2014-06

Yawning as a Behavioral Marker of Mild Motion Sickness and Sopite Syndrome

McCauley, Michael E.; Matsangas, Panagiotis

Aviation, Space, and Environmental Medicine, Vol. 85, No. 6, June 2014
http://hdl.handle.net/10945/45470

Downloaded from NPS Archive: Calhoun
SHORT COMMUNICATION

Yawning as a Behavioral Marker of Mild Motion Sickness and Sopite Syndrome

Panagiotis Matsangas and Michael E. McCauley

Severe motion sickness is easily identifiable. People under significant malaise stop working, vomit or show signs of, such as pallor. The problem is that mild motion sickness and sopite syndrome do not demonstrate such clear and observable behavioral markers. We postulate that yawning may have the potential to be used as such a marker.

Yawning is an involuntary and stereotyped behavior consisting of three phases, a long inspiration phase, the mouth's wide opening, and the final slow expiration. Yawning occurrence demonstrates an underlying circadian rhythm (1), and has been associated with sleepiness, drowsiness, and boredom. Research supports the hypothesis that yawning is associated with transitions in arousal levels (1). It appears that yawning is involved in maintenance of arousal, yet yawning frequency seems to be unrelated to prior sleep amount (1). Johnson and Jongkees [as cited in Baenninger (1)] suggested that yawning may be associated with arousal by regulating cerebral blood flow, and noted that the deafmutes with congenitally incomplete labyrinths are immune to yawning.

It has long been known that yawning is a common symptom associated with motion sickness, and is considered among the typical symptoms of sopite syndrome (8). The term "sopite syndrome" describes a symptom-complex centering on drowsiness and lethargy related to motion sickness (8). Symptoms associated with drowsiness are yawning, disinterest and disinclination to work, lack of participation in group activities, mood changes, sleep disturbances, and signs of mental depression.

The literature on motion sickness does not seem to contain any systematic efforts focusing on yawning per se. In general, earlier research does not extend beyond using yawning as one more symptom toward assessing motion sickness severity [for example, Bos et al. (3)]. Furthermore, existing research is merely based on post-session self-reports of yawning as part of questionnaires reporting motion sickness symptoms [for example, Joseph and Griffin (10)].

Our study is triggered by the operational consequences of soporific effects, which, we hypothesize, can be even greater than the more severe levels of motion sickness. The problem with mild motion sickness and sopite syndrome is that they are not easily distinguishable as problems concerning the person's well-being or their ability to perform assigned tasks. A mild form of motion sickness includes an uneasy feeling with a certain amount of lack of interest in the task being done (14). This phase is not characterized by any visible signs and people may not be aware of their state (11,14). Therefore, a systematic approach to soporific effects must include the investigation of ways to identify this phenomenon. Developing measures can be the first step to countering the effect of sopite syndrome in the operational environment (11,12).

For these reasons, this study has the objective to investigate the utility of yawning as a behavioral marker in the identification of soporific effects.

From the Department of Operations Research, Naval Postgraduate School, Monterey, CA.

This manuscript was received for review in October 2013. It was accepted for publication in February 2014.

Address correspondence and reprint requests to: Panagiotis Matsangas, 1411 Cunningham Road, Naval Postgraduate School, Monterey, CA 93943-5219; pmatsang@nps.edu.

Reprint & Copyright © by the Aerospace Medical Association, Alexandria, VA.

DOI: 10.3357/ASEM.3897.2014
METHODS

This work is part of a broader study regarding the effect of mild motion sickness and sopite syndrome on multitasking cognitive performance (12). The study protocol was approved in advance by the Institutional Review Board of Naval Postgraduate School (NPS). Each subject provided written informed consent before participating.

Subjects

Thirty nine healthy individuals were recruited from the pool of NPS students, faculty, and staff. All subjects (34 men, 5 women; age range 27–59 yr, mean = 35.2 yr, SD = 6.02) were screened before the beginning and during the study for illnesses or other issues that could affect their physiological state. Subjects were randomly assigned to two statistically equivalent groups, A (N = 20, motion in the first session, no motion in the second) or B (N = 19, no motion in the first session, motion in the second).

Equipment

The ASE Model 500-3 motion seat (Aeronautical Systems Engineering, Odessa, FL) produced the nauseogenic stimulus of 0.167 Hz sinusoidal motion with ± 2 inches z-axis displacement. In the x and y axes, the motion was a ± 15° roll and pitch, correspondingly. In general, the overall severity of motion sickness was mild. Subjects performed the SYNWIN battery (TM Activity Research, Inc.), the Windows version of SynWork1 (5) simulating a work environment. It includes four component tasks presented simultaneously, a memory search task, an arithmetic problem task (the only self-paced task in the battery), and two monitor and react tasks (visual and auditory). The memory and the arithmetic tasks are cognitive, whereas the visual and auditory monitoring tasks are primarily sensory and perceptual. The single objective of performing SYNWIN is to obtain as many points as possible, and thereby increase the composite score displayed in the middle of the screen. SYNWIN was projected on a head mounted display (eMagin Z800 3DVisor, 40° diagonal field of view, two displays with 4:3 aspect ratio, 800 x 600 pixels resolution per display).

