
Calhoun: The NPS Institutional Archive
DSpace Repository

Faculty and Researchers Faculty and Researchers' Publications

2015

X3D Distributed Interactive Simulation (DIS)
Implementation and Run-Time Discovery of
New Entities using X3DOM

McGregor, Don; Harder, Byron; Brutzman, Don

D. McGregor, B. Harder, D. Brutzman, "X3D Distributed Interactive Simulation (DIS)
Implementation and Run-Time Discovery of New Entities using X3DOM," Web3D '15
Proceedings of the 20th International Conference on 3D Web Technology, June
18-21, 2015, pp. 25-30
https://hdl.handle.net/10945/46000

This publication is a work of the U.S. Government as defined in Title 17, United
States Code, Section 101. Copyright protection is not available for this work in the
United States.

Downloaded from NPS Archive: Calhoun

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this notice and the full citation on the
first page. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on
servers or to redistribute to lists, requires prior specific permission and/or a fee.
Request permissions from Permissions@acm.org.
Web3D '15, June 18 - 21, 2015, HERAKLION, Greece
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-3647-5/15/06…$15.00
DOI: http://dx.doi.org/10.1145/2775292.2775318

X3D Distributed Interactive Simulation (DIS) Implementation
and Run-Time Discovery of New Entities using X3DOM

Don McGregor, Byron Harder and Don Brutzman

Modeling, Virtual Environments Simulation (MOVES) Institute
Naval Postgraduate School, Monterey California USA 93933-5000

Figure 1: X3D ship models driven by Distributed Interactive Simulation (DIS) protocol packets, originating from an
Automatic Identification System (AIS) commercial tracking service, rendered in browser-based X3DOM player.

Abstract

New capabilities in web browser JavaScript implementations
including networking, improved graphics performance, and
improved speed allow the implementation of Networked Virtual
Environments (NVEs) inside the web browser. An NVE can be
written in JavaScript, which enables deployment in the enterprise
entirely from a web server without the use of browser plugins. We
discuss one implementation of this idea using X3DOM, an open-
source implementation of the X3D standard written in JavaScript.
The Open-DIS library for the IEEE Distributed Interactive
Simulation (DIS) network protocol is used to create a partial
implementation of the X3D standard’s DIS profile. Mechanisms
for using the X3D DIS Profile DISEntityTypeMapping and
DISEntityManager to enable run-time discovery and launching of
new entities are discussed. Measurements of the capabilities and
performance aspects of Websockets for network transport
demonstrate excellent results.

CR Categories: I.3.3 [Computer Graphics]: Three-Dimensional
Graphics

Keywords: X3D, JavaScript, DIS, X3DOM, Websockets, NVEs

*e-mail: mcgredo@nps.edu

brharder1@nps.edu
brutzman@nps.edu

1 X3D and Networked Virtual Environments

The Extensible 3D (X3D) standard provides an XML-based
format that can be used to describe 3D objects and scenes
[Brutzman and Daly 2007]. X3D format files can be downloaded
from a web server and rendered inside a web browser by software
dedicated to this purpose. While the X3D scene in each browser
may implement time-based animation via an event model
combined with features such as TimeSensor and Interpolator
nodes, the animations in each web browser to which the scene has
been downloaded are not coordinated or synchronized with scenes
loaded in other browsers—the animation in each application’s
scene proceeds independently of the animation of other scenes
loaded in other browsers.

Games and simulations require the ability to coordinate object
movement in one browser’s scene with other applications. For
example we might cause a vehicle in a scene on one computer to
move, while observing the approximately synchronized
movement of that object in a scene on another host. The vehicle
should be in the same position and have the same orientation in
both scenes. This class of application is sometimes called a
Networked Virtual Environment (NVE).

NVEs require that changes to a scene’s state be sent to other hosts.
This makes NVEs inherently more difficult to implement than
animation in a single scene on a single host. Events may arrive
asynchronously, network latency and reliability may affect the
application state updates, and applications need to agree on
coordinate systems, message formats, and many other issues arise.

Sending and receiving state updates from inside a web browser
has traditionally required the use of a browser plugin, a
requirement that often runs afoul of enterprise security policies.
But the adoption of recent web standards means that web pages
can now use JavaScript, executed in the downloaded HTML page,
to communicate scene graph state changes to other hosts. This
paper discusses one implementation of this idea.

25

mailto:mcgredo@nps.edu
mailto:brharder1@nps.edu
mailto:brutzman@nps.edu

2 Web Standards

Together the X3D standard, existing Institute for Electrical and
Electronic Engineers (IEEE) standards, and Internet Engineering
Task Force (IETF) and World Wide Web Consortium (W3C)
standards can be used to implement a NVE in X3D running inside
a web browser.

