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ABSTRACT

This thesis studies the problem of finding efficient ship base locations, area of operations
(AO) among bases, and ship assignments for a coast guard (CG) organization. This prob-
lem is faced by many CGs around the world and is motivated by the need to optimize op-
erational outcomes in the face of budget constraints. There is a need for a tool to optimize
the placement of the available number of ships to candidate bases and the assignment of
the AOs for each base. In this thesis, we developed a model that takes the objective of
minimizing the weighted demand for CG services. We also used constraints to have
proportionate AOs to the number of ships on each base and partition constraints. To the
best of our knowledge, until now, there has yet to be a tool designed for finding both ship
allocations and AOs for each base. Therefore, developing this tool is a huge step forward

in this area.



THIS PAGE INTENTIONALLY LEFT BLANK

Vi



Table of Contents

1 Introduction

1.1 Background

1.2 Objective

1.3 Research Questions

1.4 Scope and Methodology

1.5 Thesis Organization .

2 Literature Review
2.1 The Vehicle Routing Problem .
2.2 The Facility Location Problem .
2.3 Main Reference .

3 Model Development

3.1 Basic Model Formulation .
3.2 Dual Formulation .

3.3 Algorithm Development
3.4  Algorithm Formulation .

4 Analysis
4.1 Basic Model .
4.2 Greedy Algorithm .

5 Conclusions and Future Work

5.1 Summary

5.2 Future Work .

5.3 Conclusions and Recommendations .

List of References

Initial Distribution List

vii

N I (S

15
15
18
21
23

25
25
35

41

41

42

42

45

49



THIS PAGE INTENTIONALLY LEFT BLANK

viii



List of Figures

Figure 1.1

Figure 3.1

Figure 3.2

Figure 3.3

Figure 4.1

Figure 4.2

Figure 4.3

Figure 4.4

Figure 4.5

Turkish Coast Guard saving immigrants on a Coast Guard (CG) mis-

Visual representation of the distance function from point (x,y) to
base located on (0,y;) along coastline on y-axis . . . . . ... ..

Visual representation of the area of operation (AO), which are lim-
ited by the Exclusive economic zone on x-axis, for the bases located
along coastlineon y-axis . . . . . . .. . ... ... ... ...

Visual representation of the allocation of the operation area

Visualization of the multiple intersection points of the u;(y) —
Ai (ui(y)/w(y)) lines for each base (red and blue) along the y-axis

Visualization of the u;(y) — A; (u;(y) /w(y)) lines for each base which
are at y = 30 and y = 150 accordingly, and 4 and 6 ships for Base
1 and 2 sequentially where the boundary is at y=85 where we used
constant quantity of the demand function equals to one and impor-
tance of the demand function oscillating between one and two (2%
errorallowed) . . . . ... .. ... Lo

Visualization of the base locations and the distances from the edges
for the two-base example where bases are at y=30 and y=150 re-
spectively . . . . . L

Visualization of the u;(y) — A; (u;(y) /w(y)) lines for each base which
are at y = 10, y = 80 and y = 150 accordingly, and 2-1-2 ship alloca-
tions for bases one, two, and three sequentially where the boundaries
are at y=77 and y=119 where we used constant quantity of the de-
mand function equals to one and importance of the demand function
oscillating between one and two (2% error allowed) . . . . . ..

Objective Value of the different allocation of total ten ships to two
different bases at y = 50 and y = 170 (Calculated with 1% error rate)

X

17

18

22

28

29

30

32

36



THIS PAGE INTENTIONALLY LEFT BLANK



List of Tables

Table 4.1

Table 4.2

Table 4.3

Table 4.4

Table 4.5

Table 4.6

Table 4.7

Table 4.8

Table 4.9

Results for AO of bases for two-base problems in which we used con-
stant quantity of the demand function equals to one and importance
of the demand function oscillating between one and two (2% error
allowed) . . . . . ... e

Results for AO of bases for two-base problems in which we used a
quantity of the demand function equals to y/20 and importance of the
demand function oscillating between one and two (2% error allowed)

Results for AO of bases for three-base problems where we used a
quantity of the demand function equals to one and importance of the
demand function oscillating between one and two (2% error allowed)

Results for AO of bases for three-base problems where we used a
quantity of the demand function equals to |sin(y/10)| and importance
of the demand function oscillating between one and two (2% error
allowed) . . . . . . .. e

Results for AO of bases for multiple bases problems where we used
a quantity of the demand function equal to one and importance of the
demand function oscillating between one and two (2% error allowed)

Results for AO of bases for multiple bases problems where we used a
quantity of the demand function equal to y/20 and importance of the
demand function oscillating between one and two (2% error allowed)

Results for AO of bases for multiple bases problems where we used a
quantity of the demand function equal to |sin(y/10)| and importance
of the demand function oscillating between one and two (2% error
allowed) . . . . . ... e

Depiction of the model work as we increase the available number of
ships given quantity of the demand function equal to one and impor-
tance of the demand function oscillating between one and two (2%
error allowed) while the two bases are located at y = 50 and y = 170

Sample results of the model with two bases given quantity of the
demand function equal to one and importance of the demand function
oscillating between one and two (2% error allowed) . . . . . . . .

X1

31

31

33

34

34

34

35

37

38



Table 4.10

Table 4.11

Table 4.12

Table 4.13

Sample results of the model with two bases given quantity of the de-
mand function equal to y/20 and importance of the demand function
oscillating between one and two (2% error allowed) . . . . . . . .

Sample results of the model with more than two bases given quantity
of the demand function equal to one and importance of the demand
function oscillating between one and two (2% error allowed) . . .

Sample results of the model with more than two bases given quantity
of the demand function equals to |sin(y/10)| and importance of the
demand function oscillating between one and two (2% error allowed)

Sample results of the model with more than two bases given quantity
of the demand function equals to y/20 and importance of the demand
function oscillating between one and two (2% error allowed) . . .

Xii

38

38

39



List of Acronyms and Abbreviations

AO area of operation

AoA analysis of alternatives
CG Coast Guard

CGSB coast guard ship basing
nm nautical miles

NPS Naval Postgraduate School
TCG Turkish Coast Guard

USCG United States Coast Guard

Xiii



THIS PAGE INTENTIONALLY LEFT BLANK

X1V



Executive Summary

This thesis studies the problem of finding efficient ship base locations, area of operations
(AO) among bases, and ship assignments for a coast guard (CG) organization. This problem
is faced by many CGs around the world and is motivated by the need to optimize operational
outcomes in the face of budget constraints. There is a need for a tool to optimize the
placement of the available number of ships to candidate bases and the assignment of the
AOs for each base.

In this thesis, we capture the objective of minimizing the sum of the average demand (im-
portance and quantity) multiplied by the distance of the point (x,y) to the assigned base.
Minimizing the distance to the assigned base, which is weighted by the importance and
quantity of the demand, is appropriate. Some CGs may think that other objectives would
be more appropriate, like maximizing the covered demand or minimizing the response time.
Thus, anyone can build a new objective and use the remaining constraints of our model to

develop his own model.

Having AOs proportionate to the number of ships on each base was the most critical con-
straint. We controlled the AO sizes with this constraint and equalized the proportion of the

coverages in every AO. This also can be altered if so desired.

Other constraints in our model were partition constraints, which are standard in facility

location problems, as mentioned in the literature review.

After developing the model, we used it to find AOs for each base given ship allocation,
base locations, and demand functions. Then we used a greedy algorithm, which basically
tries to get the most utility out of the available options, to find the best ship allocation given

base locations and total available number of ships.

To the best of our knowledge, until now, there has yet to be a tool designed for finding
both ship allocations and AOs for each base. Therefore, developing this tool is huge step

forward in this area.
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CHAPTER 1.

Introduction

This thesis studies the problem of finding efficient ship base locations, area of operation
(AO) among bases, and ship assignments for a Coast Guard (CG). This problem is faced by
many CGs around the world and is motivated by the need to optimize operational outcomes
in the face of budget constraints. Most CGs have a common set of missions; in this chapter,

we provide background on the scope and mission of the CG and the objective of this study.