Procedure

Each individual participated in two 1-h data collection sessions with a 7-d intersession interval. Each session consisted of six 10-min blocks. Subjects performed SYNWIN while seated on a moving platform in a dark room without visual input from the external environment. These settings excluded a possible yawning behavior contagion bias between the subjects and the researcher located in the same room (13). We used a randomized design, counterbalanced in the order of motion stimulus. Motion was presented during the last four 10-min blocks. The experimenter was located in the same room with the subjects. Subjects wore headphones where the tone stimuli were presented. The SYNWIN was set to run all four tasks simultaneously. Per subjects, both experimental sessions were conducted at the same time of day to control for circadian rhythmicity.

Initially, subjects completed the Motion Sickness Susceptibility Questionnaire - MSSQ (7) to assess susceptibility to motion sickness. The single MSSQ score ranges from 0, for no problems, to 222 for severe problems in all questions. For a normal population the 50th percentile is reached at approximately MSSQ 40. Morningness-Eveningness Scale (9) was used to assess subjects’ chronotype, an attribute of human beings related to whether they have a preference for waking earlier or later in the day. The scale includes 19 multiple-choice questions. Scores range from 16 to 86, with scores less than 42 corresponding to evening chronotypes and scores higher than 58 indicating morning chronotypes. Occurrence and severity of symptoms were assessed by the Motion Sickness Assessment Questionnaire - MSAQ (6). The MSAQ includes four subscales (Gastrointestinal, Central, Peripheral, and Sopite-related). The subscale scores’ sum is the Overall motion sickness score. All MSAQ scores range from approximately 11.1 (minimum) to 100. MSAQ responses were provided before the test commenced, and at the end of each 10-min block. Yawning data were collected by the researcher by observing the behavior of the subjects and counting occurrences as they happened.

Statistical Analysis

Subjects were identified as “yawners” (Y) and “non-yawners” (NY). Then, we verified statistical equivalence differences between Y and NY groups in age, consumption

![Fig. 1. Time of data collection, M-E scores, and yawning occurrence.](image)

![Fig. 2. Motion sickness severity in the motion condition. Vertical bars represent 1 SD. * P < 0.05; ** P < 0.10.](image)
of caffeinated beverages, self-reported sleep before the
data collection, and in the time of data collection. After a
descriptive analysis of occurred yawns, we performed a
nonparametric comparison of M-E, MSAQ, and SYNWIN
scores between Y and NY groups. MSAQ indices and
SYNWIN scores were averaged per subjects and session.
The first two (practice) blocks of each session were
excluded.

RESULTS

On average, the severity of motion sickness was mild.
While in motion, the average MSAQ Total per subjects
was 14.4 (SD = 6.35, MD = 12.2), with average MSAQ
Total scores ranging from minimum to 43. No yawning
was observed during the time the subjects were in the
lab before the data collection began (approximately
30 min). During the data collection sessions, five subjects
yawned during the motion condition, one woman and
four men. One man also yawned during the static condi-
tion. Descriptive analysis based on the 10-min blocks
showed that yawning occurred in 15 blocks (3.21% of
the 468 blocks), 13 during motion conditions (8.33% of
the 156 motion blocks), and only 2 in static conditions
(0.64% of static blocks).

Based on whether they yawned, subjects were classi-
cified as yawners (Y, N = 5), and non-yawners (NY, N =
34). A nonparametric comparison between Y and NY
groups failed to identify any differences in age, con-
sumption of caffeinated beverages, self-reported sleep
before the data collection (Y: MD = 7.75 h, NY: MD =
7.38 h), or in the time of data collection (Wilcoxon rank
sum test, P > 0.20). Furthermore, individuals in the Y
group demonstrated lower M-E scores than those in the
NY group [Y: M-E score = 43.8, NY: M-E = 55.4; Wil-
coxon Rank Sum test, X^2(1) = 6.92, P = 0.009]. Two indi-
viduals in the Y group were identified as moderately

TABLE I. DIFFERENCES IN MOTION SICKNESS SEVERITY BETWEEN NON-YAWNER (NY) AND YAWNER (Y) GROUPS.

