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Abstract. Theoretical understanding and numerical modeling of atmospheric moist con-
vection still pose great challenges to meteorological research. The present work addresses
the following question: How important is mixing between cloudy and environmental air
for the development of a cumulus cloud? A Direct Numerical Simulation of a single cloud
is way beyond the capacity of todayÕs computing power. The use of a Large Eddy Simula-
tion in combination with semi-implicit time-integration and adaptive techniques o!ers a
signiÞcant reduction of complexity.

So far this work is restricted to dry ßow in two-dimensional geometry. The compressible
Navier-Stokes equations are discretized using a discontinuous Galerkin method introduced
by Giraldo and Warburton in 2008. Time integration is done by a semi-implicit backward
di!erence. For the Þrst time we combine these numerical methods with an h-adaptive
grid reÞnement. This reÞnement of our triangular grid is implemented with the function
library AMATOS and uses a space Þlling curve approach.

Validation through di!erent test cases shows very good agreement between the current
results and those from the literature. For comparing di!erent adaptivity setups we devel-
oped a new qualitative error measure for the simulation of warm air bubbles. With the
help of this criterion we show that the simulation of a rising warm air bubble on a locally
reÞned grid can be more than six times faster than a similar computation on a uniform
mesh with the same accuracy.
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1 INTRODUCTION

SigniÞcant progress in numerous areas of scientiÞc computing comes from the steadily
increasing capacity of computers and the advances in numerical methods. An example is
the simulation of the EarthÕs atmosphere, which has proven to be an extremely challenging
subject owing to its multiscale and multi-process nature. Even with todays computers it
is impossible to explicitly represent all scales and all processes involved. To overcome this
di!culty one resorts to empirically-based closure approaches Ñ called ÒparameterisationsÓ
Ñ that try to capture the unresolved aspects of the problem. Needless to say, this
introduces errors.

An application with high practical relevance is numerical weather prediction. Generally,
its skill has improved considerably over the past few decades, and a signiÞcant portion
of this improvement has been attributed to the increased computing power and reÞned
numerical methods1. A notable exception to this general development is the forecast
of precipitation, where the progress has been almost non-existent2. The reason for this
state of a"airs is likely based on the fact that most processes leading to precipitation
are parameterized rather than explicitly simulated in todayÕs prediction models. In this
paper we shall develop and present a new numerical model that is speciÞcally tailored to
investigate one of these processes in detail.

The paper is organized as follows. First, in section2 we motivate the new model
development by explaining the meteorological problem. In section3 we then present the
numerical methods used in our work. This includes the discontinuous Galerkin method
for the spatial discretization, a semi-implicit method for the time integration, and a space
Þlling curve approach for the adaptive grid management. In section4 we validate our
code by a convergence study and three test cases from the literature. Section5 provides
some tests concerning the accuracy of the adaptive mesh reÞnement and sensitivity to
viscosity. The paper ends with a summary and outlook in section6.

2 METEOROLOGICAL PROBLEM

In this work we focus on a rather speciÞc scenario, namely a single cloud that rises
through the environmental air owing to its positive buoyancy (Þg.1). Upward motion of
the cloud (thick blue arrow) is associated with downward motion in a thin shell surround-
ing the rising cloud (thin blue arrows)3. This induces wind shear at the cloud-environment
interface, leading to Kelvin-Helmholtz instability which eventually results in turbulence.
The ensuing mixing between moist cloudy and dry environmental air leads to evaporation
of cloud droplets. This cools the parcel resulting in negative buoyancy corresponding to
a downward force (red arrows). This process is aptly called Òbuoyancy reversalÓ5,6,7.