1.1 Background

In the United States, the goals of the CG include providing free and safe passage for sea
traffic, providing the needs of navigation and land transportation, and regulating bridge
lighting for the safety of navigation and land traffic [1].

More precisely, the United States Coast Guard (USCG) has 11 missions [2]:

Ports, waterways, and coastal security
Drug interdiction

Aids to navigation

Search and rescue

Living marine resources

Marine safety

Defense readiness

Migrant interdiction

A A o e

Marine environmental protection

—
e

Ice operations

11. Other law enforcement

These missions and the task definition of the USCG clearly demonstrate that this organiza-
tion has many responsibilities and a large operation area, as is the case with almost all of
the CG services around the world. Except for the ice operations, all the missions above are

standard. These missions are not only important to the government in terms of economic



and political reasons, they are also important in saving the lives of individuals.

Having a large operation area and operating actively on an everyday basis make profes-
sional life difficult for the men and women of CGs all over the world. A good example
is the CG base in Scituate, Massachusetts, that closes during the winter season due to bad
weather; crews are relocated to CG Station Point Allerton in Hull, Massachusetts [3]. It
is a seasonal closure of the base but USCG may need an optimization of the available re-
sources for the winter season since the Scituate base is closed during winter. For example,
the USCG policy is to return the crew to their home duty station, but the distance from Hull
to Scituate is over 10 nautical miles (nm). The second closest base is in Provincetown,
Massachusetts, which is over 25 nm. Therefore, if a nearby civilian needed help while the
Scituate base was closed, he or she might need to wait additional time. The difference in
distance could be a problem in a time-critical situation. Besides that, many waterways are
farther than that from the nearest CG station. USCG needs an optimization tool that takes

this distance factor into account.

Seamen of the CGs are faced with extremely busy schedules. Despite the danger at sea,
people in regions with high levels of conflict seek a better place to live, and immigration by
sea is often their favourite choice. As a result, many immigrants have died pursuing their
dreams of finding a safe country for their children. In April 2015, 700 migrants almost
drowned in the Mediterranean just outside Libyan waters. This incident could have been
the worst disaster yet involving immigrants being smuggled into Europe [4]. In another
incident the Italian CG rescued nearly 4000 immigrants in just one day from smugglers’
boats on the Mediterranean Sea on May 3, 2015 [5].

Additionally the Turkish Coast Guard (TCG) saved 895 immigrants between April 13-19,
2015, according to the TCG’s official website [6]. As of April 2015, the TCG had already
saved 923 immigrants in five events in 2015 [7]. According to another source, the TCG
saved 636 immigrants in just five days in the Aegean Sea [8]. On April 15, 2015, TCG

saved 42 people in a single event right outside of Dikili, Izmir, as shown in Figure 1.1 [9].

1.2 Objective

Because of these difficulties and limitations, CG services need to optimize the utility which

they are getting out of their resources. We think that there is a need for a tool to optimize



Figure 1.1: Turkish Coast Guard saving immigrants on a CG mission

the placement of the available number of ships to candidate bases and the assignment of
the AOs for each base. As of April 2015, the USCG is in the process of developing a
homeporting manual to support these types of decisions, according to a USCG program
analyst [10].

We want to develop a tool to help decision makers to place ships along their coastlines.
Since we need to know the effects of having multiple ship allocations, base locations, de-
mand functions, ship types, and AOs, this problem is complicated to solve. Instead of
solving a particular problem, we decided to develop a model to help every decision making

process related to coast guard ship basing (CGSB).

1.3 Research Questions

We mainly focused on answering the following questions. First, we try to answer the
question of how can we characterize overall performance in terms of base location, ship
assignments to each base, and AOs for each base. The second question is what are the
optimal base locations, ship allocations, and AO for each base. Finally, how do the answers
to the first two questions change when the mission demands are random. We will address

these questions in Chapters 4 and 5.



1.4 Scope and Methodology

This research focuses on maximizing an overall expected utility that depends mainly on the
response times, the number of unfulfilled missions, and the construction and operational

cost of each CG port.

Due to time constraints, we could only study a part of the problem, but it’s always possible
to have additional constraints to allow our model to capture more. In this study, we dealt
with ship allocations and the AOs for each base given the total number of ships and the
base locations. First, we developed a model with an objective of minimizing the weighted
distance and a constraint of having proportional AOs with the number of ships in each base.
The model gives the output of AOs for given base locations and ship allocations. Then, we
used a greedy algorithm, which tries to get the most utility out of the available options, to

find the best ship allocation for given base locations and total available number of ships.

First of all, we need to define the right objective that we want to capture for the CGSB
problem. Then, we decide what constraints play a role in the real world and how we should
include them to our model. To keep our model understandable, we keep it simple at first.
The only outcome of our model is AOs for each base. Then, we can apply the greedy

algorithm technique to find the optimum ship allocation.

1.5 Thesis Organization

We provide a literature review in Chapter 2, detailed explanation of the model in Chapter
3, analysis of the model in Chapter 4, and the conclusions and the recommendations in
Chapter 5.



CHAPTER 2:

| iterature Review

Existing literature does not address the operational problem of determining the appropriate
location for CG bases. This problem is unique in several ways. First, determining the
appropriate location involves the joint objective of placing bases and placing the AO for
each base. Second, this placement occurs in a one-dimensional environment along the
coastline, not in a two-dimensional environment as is more traditional in the literature.
Third, in the industrial world, demand only occurs after placing the facilities. However,
demand for the CG is not directly related to the location of the bases. Instead, this demand
is based on population, sea traffic, and the nature of the coastline. Fourth, location is
constrained by the fact that the entire coastline is not available for basing CG ships. Finally,
the assignment of ships to bases needs to be predetermined because the capacity of the

facilities is not identical.

In the industrial sector, the facility location problem deals with efficiently placing several
facilities in a given area and dividing that area for several vehicles to meet the demands
of customers. For this thesis, opening the appropriate bases for CG ships is equivalent to
placing several facilities in the industrial sector. Additionally, finding an allocation for the
ships is equivalent to dividing the area for several vehicles. In our case, since we can only
place bases on the coastline, it is a one-dimensional problem rather than a two-dimensional
problem. To the best of our knowledge, there is no work in the existing literature that fully

captures the operational situation that is the subject of this thesis.

Since we could not find any information on our particular problem, this literature review
focuses on the most relevant problem, which is facility location. We first discuss vehicle
routing and then focus on facility location because in the OR community, these two prob-
lems are mostly addressed together and can be referred to as inseparable. Vehicle routing
is a second-stage problem in facility location, so readers need to be informed about this

concept.



2.1 The Vehicle Routing Problem

The vehicle routing problem is a problem where we want to meet the demand from our
clients by serving them sequentially while using a route which is cost efficient. This can
be an example of how delivery systems work. Mailing companies, postal services, and
distribution companies of any sort use these techniques which are referred to as the vehicle

routing problem.

A basic example for the vehicle routing is Federgruen and Zipkin [11]. Federgruen and
Zipkin consider only the vehicle routing problem and not the facility location problem.
Federgruen and Zipkin address the problem of allocating a limited resource among differ-
ent locations and plan deliveries for the random demands in the area via delivery vehicles.
Federgruen and Zipkin also take holding and shortage costs into account along with trans-
portation costs. Federgruen and Zipkin propose an approach that is computationally fast

enough for practical work.

Vehicle routing problems can be more complex in terms of capacity restrictions. Carls-
son [12] considers the case of an uncapacitated stochastic vehicle routing problem where
the locations of the depots are fixed and the locations of the clients are unknown in his
paper. Carlsson aims to balance the workloads of all vehicles while dividing the area into
smaller regions. He uses a one-stage optimization technique. Carlsson uses a probability
function for the demands and using this information found an optimal result for partition-
ing. Carlsson applies the travelling salesman problem (tries to find the shortest path to visit
a list of cities) for the routing problem. Detailed information about vehicle routing and

other studies about this topic can be found in Min et al. [13].