2.1 JavaScript and WebGL

Today nearly all web browsers contain a JavaScript engine that
allows scripts to run inside the web page. Competition between
browser vendors over the course of the last few years has resulted
in improved JavaScript implementations, and now for some tasks
JavaScript applications running in a web browser are nearly in the
same performance class as Java or C++ programs. In addition the
WebGL standard provides native OpenGL bindings for JavaScript
that can exploit the accelerated graphics hardware that may be
present on the host, which allows significant 3D scenes can be
displayed with good performance. The X3DOM project
[Behr et al. 2011] has implemented an X3D viewer entirely in
JavaScript using WebGL. This means a client browser can
download the X3D rendering software at page load time,
download the X3D scene, and the entire HTML page can be
viewed in a web page without a plugin.

2.2 Distributed Interactive Simulation (DIS)

Moving an entity in a distributed 3D scene requires at a minimum
an agreed-upon standard for describing the position and
orientation of the entities in the scene graph. The military did
much of the early research on interactive and distributed 3D
graphics, and has been using NVEs in training for decades. One
standard in widespread use by the defense industry is Distributed
Interactive Simulation (DIS), which has been standardized by the
IEEE. The DIS standard encapsulates many of the lessons learned
for NVE implementations, such as the use of coordinate systems,
dead reckoning interpolation of movement, and a system of
identifiers to simplify the exchange of semantics. The DIS
standard describes a binary format for the content of state update
messages, along with semantics such as identifiers, coordinate
systems, and entity discovery. Formats other than binary have also
been discussed [McGregor et al. 2006] [Swan 2014].

A JavaScript implementation of the DIS standard, Open-DIS, has
been written by the authors and is available at GitHub and
SourceForge [McGregor et al. 2008] [McGregor et al. 2006].

The X3D standards group recognized the usefulness of DIS for
this problem domain and approved the optional “DIS profile” for
use in X3D. The profile describes the X3D nodes used to
interoperate with DIS [Brutzman and Daly 2012].

2.3 WebSockets, WebRTC Networking

While the DIS profile of X3D describes an interface to DIS, it is
silent about the transport mechanism used to send DIS state
updates. In the past this task has been exceedingly difficult to
achieve from inside a web page. Originally X3D rendering inside
the web browser had to be implemented by a Java or C++ browser
plugin. Since the plugin was written in a conventional language, a
TCP/IP protocol socket might be opened inside the plugin to send
messages to an arbitrary address on the Internet. However such
low-level access often conflicts with enterprise and individual
browser security policies, and the networked state updates often

had problems traversing host and enterprise firewalls. As a result
3D software was often difficult to deploy in an enterprise
environment. Asynchronous JavaScript and XML (AJAX)
provides an alternative transport method, but because AJAX’s
architecture is based on the web page polling the web server it
does not provide message latency low enough to be useful for
most interactive NVEs.

The W3C and the IETF have cooperated on a new standard,
Websockets [Wang et al. 2013], [Kapetanakis et al. 2013],
[McGregor 2012]. This allows JavaScript to open a TCP socket to
a server and exchange data using a simple API. The Websocket
connection was designed with modern network proxy
architectures in mind, and typically connects to port 80 or 443 on
the destination server, which allows it to traverse most host and
enterprise firewalls and network architectures. The Websocket
upgrades an HTTP connection to a TCP socket that is able to
transmit arbitrary data without wrapping it inside the HTTP
protocol. The Websocket transport method provides the
advantages of TCP sockets (reliability, in-order delivery, rate
limiting) but is also limited by TCP socket disadvantages (higher
jitter, poor performance in networks that exhibit packet loss).

The W3C and IETF have cooperated on another standard for
JavaScript access to socket-based communication between hosts,
WebRTC [Johnston and Burnett, 2012]. WebRTC is primarily
intended for audio and video conferencing, but also allows
arbitrary data to be sent between hosts. The WebRTC standard is
closely matched to the TCP/IP suite’s UDP sockets, just as
Websockets are to TCP sockets, but again with some added
JavaScript API features. In contrast to TCP sockets UDP sockets
may have unreliable message delivery and may deliver messages
out of order. NVE state updates, which are frequent and need not
be delivered reliably, have traditionally used UDP transport.

The governing IETF WebRTC Request For Comments (RFC)
documents are still in draft status at the current writing, and
browser support for the WebRTC standard in deployed web
browsers is more limited than that of Websockets.