Early indications for the signiÞcance of buoyancy reversal for cloud dynamics stem from
the laboratory experiments of Johari8. He introduced buoyancy reversal in his watertank
experiments with the help of chemical reactions occurring in the mixing region between
two ßuids. Johari found that, depending on the strength of the buoyancy reversal, the
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Figure 1: Illustration of buoyancy reversal. The blue arrows demonstrate the mean ßow
of a rising cloud, the black arrows represent turbulence produced by Kelvin-Helmholtz
instability and the red arrows illustrate buoyancy reversal. For further explanation we
refer to the text.

morphology of the cloud development could be vastly di"erent.
Similar results were found in highly idealized numerical two-ßuid experiments by Gra-

bowski4 in 1995. These simulations started with two ßuid layers, one on top of the other.
Convergence was imposed in the lower layer thus leading to a rising plume. The simulation
was done twice: once with and once without buoyancy reversal. The buoyancy reversal
was implemented as an additional downward force right at the interface between the two
ßuids. Initially the two simulations looked very similar, but in the further development
increasing di"erences could be seen.

These preliminary investigations suggest that buoyancy reversal has an important im-
pact on cloud dynamics and, hence, on the formation of precipitation. However, owing to
their idealized nature it is not possible to draw any Þrm conclusion about real clouds. On
the other hand, numerical weather prediction models and even so-called Òcloud resolving
modelsÓ are not able to explicity simulate the processes relevant for buoyancy reversal
owing to their coarse spatial resolution10. It is here that we want to make a step forward
by developing a new numerical model that is speciÞcally designed to deal with the mixing
processes at the cloud boundary.

A Direct Numerical Simulation (DNS) would require a resolution of about 1 mm in
each direction in order to properly resolve all dynamical scales10. In three dimensions this
amounts to some1024 grid points, which is way beyond the capacity of todayÕs computing
power. We, therefore, resort to Large Eddy Simulation (LES) in combination with a
semi-implicit time integration. The use of an adaptive technique will o"er a signiÞcant
reduction in numerical expense, as it allows us to focus attention to the cloud-environment
interface, which is the region where mixing and buoyancy reversal takes place.

3 NUMERICAL METHODS

In this section we present the numerical methods that are used in our work. The choice
of the numerical method requires somea priori knowledge of what a real cloud looks like.
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Measurements have shown a large variety of behavior9: There are clouds with numerous
steep gradients in the interior (see for example the liquid water content in Þgure 15 of
that reference9). On the other hand, smaller clouds often have a fairly smooth interior
with discontinuities mostly at the boundary of the cloud (Þg. 13 of Damiani et al.9).
It is the latter which we will concentrate on. For such clouds a discontinuous Galerkin
(DG) discretization in combination with a semi-implicit time-integration should be the
best choice; the reason for this choice is due to the high-order accuracy and robustness
in handling discontinuities of the DG method as well as the large time-steps allowed
by the semi-implicit method. The work in this paper represents the Þrst application of
a semi-implicit high-order discontinuous Galerkin method with h-adaptive mesh reÞne-
ment for meteorological ßow problems. Before describing these methods in the following
subsections we Þrst introduce the equations that we use in our simulations.

In the current work the fully compressible Navier-Stokes equations are used. For the
dry case we use the following set of equations (see equation set 2 in Giraldo and Restelli12):

!"
!t

+ ! á(" u ) = 0 , (1)

!" u
!t

+ ! á(" u ! u + p I2) = " " g k + ! á(µ " ! u ) , (2)

!"#
!t

+ ! á(" # u) = ! á(µ " ! #) , (3)

where the variables are(", " u , "#)T , " is the density,u = ( u, w)T is the velocity Þeld and
# is the potential temperature. Furthermore we denotd the gravitational constant with
g, the tensor product by ! , the identity in R2 by I 2 and the unit vector in the vertical
direction with k . The last term in eq. (2) and eq. (3) describes viscosity in a simpliÞed
way with the dynamic viscosity parameterµ. Pressurep in eq. (2) is given by the equation
of state:

p = p0

!
" R #

p0

" cp
cv

, (4)

with a constant reference pressurep0, the gas constantR = cp " cv and the speciÞc heats
for constant pressure and volume,cp and cv. Potential temperature # is deÞned by

