In this paper, we discuss the unique challenges faced by combat medics in the context of counterinsurgency warfare, particularly in Afghanistan. We emphasize the importance of training and preparation, as well as the necessity of a robust communications plan. The paper is divided into two main sections: an introduction and a discussion of the medical support provided by combat medics. The introduction highlights the unique nature of counterinsurgency warfare and the challenges it poses, particularly in terms of medical support. The discussion follows, with a focus on the medical support provided by combat medics at Firebase Medicine: a Non-Doctrinal Mission.
conducted relief-in-place operations; inbound units deployed their forces according to the posture of departing units. While planning for a deployment in Eastern Afghanistan in 2007, our battalion’s area of operation was altered 2 weeks prior to the deployment due to a decision to double infantry forces in eastern Afghanistan. Unfortunately, the doubling of combat forces was not met by any increase in area medical, surgical or evacuation assets. On arrival, our battalion was tasked to assume responsibility for a province the size of Wales. The updated mission also called for supporting additional firebases without additional organic medical personnel. The medical platoon’s challenge was to provide point-of-injury care for all traumatic injuries, deliver routine medical care to a 1000-person coalition force and partner with local health ministries to facilitate targeted health sector development across a vast mountainous region with minimal ground access and unpredictable air access. Further complicating matters, the platoon packed their medical equipment, shipped by sea to the original area of responsibility, prior to the change in the mission. Once in Afghanistan, unloading, repacking, and transporting personnel and equipment to the new areas took several weeks. Fortunately, medics intentionally hand-carried aid bags and initial treatment equipment during their movement into Afghanistan, allowing them to deliver essential care immediately. During this transition period, the unit sustained its first casualty.

Casualty Care on Arrival
On a cold evening in February 2007 in a volatile district in eastern Afghanistan, an explosion rocked a guard tower on a platoon-sized firebase. The soldier manning the tower was discovered on the ground unconscious, and the platoon medic, the sole medical asset on the small firebase, quickly evaluated the patient. The patient had an altered level of consciousness and presented with dyspnoea. During examination, the medic noted unequal rise and fall of the patient’s chest. While the medic was preparing to intervene, the patient lost consciousness. Acting promptly, the medic performed needle decompression for a suspected pneumothorax. The patient regained consciousness and his breathing normalized. A 9-line Medical Evacuation (MEDEVAC) request was denied due to severe weather conditions and soon after communication with higher headquarters was lost. The patient was loaded into the back of an up-armoured truck—the only armoured platform then available in Afghanistan—and driven to the battalion aid station over unlit, unimproved roads known to be littered with improvised explosive devices. The 30-mile trip took 3 h. In the confined space of the vehicle, en route care was limited to monitoring consciousness and pulse oximetry. As the small convoy departed the firebase with the casualty and the platoon’s lone medic, the firebase lost all on-site medical support for the remaining 24 soldiers.

This event highlighted several weaknesses of the original medical support plan. In response, four refinements were implemented: innovative medical training, personnel augmentation, equipment improvements and an enhanced communications plan.

Training initiatives
Prior to deployment, the initial mission analysis called for the medical platoon to provide support in a non-doctrinal manner by dividing among four bases. The physician and physician assistant were to be positioned at the two locations with the greatest risk of casualties, and the two most experienced medics would supervise the other two bases. Recognising the risks inherent in this model, the platoon underwent aggressive pre-deployment medical training. All medics underwent a 5-day long tailored TCCC course, primarily focused on the recognition and treatment of traumatic injuries with additional modules covering infectious disease, dermatology and health development. Training culminated in a final field exercise which included simulated patients. Each medic received hands-on live training and testing on basic and advanced trauma skills, which included: airway management with endotracheal intubation and surgical airways, needle chest decompression and tube thoracostomy, intravenous access including intraosseous access and venous cut down, burn and blast injury management, and haemorrhage control with pressure, tourniquets, and haemostatic bandages. All other members of the battalion received a multi-day curriculum of medical instruction modelled on the combat lifesaver course.