2.2 The Facility Location Problem

The facility location problem has been considered in many different ways over the years and
people may define different objectives as useful. Locating a facility does not necessarily
need to have the same purpose. One may try to minimize their costs, while others may try
to minimize the distance from the customers to their facility. Even placing some security
cameras for surveillance of a place may be described as a facility location problem. There
are a variety of objectives to choose from like minimizing the cost, minimizing the overall

distance, maximizing the minimum workload, etc. We want to explain and give some



examples of them.

2.2.1 Objectives of the Facility Location Problems

As an example of minimizing the distance, the Fermat-Weber problem can be a good ex-
ample. The Fermat-Weber problem is related to the problem of placing several facilities in
given area, where the goal is to minimize the distance between facilities and any point given

in the area. Its discrete and continuous versions are analyzed in Hamacher and Drezner [14]
and Fekete et al. [15].

Minimum equitable radius and the n-center problems have their own unique objectives.
In the equitable radius problem the objective is to place n equal area Voronoi cells while
minimizing the maximum distance from any point to the closest cell. A good paper on
the subject is Suzuki and Drezner [16]. On the other hand, in the n-center problem, the
objective is having the minimum radius for n identical circles to cover the area. A well-

written paper on the subject is Suzuki and Drezner [17].

Minimizing the maximum workload is another example of the objectives for a facility lo-
cation problem. Carlsson and Devulapalli [18] study the problem of dividing a geographic
region into subregions so as to minimize the maximum workload of facilities in that region.
Our work in this thesis is related to Carlsson and Devulapalli, and so we discuss it in more
detail. Carlsson and Devulapalli take a function of distance to capture the cost effect of
serving from a facility to its assigned region. When the demand points follow a continuous
probability density, Carlsson and Devulapalli use a Multiplicatively Weighted Voronoi Di-
agram to find the boundaries between the regions. They also prove the boundaries found

using Multiplicatively Weighted Voronoi Diagram are the optimal boundaries.

Giving an explanation of the Voronoi Diagram will be helpful at this point. A Voronoi Dia-
gram is a geometrical construct which divides the plane according to the nearest-neighbor
rule: each point is associated with the region closest to it. Voronoi diagrams are described
with metrics which are modified by weights. Using only non-negative weights implies

positively weighted Voronoi diagrams.

Carlsson and Devulapalli examine versions with and without equal area constraint which

either requires every region to have equal area of service after partitioning or not. Another



problem considered by Carlsson and Devulapalli aims to minimize the overall workload

with the equal area constraints.

For the problem of having disconnected subregions for a facility, Carlsson and Devulapalli
offer two alternatives. The first alternative is having a problem with the objective function
of minimizing the overall workload. That would result with the optimal subregions which
are connected. That is defined as observed but never proved. We mention this case since
we also use the objective function of minimizing the overall workload and we will discuss

the disconnected region problem in Chapter 4.

To capture the benefits of max-min problem along with the minimum total workload prob-
lem, Carlsson and Devulapalli offer a weighted problem which is having the weighted

combination of the objective functions of two problems.

The second alternative to not having disconnected subregions is having a maximum dis-

tance constraint between any point x to its assigned facility.

As a further application of their model, Carlsson and Devulapalli also discuss the case
where the facility placement and the subdivision of the territory is variable. The authors
state their findings and claim a model but they note that the final configuration is in no way

guaranteed to be globally optimal.

After mentioning the variety of the objectives used for facility location problem, we should
state that having an objective of minimizing the overall cost or maximizing the overall

utility is the most common case and the most appropriate objective to our problem.

Minimize the Total Cost

Having an objective of minimizing the total cost surely limits the scope of the research
but there are still many different kind of examples in the literature. One of them is multi-
commodity, multi-plant. An important article dealing with facility location that considers
the problem of multi-commodity, multi-plant, capacitated facility location is Pirkul and
Jayaraman [19]. Pirkul and Jayaraman give an algorithm called PLANWAR (PLANt and
WARehouse). PLANWAR is a mixed integer programming model and is based on La-
grangian relaxation of the multi-commodity, multi-plant, capacitated facility location prob-

lem. Pirkul and Jayaraman also present a heuristic solution to get a good estimate of how



good PLANWAR performs.

In this paper, Pirkul and Jayaraman consider the problem where customers demand multiple
units of different kinds of products and there are warehouses to meet these demands. Ware-
houses are also fed by the multiple plant locations. The objective of this multi-commodity
model is to minimize the sum of the fixed costs of having these warehouses and the sum of
the transportation costs of both transferring the goods to warehouse and from warehouse to
the customers. PLANWAR gives the optimum location of the warehouses and storage of

goods in these warehouses as well as what to plant on each of the planting locations.

An example of using a greedy algorithm to the facility location problem is Guha and
Khuller [20]. They study the location of the facilities such as warehouses and industrial
plants. It is an uncapacitated facility location problem, and the driving factor is trans-
portation cost. Their objective function has both transportation and fixed cost of having a
facility open. The authors develop a greedy algorithm to solve this NP-hard problem.They
conclude that using a "local-improvement" algorithm, along with the algorithm given by

Shmoys et al. [21] yields an approximation factor of 2.408 of the optimal.

Shmoys et al. also study the same uncapacitated facility location problem, and their
polynomial-time algorithm gives a solution to the cost within a factor of 3.16 of the op-
timal given the distances between locations are non-negative, symmetric and satisfy the

triangle inequality.

So far we talked about meeting the demand with a single facility. One might want to be
able to meet the demand with k different facilities. We examined Aardal et al. [22] as
an example of the k-level problem uncapacitated facility location. k-level uncapacitated
facility location problem where every predetermined demand point needs to be serviced by
a sequence of k different facilities is considered and there are positive fixed costs for setting
up a facility in the paper. There are no capacity restrictions on the facilities and distances
are all non-negative and satisfy triangle inequality. The objective is to meet the demand of

each customer with k different facilities while minimizing the total setup and service costs.

Aardal et al. [22] find a randomized algorithm which is using the optimal solution of a linear

programming relaxation and its dual in order to make random choices. This algorithm is



proven to find a feasible solution of expected cost within factor of 3 of optimum cost,

although they have not performed the algorithm in practice.

As we mentioned before, Shmoys et al. [21] find an algorithm which gives 3.16-
approximation and later Chudak [23] advances the algorithm which is capable of giving
a solution of 1.736-approximation but all are considered 1-level problem. Whereas Aardal
et al. [22] gave the algorithm where k& > 2.

2.2.2 Different Approaches to Facility Location Problem

As an industrial application of the facility location problem we look at Corum [24]. In
this paper there are two types of facility planning which are facility location and facility
design, and the focus is on the facility location problem. The specific problem analyzed
is the location analysis of a bowling alley. The approach is an analysis of alternatives.
Three types of factors make up the objective function: the critical factors, the objective
factors, and the subjective factors. Critical factors are the most important factors which
define whether an alternative should be considered or not. Objective factors are the factors
which can be computed quantitatively. Subjective factors are considered between O and 1
and a value is given accordingly to evaluate the factors quantitatively. Corum calculates
an overall value to compare the alternatives and choose the best option by giving different

weights to each factor.

One of the other approaches to the facility location problem can be handling the prob-
lems one at a time with a staged model. We mention Haugland et al. [25] as an example.
Haugland et al. consider the problem of creating districts for vehicle routing problem with
stochastic demands. Haugland et al. use a two-stage optimization technique (partitioning
and routing) which is essential because demands are revealed only after the districts are de-
termined. Haugland et al. first partition the area into subregions, and once the demands are
revealed they optimize the route for the delivery. Haugland et al. use Tabu search (search
technique which always seeks for a new route) and multi-start heuristic (solving with dif-
ferent starting points, but never guaranteed to be the globally optimal) for the problem and
his computational results shows that Tabu search is superior to multi-start heuristic. Sim-
ilarly to this basic idea, we also use a two-staged optimization technique to find optimum

locations of the bases for our CG problem.
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After a broad introduction to studies which have been done in the facility location area,
finally we are going to talk about the main inspiration to our work. Before we do that,
we should state Aikens [26] can be a good source for anyone who seeks more information
about the problem. Aikens gives a broad perspective on the whole facility location problem
in distribution planning. Aikens considers the distribution planning facility location prob-
lem, in particular problem of simple incapacitated facility location, the simple incapacitated
multi-echelon facility location, the multi-commodity incapacitated facility location, the dy-
namic incapacitated facility location, capacitated facility location, generalized capacitated
facility location, stochastic capacitated facility location, and multi-commodity capacitated

single-echelon facility location.