<table>
<thead>
<tr>
<th>Metric</th>
<th>NY M (SD)</th>
<th>Y M (SD)</th>
<th>Significance Wilcoxon Rank Sum test</th>
<th>Hedge’s g</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSAQ Total</td>
<td>14.0 (6.44)</td>
<td>17.2 (5.49)</td>
<td>X(1) = 5.85, P = 0.016*</td>
<td>0.494</td>
</tr>
<tr>
<td>MSAQ G</td>
<td>13.9 (5.80)</td>
<td>14.4 (4.97)</td>
<td>X(1) = 0.083, P = 0.774</td>
<td>0.085</td>
</tr>
<tr>
<td>MSAQ C</td>
<td>12.9 (5.77)</td>
<td>15.0 (5.13)</td>
<td>X(1) = 7.20, P = 0.007*</td>
<td>0.360</td>
</tr>
<tr>
<td>MSAQ P</td>
<td>14.8 (7.93)</td>
<td>17.4 (5.83)</td>
<td>X(1) = 3.59, P = 0.058**</td>
<td>0.329</td>
</tr>
<tr>
<td>MSAQ S</td>
<td>15.0 (7.81)</td>
<td>22.4 (9.76)</td>
<td>X(1) = 3.96, P = 0.047*</td>
<td>0.901</td>
</tr>
</tbody>
</table>

* P < 0.05; ** P < 0.10.

DISCUSSION

In this experiment, yawning was associated with the
existence of the nauseogenic motion stimulus. Compared
to non-yawners, individuals who yawned in motion
were more likely to suffer from mild motion sickness
and soporific symptoms and they demonstrated re-
duced multitasking cognitive performance. What makes
these results more interesting is the limited severity of the nauseogenic motion. Consequently, the average severity of motion sickness in our study was mild.

However, the experimental methodology did not provide the opportunity to evaluate the temporal distribution of yawning versus soporific symptoms, i.e., to assess whether yawning may be considered as a prodromal response to sopite syndrome or performance deterioration. The time development of symptoms seemed to coincide with performance deterioration because our method was not focused on this assessment.

This study has a number of constraints that limit its external validity. These caveats should be considered when interpreting the generalizability of the results. First, the number of yawning individuals was small (N = 5). The second point of concern is the method we used to identify yawns, which was based on the researcher observing and recording the yawns. Although this approach is better than subject’s self-reports obtained after the data collection session, it is an evaluation subject to the researcher’s bias and error in observations. Future efforts should probably incorporate a 2-researcher approach (4).

A comment should also be focused on the association between yawning and chronotype. Our results suggest the confounding effect of chronotype on yawning occurrence in nauseogenic motion conditions. This finding is in congruence with existing research showing that yawning frequency is affected by differences in sleep-wake or sleepiness rhythms between extreme chronotypes, with evening types yawning more frequently during morning (15). Based on their findings, the researchers concluded that the temporal distribution of yawning frequency differs between chronotypes, supporting the hypothesis that differences in sleep-wake rhythm affect yawning. However, the small number of yawning subjects in our study does not constitute a solid base for our chronotype-related results. Future efforts should investigate further the interaction of motion sickness and chronotype on the development of yawning.

The difference in occurrence of yawns between individuals with soporific and mild motion sickness symptoms compared to asymptomatic individuals under the same motion conditions provides evidence that yawning may be a viable behavioral marker of sopite syndrome. The operational problem with mild motion sickness and sopite syndrome is that both are not easily distinguishable as problems because they are not characterized by any visible signs, with people not being aware of their actual state. From an operational perspective, it would be useful if yawning could serve as a behavioral marker to recognize the onset of soporific effects and their concomitant reduction in cognitive performance.

This work is preliminary, based on a small sample size, and leaves many questions unanswered. A systematic investigation regarding these issues is needed to further elucidate the operational utility of yawning as a behavioral marker for sopite syndrome.

ACKNOWLEDGMENTS:
Authors and affiliations: Panagiotis Matsangas, Ph.D. and Michael McCauley, Ph.D., Department of Operations Research, Naval Postgraduate School, Monterey, CA.

REFERENCES

TABLE II. DIFFERENCES IN SYNWIN PERFORMANCE BETWEEN NON-YAWNER (NY) AND YAWNER (Y) GROUPS.

<table>
<thead>
<tr>
<th>Performance Score</th>
<th>NY M (SD)</th>
<th>Y M (SD)</th>
<th>Significance Wilcoxon Rank Sum test</th>
<th>Hedge’s g</th>
</tr>
</thead>
<tbody>
<tr>
<td>Composite</td>
<td>1348 (177)</td>
<td>1145 (109)</td>
<td>X(1) = 6.83, P = 0.009*</td>
<td>1.16</td>
</tr>
<tr>
<td>Memory task</td>
<td>506 (123)</td>
<td>536 (26.7)</td>
<td>X(1) = 0.047, P = 0.829</td>
<td>0.252</td>
</tr>
<tr>
<td>Arithmetic task</td>
<td>370 (94.0)</td>
<td>172 (77.2)</td>
<td>X(1) = 10.2, P = 0.002*</td>
<td>2.10</td>
</tr>
<tr>
<td>Visual task</td>
<td>248 (11.9)</td>
<td>236 (21.4)</td>
<td>X(1) = 1.62, P = 0.206</td>
<td>0.887</td>
</tr>
<tr>
<td>Auditory task</td>
<td>224 (26.8)</td>
<td>202 (30.1)</td>
<td>X(1) = 2.43, P = 0.119</td>
<td>0.793</td>
</tr>
</tbody>
</table>

* P < 0.05.