# = T
!

p0

p

" R
cp

(5)

with temperature T. This deÞnition can be illustrated in the following way: if we consider
dry air with temperature T and pressurep, potential temperature # is given by the
temperature which the air would have when being transported adiabatically to a place
with pressurep0. In our model we use potential temperature as a variable because this
simpliÞes the extension to moist air in future research.
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Atmospheric ßow is often approximately in hydrostatic balance, which is deÞned by

!p
!z

= " " g. (6)

This balance can produce numerical instabilities, because the remaining terms in the
vertical component of eq. 2 are much smaller than the two terms of the hydrostatic
balance (6). To avoid this instability we introduce the mean statesøp, ø" and ø# which are in
hydrostatic balance. The mean state of pressurep is deÞned byøp = p(ø", ø#). The deviation
of the variables from the mean state is denoted by" " = " " ø" , #" = # " ø# and p" = p " øp.
By this procedure the set of equations (1) Ð (3) can be written as

!" "

!t
+ ! á(" u ) = 0 , (7)

!" u
!t

+ ! á(" u ! u + p" I 2) = " " " gk + ! á(µ " ! u ) , (8)

!"# "

!t
+ ! á(" # u) = ! á(µ " ! #) . (9)

To discretize these equations in space we introduce the commonly used notation

! q
!t

+ ! áF (q) = S (q) , (10)

with the vector q = ( ", " u , "#)T , the source function

S (q) =

#

$
0

" " " gk
0

%

& , (11)

and the ßux tensor

F (q) =

#

$
" u

" u ! u + p" I 2 " µ " !
" # u " µ " $

%

& . (12)

In the viscosity term of the ßux tensor we reduced the order of the derivatives by intro-
ducing the following new variables

! = ! u , (13)

$ = ! #. (14)

These equations are solved in each timestep with a discontinuous Galerkin discretization.
We come back to this at the end of the next subsection.
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3.1 Discontinuous Galerkin Method

In our work we use a discontinuous Galerkin method based on the strong formulation
using the Rusanov ßux at the cell interfaces. Furthermore we consider a two dimensional
triangular mesh; the extension to a full three dimensional method will remain a task for the
future but we envision using triangular prisms for this task. The triangular discontinuous
Galerkin method used in our work is described by Giraldo and Warburton11 for the case
of shallow water equations. Despite a di"erent deÞnition of conserved variablesq, ßux
tensor F (q) and source functionS (q), eq. (10) remains unchanged. Therefore, we only
repeat in this paper the main ideas of the descretization.

We start with multiplying eq. ( 10) with a test function %, integrating over an arbitrary
element! e and bringing the spatial derivative in front of the test function with integration
by parts. Replacing the ßux in the boundary terms by a numerical ßuxF! leads to the
following equation for the numerical solutionqN :

'

! e

!
! qN

!t
" FN á! " SN

"
%(x ) dx = "

'

" e

%(x ) n áF!
N dx, (15)

where" e is the boundary of element! e, n is the outward pointing normal vector of" e,
FN = F (qN ) and SN = S (qN ). Applying again integration by parts gives thestrong
formulation

'

! e

!
! qN

!t
" ! áFN " SN

"
%(x ) dx =

'

" e

%(x ) n á(FN " F!
N ) dx. (16)

Now we introduce an expansion by the polynomial basis functions

qN (x ) =
M N(

j =1

%j (x ) qj (17)

and assume that the test function%can be written as a linear combination of the basis
functions. Similarly we get coe!cients Fj and Sj by expanding FN and SN . Using
EinsteinÕs sum convention we get

! qi

!t
= "

'

! e

ö%i (F j ! %j " Sj %j ) dx +
'

" e

ö%i %j n dx á
)
Fj " F!

j

*
, (18)

where ö%i = M # 1
ik %k with the mass matrix Mik =

+
! e

%i %kdx. For the sake of simplicity we
did not write the dependence onx of the basis functions although it should be understood
that the basis functions depend on the spatial coordinates.