2.3 Main Reference

In the main paper which inspires our work, Carlsson and Devulapalli [27] consider a ge-
ographical optimization problem defined in area R which has an objective of balancing
the utility over all of the n regions defined in R. These utilities are given by the integrals
JJg, f(x)ui(x)dA. Carlsson and Devulapalli use a probability density function of f(.) and

n utility density functions u;(.) which are defined in R.

Carlsson and Devulapalli define their problem as following to maximize the overall utility:

max Z//f X)ui(x

s.t. //R,-f(x)dA:qi Vi o
RiNR;j =0 Vi#j

R =R
i

Here is another optimization problem defined by Carlsson and Devulapalli to have a differ-

ent approach to the same problem. Carlsson and Devulapalli give this optimization problem
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to find a way to maximize the minimum utility of all n subregions.

max mm //f x)ui(x)dA)

st.RiNR; =0 Vi 2.2)

Jri=R
i

Carlsson and Devulapalli take both problems into consideration and solve them separately
to give the reader an option to choose the optimization problem which defines their prob-
lem. Since we can have different number of ships assigned to each base, we are not con-
cerned about equilizing the utilities among the bases. We find the optimization problem
2.1 is more related to our work and we also used the objective of maximizing the overall

utility/minimizing the overall distance for our model.

After taking the dual of the optimization problem 2.1 and with some adjustments, Carlsson

and Devulapalli use the following dual problem in their algorithm to solve it.

n}}n/Rf(x) mlax{ui(x) —A}dA
st.g'A=0

(2.3)

Carlsson and Devulapalli state that by using complimentary slackness technique, boundary

curves that shapes the areas are either functions of u;(x) — u;(x) or the ratio of u;(x)/u(x).

We also used the dual of our optimization problem, and find an algorithm to find the solu-

tion in Chapter 3.

Carlsson and Devulapalli maximize the utility, while we minimize the distance from the
base. They prove to have equal values for functions of u;(x) —uj(x) or the ratio of
ui(x)/uj(x); similarly we have equal values of u(y) — A; (u(y)/d;(y)) functions for differ-
ent bases on boundaries. They also use partition constraints that we need in our problem.
Having these similarities between our problem and Carsson and Devulapalli and the ease
of application of the dual problem, we think that our problem is much more related to their

paper than any other paper we mentioned on this subject. That is why we use this paper as
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a foundation to our work and we will discuss our model in the following chapter.

After developing a model with these similarities with Carlsson and Devulapalli, we imple-
mented a greedy algorithm to find the optimal ship allocation as Guha and Khuller [20]
did.
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CHAPTER 3:

Model Development

In this chapter we present the main model, which extends Carlsson and Davulapalli’s study
[27]. In Section 3.1, we introduce our basic model and explain how we developed it; in
Section 3.2, we explain the dual process of our model; in Section 3.3, we explain the way
our algorithm works; and in Section 3.4, we give the algorithm used to implement our

model.

3.1 Basic Model Formulation

Our goal is to suitably capture the objective of the CG, while at the same time keep the
model tractable. In order to do that, we thought about real world problems that the CG
encounters. Thusly motivated, we assume that the shore is vertical and follows the y axis,
so that the CG bases are located along that axis. Also, we average the demand along the
x axis, meaning that we assume that the demand is concentrated at a fixed distance x from

the shore and that the value of x is constant in y (see Figure 3.1)

Regarding the demand, we consider two main aspects: the quantity and the importance.
The average quantity at the y latitude is described by a real function g(y), and the average
importance (or weight) at latitude y is represented by the real function w(y). Hence, the
overall average demand per day at latitude y is d(y) = ¢(y) x w(y). This setup allows us to
capture calls of varying importance from vessels like sailboats to the relatively fewer but

critically important oil tankers.

The CG selects bases, allocates ships, and divides the AOs between each base so as to
minimize the distance to the demand. This has the concrete benefit of minimizing average
response times. More specifically, for ships based at fixed location y; where i € {1,...,n}
, the goal is to minimize [, d(y) (x2 4+ (y — y;)?)"/2dy, where A; is the width of the AOs of
base i (see Figure 3.2) The decision variables that capture the AOs for each base are defined
as A1, Ag, ... Ay
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The model we use can be formulated as follows:

/A'q(y)(szr(y—yi)z)l/zdygsi vie {1,...,n}

AyiNAy;=0 VYi#j,andi,je{1,...,n,}

Considering all bases jointly, the overall objective is to minimize the weighted distance as

shown below:

. 2 —v.)2)1/2
Al,ArIlz,l.P.,AnZi:/Aid(y)(x +(y—yi)°) '~ dy,

where x is the average location of the demand, for simplicity assumed to be constant in y.

Next, we consider the constraints. We have two types of constraints: those that correspond
to the ships’ capabilities and those that partition the AO. Regarding the former, for ships as-
signed to a base located at y;, the average distance they can cover is limited by the following

constraint:
[ a0)2+6-P) Py <si Vi€ (1.}

for s; = n; x 200 x (1/k), where s; is the number of ships in base i (r;) times 200, which is
the total distance that can be made by a CG ship in a day. We chose to use 200 nm because
we assumed an average speed of 20 knots and a 10-hour work in a day is appropriate. Since
the demand functions are also determined as the average demand in a day, our constraint
is consistent. Also, the constant k is a multiplier of the s; which is the percentage of the
demand covered in a given area. Since we are trying to find a solution for different total
numbers of ships for the same demand function, we need a parameter (k) to tell us the

coverage of the ships.

The parameter & is an input to our model. It is constant throughout the area. It represents
the fraction of demand covered by the ships assigned to each base. However we do not

know what the true demand met will be ahead of time. If k is large, then the constraint
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X=X x=0

Figure 3.1: Visual representation of the distance function from point (x,y) to base located on
(0,y;) along coastline on y-axis

will be infeasible. Thus, in practice, we start with a small k (ensuring feasibility), and
increase it until right before it becomes infeasible. The value of k generated by this process
is the coverage achieved by our allocation assignment. We use k in this fashion to examine

having different numbers of ships which are not enough to cover the whole AO.

Observe that the importance at latitude y, w(y) does not play a role in this constraint because
the distance traveled by a ship depends only on the demand quantity times the distance to
it.

The partition constraints are standard and given as follows:
AyiNAy; =0 Vi#j,andi,je{l,...,n,}

and
Ayt UAy, U.....UAy, = [0,Y],

where the coastline lies along the segment [0, Y]. These constraints ensure that there is no
overlap in the areas of operation assigned to each base. The entire coastline is covered by

ships assigned to exactly one base while in reality, there may exist some overlap in the AOs
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Figure 3.2: Visual representation of the AO, which are limited by the Exclusive economic zone
on x-axis, for the bases located along coastline on y-axis

(e.g., for safety reasons). Our formulation can be easily adapted by suitably redefining the

partition set.

So far, we assume that the ships are assigned to each base, but this will be relaxed later in

this chapter.

3.2 Dual Formulation

In this section we derive the dual problem, which leads to a numerical algorithm.

To wit, set [;(y) € {0, 1} that indicates whether point y is assigned to base i or not. Then,
the primal problem becomes

min dy) (2 + (v —vy))V2L(y)d
,17,27“_.7,,1; 20N+ =) i) dy

subject to
| a0+ =3 Py < s vi

i
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YIi() =1 YyeloyY]

i

Ii(y)€{0,1} Vie{l,...,n}, andy € [0,Y]
The linear relaxation of the above problem is

min Inzi:/Aid(y)u,-(y)Ii(y) dy
S.t.
[ at)dy <5 vie (1, )
Yh(y)=1 Vyel0.Y]
i
Li(y)>0 Vie{l,...,n}, andy € [0,Y],
where we simplified the notation by defining u;(y) = (x> + (y —y;)?)/2.

