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ABSTRACT 

Taiwan is prone to many natural disasters, especially typhoons. This thesis adapts an 

existing stochastic prepositioning optimization model to create a tool for Taiwan military 

disaster recovery planners, and then uses experimental design techniques to 

systematically explore solutions. The goals are to minimize the expected number of 

casualties and unmet commodities demands, and to determine the average number of 

workers deployed in response to each scenario. A design of experiments methodology is 

applied to the optimization model to reveal how uncertainty in the parameters translates 

to uncertainty in objective function values. The approach can also identify the parameters 

with the greatest impact on the objective function, and result in more robust solutions. 

The analysis demonstrates that it is not always necessary to spend as much money and 

deploy as many workers as in the past in order to get the best results. Additionally, the 

approach shows how a decision maker, with more accurate and current weather reports, 

can refer to the path and intensity of typhoons while making rescue plans. In summary, 

this research shows that there is great potential for quantitative methods to improve the 

disaster-relief planning process. 
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EXECUTIVE SUMMARY 

Taiwan is vulnerable to many natural disasters, with typhoons being one of the most 

destructive natural hazards, causing damage to infrastructures and economic losses. The 

Ministry of National Defense (MND) is committed to disaster assistance. However, 

planning and conducting a disaster-relief mission is challenging due to the uncertainty 

inherent in natural disasters and the demand created by them. The MND does not 

currently have any analytical tool that will assist in disaster management preparation and 

rescue planning. Although studies have been conducted on post-disaster data, no 

quantitative models have been established to evaluate the disaster management process. It 

is therefore imperative to develop a quantitative method that assesses the disaster relief 

processes. The results from the analysis could be used to evaluate risk and aid in 

determining the effectiveness and resource feasibility of alternatives while maintaining 

the desired outcomes. 

This thesis adapts an existing stochastic Prepositioning Optimization Model 

(POM) to create a tool for the Taiwan MND disaster recovery planners, and uses 

experimental design techniques to systematically explore solutions to the model. It is 

important to note that natural disasters are inherently uncertain, and so are the needs for 

assistance they create. Quantitative approaches to assist in disaster relief processes must 

recognize this uncertainty. We analyze the past 60 years of Taiwan typhoon data, and the 

relationship between region and typhoon characteristics. Based on historical data, the 

baseline scenario for this thesis is established. We model a network of five Affected 

Areas (AAs) and eight Relief Locations (RLs), five typhoon scenarios of different 

intensity, and several budget levels for expansion of the initially prepositioned resources. 

The goal is to minimize the expected number of casualties and unmet commodities 

demands, and to determine the number of workers deployed in responding to each 

scenario. 

 The design of experiments (DOE) approach surrounding the optimization model 

allows the data and assumptions that are made in the model to include more variability. In 

this experiment, several types of model parameters are varied: (i) the numbers of 
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available relief workers; (ii) budget, penalty for inability to transport commodities, and 

survival rate of the emergency population; and (iii) the probability of occurrence of each 

scenario. More importantly, this approach allows the analyst to determine the extent to 

which different sources of uncertainty affect the nature and the quality of the solution, 

and hence to find robust solutions given the unpredictable nature of natural disasters. This 

is advantageous because required data are not always readily available. 

With the data and assumptions in this thesis, the POM solutions only partially 

address the question of how to improve disaster relief operations. Above a certain level of 

budget and number of available relief workers, the results may indicate large amounts of 

spending without a corresponding improvement in the primary objectives of saving lives 

and transporting displaced people. While further enhancements to POM would make it 

easier to determine cost-effective resource allocation decisions, the results in this thesis 

clearly demonstrate that it is not always necessary to spend as much money and deploy as 

many workers as in the past in order to get the best results. Additional insights gained 

from our analysis include how a decision maker can, with more accurate and current 

weather reports, exploit the path and intensity of typhoons to make rescue plans. 

Continued cooperation between Taiwan MND and Taiwan Weather Bureau (TWB) is 

recommended.  

In summary, the motivation for this thesis is a desire to assist Taiwan MND 

planners and help the military respond to disaster assistance requests in a timely and 

effective manner. This research shows that there is great potential for quantitative 

methods to assist in this process.  
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I. INTRODUCTION 

 BACKGROUND 

Asia and the Pacific Islands suffer more natural disasters than any other area of 

the world (United Nations Environment Programme [UNEP], 2001). In 2005, the report 

entitled Natural Disaster Hotspots—A Global Risk Analysis, issued by the World Bank, 

indicated that “Taiwan might be the place most vulnerable to natural hazards on Earth, 

with 73% of land and population exposed to three or more hazards per year” (Lin, 2008). 

Taiwan is situated upon a tectonic fault line that places the island at high risk of 

earthquakes and volcanic activities. The island also has experienced a growing number of 

typhoons that are increasing in strength due to rising ocean temperatures in the Pacific. 

Lastly, Taiwan features a landscape contoured by some of the highest mountains in the 

Asia-Pacific region, creating a sharp drop to the ocean that produces rapid runoff of 

rainwater and floods in the alluvial plains on the western side of the island. 

Tropical cyclones are called “typhoons” in the Western Pacific and “hurricanes” 

in the Atlantic and the East Pacific Oceans. Typhoons are always accompanied by heavy 

rains, strong winds, and large waves. They are responsible for at least 70% of Taiwan’s 

natural disasters. Figure 1 from the Republic of China (ROC) Environmental Protection 

Administration (EPA) shows the tracks of all tropical cyclones in the Northwest Pacific 

area between 1980 and 2005, and Taiwan is located in an area of high intensity. On 

average, Taiwan is hit by 3.6 typhoons a year, resulting in USD $600 million in economic 

losses (National Science and Technology Program for Hazards Mitigation [NAPHM], 

2011). Meanwhile, the incidence of typhoons in Taiwan has risen from an average of 3.3 

per year in the 20th century to an average of 5.7 per year after 2000. After 2000, experts 

also note a rising number of medium-strength typhoons and fewer minor typhoons 

(Stokes & Ma, 2011). The increasing number of typhoons threatens the island. 
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Figure 1.  The track of typhoons in the Northwest Pacific (from Stokes & Ma, 

2011). 

One of the massive typhoons to hit Taiwan was Typhoon Morakot in August 

2010. It produced copious amounts of rainfall, totaling 2,777 mm (109.3 inches). This 

extreme amount of rain triggered enormous mudslides and severe flooding throughout 

southern Taiwan. One mudslide buried the entire Xiaolin Village. A total of 461 people 

perished and 192 others are still listed as missing. The total damage to property was more 

than USD $3.3 billion (NAPHM, 2011). After Typhoon Morakot, the ROC President Ma 

Ying-jeou increased the number of soldiers working in rescue and recovery actions to 

46,000. Such personal tragedy and huge amount of property lost in Xiaolin Village 

motivated the ROC government to enhance the effectiveness and performance of the 

existing disaster emergency management system. In 2011, the Executive Yuan (one of 

five branches of the ROC government) passed amendments to the Disaster Prevention 

and Response Act (DPRA) that enable Taiwan authorities to continue to work with the 

ROC Armed Forces to actively prepare for disaster prevention and relief in the event of 

complex disaster. 
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 CURRENT MILITARY EMERGENCY PLANNING 

Before the DPRA was implemented by the Emergency Operations Center (EOC), 

the ROC government tasked each city to devise an individual emergency plan to respond 

to disasters, and to call the local fire department for further assistance in rescue and repair 

operations if needed. After the Typhoon Morakot crisis, the ROC government realized 

that multiple counties would be affected during a large disaster, and a high-performance 

and more professionalized central emergency management system would be needed. 

Therefore, the EOC focused on rebuilding the organizational framework at the central 

government level and in coordination with the ROC Armed Forces (Office of Disaster 

Management [ODM], 2010). 

The ROC Armed Forces carry out disaster relief missions in accordance with the 

Executive Yuan’s DPRA  and the “Regulations on the ROC Armed Forces’ Assistance in 

Disaster Relief” to protect the safety of citizens’ lives and assets. Furthermore, with 

“disaster relief” listed as one of its main missions, the ROC Armed Forces is building 

disaster relief capabilities under the assumptions that disaster relief is akin to fighting a 

battle and that they should emphasize disaster prevention over disaster relief, and 

prioritize disaster avoidance over disaster prevention. In preparation for a major disaster, 

the ROC Armed Forces “implements active measures to prepare for disasters in advance, 

pre-deploy troops for disaster relief, and ensure readiness for rescue operations under the 

premise of not affecting combat readiness, and fully engages in disaster relief” (Ministry 

of National Defense [MND], 2011, p. 11). 

During the disaster prevention and preparedness stage, military bases in each 

theater of operation (TO) will pre-deploy troops in areas prone to mudslides and flooding 

24 hours before a typhoon lands, when there is more flexibility for maneuvers. The 

commander will contact heads of local governments and notify them of the number of 

troops deployed, their location, and capabilities for further decision making. For medical 

support, Armed Forces General Hospitals are capable of organizing a total of 158 medical 

and health service support teams. These teams are manned by 537 medical professionals 

and paramedics and equipped with 158 ambulances (MND, 2011). Military hospitals, 

medical teams, public hospitals, and civilian hospitals in local areas will jointly establish 
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a liaison and report system aimed at integrating resources from hospitals and field 

medical units as well as enhancing capacity and mission effectiveness of emergency 

medical support. 

The ROC Armed Forces plan to use several military bases in all theaters of 

operations (including the islands of the Kinmen, Matsu, and Penghu) for the temporary 

accommodation of disaster victims. This provides a total capacity to house 16,551 people 

during major disasters. Furthermore, gymnasiums, military conference halls, and school 

classrooms can be immediately converted into high-density shelters (no beds) in the event 

of a complex disaster, with a capacity of 36,961. The total capacity of low- and high-

density shelters is 53,512 (MND, 2011). The shelters may be adjusted at any time to 

complete the mission of accommodating disaster victims. The ROC Armed Forces also 

provide military vehicles and aircraft to transport the victims and the commodities during 

disaster relief efforts. We use those numbers as upper bounds in our budget. 

Each year, the ROC government organizes regional and local disaster relief 

exercises to test emergency response mechanisms and operating procedures. Figure 2 

displays the process for requesting the supplies from the MND after a typhoon warning 

has been issued. The EOC and city provide quick but limited responses, such as 

providing a small amount of water and food. The MND plays an important role: Once it 

receives a request from the EOC or an affected city, it provides the majority of relief 

workers, transport vehicles, and supplies.   



