risk sectors such as telecommunications, 

electric power transmission and distribution, the financial sector, and fragile public health 

networks.  One can relate the growth of infrastructure to the growth of sand piles.  When 

small, the infrastructure systems grow somewhat stably.  However, the system will 

eventually reach a critical state where the addition of new demands gives rise to 

unpredictable consequences.   



 

Several mechanisms can be used to reverse self-organized criticality.  Of course, the 

problem can be solved at the engineering level: addition of surge capacity, operating 

systems below maximum capacity, and restructuring networks to back them away from 

SOC.  That is, operating these systems inefficiently will keep them from becoming 

critical!  Each of these solutions has corresponding costs, however, and is the subject of 

another paper. A more global solution is to change regulatory policy, affecting 

infrastructures across the entire nation. Re-design of regulation is a better approach 

because it spreads the economic burden across an entire industry.  

 

For example, the electric power grid has evolved into a state of self-organized criticality 

by incremental patching of its transmission network. Regulatory policies that motivate 

utilities to build more transmission capacity or promote local distributed generation 

(reducing the need for transmission capacity) would back the sector away from criticality. 

A similar criticality exists in the communications sector due to the rise of 

telecommunications hotels.xxv The existence of telecom hotel hubs is a direct consequence 

of the 1996 Telecommunications Act that advocates peering among competitors and 

promotes co-location of switching equipment. This regulation needs to be changed, 

immediately, before a normal accident results in a national telecommunications blackout. 

 

Similar self-organized criticalities exist in other infrastructure sectors. Financial systems 

tend to self-organize into criticality; public health/hospital systems have inadequate surge 

capacity; the World Wide Web/Internet is notoriously near its critical point with respect 

to denial of service attacks, worms, and cyber threats.  Complex systems – whether they 

are financial, political, physical, human or naturally occurring – can be modeled as a 

network, where nodes are components and connections and relationships are links. 

Normal systems are rational, well designed, and perform their functions perfectly over 

long periods of time and under a variety of stresses. Collapse of such systems comes as a 

shock, not because of attacks or unnatural events, but because of connectivity and 

randomly occurring small accidents that, occasionally, propagate and magnify throughout 

the system. We should not be surprised by normal accidents. Instead we should reduce 



their consequences by restructuring critical infrastructure networks to raise their 

resiliency exponent. 

Table I. 

Exceedance Probability Exponents for Low-Risk and High-Risk 
Incidents1.xxvi,xxvii,xxviii,xxix,xxx,xxxi,xxxii 

                                                
 

Asset/Sector Consequence Exponent 

    Low Risk 

S&P500 (1974-1999) $Volatility 3.1-2.7 

Large Fires in Cities $Loss 2.1 

Port Consequences (MSRAM data) $Loss 1.7 

Airline Accidents Deaths 1.6 

Tornadoes Deaths 1.4 

Terrorism Deaths 1.4 

Floods Deaths 1.35 

Forest Fires in China Land Area 1.25 

East/West Power Grid Megawatts 1 

Earthquakes Energy, Area 1 

Asteroids Energy 1 

Pacific Hurricanes Energy 1 

   

  High Risk 

Hurricanes $Loss 0.98 

Public Switched Telephone Customer-Minutes 0.91 

Forest Fires Land Area 0.66 

Hurricanes Deaths 0.58 

Earthquakes $Loss 0.41 

Earthquakes Deaths 0.41 

Wars Deaths 0.41 
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