We discretize the AOs into cells j = 1,...,N of area € for average x and appropriate y
values, where z; ; is the proportion of mission demands in cell j assigned to base i. Also,
let u;;, d;, and q; be the average value of their respective continuous variables over cell j.

Then, the preceding integer relaxation becomes
InZiIlZZEdjuijZij
i
S.t.
Z&‘qjuijzij <s; Vie{l,...,n}
J

ZZ;’]’ZI Vje{l,...,N}

zj>0 Vie{l,...,n}, and j€{1,...,N}

The dual of this problem becomes

mastili—l—Zgj
N ]
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S.t.
equijdi+¢j<edju;; Vie{l,...,n}, and je{l,...,N}

Ai<0 Vie{l,...,n}
Introducing a new variable o; = ¢;/(&d;), we obtain

max ) sid;i+ ) €d;o;

T Sede

S.t.

Gjﬁuij—).i Vie{l,...,n}, and j € {l,...,N}

q,tij
dj

Ai<0 Vie{l,...,n}
After substituting in o = wiy)

uous version of the dual problem becomes

, and passing to the limit at N — o0 and € — 0, the contin-

Y
maxYsiki+ [ dv)o()dy

i

S.t.

Vie{l,...,n}, andy € [0,Y]
2 <0 Vie{l,...n}

Finally, the latter is equivalent to the problem

maxEs ) xmin () -3 )y
O 0 i
S.t.
4i<0 Vie{l,...,n}

The dual variables A, ..., A, induce a partition by assigning point y to the base that solves

mini{u,-(y) - )Liui(y)/w(y)}'

To be able to compute the objective, we need to find the u;(y) — Aju;(y) /w(y) lines for each
y and assign them to base i where i makes this value minimum. This would be the AO
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assignment for the bases. By changing the As, we shift the lines up and down which allows

us to meet the first constraint of the primal problem.

When the primal objective function and constraints are convex, Slater’s conditions show
that the optimal duality gap is zero. In other words, solving the dual problem and assigning
point y to the base that solves min;{u;(y) — A u;(y)/w(y)} yields a primal optimal solu-
tion, for primal dual variables li*, i =1,...,n. Thusly motivated, in the next section we
sketch the ideas behind a dual solution algorithm, and select functions w(-) and ¢(-) in our

numerical examples that lead to a convex primal problem.

3.3 Algorithm Development

To gain some intuition over the problem with two bases, let’s assume we are given an initial
Ao = (Ao1,Ao2) for i = 1,2, with resulting regions R (Ag) and R»(Ap), as discussed above.
As a result, one of the two things should happen:

/Ri(%) q(y)ui(y)dy > s; (3.1
or
AﬂwﬂWW@ﬁWSS (3.2)

Let’s assume for a moment that (3.1) is correct for i = 1. We need to change our Ay on the
first iteration such that, the result of the integral gets closer to s1. For the first iteration let
A1 = (M1, A12) where (A11,412) = (A1 — €, Ap) for € > 0 and small. When we substitute
these into the objective, we get,

Amﬁwﬂmw—%ﬂ@q@+

s 40 [ua0) - 30222 | a1+ s

Ry (o) w(y)
(3.3)

and

/Rl(/h)d(y> {”1@)—(301 —e)ul(y)} dy+

u 40) 1)~

“ (y)} dy+s1(Ao1 —€) +s52A02

2
Ra(A1) w(y)
(3.4)

In order to verify we are increasing our objective, we need to verify that the difference of
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Figure 3.3: Visual representation of the allocation of the operation area

(3.4) - (3.3) is positive. With the visual help of the Figure 3.3 we can write the following

as difference:

1 () ur(y)
/Rl (%) ¢d0) w(y) - /lem(xl) 4) [ul(y )~ o w(y) } dy (3.5)

u(y)
" Rz(ll)—Rz(ﬂo)d(y) {MZ(y) - Ao w(y) } dv—en

where Ry (A9) — R1(A1) and Ry(A;) — Ra(Ap) are defined in the sense of set differences.
For simplicity, we call these set differences "red"; see Figure 3.3. Then, the last equation

becomes

fo 20V dy= [ ) i)~ 2022 56
At

I G6), fgd(y) [1 () — ot 22| dy and [, d(3) [1o(3) — 20022} dy are order of
O(£?), so we can ignore them because the leading terms are of order 0( ). The remaining

equation becomes

ui (y) _
/Rl(l])gd(y) w0 dy — €s7 . (3.7)
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Since d(y) = q(y)w(y), Equation (3.7) can be rewritten as;

/R 1, B0 )y e (3.8)

By assumption, (3.1) is true for i = 1 which, together with (3.8), implies that [g 3, q(y)u1(y)dy >

s1 for € sufficiently small.

The case when Equation (3.2) holds for i = 2 is identical, and so we omit the developments.
The conclusion here is that, by setting (411, 412) = (Ao1,A02 + €) for the first iteration, the
objective of the dual problem improves as long as it holds the first constraint of the primal

problem.

In summary, when Equation (3.1) holds in iteration k we set A441; = Ax; — €, and when
Equation (3.2) holds we set A;y; = A ; + € as long as the first constraint of our primal
problem holds; in this way the dual objective improves and we find the optimal AO for

each base.

3.4 Algorithm Formulation

The developments of the preceding section suggest the following algorithm, that we imple-

mented in RStudio.
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Data: Number of the ships on each base, location of the bases, demand
on each j as quantity and importance

Result: AOs for each base

initialization;

Set every A to zero

while there is need to change any A do
find u;(y)d;(y) — Aiu;i(y) for each base i

find min of these for all i
assign each y to base i if base i has the minimum value
compute [, q(y)ui(y)dy for each i;
if [5,q(v)ui(y)dy > six for any i where x is allowed error then
‘ QLZ' = )L,‘ — &,
else
| done

end

end
Algorithm 1: Algorithm for the model

We started with As equal to zero because using (3.1) is easier than using (3.2) which re-
quires checking for the first constraint of the dual problem. Starting with zero ensures that

we only encounter the case for (3.1).

Starting with any value other than zero as any A; require us to check for Equation 3.2.
Since As are defined as A € (—oo, 0], starting with zero only requires to go toward negative

infinity.
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CHAPTER 4
Analysis

In this chapter we present our model results and analyze the model effectiveness and per-

formance.

e In Section 4.1, we analyze the basic model implication and results for different de-
mand functions to find the AO for each base.
e In Section 4.2, we discuss the implementation of the basic model with the greedy

algorithm to solve the ship allocation problem.

4.1 Basic Model

Explaining the inputs and outputs of the model would be helpful for the reader. There are
three inputs of the model. They are CG demand d(y) which is multiplication of ¢(y) and
w(y)), base locations (y;), and number of ships on each base (s;(n;)). The first input of
the basic model is CG demand, both the importance (w(y)) and the quantity (g(y)) of the
demand, which are crucial for our model to work. Actually, to be able to talk about CGSB,
we need to know the distribution of the demand along the area of interest. In our case, we
need to capture the importance and quantity of the demand to correctly sort the missions
like the CG does in real life. Also, we want our AO to be proportional to the number of
ships on each corresponding base. In order to achieve that purpose, we need to capture the

quantity of the demand alone and use it independently from the importance.

The second input of the model is base location (y;). We need to know the locations of the

bases to be able to solve the problem.

The third input of our model is the number of ships on each base (n;), referred to as ship
allocation. Although this will also be a result after we implement the greedy algorithm,
to make the problem simple enough, we must assume the number of ships on each base.
We calculate the AO of a given ship allocation and base locations, then using a greedy

algorithm we check the assumptions we made about ship allocation.