 5 

 
Figure 2.  Disaster response system diagram. 

The ROC Armed Forces will continue to assist local governments at each level in 

carrying out disaster relief work, when requested, so as to minimize the damage they 

sustain. This response system has been the process for the past 10 years, and through 

hundreds of typhoons, with little improvement to the procedure.  

 THESIS MOTIVATION 

Even though the potential for a strong typhoon crisis exercise in Taiwan has been 

discussed extensively by both the EOC and the MND, a detailed analysis of the 

prepositioning of deployed personnel before the disaster (and its effect on the disaster’s 

aftermath) has not been performed. That phase of the plan is important because the 

efficiency of subsequent logistics, such as the distribution of supplies to affected areas 

during the disaster, is highly dependent on those strategic personnel estimates. Part of this 

analysis must be the accurate estimation of personnel requirements.  
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Inaccurate personnel estimates for typhoon response, as for any major operation, 

can cause major disruption of training, patrols, and day-to-day operations, and can 

produce a sudden strain on base support services (barracks, food service, utilities, etc.). 

This is particularly evident when requirements have been overestimated, as has happened 

in the vast majority of occasions. For example, in the author’s own experience, massive 

numbers of people have been called up without clear direction as to how they should be 

used, or where they should go. Underestimating can be even more detrimental in other 

ways, as it can impede the distribution of relief supplies. Developing a tool that supports 

the ROC Armed Forces’ personnel prepositioning requirements with historical data–

based estimates would help ensure the conservation of limited resources while also 

ensuring an effective response to disasters. 

 LITERATURE REVIEW 

Nissen (2011) applies contingency theory to model the 2004 Indian Ocean 

disaster, in which an earthquake and tsunami killed over 230,000 people in 14 countries. 

He realizes that many of the operations are dynamic, and that using a static statistical 

model does not fully capture the real situation. He simulates six months of relief efforts 

by governmental and nongovernmental organizations in several time steps, and compares 

his simulated results to actual relief effort data. One of the results he observes is that 

dynamic models are more reliable when modeling large international responses to 

disasters. 

Heidtke (2007) focuses on the problem of prepositioning and delivering critical 

commodities following a disaster. He discusses several strategies that help ensure that 

commodities are available at the right time and location: prepositioning, preemptive 

federal action, time-phased deployment, and surge transportation. His approach employs 

an earlier version of the optimization model used in this thesis, and applies it to a 

hurricane scenario and to a nuclear explosion scenario in the Washington, DC, 

metropolitan area. He shows that stochastic optimization can be a useful strategic tool to 

help decision makers plan for a given type of disaster under uncertainty in its severity. 
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Salmeron & Apte (2010) further study the use of stochastic optimization for 

strategic prepositioning of resources in a natural disaster, and provide references for 

earlier work in deterministic disaster relief modeling. They use a two-stage 

prepositioning optimization model (POM) to determine the decisions that have to be 

made prior to and after a disaster. They include factors such as vehicles used to rescue 

people or deliver supplies, casualties, population needing mass housing, and expansion 

possibilities, as limited by the available budget. The study determines the optimal 

prepositioning of resources given probabilities for multiple possible disaster scenarios.  

Farlow (2011) applies POM to represent and analyze the flooding disaster 

problem in the Sacramento region. He discusses that POM recommends where to 

preposition and/or expand warehouses, healthcare personnel, ramp space, and 

transportation vehicle capacity in order to evacuate the victims after a flood disaster 

occurs. He also analyzes several budget levels for expansion of the initially prepositioned 

resources. The study demonstrates the application of POM optimal prepositioning of 

resources given probabilities for multiple possible disaster scenarios.  

Gardner (2015) uses POM as a basis for an asset allocation model for naval 

logistics planners, and then uses design of experiments (DOE) techniques to 

systematically explore solutions to the model. She demonstrates that a DOE methodology 

on an optimization model can reveal how uncertainty in the parameters translates to 

uncertainty in objective function values, identify the parameters with the greatest impact, 

and find robust solutions.  

Lee, Ghosh, & Ettl (2009) describe a tool for distributing emergency supplies 

after disasters strike. They use a combination of optimization tools for modeling the 

supply chain and distribution method, and link these with simulation modules for 

generating disaster severity and demands. They make several changes to their base case 

model, such as increasing the amount of pre-positioned supplies or using different 

shipping rules, to identify a few potential improvement opportunities for disaster 

response planning. Lee, Ghosh, & Ettl (2009) also provide a number of references for 

operations research models and applications to emergency response, but state that most of 
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the published research focuses on a particular type of disaster and does not cover the full 

spectrum of supply chain modeling to disaster severity modeling.  

With the exception of Gardner (2015), those who evaluate different alternatives 

from their base case models tend to focus on one-at-a-time changes from the base case, or 

a small number of combinations of two or three model inputs or parameters. A difficulty 

of this approach is that it limits the opportunities for insight. A large-scale DOE approach 

is needed so that excursions from the base case are generated in a structured manner 

(Kleijnen, Sanchez, Lucas, & Cioppa, 2005; Sanchez et al., 2012). 

 THESIS OBJECTIVES AND THESIS ORGANIZATION 

The objective of this thesis is to show how applying large-scale simulation 

experiments to optimization models can help improve the ROC’s plans for responding to 

natural disasters. Specifically, this combined approach can reveal plans that reduce the 

expected number of casualties and unmet commodities demands, and determine the 

proper expected number of workers deployed in response to each scenario.   

The remainder of this document explores the use of a variant of POM, with 

additional relief worker constraints, in selected scenarios associated with five main 

regions in Taiwan. Chapter II introduces different approaches to plan and model typhoon 

disasters. First, it summarizes the past 60 years of Taiwan typhoon data and the 

relationship between regions and typhoon characteristics. Based on historical data, the 

baseline scenario for this thesis is established. This thesis introduces the POM with extra 

constraints of available relief workers added, and discusses how it can be used to guide in 

the future of Taiwan Military Force deployed plans. The selection process for the affected 

areas (AAs), relief locations (RLs), and military vehicles used is described at length, and 

is based on each military defense zone. The different populations involved in a typhoon 

disaster are designated. The data gathered for this thesis and their input into the model are 

explained. This includes the scenario selection and other assumptions made to complete 

the input data. Chapter III explains the results of the POM, based on running 512 variants 

of the model. These variants involve changing settings for some of the model 

assumptions, such as the maximum numbers of workers available at different locations, 
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the maximum budget available for relief efforts, and the probabilities associated with 

different typhoon trajectories. They are constructed using design points from a nearly 

orthogonal-and-balanced (NOB) design, developed for exploring large-scale simulation 

experiments (Vieira, Sanchez, Kienitz, & Belderrain, 2013). Chapter IV summarizes our 

findings and describes future work to help planning for other disasters. The appendix 

contains a detailed description of the mathematical formulation of POM. 

 HISTORICAL TAIWAN TYPHOON DATA   

Due to the high frequency of typhoons crossing Taiwan, the Taiwan Weather 

Bureau (TWB) has established processing software to record each typhoon’s data for 

further analysis. At the same time, this system can forecast a typhoon’s path and the 

potential track area for up to 72 hours. Figure 3 is a screenshot of this TWB typhoon 

forecast system when a typhoon occurs. Using this software, we can collect the following 

data: intensity of the typhoon, typhoon center pressure, possible crossing path and time, 

amount of rain, and radius of the storm. 

 
Figure 3.  Typhoon forecast and information (from TWB website, 

http://www.cwb.gov.tw/eng/, 2015). 



 10 

This thesis uses the typhoon data from 1958 to 2014. There have been a total of 

395 typhoons recorded. In the following analysis, we first use JMP© software (SAS, 

2015), an interactive statistical software package, to create graphs and histograms to 

reveal the relationship between the recorded elements such as crossing path, typhoon 

intensity, and terrain. We then use these data to develop the baseline scenario to be used 

in the following simulation runs.  

The intensity of a typhoon is measured by the maximum average wind speed near 

the center, and falls under the three categories shown in Table 1. The Beaufort scale is an 

internationally recognized system for classifying a typhoon based on the maximum wind 

speed at the center. A storm is recorded as a low-intensity typhoon if its maximum wind 

speed at the center reaches 34 to 63 knots (17.2 m/s–32.6 m/s), or 7 on the Beaufort scale. 

Medium typhoons in the data represent maximum wind speeds at the center reaching 64 

to 99 knots (32.7 m/s–50.9 m/s), or 12–15 on the Beaufort scale. A typhoon that has 

maximum wind speeds at the center at or exceeding 100 knots (51.0 m/s), or 16 on the 

Beaufort scale, is labeled as a strong typhoon in our data set.  

Table 1.   Categorization of the intensity of typhoons. 

Typhoon intensity 
Maximum wind speed near the typhoon’s center 

km/hour m/sec Knot 
(mile/hour) 

Beaufort 
scale 

Tropical storm (low intensity) 62–17 17.2–32.6 34–63 8–11 
Typhoon (medium intensity) 118–183 32.7–50.9 64–99 12–15 

Typhoon (strong intensity) at or above 
184 

at or above 
51.0 

at or above 
100 

at or above 
16 

 

According to the data from Table 1, of the past 395 typhoons, 43% were of 

medium intensity, 29% were of strong intensity, and around 27% were of low intensity. 

The distribution histogram from JMP is shown in Figure 4. 
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Figure 4.  Intensity distribution of the study data set. 

A typhoon in the Pacific can happen anytime throughout the year, yet most 

typhoons happen between July and September. Figure 5 shows that typhoons come to 

Taiwan in late April at the earliest, and November at the latest. July, August, and 

September see most of the typhoon strikes. 

 
Figure 5.  Monthly distribution of the study data set. 

The direction of a typhoon’s movement is generally subject to the control of 

large-scale airflow. The typhoons occurring in the Northwestern Pacific Ocean, mainly 

steered by the Pacific subtropical high-pressure circulation, are mostly westbound. When 

they reach the vicinity of Taiwan or the Philippines, which are always at the edge of the 

Pacific subtropical high-pressure region, they vary in their paths, with some going on 

westbound, some turning northeast, and some even lingering or moving in a circle. In 

general, a typhoon follows a regular path when the large-scale steering flow is clearly 
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identifiable, and behaves more unpredictably otherwise. The general typhoon crossing 

paths are shown in Figure 6. 

 
Figure 6.  Schematic diagram of typhoon tracks crossing Taiwan. 

Table 2 produces further details about how the impacting paths are categorized. 

