2014

How to Write an Abstract

Langford, Gary

Monterey, California: Naval Postgraduate School

http://hdl.handle.net/10945/45572

Downloaded from NPS Archive: Calhoun
How to Write an Abstract

Locate the reference in relation to a body of research and takes a critical stance using such words as “seriously underestimate”, “continues to be privileged”. What was the problem being solved? Identify the data or information with a purpose “highlight the”. Conclude by making an explicit argument, using evaluative terms “unless”, “failure”, “could inhibit”, to assert my point of view.

Locate reference in relation to body of research (Audience)
 1. C2
 2. Integration Theory
 3. Swarm

 4. Swarm Intelligence
 5. Agent based models

 6. Methods (fractal dimension, statistical analysis, optimization, entropy)

Critical Stance (Attention Grabber)
 • Approach trying to understand dynamics by external observations (Radcliffe-Brown)
 • Current systems add to capabilities; instead of seeing the swarm behavior, use an observational system. Current systems (thinking) (C2) (decision making) “seriously underestimate”

Problem being solved (the requirement is to think about the problem in an abstract way). Think about the implications of the problem being solve and weave them into the problem statement.

Provide some visibility into the results of the work – key items (integration theory was able to link and abstract the swarm and still be adequate throughout disparate domains (computer algorithms, physics, and sociological factors). Proven it is possible by observation using methods of xxx based on the underlying mechanisms (to differentiate)...

Make an explicit argument in favor of your idea (solution, hypothesis...) to assert your perspective ... use terms such as unless, failure, could inhibit (negative words) that correlate to critical stance.

Key words.
Text of abstract presented at the International Systems Sciences Society (ISSS), San Jose July 2012: Thinking in critical and reflective ways to solve multidisciplinary problems begins by recognizing the breadth of scholarship and practicum needed from the fields of science and humanities, business and medicine, and engineering and education. However, the allure of thinking in systems seriously underestimates the difficulties of pedagogic strategies to design a graduate- or professional-level course on systems science. More than just connecting disparate disciplinary cognitive structures, a metadisciplinary presentation of ideas requires the ability to build and work with emergent ideas, formulate integrative heuristics, apply the principles of integration and reasoning, recognize the fundamentals of causal learning and types of knowledge, and operate within an evaluative framework to explicate and measure learning. Based on an integration theory posited to predict outcomes and consequences of building and sustaining systems, the problem of not having well trained systems thinkers exposes a serious weakness in educating and maturing systems metadisciplinarians. The discussion focuses on emergence and integration; principles of action and perturbation; and cognitive structures.