Although we have the objective value as an output, the only actual output of the model is
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the AO for each base. We implemented the algorithm given in Chapter 3 using RStudio,

and the following parts of this chapter discuss the results of that algorithm.

The basic model, given in Chapter 3, is stated one more time as follows.

i 2 —v:)2
Affl.l.finzi: /Aiq(y)W(y) X2+ (v —yi)>dy

s.t./ X+ (y—y)dy<s; Vi
Aiq<y)\/ (y—yi)*dy @

ANA =0 Yi#k

Uai=v
i

where ¢(y) is the quantity of demand for point (x,y), w(y) is the importance of the demand
for point (x,y) and \/x2 + (y — y;)? is the distance function between (x,y) and base i located

at point (0, ;).

After taking the dual formulation of the problem we had much easier problem that we
explained in Chapter 3 (see [4.2]).

mfx;si}g—k/oy F(y) X min; (ui(y) —A ui(y)) dy

st. 4, <0 Vi

(4.2)

Using this dual problem, we need u(y) — A; (u(y)/w(y)) lines for each base to iden-
tify the boundary between the AOs. Boundaries will be at the point where u(y) —

Ai(u(y)/w(y))=u(y) = A;j (u(y)/w(y)) for i # j € {1,...,n}.

To identify the location of the boundaries, we need to find the intersection points of the

u(y) — A; (u(y)/w(y)) lines for each base where they have the equal value.

Demand Function
AOs are basically shaped by the demands for CG in the area and how these demands spread
along the coastline. It is intuitive to assume that any two adjacent points have similar if not

the equal demand values because they are basically in the same area. However, given
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geographical differences or artificial effects made by humans, the demand functions may
rise or fall suddenly. One point could be on the sea traffic line while the other is outside
of it. Since no one wants to be outside of these lines, demand on the point outside the sea

traffic line may be zero while the point on that line may have a high demand value.

Other examples of this sudden rise and fall can appear around exit routes from industrial
ports, geographical obstacles along the coastline, or fishing area boundaries. In these cases
and others, demand of the two adjacent points can have a significant difference, which
causes demand functions to oscillate. As a result having a smooth demand function may not
always occur, and there may be more than one intersection point on u;(y) — A; (u;(y)/w(y))
lines for each base i. This interaction point gives us the boundary between the AOs, so it is

crucial for our problem.

In this case, we have several ways to choose an intersection point to determine the boundary
between AOs. The first option is to use the last intersection point as the boundary, which
will be biased toward the end of the plot. As shown in Figure 4.1, vertical line depicts the
last intersection point. This is not ideal because it is biased towards the end point of the

y-axis.

The second option is to use the average point between the first intersection point and the
last as the boundary between AOs. This is also not ideal, because resulting figure might
have a nonsymmetrical shape and boundary is required to be at another point that captures

the asymmetric behaviour.

The last option is to use trendlines for each line to find the intersection point of these
trendlines and thus, the AO boundaries. This way is ideal because it captures the specifics

of the lines, like asymmetric behaviour that is required to be captured.

In this chapter we use these trendlines to eliminate any concerns about multiple intersection
points. We refer to the intersection of these trendlines (See Figure 4.2) as the intersection

point.

4.1.1 Two Bases
In this section, we discuss our sample results for two bases, as depicted in Figure 4.2. In

this example, the bases are at y=30 and y=150, and there are four ships on Base 1 and six
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Figure 4.1: Visualization of the multiple intersection points of the u;(y) — A; (u;(y)/w(y)) lines
for each base (red and blue) along the y-axis

ships on Base 2. We must state that, to have ease of computation we used constant quantity
of the demand function equal to one and importance of the demand function oscillating
between one and two for discretized y in every 0.1 nm. We allowed an error rate of 2%.

Given this information, the basic model gives the result of an AO boundary at y=_85.

Without having this tool, one might think that if importance and the quantity of the demand
are constant, the optimum solution should be at y=80 with symmetric ship allocation on y-
axis. The reason is the length of the coast assigned to Base 1 should be 0.4 of the interested

coast line since there are four ships assigned to Base 1 out of ten total available ships.

In our case, ship allocation was not symmetric, meaning the distance between the left edge
of the area and the Base 1 was length 30, but the distance between the right edge of the area
and Base 2 is length 50, as shown in Figure 4.3. These distances also cause the difference

which is not that clear how this will affect the result and how much it affects.

Although we do not know how much the effect will be, we can say that since Base 1 is
closer to the edge of the area compared to Base 2, Base 1 can focus to use its forces more
to the right side of it, which is in the middle. It results as shifting this boundary to the right
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Figure 4.2: Visualization of the u;(y) — A; (u;(y)/w(y)) lines for each base which are at y =30
and y = 150 accordingly, and 4 and 6 ships for Base 1 and 2 sequentially where the boundary is
at y=85 where we used constant quantity of the demand function equals to one and importance
of the demand function oscillating between one and two (2% error allowed)

but it’s not easy to tell how much.

Our model shows that shift should be from y=80 to y=85. Without this tool, even with a
constant demand function, it is not intuitive where to have a boundary between AOs for

each base.

We showed our sample run results in Table 4.1 for two-base problems in which we use a
quantity of the demand function (g(y)) equal to one and importance of the demand function
(d;i(y)) oscillating between one and two. Table 4.2 also shows us the sample results for two-
base problems for which we use a quantity of the demand function (g(y)) equal to y/2 and

importance of the demand function (d;(y)) oscillating between one and two. We allow these
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Figure 4.3: Visualization of the base locations and the distances from the edges for the two-base
example where bases are at y=30 and y=150 respectively

results to have a 2% error when calculating the area.

As previously mentioned, k represents the fraction of demand covered by the ships assigned
to each base. In practice, we start with a small &, and increase it until right before it becomes
infeasible. Since it is a fraction covered it should be less than one. However, we observe
k values greater than one in Table 4.1. As long as we find a solution in which k =1
there is no need to add more ships, but it depends on the values of the demand functions
and we will need a different demand function which makes & < 1. We selected various
demand functions, but they may appear much smaller than the real demand functions. So,
we allowed the model to have any k value for different total number of ships given one
demand function. That is why we end up having k values that are greater than one. Since
we created these tables to see the results, we assume we always need more ships, and
compare those k values as they were less than one. It will give us the ability to compare the

results that we have so far.

In Table 4.1, we observe that for a total of ten ships in the first four rows, k is in range of
1.54-1.7 which is pretty close together. For nine ships in row five, k is 1.48 which is less
than the previous region, and for row six, it is even less for total of seven ships. It follows
the same pattern for more ships too. Thus, having more ships means more coverage over
the area which is intuitive. However, objective values are not distributed systematically and
it shows that ship allocation has an impact on the objective value. In Table 4.2, we observe
the same pattern with one or two exceptions. Also, there are a few cases in which we have
more than one boundary. These results indicate that there are three different regions, and
one in the middle belongs to one base while the other at the edge belongs to the other base.
In practice, it is not a desired result but having this base locations and the first constraint of
the primal problem makes the model find disconnected AOs. This means we may want to

change our base locations to get connected regions as the AO, but the model does find the
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Table 4.1: Results for AO of bases for two-base problems in which we used constant quantity of
the demand function equals to one and importance of the demand function oscillating between
one and two (2% error allowed)

Primal
Total Ships Ship Allocation Base locations Objective Value k&  Boundary
10 4-6 40-140 1750 1.7 75
10 3-7 40-140 1809 1.65 68
10 2-8 40-140 1942 1.54 48
10 5-5 40-140 1762 1.7 100
9 5-4 60-130 1815 1.48 112
7 4-3 60-130 1817 1.15 115
11 7-4 60-130 1876 1.75 129
14 9-5 60-130 1888 2.22 130
5 2-3 60-130 1805 0.83 84

Table 4.2: Results for AO of bases for two-base problems in which we used a quantity of the
demand function equals to y/20 and importance of the demand function oscillating between one
and two (2% error allowed)

Primal

Total Ships Ship Allocation Base locations Objective Value &k  Boundary
10 4-6 40-140 9458 0.32 121
10 3-7 40-140 9094 0.33 106
10 2-8 40-140 8964 0.34 90
10 5-5 40-140 10111 0.3 134
9 5-4 60-130 10183 0.39 141-183
7 4-3 60-130 10283 0.3 142-182
11 7-4 60-130 10217 0.46 144-179
14 9-5 60-130 10217 0.59 144-179
5 2-3 60-130 9576 0.16 127

solution for the given base locations.