Categories 1 through 9 are those tracks shown in Figure 6. Category 10 typhoons are 

those that crossed Taiwan but did not fit into categories 1 to 9. Category 11 typhoons are 

those that did not cross Taiwan. 
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Table 2.   Categorization of the path of typhoons. 

Category Description of crossing path 

1 Moving westward or northwestward after passing through Taiwan’s 
northern sea region 

2 Moving westward or northwestward after passing through northern 
Taiwan 

3 Moving westward or northwestward after passing through mid-Taiwan 

4 Moving westward or northwestward after passing through southern 
Taiwan 

5 Moving westward or northwestward after passing through Taiwan’s 
southern sea region 

6 Moving northward along Taiwan’s east coast or eastern sea region 

7 Moving northward along Taiwan’s west coast or the Taiwan Strait 

8 Moving eastward or northeastward after passing through Taiwan’s 
southern sea region 

9 Moving eastward or northeastward after passing through southern Taiwan 

10 Unique paths that do not fit into the above categories 

11 Did not cross Taiwan 

 

When a typhoon crosses an area, the wind intensity depends on the typhoon 

strength, but also the local terrain, the latitude of the area, and the typhoon path. This is 

true whether or not the typhoon’s center passes directly over Taiwan. The complexity of 

the Taiwan terrain and the diversity of the typhoon paths have resulted in significant 

variations in wind intensity from area to area. The distribution of crossing paths from the 

data set appears in the left subplot of Figure 7. Notice that there are 202 path-11 

typhoons, those that did not cross Taiwan. For better observation, the distribution plot is 

also created after filtering out path-11 data. Both distribution plots are shown in Figure 7. 
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Figure 7.  Typhoon crossing path distribution plot with and without path-11 

data. 

The interaction plot between month and crossing path is shown in Figure 8, best 

viewed in color. The data set including path 11 indicates highest typhoon frequency in 

August. After filtering out path-11 typhoons, the higher frequency of typhoons following 

paths 1, 2, and 3 shown in red becomes more evident. 

 
Figure 8.  Interaction plots of typhoon crossing path distribution versus month, 

including and excluding path-11 data. 
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Based on the historical data and the plots from JMP, the differences can be 

generally summarized as follows by looking at individual regions. The observations are 

included in the baseline model scenario: 

• Eastern Taiwan: Since typhoons often directly approach this area, it 
experiences stronger winds than other parts of Taiwan. The wind intensity 
is the strongest for typhoons in the path categories 2, 3, and 4. Categories 
5 and 8 have the second strongest intensities. 

• Northern and northeastern Taiwan: This area experiences the strongest 
wind intensity with typhoons in the path categories 2 and 3, followed by 
typhoons in path categories 1, 4, and 6. 

• Mid-Taiwan: Due to the nearby Central Mountain Range, typhoons cause 
relatively lower winds except in the path categories 3, 7, and 9, which 
have winds of strong intensity. 

• Southern Taiwan: Due to the nearby Central Mountain Range, typhoons 
cause relatively lower winds except in the path categories 3, 4, 7, and 9, 
which have winds of strong intensity. 

• Outlying islands: Due to the central mountains serving as a windbreak, the 
outlying islands such as Kinmen and Matsu are less affected by typhoons 
than other regions. Path categories 7 and 9 have the highest chance of 
winds of strong intensity and impact.  

This analysis will develop a suggested plan for use when the typhoon can 

reasonably be predicted to be category 1 through 9. If a category 10 is predicted, then a 

worst case scenario is used, in which we assume the typhoon impacts both the main 

island and the outlying islands. 

 MODELING TYPHOON DISASTERS 

The prediction of extreme meteorological events such as typhoons builds on 

conceptual models. The performances of these highly non-linear models are limited, 

mainly because they lack observation data or because the available data are not properly 

organized and converted into input data parameters. The disaster can happen at many 

different locations, levels of severity, and with other unpredictable factors. This can make 

the planning problem intricate. Furthermore, although multiple approaches to disaster 

planning have been proposed, they are not always employed.  

For example, planners may consider a worst-case disaster like Morakot (ODM, 

2010). This scenario posits high precipitation intensity during a short time. Planning 
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against this pessimistic scenario also protects against many other, less severe situations. 

However, it places a high demand on the rescue system. Planners may deem that the 

required preparation against such an extreme event is too conservative and economically 

unacceptable.  

The most common approach for disaster planners is planning for an average 

scenario based on all the foreseen disaster scenarios. For example, if an area had between 

20,000 and 50,000 people in need of evacuation, a plan could be devised for evacuating 

35,000 people. Also, planning for the most likely scenario is an attractive method for 

planners; it allows them to focus on a specific situation. Always planning for the worst-

case scenario is simple, but not always economically feasible. However, disaster relief 

established for the average scenario, again, may not be suitable to apply to another 

scenario. Since disasters are intrinsically unpredictable, a stochastic model that considers 

many types of potential events simultaneously can improve the planning for future 

events.  

 PREPOSITIONING OPTIMIZATION MODEL 

POM is a mixed-integer, two-stage stochastic model. The first-stage, pre-disaster, 

involves expansion of resources such as various facilities and capabilities. The second 

stage, post-disaster, requires some short-term capability expansions, as well as the 

deployment of assets to scenario-specific affected areas. Therefore, POM is set up as a 

multi-objective model with two hierarchical optimization objectives. The primary 

objective is to minimize the expected number of total casualties (z1); this includes those 

EP who are not rescued, EP who are rescued but do not survive, and AP casualties due to 

unmet commodities. Specifically, we set up a penalty ratio in our first objective account 

for casualties from the critical population, along with a function that relates the amount of 

unmet commodities for the AP to the number of deaths that will result. POM assumes 

that both the EP and AP groups are equally important in the sense that failing to meet 

either demand results in casualties. The second objective minimizes unmet demand for 

moving the transfer population (z2), but with the additional constraint as an aspiration 

level (α) based on the first objective optimal solution. In our case, we set the aspiration 
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level (α) equal to 1%, as did Salmeron & Apte (2010). This means that as the General 

Algebra Modeling System (GAMS) tries to minimize unmet DP, it does not increase the 

unmet demand for moving the transfer population by more than 1%. 

Figure 9 shows a schematic diagram of the entities present in POM, as well as 

their movement among various locations. Initially, a number of resource locations are 

selected to store the needs for disaster prevention. Upon learning of a disaster, it is 

necessary to have the ability to meet requests by local governments. Once on station for 

assistance efforts, the relief provider location (RL) deploys troops and vehicles that carry 

personnel and commodities to affected areas (AAs), and then remove injured survivors 

from those areas and transport them back to RLs for medical attention. 

 
Figure 9.  Study model (POM) network. 

The populations in these AAs are people that do not successfully evacuate prior to 

the disaster, and we separate them into three categories depending on their needs. The 

first category is the emergency population (EP), who are the injured and others in need of 

emergency evacuation to a facility that can administer medical assistance. The second 

category is the affected population (AP), who can stay in the AA, but need resources to 

be delivered in order to survive. The last category is the displaced population (DP), who 

will need to be transported to an RL for emergency shelter. Note that personnel are not 

used to transport or otherwise take care of those who died in the initial storm. Each AA 

has a certain number of each of these three populations in any given scenario. AAs can 

receive supplies via land or air, depending on their characteristics.  
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Inputs to the POM that are constant in this study are as follows: 

• The EP, AP, and DP populations for a given scenario 
• Baseline travel times between each RL to each AA for each vehicle, for a 

given scenario 
• Pounds of needed commodities per person in the AP to avoid a casualty 
• Availability of airports to support fixed-wing aircraft and helicopters for 

each AA 
• Data on vehicles available, air capability, medical capability, mass 

housing capability, and storage capacity for each RL 
• Data on DP transport capability, commodity carrying capability, EP 

transport capabilities, and availability for each vehicle 
• Availability for expansion, and associated expansion costs, for 

warehouses, medical facilities, mass housing facilities, and vehicles. 

Resources such as warehouses, medical facilities, and shelter sometimes must be 

prepositioned at RLs in preparation for (and long before) a disaster. An RL has an 

assumed initial capacity of each of the above resources, for example, space that can be 

used for storage of commodities, and mass housing for the DP. If the RL is a medical 

facility, then it has a limited number of the EP that it can treat. Each RL also has a 

specific air capability. 

Vehicles (air and land) must be available and in place to rescue the EP and 

transport them to a medically capable RL, transport the DP to an RL with mass housing 

capability, and transport commodities from an RL to the AP. Each vehicle has its own 

capability defined in terms of speed, range, availability, cargo carrying capacity, 

emergency rescue capabilities, and personnel transport capacity. Air vehicles are 

distinguished from land vehicles in that they may only take off from and land at RLs and 

AAs that have the capability. Helicopters are included in this model for rescue and relief 

missions. 

Parameters that will be changed in successive runs of this model are 

• Budget levels available for use in total maximum expansions ($) 
• EP survivor levels (the percentage of EP that survive once transported) 
• Maximum number of available troops (relief workers)   

Note that the expansion budget and maximum number of troops are decision 

factors, while the EP survivor level varies from storm to storm, depending on the specific 
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storm intensity. For this case, we first set the survivor rate to a pessimistic 60%; that is, 

we assume that 40% of the rescued EP will perish (either before or at the medical facility 

where they are transported). We also set the survivor rate at 80% and an optimistic 100% 

to gain more insights.  

The POM is multi-objective because the overall goal is minimizing the casualties 

that result from failing to meet the demands of the EP and AP populations, while 

maximizing the number of DP moved to RLs. The two-stage, stochastic nature of POM 

comes from the strategic decisions that need to be made under uncertainty, that is, before 

the actual scenario is realized. First-stage variables include the expansion of healthcare 

facilities, warehouses and mass housing shelters at the RLs, and the expansion of ramp 

space at the AAs. The second stage of the model includes decisions made during the 72 

hours after the disaster, including additional vehicles needed, EP rescue and 

transportation to medical facilities at RLs, transportation and delivery of commodities to 

AAs, and transportation of DP to RLs. The POM is a mixed-integer program because 

some of the decision variables must be integer, such as additional vehicles used and 

numbers of workers used. Other variables are real numbers, such as the quantity of 

commodities. 