The integrals in eq. (18) are evaluated using high order cubature and quadrature
rules11. For the numerical ßux we use the Rusanov ßux which is given by

F!
N =

1
2

,
F

)
qL

N

*
+ F

)
qR

N

*
" &

)
qR

N " qL
N

*-
(19)
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with the maximum wave speed& = max ( |u| + a, |u| " a) wherea is the speed of sound.
If the normal vector n of element! e is pointing to the right, qL

N is the left limiting value
of qN and qR

N is the right limiting value.
So far we have derived a discontinuous Galerkin discretization for our set of equations

(10). By using a similar approach for the viscosity terms (13) and (14) we get

! i = "
'

! e

ö%i u j ! %j dx +
'

" e

ö%i %j n dx
)
u j " u !

j

*
, (20)

$i = "
'

! e

ö%i #j ! %j dx +
'

" e

ö%i %j n dx
)
#j " #!

j

*
. (21)

As these viscosity terms do not describe a ßow in a certain direction (as in the case of
the advection terms) we use the following numerical ßux for the viscosity terms inF!

N as
well as foru ! and #! :

F!
visc (qN ) =

1
2

)
qR

N + qL
N

*
. (22)

At this point, the right hand side of eq. (18) is known and we can integrate the
equation in time. This can be done either by an explicit or an implicit method. For an
explicit method we implement a third order Runge-Kutta method of Cockburn and Shu13.
Because of the fast sound and gravity waves this explicit time-integration is restricted to
a very short time-step. As explained before we are not interested in simulating these fast
waves accurately; therefore, we also use a semi-implicit time-integrator as presented in
the next subsection.

3.2 Semi-Implicit Time Integration

The semi-implicit time integration is implemented in a similar fashion to the approach
of Restelli and Giraldo14,15. The main di"erence is that we use potential temperature
instead of total energy as fourth variable.

The full nonlinear Navier-Stokes operatorN (q) is given in our notation by

N (q) = " ! áF (q) + S (q) . (23)

For the semi-implicit approach we deÞne a linear operatorL by

Lq =

#

.

.
$

! á(" u )
!p/!x

!p/!z + g ""

! á
) ø# " u

*

%

/
/
& , (24)

where a linearized version of the pressurep is used, given byp = cp øp
cv ø! ø" " #". As explained by

Restelli16 this linear operator is responsible for the fast moving sound and gravity waves
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and, therefore, must be integrated implicitly. This splitting is done by writing

! q
!t

= {N (q) " L q} + L q. (25)

For discretizing (25) in time, we use a backward di"erence of order 2, that leads to

1
' # t

1(

m= # 1

( mqn# m =
1(

m=0

$m
,
N

)
qn# m

*
" L qn# m

-
+ L qn+1 (26)

with ( # 1 = 1, ( 0 = 4/ 3, ( 1 = " 1/ 3, ' = 2/ 3, $0 = 2 and $1 = " 1. We rewrite this
equation collecting all terms withqn+1 and get

[1 " ' # t L ] qn+1 = ÷qex " ' # t
1(

m=0

$mL qn# m, (27)

where

÷qex =
1(

m=0

( mqn# m + ' # t
1(

m=0

$mN
)
qn# m

*
(28)

is an explicit predictor that has to be calculated Þrst. Solving the linear system of equa-
tions (27) (e.g., with a GMRES) gives the implicit corrector.

3.3 Mesh ReÞnement with Space Filling Curve Approach

As explained in section2 we expect steep gradients at the boundary of the cloud. For
increasing the numerical resolution in these regions we use h-adaptive mesh reÞnement.
This is managed with the function library AMATOS19. The main advantage of this
function library is that it handles the entire h-adaptive mesh reÞnement. Furthermore it
orders the unknowns very e!ciently by using a so-called space Þlling curve approach. For
further information we refer to the publication of Behrens et al.19.