The battlefield surgeon was assigned to the unit 1 month prior to deployment and began daily lectures and hands-on training classes on non-trauma care; daily sick call, pharmacy and preventive medicine. Together with the assigned physician assistant, he heavily involved himself in the final planning for medical support on the battlefield. The two senior medics who were planning to man the smaller bases rotated to the local clinic to improve their non-trauma skills.

With the sudden change in mission, the additional training conducted prior to deployment proved its value. In addition, future steps were taken to sustain medical skills in theatre through reinforcement and validation testing of medic skills. Common medical scenarios were extensively rehearsed, and senior battalion and brigade medical providers were rotated through the remote bases on a routine basis to verify training and provide additional medical support. When possible, line medics were rotated back through larger bases for additional instruction and training. Finally, a mobile training team rotated throughout the major forward operating bases to provide refresher training for all medics halfway through the 13-month deployment and validated skill competency using standardised injuries on a manikin model.

Personnel augmentation
While deploying to Afghanistan with a full complement of medics, the non-doctrinal employment of our combat forces required a non-doctrinal approach to health support. As the only medical assets in the area, the platoon-sized medical platoon also provided medical coverage to nearby or co-located units. These included the Engineer Route Clearance Package, the Logistic Convoy Element, a composite Armored Security Vehicle platoon, the commander’s Personal Security Detachment and a liaison team to a NATO infantry company. With the majority of medics in the field on a day-to-day basis, the main battalion aid stations, which were already conducting split operations, were often manned only by one credentialed provider and one or two medics. Following the initial casualty experience, further analysis of the medical support plan determined that each firebase should have at least two combat medics. This would provide the firebase leadership the ability to send one medic out on patrol while leaving one medic at the firebase in the event of an attack. Based on this analysis, an additional medic was moved to each of the firebase, sometimes using a medic augmented from other brigade units. We recommend that this practice be implemented by any unit supporting firebases where there are not enough medics to provide simultaneous medical coverage at the firebase and with patrolling units.

Expanded equipment and capabilities
In addition to increasing the number of medics at each firebase, our post-event analysis highlighted the need to equip the firebase aid stations to be able to hold patients for extended periods of time.
Each aid station was provided oxygen, additional litters, patient warming capability, an expanded formulay of medical equipment and supplies, medical reference books, additional trauma equipment and dedicated communication platforms. Major treatment protocols and algorithms were reviewed, revised and posted clearly in each aid station.

In addition to staged improvements in infrastructure and medical equipment at each firebase, additional medical capabilities were expanded through training initiatives. Providers at each Role I facility conducted regular training sessions and clinic-based teaching for the evaluation and treatment of both trauma and non-trauma conditions. Medics rotating in and out of the smaller firebases were permitted to carry and employ equipment for more advanced emergency procedures once they had demonstrated their abilities to the satisfaction of the Battalion Surgeon. Every medic was held to the same standard and had to show competency in essential trauma skills before being allowed to serve at a firebase. Over time, the scope of practice and competency level for the firebase medics significantly increased, translating into improved care for battle and non-battle injuries.

Proven communications plan

Given the non-contiguous battlefield, redundant communication systems allowed medical providers to export expertise and direct medical care at remote locations. For medics located on firebases, communication platforms provided a lifeline when patients presented with critical injuries or complex medical issues. While not a substitute for face-to-face patient interaction, redundant communication systems enabled improved care and oversight. While video telecommunication systems provided a lifeline when patients presented with critical injuries or complex medical issues, voice communications were typically the only form of communication.

Redundant systems, such as civilian cell phone, satellite phone, voice over internet protocol phone and FM radio created a layered communications plan—and provided backup when one of the systems failed.

Providers proactively contacted their medics on a regular basis, both to provide routine medical consultation and to maintain constant situational awareness of the medical issues at each firebase. Additionally, the medical platoon leadership attempted to visit each firebase regularly to support their medics, gain a firsthand understanding of their conditions and conduct quality assessments.