Outputs from the POM are as follows: 

• Objective function values 
• Casualties (persons) by scenario and in expectation over all scenarios (first 

objective); this is the optimal (lowest) number of casualties 
• Feasible expansions of warehouses, medical facilities, vehicles, and mass 

housing locations 
• Supplies used (ft3 x 1000) by scenario 
• Vehicles used by scenario 
• Populations (persons) and supplies transported (ft3 x 1000) by scenario 
• Total troops deployed 

Note that even if the objective function values from POM are optimal given a 

particular set of assumptions, they may not be optimal if those assumptions do not hold. 

Also, although POM will provide a feasible solution for achieving optimal objective 

function values for any given scenario, this solution may not be optimal in terms of other 

measures like efficient use of budget. One reason that we are using a DOE wrapper for 
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the POM model is to explore the robustness of the POM solutions. For completeness, the 

formulation of the POM (Salmeron & Apte, 2010), with relief workers constraints added, 

is in the appendix. 

 SITUATION DESCRIPTION AND TAIWAN REGION DATA 

1. Data for Affected Areas 

We select five AAs, as shown in Figure 10, to encompass the higher population 

cities that would be affected by a typhoon in the Taiwan region. Each of these areas has 

an airport or large staging area where commodities can be offloaded. Table 1 describes 

the AAs and lists their possible offloading locations. AA1 is an isolated island, and AA2 

is the east side of Taiwan. AA3 through AA5 make up the west side of Taiwan where 

most cities are located. 
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Figure 10.  Geographical locations of the five AAs selected for the baseline. 

The selected locations in each AA have space available to offload goods. Each 

AA has its own airport. Each airport has a specific amount of ramp space that can be used 

for incoming aircraft offload. This is important to quantify so that aircraft do not bring in 

more commodities than an airport can offload. Because in this thesis it is postulated that 

all shipping containers carried by vehicles are over five feet tall, we conservatively 

assume that the ramp space is covered by 5-foot-tall containers. In this manner, the raw 

square footage of the ramp space can be converted into cubic feet capacity to match that 

of vehicles and warehouses. Descriptions of the selected AAs are shown in Table 3. 
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Table 3.   Locations and area for offloading in each AA. 

Affected area Description AA offload location 
AA1 Penghu islands Penghu airport 
AA2 Suburban Hualien Hualien airport 
AA3 Urban Taipei Taoyuan airport 
AA4 Urban Taichung Taichung airport 
AA5 Urban Kaohsiung Tainan airport 

 

Table 4 gives the information gathered for the ramp space in each AA. For AA1, 

there is no room for airport expansion, so no fixed-wing aircraft can land there. Other 

airports are suitable to offload commodities (MOTC, 2014). According to the ROC 

Ministry of Transportation and Communication (MOTC) annual report, the international 

airport at AA3 has large ramp areas that could be used in a disaster (MOTC, 2014). 

Tainan military airport is also a large airport that can be used for AA5 (MOTC, 2014). 

Airports in AA2, AA3, and AA4 are farther away from downtown cities so their ramp 

space expansion costs are assumed to be lower. 

Table 4.   Ramp space at AAs. 

Affected area Initial 
capacity 
(ft3 x 1000) 

Max. 
expansion 
(ft3 x 1000) 

Expansion 
cost 
($/ ft3 x 1000) 

AA1 0 0 0 
AA2 25 100 10,000 
AA3 50 100 10,000 
AA4 20 80 10,000 
AA5 20 60 15,000 

 

Table 5 shows the population for each AA, taken from the National Development 

Council (NDC). Population is used later in this thesis to set up different scenarios of 

affected EP, AP, and DP as fractions of the total population. Each fraction will represent 

an estimate of the elderly population and people in the AA without a vehicle (NDC, 

2014). 
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Table 5.   Population in each AA. 

Affected 
 

Population 
AA1 228,110 
AA2 558,220 
AA3 10,515,960 
AA4 5,510,448 
AA5 6,591,866 

 

2. Data for Relief Locations 

The MND has helped local governments with natural disaster prevention and 

relief for years, and past experiences show there are several locations that can be used for 

disaster relief (MND, 2011). Figure 11 shows the subset of these locations that constitute 

the RLs in this thesis. Table 6 provides the names and descriptions of these sites. 

 
Figure 11.  Geographical locations of the eight RLs selected for this thesis. 
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Table 6.   RL names and descriptions. 

Relief 
location 

Name Description 

RL1 Taipei Hospital Large hospital 
RL2 Daan Forest Park Large county fairgrounds 
RL3 Taitung Hospital Local hospital 
RL4 Taichung Hospital Local hospital 
RL5 Nantou Hospital Large hospital 
RL6 Tainan Municipal Hospital Large hospital 
RL7 Buddhist Tzu Chi General Hospital 

Emergency Room 
Large hospital 

RL8 Tri-Service General Hospital Penghu Branch Military hospital 

 

Warehouse capacities determine the amounts of commodities that can be 

prepositioned at RLs prior to a disaster. This includes using spaces that are not initially 

designed for storing commodities (MND, 2011), all of which can be further expanded as 

shown in Table 7. RL1, RL3, RL4, RL7, and RL8 do not have initial capacity available. 

We assume warehouses are filled with 10-foot storage containers.  

Table 7.   Warehouse capacity and expansion costs. 

Relief location  Initial 
capacity 
( ft3 x 1000 ) 

Max. 
expansion 
( ft3 x 1000 ) 

Expansion 
cost 
($/ft3 x 1000 ) 

RL1 0 150 300,000 
RL2 150 780 100,000 
RL3 0 100 300,000 
RL4 0 100 250,000 
RL5 150 750 200,000 
RL6 150 600 200,000 
RL7 0 100 300,000 
RL8 0 100 250,000 

 

The actual warehouse storage capacity at RL2 and RL8 is more than indicated, 

but because these are active military bases or airfields, only a fraction of their warehouse 

space is assumed to be available for storage of commodities. The other RLs are hospitals 

and have limited amount of space to expand as storage. 
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Each RL also has the ability to house large numbers of people. The MND has 

assessed the parking and hard surface area at these RLs and has determined possible mass 

housing locations. For this thesis, it is assumed that 30% of the parking and hard surfaces 

at these RLs can be used for mass housing and shelter. Using an estimate of 40 square 

feet of shelter space needed per person (American Red Cross, 2002), the DP initial 

capacities and potential expansion for each RL are indicated in Table 8. 

Table 8.   Shelter capacity and expansion costs. 

Relief location  Initial capacity 
(persons) 

Max. expansion 
(persons) 

Expansion cost 
($/persons) 

RL1 14,968 2,000 1,000 
RL2 1,450 500 1,000 
RL3 800 200 1,000 
RL4 1,332 500 1,000 
RL5 3,000 500 1,000 
RL6 2,000 500 1,000 
RL7 0 200 1,000 
RL8 100 200 1,000 

 

Each RL also has a capacity to house healthcare personnel in support of the EP, as 

shown in Table 9. Healthcare personnel are doctors, nurses, and other administrative 

personnel that can assist the EP. 

Table 9.   Healthcare facility capacity and expansion costs. 

Relief 
location  

Initial 
capacity 
(healthcare 
personnel) 

Max. 
expansion 
(healthcare 
personnel) 

Expansion 
cost 
($/healthcare 
personnel ) 

RL1 600 200 1,500 
RL2 0 0 0 
RL3 200 50 1,500 
RL4 400 100 1,500 
RL5 0 0 0 
RL6 0 0 0 
RL7 150 50 1,800 
RL8 150 50 1,800 
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This thesis assumes a ratio of 10 patients per doctor over the 72-hour post-disaster 

period. For example, from Table 7, we assume that RL3 initially has 200 medical 

personnel available to treat up to 2,000 EP, and that up to 50 more can be prepositioned 

(i.e., available on call) at a cost of $1,500 per healthcare provider. 

3. Data for Vehicles  

In order to rescue the EP, deliver commodities to the AP, and transport the DP, 

vehicles are needed. This research considers the many different modes of transportation 

from multiple agencies that can be used to serve the three needy populations. Our test 

case assumes the transportation assets and data shown in Tables 10 and 11. All these data 

have been compiled during multiple interviews, electronic communications, and fact 

sheets provided by different agencies, as described below. 

For example, in 2010, 31.5 million passengers rode on public transportation in the 

Taiwan region. In a disaster, local buses and shuttles would be very useful in transporting 

displaced people from AAs to RL shelters. The bus and shuttle information has been 

acquired from the MOTC (2014). 

Table 10.   Vehicle capacity and expansion costs. 

Vehicle type Availability 
(# of units) 

Max. 
expansion 
(# of units) 

Expansion 
cost 
($/ft3 x 1000) 

Bus 25 250 5,000 
Shuttle 25 500 8,000 
HMMWV 15 50 40,000 
C130 15 20 80,000 
C17 5 8 175,000 
EC225 3 3 0 
UH-60 15 20 200,000 
Truck 10.5 tons 25 20 19,000 
Truck 0.75 tons 30 40 15,000 
Ambulance 35 40 500,000 

 

Each local government owns vehicles, such as buses and shuttles, which can also 

be used in disaster relief. Both buses and shuttles can transport commodities to the AP 
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and also transport DP back to RLs, but trucks can only transport commodities to the AP. 

Local hospitals have to provide ambulances during disasters for assisting in the rescuing 

of EP. 

Table 11.   Vehicle characteristics. 
Vehicle 
type 

Commodities 
(ft3 x 1000) 

Survivors 
capacity 
(persons) 

Workers 
capacity 
(persons) 

Displaced 
capacity 
(persons) 

Availability 
(hours) 

Operation 
range 
(hours) 
 

Bus 0.6 15 5 40 68 12 
Shuttle 0.4 10 40 40 68 12 
HMMWV 0.2 3 0 0 72 6 
C130 5.0 0 90 90 60 5 
C17 8.0 0 100 100 60 5 
EC225 2.0 4 8 24 48 5 
UH-60 3.0 6 3 5 48 5 
Truck  
10.5 tons 

1.5 15 5 0 72 8 

Truck  
0.75 tons 

1.0 5 5 0 72 12 

Ambulance 0.0 4 0 0 62 8 

 

The MND has many assets that could be used during a disaster, especially C17s, 

C130s, and HMMWVs. Since these assets are in constant flux, we assume that five 

C130s, eight C17s, and 30 HMMWVs are initially available. We assume the MND will 

provide its available helicopters, such as EC225s and UH-60s, to assist in the rescue of 

the EP during a disaster (MND, 2011) 

The vehicles have associated travel times from each RL to each AA. These times 

are a function of their speed and the distance covered. For simplicity, we use a central 

location in each AA to calculate the distance and travel time between given RLs and 

AAs. This is how we adapt the POM model. 