The only modiÞcation which was necessary for our work was the calculation of the new
values at the grid points when elements are reÞned or coarsened. This is quite straight
forward. We simply evaluate the old polynomials at the positions of the new degrees of
freedom. Mass conservation is guaranteed by a corrective constant.

For the reÞnement criterion we currently use

|#"| # max
x

(|#"(x , t = 0) |) / 10. (29)

Wherever this condition is fulÞlled the mesh is reÞned until it reaches a given Þnest
resolution. In the rest of the domain the grid is coarsened until it reaches a given coarsest
resolution without modifying the resolution in the reÞnement region. The transition

8
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between Þne mesh and coarse mesh is given by the conformity of the grid. For avoiding
small scale structures moving into a region with a coarse mesh we add two to four rows
of Þne elements to the reÞnement region. In the future we will test di"erent reÞnement
criterions. For example the gradient of the potential temperature and the gradient of the
density of water vapor are interesting candidates.

Each of the numerical methods presented in this section have already been successfully
used for di"erent applications. The novelty of our work is the combination of the discon-
tinuous Galerkin discretization by Giraldo and Warburton11 with this h-adaptive mesh
reÞnement for meteorological ßow problems.

4 VALIDATION

For the validation of our new numerical model we used a convergence study with the
method of manufactured solutions. Furthermore we considered three test cases that are
fairly similar to our cloud simulation. These test cases are a small cold air bubble on top
of a large warm air bubble from Robert17, a density current from Straka et al.18, and a
smooth warm air bubble from Giraldo and Restelli12. The results are presented in the
following subsections.

4.1 Convergence Study

A discontinuous Galerkin method of polynomial ordernp should be able to describe
polynomial solutions of this order (plus one) exactly. Therefore the order of convergence
should benp + 1. This is the so-calledoptimal order of convergence. For proving that
our code reaches this optimal order of convergence we have to know an exact solution.
Up to now no exact solution for the two dimensional unsteady Navier-Stokes equations
is known (at least not for realistic ßow conditions with gravity e"ects included). Instead
we have to consider the inhomogeneous equations which arise analytically when inserting
given functions for the variables" , u, w and #. These functions have to be consistent with
the given boundary conditions. We consider solid wall boundary conditions. Therefore
we deÞne

u/
m
s

= A sin2 (2) n x ) sin2 (2) n z ) sin (2) t/T ) , w = u, (30)

"/
kg
m3

= u/
m
s

+ 2A + 1, and #/K = "/
kg
m3

in a domain of1m$ 1m. The amplitude A, spatial wave numbern %N and periodT can
be chosen arbitrarily. We use the parameters:

A = 0.1, n = 3, T = 10 ms, (31)

and a timestep of# t = 0.5ms. By inserting these given functions into eq. (10) we
derive analytically a new source function. For this modiÞed problem eq. (30) is the exact
solution and the L2-error can be computed.

9
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Figure 2: L2-error of horizontal wind speedu as a function of resolution# x, which is
given by the length of the shortest element edge. The corresponding polynomial ordernp

is given by the red labels. The thick red lines show the result of a linear regression with
the slope set to the optimal order of convergencenp + 1.

polynomial order: 2 3 4
experimental order of convergence:2.9424 3.8996 4.6764

Table 1: Experimental order of convergence computed by linear regression of the error in
Þgure2.

Figure 2 shows the L2-error of "u at time t = T. A linear regression of the error shown
in Þgure2 gives the order of convergence shown in table1. As the order of convergence is
approximately one order higher than the polynomial order, this table clearly indicates that
optimal order of convergence is achieved. In this case we used explicit time-integration
with a third order Runge-Kutta method of Cockburn and Shu13 and no viscosity. Similar
results are obtained with viscosity and with semi-implicit time-integration (provided that
a su!ciently small time-step is used to isolate the error due to the spatial discretization).