Given the increased stress placed on medics at remote firebases, deliberate efforts to provide encouragement and constructive feedback were provided to each medic after significant patient care was performed and the patient was evacuated. These debriefings were conducted in person, if possible, or by telephone to both improve the provision of care and decrease the risks of burnout or stress accumulation.

While these changes were initiated and implemented in one battalion based upon our specific requirements, the training and resource interventions were shared with the other units in the theatre as a firebase risk mitigation strategy. For our unit, it became standard operating procedure to have at least two medics assigned to each firebase, and the practice was continued by the relieving unit. While quantitative measurements of trauma and non-trauma medical skills were not captured during the deployment, medical skills improved qualitatively based upon the condition of patients evacuated to higher levels of care with improve resuscitation and pre-hospital care.

CASUALTY CARE 1 YEAR LATER

In January 2008, an enemy combatant was shot in the chest during a direct fire engagement in a remote district. The on-scene platoon medic assessed the casualty and immediately sealed the chest wound. Due to adverse weather conditions preventing point-of-injury MEDEVAC, the casualty was ground evacuated in an up-armoured vehicle to the platoon firebase, which was supported by two combat medics. Air MEDEVAC was launched to retrieve the casualty but was forced to abort due to the inclement weather. The casualty’s condition deteriorated while the medics discussed the patient’s care with the battalion surgeon via telephone and radio. Following stabilisation with recurrent needle decompression, the medics cared for the patient in shifts with regular remote input from the battalion surgeon. Sixteen hours later, during a 30-min break in the weather, the casualty was evacuated on a CH-47 helicopter conducting an emergency resupply. In route care was delivered by an additional medics intentionally loaded on the helicopter at a prior resupply stop. The casualty was flown directly to the battalion aid station where the battalion surgeon performed tube thoracostomy and intubated the patient. Holding the patient at the Battalion Aid Station until further MEDEVAC was available, the patient was eventually evacuated to the Role III hospital at Bagram Airfield. This episode, like many others over the course of the deployment, validated the efforts made to improve the level and quality of care provided at remote firebases by isolated junior medics.

CONCLUSIONS

Our experiences in Afghanistan reinforce the reality that today’s combat medics often find themselves in remote inaccessible locations, far from the direct supervision and support of a credentialed medical provider, with limited or absent ground or air evacuation capability. A medic’s success under such challenging circumstances hinges upon prior preparation and planning. The unique challenges of firebase medical support must be taken into consideration during a unit’s pre-deployment phase. Even with excellent pre-deployment analysis and planning, however, the medical platoon must be prepared for unanticipated difficulties and changes. Careful and recurring threat assessments to identify personnel, training and equipment gaps, as well as ongoing targeted individual and collective skills training, will mitigate the many risks associated with the delivery of effective firebase medicine, better support the mission and, most importantly, save lives.

Contributors While we worked collaboratively on this article, RW assumes the responsibility as guarantor for the overall content of the article.

Disclaimer The views expressed in this document are those of the authors and do not reflect the official policy or position of the Department of Defence or the US Government.

Competing interests None.

Provenance and peer review Not commissioned; externally peer reviewed.

To cite Wilson RL, Truesdell AG. J R Army Med Corps Published Online First: [please include Day Month Year] doi:10.1136/jramc-2013-000126

Received 14 June 2013
Revised 6 August 2013
Accepted 6 September 2013

J R Army Med Corps 2013;0:1–4. doi:10.1136/jramc-2013-000126

REFERENCES

13 Mo Beard, PA-C (Officer in Charge of Field Craft, Combat Medic Course, Army Medical Department Center and School), in discussion with the author, February 2012.
14 Donald Parsons, PA-C (Lead Instructor for Combat Medic’s Combat Lifesaver Course, Army Medical Department Center and School), in discussion with the author, February 2012.