4. Scenario Data 

Typhoon disasters can cause different damage depending on their intensity and 

crossing path. In this thesis, we evaluate five possible base scenarios with an increasing 

number of AAs. The EP, AP, and DP are a different percentage of the population of the 
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AA. Depending on the scenario, different AAs are involved. The EP, AP, and DP are 

different percentages of the population of an AA, but we assume each AA has the same 

percentage. Depending on the scenario, different AAs are involved. Most of the 

population in the AAs is expected to evacuate before the typhoons cross due to the 

possible flood warning, rising rivers, and continued rain. The population that is left and 

needs assistance is the focus of these scenarios. 

We model a situation in which a typhoon is approaching from the eastern side of 

Taiwan. This typhoon is expected to devastate a path from eastern Taiwan toward the 

western side of Taiwan and its outlying islands. The possible five regions are as follows: 

urban Kaohsiung (area 4), urban Taichung (area 5), urban Taipei (area 3), suburban 

Hualien (area 2), and Penghu islands (area 1). Each of the five regions is impacted with 

decreasing intensity, respectively, and each region is also an AA.  

First-stage decisions, like deciding whether to build new medical facilities or 

warehouses, are “strategic decisions that must be implemented well before a disaster 

strikes” (Salmeron & Apte, 2009). In other words, they are long-term planning decisions 

that are made prior to the need for receiving requests for assistance for any particular 

storm. Other first-stage decisions include expansion for injury transfers, commodities, 

and ramp space. Second-stage decisions (commodities delivered, unmet demand, and 

number of injury transfers, rescue workers transferred, transportation expansion, and 

number of trips) are made after the disaster takes place. Specific scenario and affected 

area descriptions are shown in Figure 12, where “potential survivors” is the number of 

people in the EP. We refer to scenarios 1 through 5 as ω1,…, ω5, respectively, in the 

remainder of this document.  

Scenario 1 is a typhoon affecting all five areas severely. In scenario 2, areas a2, 

a3, a4, and a5 are affected moderately. Scenario ω3 has the typhoon affecting eastern 

Taiwan, a2, a3, and a5. In scenario ω4, the storm is severely affecting a2 and moderately 

affecting city area a3. For the final scenario, ω5, the typhoon only affects a2, and there are 

no demands for assistance for the transport of people or commodities.   
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Figure 12.  Scenarios and descriptions selected for analysis. 

 ASSUMPTIONS 

The overarching assumption in our analysis is that in the most extreme scenario, 

the typhoon has an impact similar to that of the extreme Typhoon Morakot in 2009. The 

five AAs are selected based upon geographic similarities to the five MND assigned areas 

of operation (AOs). The population impact and demand data are scaled with the same 

ratio corresponding to each area. We also assume that if scenario 1 occurs, the MND will 

be requested to provide the same amount of support that was provided following 

Typhoon Morakot. Local governments are also assumed to be providing support to share 

the workload. The $300 million budget is comparable to the budget that was spent by the 

Taiwan government for Typhoon Morakot (NAPHM, 2011). The analysis addresses how 

that support mission should be allocated to each AA. 

We focus on modeling only the emergent phase of the relief effort and assume 

that each active military base from the five AOs is given the task of responding to the 

disaster corresponding to the closest AA. The time horizon for the relief effort from 
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MND assets is within 72 hours, with assets providing support as soon as they arrive on 

RLs. The manned aircraft receive waivers to allow aircrews to operate for the maximum 

allowable time, with skilled operators taking shifts. It is also assumed that no 

maintenance or downtime is required for the means of transportation. 

We assume most military resources are from the Army, so there is no sealift 

assistance and no helicopters from the Navy or others. Also, airdrops of relief supplies 

are assumed not to be possible. We also assume no assistance from other countries will 

be requested. 

 BASE CASE RESULTS 

We use the POM as developed by Salmeron and Apte (2010), with additional 

relief workers constraints that limit the maximum number of relief workers available at 

each RL. We also use the same implementation in the General Algebra Modeling System 

(GAMS; 2011) and the GAMS/CPLEX solver. The runs have been conducted on a Dell 

Latitude XT2 laptop with 4 GB of RAM and an Intel Core Due processor, partitioned to 

contain a Windows 7, 32-bit operating system. In each run, the dimensions of the model 

are approximately 37,000 constraints and approximately 83,000 variables, of which 

23,000 are integer variables. A typical run of any of the above cases takes approximately 

one minute with a 5% optimality gap.  

In the following runs, the survival rate and budget levels are varied to analyze 

how the budget is allocated to the number of relief workers. In Figure 13, we plot the 

expected number of workers versus the budget for three different survival rates, where 

the survival rate represents the proportion of EP people who will eventually recover if 

they are rescued. Eleven different budgets are used, ranging from $0 to $10 million. 
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Figure 13.  Expected total deployed relief workers versus budget.  

From Figure 13, the budget ranges from $0 to $100 million, while EP survival 

rates of 60%, 80%, and 100% lead to very similar numbers of the total relief workers. For 

budgets of $10 million or more, the number of total workers remains approximately 

constant at around 2,750 people.   
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Figure 14.  Expected unmet DP versus budget (top). Expected casualties from 

EP and AP versus budget (bottom). 

Figure 14 shows the average expected unmet DP versus budget and the average 

expected casualties from EP and AP versus budget from all scenarios. The expected 

unmet DP decreases linearly as the budget increases to $25 million and remains constant 

as the budget increases beyond $25 million. Observe that the expected unmet DP is 

approximately equal for the three survival rates. Expected casualties from EP and AP 

drop sharply when the budget is between $0 and $5 million. It remains constant as the 

budget increases to $25 million before decreasing slightly. Expected casualties from EP 

and AP taper off as the budget increases beyond $30 million. This trend applies to all 

survival rates, with higher survival rates resulting in lower expected casualties from EP 

and AP.     
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Figure 15.  Expected total deployed relief workers versus budget,  

by affected area. 

The individual scenario outputs of Figure 15, running smaller budgets ranging 

from $0 to $100 million, shows that more workers are deployed when more AAs are 

involved. In scenario 5, with only area 2 affected, the same number of workers is 

deployed regardless of the total budget.  

We further analyze the relationship between the expected uses of the budget and 

the given budget ranges from $0 to $100 million. The result is shown in Figure 16. After 

the $50 million budget is spent, the 60% survival rate uses more of the available budget 

than other survival rates. This may be because the budget is a constraint, rather than part 

of the objective function; GAMS stops once it finds a feasible solution that satisfies the 

budget constraint, but that might not be a unique solution. Figure 17 shows us the 

expected unmet commodities versus budget; it also shows that after $50 million is 

available, the amount of unmet commodities stays the same.  
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Figure 16.  Expected total cost versus budget. 

 
Figure 17.  Expected unmet commodities versus budget. 
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The observation that the objective function values stabilize after the budget 

reaches $30 million, while the costs continue to rise, indicates that there may be multiple 

optimal solutions, because there is no incentive in the POM to save money. Table 12 

shows the output for three survival rates, 60%, 80%, and 100%, using a $50 million 

budget and a penalty multiplier of 18.5. 

Table 12.   Base case summary results with $50 million budget. 

EP Survival Rate (%) 60 80 100 
Potential casualties (persons) 8,350 
Expected unmet EP (persons) 3,457 1,675 7 
Expected EP who will die even if rescued 3,340 1,670 0 
Calculated casualties rescued rate: 
(1-(Expected unmet EP/Potential 
victims))*100% 

58.5% 79.9% 99.9% 

Potential commodities needed (ft3×1000) 639 
Expected unmet commodities (ft3×1000) 335 339 341 
Calculated commodities met rate: 
(1-((Expected unmet commodities/Potential 
commodities needed))*100% 

45.5% 44.9% 44.6% 

Potential workers needed (persons) 4,585 
Expected deployed workers (persons) 3,045 2,995 2,985 
Calculate workers assigned rate: 
(Expected deployed workers/Potential 
workers needed)*100% 

66.4% 65.3% 65.1% 

Given budget ($) 50,000,000 
Expected total cost ($) 47,797,200 46,457,240 44,596,820 
Calculate budget used rate: 
(Expected total cost/ Given budget)*100% 

95.5% 92.9% 89.1% 

Total healthcare facility expansion cost ($) 2,733,996 1,280,731 2,400 
Total ramp expansion cost ($) 3,700,000 3,700,000 3,700,000 
Expected total transportation expansion cost 
($) 

203,200 135,240 296,820 

 

This table shows that the unmet EP is only slightly higher than we would expect 

base on the EP survival rate. Also, the highest survival rate does not occur at the highest 

cost. The ramp expansion cost seems to be the same after a certain budget is reached, and 

the total number of workers actually decreases after the survival rate gets above a certain 
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level, but further investigation is needed before deciding what expansions are truly 

beneficial. In order to gain more insights, we use DOE in the following analysis. 
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II. DESIGN OF EXPERIMENTS 

There are many different factors to be considered in the POM model. With a 

limited time and amount of computer resources to complete this study, an efficient design 

of experiments (DOE) is critical. Using a well-structured DOE, an analyst is able to 

develop a basic understanding of the system (Kleijnen et al., 2005). Applying a proper 

design, many aspects of a complex model can be studied with high fidelity and in 

exponentially less time than looking at all possible combinations of factors. This includes 

identifying how the factors affect the response, how the factors interact with each other, 

and how sensitive the system is to variations in factors. Our approach is similar to that of 

Gardner (2015), who also uses DOE to explore a variant of POM for disaster relief.  

 METHODOLOGY 

The overall DOE approach is shown in Figure 18. In this experiment, several 

GAMS parameters are selected as factors: the maximum available relief workers at relief 

locations, the maximum budget, the penalty incurred when workers are unable to 

transport commodities, the survival rate of EP, and the probabilities of occurrence of 

potential scenarios. A NOB design for discrete and categorical factors (Vieira et al., 

2013) is used to vary the discrete and continuous input data parameters of the POM. This 

design can be found on the SEED Center website (http://harvest.nps.edu/). Our 

experiment uses 512 design points to explore 32 factors.  