4.2 Three Test Cases

So far we have shown that our method converges for a modiÞed set of equations. For
validating our code with the original Navier-Stokes equations we use test cases that are
as similar as possible to our cloud simulation. In these cases no exact solution exists but
we can compare our results with those from the literature.
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Figure 3: Small cold air bubble on top of a large warm air bubble as introduced by
Robert17. The contour lines show the deviation of the potential temperature from the
background state and the gray lines show the adaptively reÞned triangular mesh used in
our simulation. The contour values are from -0.05 K to 0.45 K with an interval of 0.05 K.
For avoiding artiÞcial oscillations we use a constant physical viscosity ofµ = 0.1m2/ s.
For the time-integration we used here the explicit Runge-Kutta method.

4.2.1 Small Cold Air Bubble on Top of Large Warm Air Bubble

The Þrst test case that we consider is a small cold air bubble on top of a large warm air
bubble in a domain of 1km$ 1km. This test case was introduced by Robert17 in 1993. The
background state has a constant potential temperature ofø# = 300 K. Both bubbles have
a Gaussian proÞle in#". The warm air bubble has an amplitude of 0.5 K, the amplitude
of the cold air bubble is 0.17 K. All parameters are chosen identically to those in the
publication of Robert17.

There are only two di"erences: First we use a slightly di"erent resolution. The shortest
element edge in our simulation has a length of 11m. In combination with third order
polynomials the number of degrees of freedom corresponds to a Þrst order method with
a resolution of about 4m. We call this reduced value Òe"ective resolutionÓ. With 4m it
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is slightly smaller than 5m of Robert17. Second we use a constant physical viscosity of
µ = 0.1m2/ s, because we have currently no ßux limiter implemented in our code. We
found that this viscosity is suitable for avoiding artiÞcial oscillations at this resolution of
11m.

Figure 3 shows our result for this test case. By comparing our result with the corre-
sponding Þgure of Robert17 one can see that the results agree very well.

4.2.2 Density Current

A second test case is a density current initialized by a cold air bubble with a cosine
proÞle and an amplitude of 15 K in#" (Þgure4). This test case was introduced by Straka
et al.18. The viscosity of µ = 75m2/ s is identical to the setup of Straka et al.18. As in
the previous test case we use third order polynomials. The shortest element edge has
in our computation a length of 50m. This leads again to an e"ective resolution that is
slightly smaller than the smallest resolution of Straka et al. with 25m. Again we see no
di"erences between our result and the result in the literature.

4.2.3 Smooth Warm Air Bubble

As a third test case we computed the rising thermal bubble introduced by Giraldo and
Restelli12 (test case 2) in 2008. It is a single warm air bubble with a cosine proÞle in#".
As in the test case of Robert17 the domain has an extent of 1km in each direction and the
bubble has an amplitude of 0.5 K. We use the same parameters as in the publication of
Giraldo and Restelli12 except the viscosity parameter and the numerical resolution are now
modiÞed. For the viscosity parameter we use againµ = 0.1m2/ s and the shortest element
edge has a length of 11m. By using third order polynomials our e"ective resolution is
about 4m. This is signiÞcantly larger than all the e"ective resolutions used by Giraldo
and Restelli. As they use 10th order polynomials one has to divide their resolution by a
factor of three to get a comparable number of degrees of freedom as in our simulation.
This explains that they get almost no artiÞcial oscillations even without using a physical
viscosity.

As in the previous test cases there are no obvious di"erences between our results and
those from the literature. This gives us conÞdence that our code is error-free.

5 SENSITIVITY STUDIES

One important question for each adaptive numerical model is: how accurate is the
adaptive method? For comparing di"erent adaptivity setups we introduce a new error
measure for the simulation of warm air bubbles. In this section we start with describing
this criterion that is used later for some sensitivity studies. These studies include a
comparison between a simulation on an adaptive mesh with a simulation on a uniform
mesh, a sensitivity study concerning the size of the reÞnement region and a sensitivity
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