4.1.2 More Than Two Bases

After running our model with two bases, we want to get some intuitive results with three
bases to check our model. In Figure 4.4 we can see the result of AOs for bases at y = 10,
y = 80 and y = 150 accordingly, and 2-1-2 ships for Bases 1, 2, and 3 sequentially where

the boundaries are at y = 77 and y = 119 with constant demand.

Having 2-1-2 ship allocation at Bases 1, 2, and 3 respectively, might result in having pro-
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Figure 4.4: Visualization of the u;(y) —A; (u;(y)/w(y)) lines for each base which are at y =10, y =
80 and y = 150 accordingly, and 2-1-2 ship allocations for bases one, two, and three sequentially
where the boundaries are at y=77 and y=119 where we used constant quantity of the demand
function equals to one and importance of the demand function oscillating between one and two
(2% error allowed)

portional AOs for the bases. In this case, the lengths of the AOs should be 80, 40, and 80,
which implies the boundaries should be at y = 80 and y = 120.

Even with the constant demand, as we discussed for the two-bases case, we do not expect to
see the exact same boundaries. The differences between boundary lines are a length of three
and one accordingly. The model matches our expectations so closely for the symmetric

distribution of the bases, which gives us confidence in our model.

We showed our sample run results in Table 4.3 for three-base problems in which we used a
quantity of the demand function (¢(y)) equal to one and importance of the demand function
(w(y)) oscillating between one and two. Table 4.4 also shows us the sample results for
three base problems for which we used a quantity of the demand function (¢(y)) equal to
|sin(y/10)| and importance of the demand function (w(y)) oscillating between one and two.

We allow these results to have a 2% error when calculating the area.
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In Table 4.3, we only observe for a total of ten ships, where k is in range of 1.64-1.78,
which is pretty close together. Similarly, objective values are also distributed close to one
another. We can say the same thing for Table 4.4. One important observation can be
dramatic changes in the boundaries. A small change in the ship allocation may result in a

dramatic change in the boundaries.

In Tables 4.5, 4.6 and 4.7, we give sample results for problems with four and five bases,
respectively. We try to capture different demand trends with three different demand func-
tions; constant equal to one, increasing equal to y/20, and oscillating equal to |sin(y/10)|.
We chose to give intuitive samples to see if the model outputs what we expect. In Table 4.5
for the first row, since the demand function is constant and base locations are uniformly dis-
tributed, we expect to see boundaries at 50-100-150. The model give us a pretty close result
since we allow it to have a 2% error. The second row gives boundaries of 41-81-121-161

which are really close to what we expected.

In Table 4.6 and 4.7 we also want to get the same results as boundaries that is why we
arrange the number of ships. In Table 4.6, we have similar results, which are pretty close
to what we expect. In Table 4.7, there seems to be a greater difference because we use the
sinus function. We can not expect the same result with a constant demand that uses a sinus

demand function.

We should state that, up until Table 4.7, we assumed ship allocation as an input rather than

an output.

Table 4.3: Results for AO of bases for three-base problems where we used a quantity of the
demand function equals to one and importance of the demand function oscillating between one
and two (2% error allowed)

Primal

Total Ships Ship Allocation Base locations Objective Value k&  Boundary
10 4-2-4 60-100-160 1979 1.78  79-121
10 4-4-2 60-100-160 1872 .72 78-159
10 3-2-5 40-110-140 1878 1.74  65-104
10 5-2-3 40-110-140 2108 1.71 100-143
10 3-5-2 40-110-140 1828 1.7 65-166
10 2-6-2 40-110-140 1971 1.64  45-166
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Table 4.4: Results for AO of bases for three-base problems where we used a quantity of the
demand function equals to |sin(y/10)| and importance of the demand function oscillating between
one and two (2% error allowed)

Primal

Total Ships Ship Allocation Base locations Objective Value k&  Boundary
10 4-2-4 60-100-160 1243 2.81 79-118
10 4-4-2 60-100-160 1185 275  78-155
10 2-4-4 60-100-160 1308 2.65 40-114
10 3-2-5 40-110-140 1175 278  68-106
10 5-2-3 40-110-140 1330 2,72 102-142
10 3-5-2 40-110-140 1146 273  67-168
10 2-6-2 40-110-140 1252 2.63  46-168

Table 4.5: Results for AO of bases for multiple bases problems where we used a quantity of the
demand function equal to one and importance of the demand function oscillating between one
and two (2% error allowed)

Primal
Total Ship Base Objective
Ships  Allocation locations Value k Boundary
8 2-2-2-2 25-75-125-175 1583 1.51  51-101-151
10 2-2-2-2-2  20-60-100-140-180 1566 1.9 41-81-121-161

Table 4.6: Results for AO of bases for multiple bases problems where we used a quantity of the
demand function equal to y/20 and importance of the demand function oscillating between one
and two (2% error allowed)

Primal
Total Ship Base Objective
Ships Allocation locations Value k Boundary
16 1-3-5-7 25-75-125-175 7927 0.61  50-101-151
25 1-3-5-7-9  20-60-100-140-180 7841 0.96 40-81-121-161

Exhaustive Search

After showing the sample results, we explore the exhaustive search results for our model.

As we can see from Figure 4.5, we run the model for different ship assignments for each
base. We used an exhaustive search technique, which means checking for every possible
solution to find the optimal one. An interesting observation from this figure is its convexity.
From the exhaustive search figure, it is pretty clear that having six ships on Base 1 and four

ships on Base 2 has the minimum objective value that we are trying to minimize. An
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Table 4.7: Results for AO of bases for multiple bases problems where we used a quantity of the
demand function equal to |sin(y/10)| and importance of the demand function oscillating between
one and two (2% error allowed)

Primal
Total Ship Base Objective
Ships  Allocation locations Value k Boundary
8 2-2-2-2 25-75-125-175 1014 238  50-104-148
10 2-2-2-2-2  20-60-100-140-180 994 3.01 43-80-117-163

allocation of 6-4 appears to be the best allocation for constant demand and bases at y = 50
and y = 170.

4.2 Greedy Algorithm

After developing a model to define the optimal AOs for bases, we tried to answer the
question of how many ships we should assign each base. We have a couple of options.

These options include:

Exhaustive Search Trying every possible integer solution and finding the one that has the
minimum objective to find the optimum allocation of the ships;

Greedy Algorithm Allocating one ship at a time to a base where we have the maximum
decrease in the objective value; and

Non-integer Solution Finding a non-integer solution to our problem and after proving the
convexity of the results, checking the nearest integer solutions to give us the optimum

allocation of the ships.

Since our exhaustive search result in Figure 4.5 appears to be convex, a greedy algorithm
makes more sense compared to other alternatives. One of the benefits of having a greedy
algorithm is that once the results prove convexity, we are assured the globally optimal

solution to our ship allocation problem.

Table 4.8 shows us the intermediate steps while solving a problem of having ten available
ships for two bases located at y = 50 and y = 170. Objective values were calculated with a
2% error rate. We observe that k values constantly increase, which means we cover more
of the area while objectives are close one another. As we stated before when we deal with

the basic problem, objectives can also oscillate dramatically. We do not see this behavior
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Figure 4.5: Objective Value of the different allocation of total ten ships to two different bases at
y =50 and y = 170 (Calculated with 1% error rate)

here because we are not dealing with all the objective values for different ship allocations.

We only see the results where we have the minimum objective values.

In Tables 4.9 and 4.10, we give sample results for the greedy algorithm we used. The only
two inputs for this table are base location and number of ships. Optimal ship allocation is

one of the outputs of our model.