 

 

Figure 18.  DOE approach.  

http://harvest.nps.edu/
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Once a design is created, there is a multi-step process to compile the data for 

analysis. First, the cells in the design spreadsheet are copied into a Comma Separated 

Value (CSV) file. Each of the 512 rows of the CSV file is a design point and a separate 

POM problem instance. Second, a script written in the Ruby programming language 

(Ruby, 2015) is run from the command line; it pulls the values from the CSV file row by 

row and constructs 512 sets of new GAMS files from the POM base case model, one set 

for each design point. To automate the process of running all the GAMS files, a Windows 

batch file (BAT) is used to call on GAMS to solve each version of the model. The BAT 

file creates a new directory for each run to hold output, and one of the outputs is a 

summary CSV file, 512 individual summary in total at this point. Fourth, we concatenate 

these 512 individual CSV summary files into one combined CSV summary file with 

separate rows for each design point. The end result is a dataset that is suitably configured 

for further regression model and partition tree model analysis.  

1. Factors and Factor Ranges 

a. Budget, Survival Rate, and Penalty 

Table 13 shows the factors and ranges that were varied during the experiment. 

Based on the base case output, we ran the budget from $1.5 million to $6 million.   We 

varied the EP survival rate range from 60% to 100%. In this case, higher penalties 

increase the requirement to meet demand full commodities by the AP, rather than EP. 

Table 13.   Budget, survival rate, and penalty factors and ranges. 

Factor Type Level Range 
Maximum Budget Continuous (dollars) $1.5–6 million 
EP Survival Rate Continuous (%) 60 –100% 
Penalty Continuous (%) 50.5–80.5% 

 

b. Scenario Probabilities 

Table 14 contains the design probability of each scenario. According to the 

historical typhoon data, ω3 occurs more often than others. We set ω3 as the baseline for 

the design. We vary probabilities for three other scenarios as factors over lower ranges; in 
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these cases, we know the other probabilities would not have higher probability than ω3. 

To make sure the sum of total probability equals one, we set ω5 equal to one minus the 

sum of other scenario probabilities. Note that ω5 ranges from 0.03 (if ω2–ω4 are all at 

their highest values) to 0.42 (if ω2–ω4 are all at their lowest values), so it can be higher 

than ω3. This experiment uses a full factorial design, where the design range and the 

fraction values are taken from the NOB table. 

Table 14.   Scenario probability factors and ranges. 

Factor Design Range 

Probability ω1 (
1

Pω ) 
1

5

2
{1 }

i
i

P Pω ω
=

= −∑  

Probability ω2 (
2

Pω ) [0.1,0.15] 

Probability ω3 (
3

Pω ) [0.28,0.42] 

Probability ω4 (
4

Pω )    

Probability ω5 (
5

Pω ) [0.1,0.15] 

 

c. Available Relief Workers  

We look at 25 factors that represent the numbers of relief workers available to 

handle commodities at each AA under each scenario, and vary their values between plus 

and minus 20% of the base case values. The factors and design ranges are shown in Table 

12; we use a separate column from the NOB spreadsheet for each factor. This experiment 

focuses on helping find suitable numbers of military relief workers to deploy, while 

ensuring that the relief efforts are effective. This means we may end up deploying fewer 

workers than are available.   

[0.1,0.15]
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Table 15.   Available relief worker factors and ranges. 

Scenario, ω  AAs  Base Case (persons)  Factor Range (persons) 
ω1 AA1 300 [240,  320] 

AA2 2,000 [1,600,  2,400] 
AA3 2,000 [1,600,  2,400] 
AA4 2,000 [1,600,  2,400] 
AA5 2,000 [1,600,  2,400] 

ω2 AA1 50 [40,  60] 
AA2 2,000 [1,600,  2,400] 
AA3 2,000 [1,600,  2,400] 
AA4 2,000 [1,600,  2,400] 
AA5 2,000 [1,600,  2,400] 

ω3 AA1 50 [40,  60] 
AA2 2,000 [1,600,  2,400] 
AA3 2,000 [1,600,  2,400] 
AA4 50 [40,  60] 
AA5 2,000 [1,600,  2,400] 

ω4 AA1 50 [40,  60] 
AA2 2,000 [1,600,  2,400] 
AA3 2,000 [1,600,  2,400] 
AA4 50 [40,  60] 
AA5 50 [40,  60] 

ω5 AA1 300 [240,  320] 
AA2 50 [40,  60] 
AA3 50 [40,  60] 
AA4 50 [40,  60] 
AA5 50 [40,  60] 

 

The NOB design includes a total of 32 factors: one for the budget, one for the EP 

survival rate, one for the penalty rate, four for the probabilities, and 25 for the required 

numbers of workers. The final design is nearly orthogonal: The highest correlation 

between any pair of factors is very low, 0.005. 
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2. Output Measures 

The goal here is not just finding a solution that maximizes or minimizes the 

metric of interest, but a solution that also looks at the variability of that optimal solution. 

There are several outputs in which we are interested, including the expected number of 

relief workers deployed, the expected EP and AP casualties under a given scenario, and 

the expected unmet demand for the transfer DP. 

 ANALYSIS 

This section analyzes the output of the experiment and points to a preferred set of 

conditions and actions that can be implemented to help us to find good values of three 

output measures. The analysis is performed using the JMP statistical package. The data 

are analyzed using descriptive statistics, linear regression, and partition trees, to explain 

the relationship between the factors of interest and their effect on the three measures of 

effectiveness. We treat all values as continuous numbers in the JMP analysis. 

1. Expected Number of Deployed Workers  

We will let E[Workers] represent the expected number of deployed relief workers 

for a single design point, which is less than or equal to the number of available workers 

for that same design point. E[Workers] ranges from 50 to 2,500 by scenario across the 

512 design points. Figure 19 shows a summary of the regression model predicting the 

expected number of deployed relief workers. With a resulting R-square over 0.97, the 

most influential factor affecting the expected number of deployed workers is the 

maximum budget. The probability of each scenario also has a significant impact on 

results. Factor a3_w4 in Figure 19, which represents a typhoon crossing northern Taiwan, 

is more significant than the analogous variables for other scenarios. 



 42 

 
Figure 19.  Regression model for the expected number of deployed relief 

workers. 

The regression produces a good fit to the data, but does not easily explain or 

provide a set of rules or guidelines for the commander to use. Another way to visualize 

the important factors in determining this model is through a partition tree. This method of 

modeling splits the data into groups so as to minimize the total sum of squares error 

(SSE). The factor and level of the factor for the split is chosen by the algorithm, based on 

which split maximizes the reduction in the total SSE. In other words, the data are 

partitioned into two groups according to which factors and levels explain the majority of 

the variation in the data. In JMP, the splits are controlled manually until the desired 

degree of accuracy is achieved or the resulting pool of data has reached a minimum 

required for further splits because of insufficient observations or insufficient variability in 

the response (Sall, Creighton, & Lehman, 2005).   
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Figure 20.  Partition tree for the expected number of deployed relief workers. 

The partition of the predicted workers model is shown in Figure 20. This tree 

explains the majority of the variability in the data, with resulting R-square over 0.92 with 

only seven splits. The data used for the partition tree includes all 512 design points. The 

most influential factor in the partition tree model is the same as in the regression model—

namely the maximum budget. For a given budget and assumed probability of occurrence 

of scenario ω5, the expected number of relief workers required can be estimated. For 

instance, if we know that we have a maximum budget of $35 million and the probability 

of scenario 5 is less than 0.12, then we should expect to deploy on average 2,942 people. 

Furthermore, for this leaf of the partition tree, the expected unmet casualties is 3,008 and 

the expected unmet commodities is 411.   

2. Expected Unmet Commodities 

Figure 21 shows a summary of the regression model predicting the amount of 

unmet commodities. With a resulting R-squared over 0.94, the most influential factor 

affecting the amount of unmet commodities is the maximum budget, and the probability 

of scenario ω3 is the second most influential factor. Penalty and EP survival rate both 

have statistically significant impacts on results, but are of little practical importance, so 
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we have not included them in the model. The prediction profiler shows a tendency toward 

the same amount of unmet commodities as the budget surpasses the $50 million level. 

 
Figure 21.  Regression model for the expected unmet commodities. 

A partial partition tree of expected unmet commodities model is displayed in 

Figure 22. After only six splits, we observe R-squared over 0.81; after 21 splits, we 

observe R-squared over 0.92. The important factors are the maximum budget, and the 

probability of scenario 3 or 4 occurring. Combining both model outputs, the impact 

factors are similar. In general, to obtain a better prediction of unmet commodities, we 

would like to know the budget constraints and the frequencies of scenarios 3 and 4.  
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Figure 22.  A partial partition tree for the expected unmet commodities. 

3. Expected Number of Casualties 

We observe more detailed information from the partition model than the 

regression model for this predicted number of casualties model. Figure 23 shows the 

partition tree of the expected casualties model. With R-squared over 0.94 after five splits, 

the only important factor is the EP survival rate. We can get the expected casualties as 

low as 247 people if we set our EP survival rate higher than 95%. However, if we set up 

the EP survival rate less than 71%, then the average expected casualties can be up to 

3,300 people. It is a significant outcome that a 20% change in the EP survival rate causes 

an almost 3,000-person difference in the expected number of casualties. 
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Figure 23.  Partition tree for expected casualties. 

Conducting DOE on an optimization model provides insights that are otherwise 

not observed with a stochastic optimization model like POM. Sensitivity analysis for an 

optimization model cannot always allow a focused investigation of how specific input 

data directly affect the output in the way DOE permits. Our series of models shows which 

parameters have more influence over the POM solution and objective values. Such 

analysis provides disaster relief planners with valuable guidance. 

As we explore the impact of the parameters and their assigned ranges on the 

solution, we can see the changes in the output. Table 16 shows the comparison between 

different analysis model approaches. We can see that the DOE approach is necessary to 

account for a wider range of possibilities and has the opportunity to provide more 

realistic results. DOE on POM permits specific parameters to change as factors for 

different levels of interest change. This gives us the opportunity to focus on specific 

parameters for a better prediction. Of course, when we are interested in several measures 

of effectiveness at the same time, we may need to make trade-offs.  
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Table 16.   Analysis model output comparison for three measures of 
effectiveness. 

            Analysis model 

Measure  

of  effectiveness 

Regression  

model key factor and  

predicted range 

Partition tree 

model key factor and  

predicted range 

Number of Deployed 

Workers 

E(Workers) 

Budget level, 

, 

Number of workers deployed 

at AA3 in scenario 4. 

[ 1997 , 3070 ] (persons) 

Budget level, 

 

[ 2130 , 2830 ] (persons) 

Number of Casualties 

E(US) 

EP survival rate, 

 

[ 12 , 3848 ] (persons) 

EP survival rate 

[ 247 , 2870 ] (persons) 

Unmet Commodities 

E(UM) 

Budget level, 

 

[ 360, 540 ] (ft3×1000) 

Budget level, 

 

[ 380 , 453 ] (ft3×1000) 

 

 DISCUSSION OF FIRST-STAGE DECISION VARIABLES 

For a better understanding of whether available relief workers are used efficiently, 

we compute the available worker usage percentage from our summary CSV file. Table 17 

shows each scenario’s summarized outcome.  

2 3 4
, ,P P Pω ω ω 4

Pω

2 3 4
, ,P P Pω ω ω

3 4
,P Pω ω 3 4

,P Pω ω
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Table 17.   Available workers usage percentage. 

 
 

First, we calculate the average percent usage by finding the scenario averages of 

all 512 design points. For each scenario, we divide the average actual number of workers 

deployed by the average number of available workers. We compare the result with 

worker usage information from 13 typhoons between 2011 and 2014. Across our 

scenarios, the average available worker usage is 48%. In reality, only 9% of available 

workers were actually used during the 13 typhoons. From personal experience, the top 

line of the historical data column in Table 16 represents the total personnel who were 

activated to provide 24-hour coverage. The boxplot of each scenario’s available worker 

usage rate is shown in Figure 24. 
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Figure 24.  Available worker usage rate for each scenario. 

 
Figure 25.  DOE output: Expected unmet DP versus budget (z2). Expected 

casualties from EP and AP versus budget (z1). 



 50 

To better visualize the trends of expected casualties from EP and AP and expected 

unmet DP, we ran a second designed experiment using a 100% EP survival rate and a 

constant penalty ratio of 18.5%. As variations in expected unmet DP and expected 

casualties from EP and AP are observed to occur between $0 and $50 million, the DOE 

model will consider this budget range. Figure 25 shows the average expected unmet DP 

versus budget and the average expected casualties from EP and AP versus budget for all 

scenarios from the DOE results. 

The number of deployed workers in this new experiment is also reduced from the 

base case by approximately 20%. The observations from the DOE output above agrees 

with the trend in Figure 14. The expected unmet DP initially decreases as the budget 

increases, but stabilizes around 8,000 as the budget increases beyond $25 million. The 

expected casualties from EP and AP drop sharply to 7,000, before stabilizing as the 

budget increases beyond $5 million. The output from this experiment suggests, once 

again, that disaster relief efforts can be effective without deploying all available workers 

or spending all the available budget.   

We return to our original experiment in order to get better insight about expansion 

results. Our baseline output shows the majority of the budget was spent on ramp 

expansion. Interestingly, the 60% EP survival rate solution costs more than the nearly 

100% EP survival rate case solution. This counterintuitive result could be caused by the 

objective function, which is designed to minimize casualties and not minimize funds 

expended. It is possible that among the multiple optimal solutions, there exists a solution 

with the same survival rate, but with a lower budget. This means the first-stage decisions, 

such as ramp space and healthcare facility expansion, are “feasible” rather than “optimal” 

with regard to the budget constraint (i.e., the budget constraint is not tight). Additionally, 

there is no incentive for the GAMS solver to choose first-stage decisions that reduce this 

budget. Ramp space expansion is a first-stage decision used as an example in Figure 26.  
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Figure 26.  Difference in unmet casualties [(1-survival rate) x population] with  

ramp space expansion and unmet casualties with no ramp space 
expansion.  

According to Figure 26, expanding ramp space would reduce the average unmet 

casualties by 213 people. As a first-stage decision, this relationship warrants additional 

study and has a measureable impact on second-stage decisions. The dark green represents 

either no casualty difference or increased casualties with ramp space expansion. Further 

research is needed to determine whether this behavior is present in similar two-stage 

stochastic optimization models for humanitarian assistance, such as those discussed in 

previous chapters. With additional analysis, it may be possible to determine whether the 

primary budget difference between each design point lies within the first-stage decision 

to expand or not to expand ramp space. 
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III. CONCLUSION AND RECOMMENDATIONS 

This thesis has demonstrated the use of POM to develop insights that can be of 

use to those planning typhoon disaster relief effects in Taiwan. We have considered a 

number of potential typhoon impact scenarios and allowed the POM to produce optimal 

solutions. As with any model, the results are dependent upon the assumptions that are 

made, and there are limitations. The assignments of probabilities for scenarios occurring 

adds some necessary uncertainty to the model. However, we can do more. Based upon 

the results of the experimental design, we can learn more about the potential situations 

that can arise with natural disaster response.  

• The following are the conclusions and corresponding recommendations 
based on this research, we find that the estimated probability of scenario 3 
and 4, in addition to the known budget limit, are important when 
predicting casualties. It is important to note that each scenario represents a 
different intensity of a crossing path category 2 typhoon. If a decision 
maker can have more accurate and current weather reports, he or she can 
refer to the path and intensity of typhoons while making rescue plans. 
Ideally, he or she can make more efficient allocation of resources to 
achieve the reduction in casualties, while not wasting human and relief 
resources. Continued cooperation between Taiwan MND and TWB is 
recommended.  

• It is not necessary to spend as much money and deploy as many workers 
as we have in the past in order to get the best results. The outcome may 
become worse as the budget and the number of workers deployed increase 
beyond a certain level. From our analysis of the five scenarios, an average 
of 48% of available workers (only 9% of the historical number of workers) 
are deployed to reduce the number of casualties to a certain level. 

• This POM model shows the decision maker the possible outcomes, such as 
the total cost of health facility expansion, ramp expansion, or 
transportation after entering the estimated value of key factors. We can run 
the model again with a smaller range applying to the known factors in 
order to provide us a better insight about other factors. In this case, the 
decision maker may be able to better estimate the number of workers 
needed in each AA responding to the predicted scenario. 

• Further work is needed to determine how to identify good first-stage and 
second-stage expansion decisions, since POM can yield multiple optimal 
solutions. Adding a third objective function that seeks to minimize the 
expansion costs would be beneficial. The best alternative might involve a 
mix of optimization, simulation, and DOE methods. 
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The findings of this thesis are being provided to ROC MND. However, it is 

imperative to note that the results presented here depend entirely on the assumptions and 

input data (much of which had to be estimated). Changes to these assumptions and/or 

inputs could have significant impacts on the results. Finally, a Graphical User Interface 

(GUI) for data input and output would allow the MND to easily modify and evaluate new 

cases more efficiently. 
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APPENDIX. PREPOSITIONING OPTIMIZATION MODEL 
FORMULATION 

This appendix describes the mathematical formulation for the POM model used in 

this thesis, as it appears in Salmeron and Apte (2010). There is one additional constraint 

added (constraint 8.3) in order to determine the number of troops deployed. The term 

vehicle used in the rest of this thesis is referred to as Means of Transportation (MoT) in 

this appendix. 

Indices and Index Sets: 

A Set of affected areas (AAs); a A∈  

L Set of starting and drop off relief locations (RLs); l L∈  

T Set of MoT (e.g., UH-1H aircraft, HMVV land-vehicle); t T∈  

lT  Subset of MoT that can depart from (and drop off at) RL l 

RT  Subset of MoT that require ramp space for delivery of commodities (aircraft 

assets) 

Ω  Set of disaster scenarios; ω∈Ω  

Deterministic Parameters (units): 
0
lh , max

lh , H
lc  Initial capacity for health personnel at RL l (healthcare providers), 

maximum capacity expansion (healthcare providers), and variable expansion cost ($ / 

healthcare provider) 
Hs  EP that one healthcare provider can handle (persons) 
0
ls , max

ls , S
lc    Initial capacity for EP at relief location l (persons), maximum capacity 

expansion (persons), and variable expansion cost ($ / person).  (These are based on 

the initial health personnel, maximum health personnel expansion, variable health 

personnel cost, and Hs ) 
0

ar , max
ar , R

ac    Initial ramp space capacity at AA a (ft3×1000), maximum capacity 

expansion (ft3×1000), and variable expansion cost ($ / ft3×1000), respectively 
0
lm , max

lm , M
lc    Initial capacity for commodities at RL l (ft3×1000), maximum capacity 

expansion (ft3×1000), and variable expansion cost ($ / ft3×1000), respectively 



 56 

0
tu , max

tu , U
tc    Initial number of units of MoT t (vehicles), maximum capacity expansion 

(vehicles), and variable expansion cost ($ / vehicle), respectively 
0
ld , max

ld , D
lc    Initial shelter capacity for DP at RL l (persons), maximum capacity 

expansion (persons), and variable expansion cost ($ / person) 

ts    Capacity for EP of special MoT t (persons / vehicle × trip) 

tm , tw    Capacities for commodities (ft3×1000 / vehicle × trip) and relief workers 

(workers / vehicle × trip), respectively, of general MoT t  

td    Capacity for DP of general MoT t (persons / vehicle × trip). 

th  Available hours during the planning time for each unit of MoT t (hours / vehicle) 

b    Total budget allocated ($) 

aw    Maximum number of workers deployable to area a (persons) 

q    Penalty for unmet commodities (i.e., q  of the stay-backs that are assumed to perish 

per unit of unmet commodities) (persons / ft3×1000) 

α    Relaxation level for the first objective when the second objective is optimized 

(fraction)  

Scenario-Dependent Parameters (units), all under scenario ω : 

amω  Demand for commodities in AA a (ft3×1000) 

asω  EP in affected area a (persons) 

a
ωλ  Survival rate for EP rescued in affected area a (fraction) 

adω  Number of DP in AA a (persons) 

tlahω    Trip time (hours) for MoT t to travel from RL l to AA a (hours / trip). (The same 

time is assumed from a to l, so only tlahω  is defined.) 

awω  Relief workers required to handle commodities at AA a (workers / ft3×1000) 

pω  Probability of scenario ω  occurring 
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Derived Sets:  

LS, LM,  LD,  AR   Subset of RLs, supply locations, shelter locations, and AAs with ramp 

space, respectively. E.g., 0 max{ | 0 or 0}S
l lL l L s s= ∈ > >   

GT , ST    Subsets of general mission MoT (i.e., 0,  0, 0, 0t t ts m w d= ≥ ≥ ≥ ) and special 

mission MoT  (i.e., 0,  0t t t ts m w d> = = = ), respectively. 