In Table 4.9 most results state that fair division is the best result of constant demand. How-
ever, the model gives different results if two bases are asymmetrically distributed. Though
this result is intuitive, before this model, it was not clear how we would allocate ships on

asymmetrically distributed bases.

In Table 4.10, we give results for the demand function equal to y/20. The model gives us
3-7 result for the ship allocation in most cases. Before this model, it was not clear how to

divide ten ships between two bases.
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Table 4.8: Depiction of the model work as we increase the available number of ships given
quantity of the demand function equal to one and importance of the demand function oscillating
between one and two (2% error allowed) while the two bases are located at y =50 and y =170

Available Primal
Number of Ship Objective
Ships Allocation Value k  Boundary

3 2-1 1808 0.59 128
4 2-2 1780 0.67 104
5 3-2 1771 0.88 117
6 3-3 1780 1.01 104
7 4-3 1767 1.2 113
8 5-3 1778 1.34 121
9 5-4 1766 1.52 111
10 6-4 1771 1.68 117

As a reminder, ship allocation was a result not a given, for Tables 4.8-4.13.

In Tables 4.11, 4.12, and 4.13, we give results for four and five bases to check multiple base
results with the greedy algorithm. We use the same inputs with Tables 4.5, 4.6, and 4.7, but

this time, ship allocation is an output rather than an input that we assume.

The algorithm yielded the exact results in Table 4.11 as we estimated in Table 4.5. Table
4.12 uses the same inputs as 4.7, but the results are slightly different in row 1. We as-
sume this was caused by the error we allowed in conjunction with the |sin(y/10)| demand
function. Table 4.13 uses the same inputs as Table 4.6, and all rows match. We also give
additional results that we could not have known without this tool, which were difficult to

predict beforehand.

To conclude, in this chapter we numerically tested our model under various assumptions.
While we did not employ real data from a sponsor, our analysis suggests that our results are
robust to different model inputs, such as importance of the demand, quantity of the demand

functions, number of bases, and ships and types of ships.
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Table 4.9: Sample results of the model with two bases given quantity of the demand function
equal to one and importance of the demand function oscillating between one and two (2% error
allowed)

Available Primal
Base Number of Ship Objective
locations Ships Allocation ~ Value k  Boundary
50-170 10 6-4 1771 1.68 117
40-170 10 5-5 1787 1.67 103
30-170 10 5-5 1820 1.64 101
40-150 10 5-5 1745 1.76 99
50-150 10 5-5 1736 1.72 101
30-160 10 5-5 1787 1.72 99
50-180 10 6-4 1804 1.64 119
30-150 10 4-6 1771 1.68 85

Table 4.10: Sample results of the model with two bases given quantity of the demand function
equal to y/20 and importance of the demand function oscillating between one and two (2% error
allowed)

Available Primal
Base Number of Ship Objective
locations Ships Allocation Value k  Boundary
50-170 10 3-7 8745 0.34 109
40-170 10 3-7 8957 0.34 106
30-170 10 3-7 9104 0.39 103
40-150 10 2-8 8802 0.34 91
50-150 10 3-7 8705 0.4 107
30-160 10 2-8 8967 0.33 89
50-180 10 3-7 9031 0.33 110
30-150 10 2-8 8923 0.34 89

Table 4.11: Sample results of the model with more than two bases given quantity of the demand
function equal to one and importance of the demand function oscillating between one and two
(2% error allowed)

Available Primal
Base Number of Ship Objective
locations Ships Allocation Value k Boundary
25-75-125-175 8 2-2-2-2 1583 1.51  51-101-151
20-60-100-140-180 10 2-2-2-2-2 1566 1.9 41-81-121-161
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Table 4.12: Sample results of the model with more than two bases given quantity of the demand
function equals to |sin(y/10)| and importance of the demand function oscillating between one
and two (2% error allowed)

Available Primal
Base Number of Ship Objective
locations Ships Allocation ~ Value k Boundary
25-75-125-175 8 1-3-2-2 1027 238  23-102-147
20-60-100-140-180 10 2-2-2-2-2 994 3.01 43-80-117-163

Table 4.13: Sample results of the model with more than two bases given quantity of the demand
function equals to y/20 and importance of the demand function oscillating between one and two
(2% error allowed)

Available Primal
Base Number of Ship Objective
locations Ships Allocation ~ Value k Boundary
25-75-125-175 16 1-3-5-7 7927 0.61  50-101-151
20-60-100-140-180 15 1-1-4-4-5 7921 0.58 51-73-127-164
20-60-100-140-180 20 1-2-5-5-7 7903 0.77 42-77-127-162
20-60-100-140-180 25 1-3-5-7-9 7841 0.96 40-81-121-161
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CHAPTER 5:

Conclusions and Future Work

In this chapter, we summarize our work, suggest future work and give some conclusions

about this thesis.

5.1 Summary

We developed a model to solve a common problem that every CG faces. To the best of our
knowledge, until now, there has yet to be a tool designed for finding both ship allocations
and areas of operations (AOs) for each base. Therefore, developing this tool is huge step

forward in this area.

We tried to capture the objective of minimizing the sum of the average demand (importance
and quantity) multiplied by the distance of the point (x,y) to the assigned base. We think
minimizing the distance to the assigned base, which is weighted by the importance and
quantity of the demand, is appropriate. Some CGs may think that other objectives would
be more appropriate like maximizing the covered demand or minimizing the response time.
Thus, anyone can build a new objective and use the remaining constraints of our model to

develop their own model.

Having AOs proportionate to the number of ships on each base was our most critical con-
straint. We controlled the AO sizes with this constraint and equalized the proportion of the

coverages (k) in every AO. This also can be altered if so desired.

Other constraints in our model were partition constraints, which are standard in facility

location problems, as mentioned in the literature review.

After developing the model, we used it to find AOs for each base given ship allocation,
base locations, and demand functions. Then, we used a greedy algorithm, which basically
tries to get the most utility out of the available options, to find the best ship allocation given

base locations and total available number of ships.
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5.2 Future Work

We intended to get data from different CG organizations to check our model, but due to time
constraints we were not able to accomplish this task. Having demand data from different
CG organizations and implementing them into our model could give us the understanding
of how well we are doing compared to current ship allocation methods. That also helps
the CG organizations to improve the utility of their resources. This task may come with
challenges to the demand function. One possible problem may be unrecorded demand that
we knew we could not meet so did not record. Other possible problem may be unseen
activities like illegal transportations of drugs, people, etc. These challenges may require

other techniques.

Our model required knowing the exact locations of the bases that were going to be used.
We wanted the model to select the base locations among a certain number of candidate base
locations but never had a chance to add this capability due to time limitations. Having a
fixed cost for opening a base and a relation between weighted distance and this cost can
give us the required results. One possible problem might occur when defining the right
relation between the fixed cost for opening a base and the weighted distances. Since this

would be subjective, a sensitivity analysis would be appropriate for this relationship.

5.3 Conclusions and Recommendations

In Chapter 4, we numerically tested our model under various assumptions. While we did
not employ real data from a sponsor, our analysis suggests that our results are robust against
different model inputs, such as importance of the demand, quantity of the demand func-

tions, number of bases and ships, and types of ships.

For the case of two bases with ships already assigned, we found that k increases with the
number of ships, and confirmed that our instincts aligned with our model results for the
cases that we predicted the outcome. For this reason, we are confident about the model re-
sults for the ones we could not forecast the result. These conclusions carry over to problems

with more than two bases. We checked up to five bases in this study.

Then, we relaxed the assumption that the ships were preassigned and used a greedy algo-

rithm to find an efficient ship allocation. While we did not prove mathematically that the
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objective function is convex in the ship allocations, extensive numerical analyses strongly
indicate that convexity holds. In this case, we found that having different base locations can
change the outcome, and we can also deduce how asymmetriccally located bases should
have different number of ships on each base. We confirmed that our instincts aligned with
our model results for the cases in which we predicted the outcome for ship allocations, too.
That gives us the confidence in our model results as AO and the ship allocations for each

base.
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