K   Subset of four-tuples (t, l, a, l′ ) where MoT t can travel from l to a and then to l′ : 

( ) ' '{ , , , | , }tla tl a t l lt l a l T L A L h h t T Tω ω τ′ ∈ × × × + ≤ ∈ ∩ , where tτ  is the operating range 

of t. 
GK , SK    Subsets of four-tuples (t, l, a, l′ ) where general mission MoT t and special 

mission MoT t, respectively, can travel from l to a, and then to l′ : 

{( , , , ) | ; , ' }G G M DK t l a l K t T l l L L′= ∈ ∈ ∈ ∪ ; {( , , , ) | , ' }S S SK t l a l K t T l L′= ∈ ∈ ∈  

First-Stage Decision Variables (units): 

ls∆  Expansion for health capacity for EP at drop off RL l (persons) 

lm∆  Expansion for commodities at RL l (ft3×1000) 

ar∆  Expansion for ramp space at AA a (ft3×1000) 

ld∆  Expansion for DP at relief location l (persons) 

Second-Stage Decision Variables (units), all under scenario ω : 

tuω∆  Additional units of MoT t needed (vehicles) 

tlalSω
′  EP rescued by MoT t traveling from l to a and then l′  (persons) 

taSω  Total EP rescued by MoT t at AA a (persons) 

aUSω   Unmet EP at AA a (including rescued but not surviving) (persons) 

tlalM ω
′  Commodities delivered by MoT t traveling from l to a and then l′  (ft3×1000) 

taM ω  Total commodities delivered by MoT t to AA a (ft3×1000) 

aUM ω  Unmet commodities at AA a (ft3×1000) 

tlalDω
′  DP transported by MoT t traveling from l to a and then l′  (persons) 
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taDω  Total DP transported by MoT t from AA a (persons) 

aUDω  Unmet transfer population at affected area a (persons) 

tlalNω
′  Number of trips from l to a and then to l′  by MoT t (trips) 

taW ω  Number of relief workers carried by MoT t to AA a (workers) 

1 2,z z  Objective value for the first goal (persons) and second goal (persons), respectively 

Formulation:  

Objective 1 (minimize): Expected Casualties from EP and AP: 
 ( )1 a a

a
z p US qUMω ω ω

ω

= +∑ ∑     (1.1) 

Objective 2 (minimize): Expected Unmet DP: 
 2 a

a
z p UDω ω

ω

= ∑ ∑     (1.2) 

Budget: 
 ,

S M D R

S M D R U
l l l l l l a a t t

tl L l L l L a A

c s c m c d c r c u bω ω
∈ ∈ ∈ ∈

∆ + ∆ + ∆ + ∆ + ∆ ≤ ∀∑ ∑ ∑ ∑ ∑  (2) 

MoT Available and Trips: 
max , ,t tu u tω ω∆ ≤ ∀     (3.1) 

( , , )|( , , , )

( ) ( ), ,o
tla tl a tlal t t t

l a l t l a l K

h h N h u u tω ω ω ω ω′ ′
′ ′ ∈

+ ≤ + ∆ ∀∑    (3.2) 

'
( , )|( , ', , ) ( , )|( , , , )

, , ,tl al tlal l
l a t l a l K a l t l a l K

N N l t Tω ω ω′
′ ′ ′∈ ∈

= ∀ ∈∑ ∑    (3.3) 

EP and Its Transportation: 
max , s

l ls s l L∆ ≤ ∀ ∈     (4.1) 

( , )|( , , , )

, , ,
S

o s
tlal l l

t a t l a l K

S s s l l Lω ω′
′ ∈

′≤ + ∆ ∀ ∈ ∀∑    (4.2) 

, ( , , , ) ,S
tlal t tlalS s N t l a l Kω ω ω′ ′ ′≤ ∀ ∈ ∀     (4.3) 

( , )|( , , , )

, , ,
S

S
ta tlal

l l t l a l K

S S a A t Tω ω ω′
′ ′ ∈

= ∀ ∈ ∈ ∀∑    (4.4) 

, ,
S

a ta a a
t T

S US s aω ω ω ωλ ω
∈

+ = ∀∑     (4.5) 

, ,
S

ta a
t T

S s aω ω ω
∈

≤ ∀∑      (4.6) 

Delivery of Commodities for AP: 
max , M

l lm m l L∆ ≤ ∀ ∈     (5.1) 

( , , )|( , , , )

, ,
G

o M
tlal l l

t a l t l a l K

M m m l Lω ω′
′ ′ ∈

≤ + ∆ ∀ ∈ ∀∑    (5.2) 

, ( , , , ) ,G
tlal t tlalM m N t l a l Kω ω ω′ ′ ′≤ ∀ ∈ ∀     (5.3) 
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( , )|( , , , )

, , ,
G

G
ta tlal

l l t l a l K

M M t T aω ω ω′
′ ′ ∈

= ∀ ∈ ∀∑    (5.4) 

, ,
G

ta a a
t T

M UM m aω ω ω ω
∈

+ = ∀∑     (5.5) 

Sheltering DP: 
max , D

l ld d l L∆ ≤ ∀ ∈     (6.1) 

' '
( , , )|( , , , )

, ' ,
G

o D
tlal l l

t l a t l a l K

D d d l Lω ω′
′ ∈

≤ + ∆ ∀ ∈ ∀∑    (6.2) 

, ( , , , ) ,G
tlal t tlalD d N t l a l Kω ω ω′ ′ ′≤ ∀ ∈ ∀     (6.3) 

( , )|( , , , )

, , ,
G

G
ta tlal

l l t l a l K

D D t T aω ω ω′
′ ′ ∈

= ∀ ∈ ∀∑    (6.4) 

, ,
G

ta a a
t T

D UD d aω ω ω ω
∈

+ = ∀∑     (6.5) 

Ramp Space: 
max , R

a ar r a A∆ ≤ ∀ ∈     (7.1) 
, ,

R

o R
ta a a

t T

M r r a Aω ω
∈

≤ + ∆ ∀ ∈ ∀∑     (7.2) 

Relief Workers versus Commodities: 
, ,

G G
ta a ta

t T t T

W w M aω ω ω ω
∈ ∈

≥ ∀∑ ∑     (8.1) 

( , )|( , , , )

, , ,
G

G
t ta t ta t t tlal

l l t l a l K

w M m W w m N t T aω ω ω ω′
′ ′ ∈

+ ≤ ∀ ∈ ∀∑    (8.2) 

, , ,
G

at a
t T

W awω ω
∈

≤ ∀∑     (8.3) 

Domain for Decision Variables: 
lm∆ , ls∆ , ar∆ , ld∆ , tlalM ω

′ , taM ω , aUM ω , tlalSω
′ , taSω ,  

aUSω , tlalDω
′ , taDω , aDM ω 0≥ ,  , , ', ,t l l a ω∀    (9.1) 

tuω∆ , tlalNω
′ , taW ω  0≥  and integer, , , ', ,t l l a ω∀    (9.2) 

 

POM is a multi-objective model comprising two optimization problems (POs) 

hierarchically arranged. In the first one, PO-1, we minimize expected EP casualties 

including those who are non-rescued and those rescued but not surviving, and the AP 

casualties due to unmet commodities, as given by equation (1.1). The second problem, 

PO-2, minimizes unmet demand for transfer population (1.2): 
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*
1 1PO-1: min

(1.1)
s.t. 

(2)-(9.2)

z z=





 

*
2 2

*
1 1

PO-2: min

(1.2)
s.t. (2)-(9.2)

(1 ) (10)

z z

z zα

=




 ≤ +

 

Notice that PO-1 might be seen as a bi-objective problem itself, since it addresses 

two different groups of people. Our assumption is that both groups are equally important 

in the sense that failing to meet either demand results in casualties. Specifically, (1.1) 

accounts for casualties from the critical population, along with a fraction of those who do 

not receive commodities ( q casualties per ft3 × 1000). PO-2 minimizes unmet demand 

for transfer population, but with the additional constraint (10) as an aspiration level based 

on PO-1’s optimal solution. (In our test cases, we set the aspiration level to 1%α = .)  

All of the remaining constraints are shared by both problems. (2) is the budget 

constraint. Most of the budget allocation is expected to occur during the first stage 

(expansion of medical facilities, warehouses, shelters, and ramp space). The remaining 

budget can be allocated to the engagement of additional MoT from the available fleet, 

usually commercial transportation, arranged beforehand to become available during a 

disaster, with contractual cost based on the level of utilization (thus, scenario-dependent). 

It is precisely these constraints that link decision variables involving critical population 

and commodities. Here, we note that a possible enhancement would be to capture the 

influx of any additional funding after the disaster has occurred. While part of this funding 

may be provided by private donors at the onset of a disaster for different purposes (such 

as financial help to individuals, reconstruction, etc.), we note that it is not complicated to 

accommodate an anticipated extra budget, bω, particular to each scenario, by simply 

adding bω to the right-hand side of equation (2). (This extension has not been explored in 

our experiments, i.e., we assume bω = 0 for each ω.) 

Constraints (3.1) bound the maximum capacity expansion for MoT, whereas (3.2) 

constraints ensure that travel time per MoT does not exceed their available operating 

hours. Constraints (3.3) are flow-balance constraints in and out of each RL. This is a 

global balance equation by MoT type, understanding that the actual schedule details of 
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each individual vehicle, aircraft, or vessel cannot be accurately anticipated and would 

become an unnecessary complication for long-term planning purposes. 

Constraints (4.1) limit the allowable increase in healthcare providers located in 

the respective RLs. Constraints (4.2) limit the amount of EP that can be treated by 

available health providers. Constraints (4.3) ensure that these people are carried by an 

MoT configured for that special mission, traveling on a given route, but not exceeding the 

capacity. Constraints (4.4)–(4.6) account for the “met” and “unmet” demand of EP in 

each affected area. Specifically, the survival rate in (4.5) reflects that part of the EP 

rescued will perish.  

 Constraints (5.1) limit warehouse expansion. (5.2) limit delivery from eligible 

warehouses. (5.3) ensure that the commodities are carried by existing MoT configured for 

the general mission on each route. (5.4) and (5.5) account for the met and unmet demand 

of commodities for the AP at each AA. Likewise, (6.1)–(6.5) are constraints for 

sheltering DP. 

Constraints (7.1) and (7.2) restrict ramp space expansion, which in turn limits 

commodities delivered by aircraft. Constraints (8.1) ensure that relief workers arrive at 

the AAs at a given rate based on the amount of commodities supplied to each affected 

area. Constraints (8.2) depict total capacity of an MoT on a general mission as a linear 

function of relief workers and commodities. Constraints (8.3) bound the maximum total 

capacity of the relief workers.   

Finally, (9.1) and (9.2) define the appropriate domains for the decision variables. 
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