Either of these networking standards can be used to send
application state updates and implement a NVE. Chen-Fu Hsiao
[2014] demonstrated a 3D NVE that made use of both
Websockets and WebRTC in an effort to benchmark performance
for both options. Typical stream throughput of thousands of state-
update PDUs per second can support quite large interactive NVEs.

There is one significant limitation in web-based networking: there
is no concept of broadcast or multicast, which allows a single
copy of a message to be sent to many recipients. Neither of these
concepts can be supported in TCP, the underlying technology for
Websockets. WebRTC does not support broadcast or multicast at
this writing, and it is unlikely to in the near future.

2.4 Geospatial Considerations

DIS uses a Cartesian coordinate system with the origin at the
center of the earth. This might seem like an odd choice, but an
earth-centered coordinate system is more mathematically tractable
if one wishes to convert it to one of the several more commonly
used coordinate systems. In contrast X3D uses a Cartesian
coordinate system with the origin at an arbitrary point, not
necessarily tied to a particular place on the earth. It is unrealistic
to use simply place the origin of the X3D scene at the center of
the earth because the entities on the surface of the earth would be
placed several million meters out on the axes. We can

26

accommodate the two coordinate systems by placing the origin of
the X3D coordinate system at a reference point in the DIS
coordinate system, and then converting between the two
coordinate systems. For example, we can place the origin of the
X3D coordinate system at a given latitude, longitude, and altitude,
and create a plane tangent to the earth. The plane corresponds to
the X3D coordinate system. When state updates are sent the
coordinates of the object’s X3D coordinates are converted to the
DIS coordinates and used in the state update message.

Many software simulations assume a flat earth. This is not an
issue for sufficiently small applications or homogeneous NVEs.
But use cases typically call for different simulation types within
the NVE—each of which may or may not assume a flat earth. As
demonstrated in Figure 3, this can result in incorrect entity
altitudes. The simplest fix to this, projecting the entities to ground
level by zeroing their local y-coordinates (in the case of spheroid-
to-flat transforms), results in location error in the xz plane or in a
warped terrain map, depending on where the developers choose to
take the error. Entity velocities are also affected. These issues can
become visually apparent over surprisingly small distances,
resulting in artifacts such as entity collisions that make no visual
sense.

One of the most significant benefits of a 3D simulation is the
ability to visualize the impact of terrain on a situation—for
example, on intervisibility or trafficability. All of today’s virtual
environments have some kind of terrain representation to describe
elevation deviations from the perfect oblate spheroid, but there is
little standardization on terrain representation. Even if two terrain
models use the same level of precision in their data, they will not
necessarily agree at each point or in how to interpolate between
points. In a networked simulation environment, this results in
entities that seem to tunnel through the earth or levitate. Since
terrain representations are often tightly coupled within simulations,
restricting applications a single terrain data service is usually not a
viable solution. The only option left, assuming that realistic-
looking behavior is a priority on the user’s screen, is to use terrain
clamping. Similar to the flat earth-projection described above,
terrain clamping translates an entity up or down (on the y-axis or
from the center of the earth) until it touches the ground. Terrain
clamping can also adjust rotations to minimize visual artifacts.

X3DOM does not currently have a terrain-clamping feature. This
work is investigating the feasibility of a generally useful module
to support this. The obvious starting point for such a module is to
support terrain data presented in the X3D Geospatial component’s
format. The geospatial nodes are available in X3DOM’s current
development release. It should prove useful to keep terrain
features decoupled from direct DIS-to-X3D coordinate translation
if different terrain approaches will be supported in the future.

Flat-earth issues and terrain representation are two different
questions that can manifest in many different combinations.
Although we could pick a single standard and ignore all others,
that approach may not be supportive enough of the current
modeling and simulation environment to inspire greater X3D
adoption. One experimental alternative is to include attribute
settings in the X3D DIS module that allow users to account for
the most common possibilities. Some X3D specification work is
needed to align the DIS and Geospatial components completely.

2.5 Modeling Conventions

While X3D provides a standard for describing 3D objects, there
are more issues that can cause problems when actually using a
model in a networked virtual environment. The essence of a
virtual environment is multiple 3D objects integrated into one
scene. Models may all be in the X3D format, but may still have
different scales or different orientations or different ideas about
which way is “up” for the model if conventions and requirements
are not followed. For example the conventional way to model
aircraft is to place the local origin at the center of gravity with the
Z axis pointing down, the X axis pointing out the nose, and the Y
axis out the right wing. Other models, such as vehicles, may
assume that “up” for the object points through the roof of the
vehicle. Two X3D model creators, each working within their
respective modeling domain assumptions, may create entirely
valid models that when integrated in the same scene appear to be
upside down. The X3D Scene Authoring Hints document the
correct right-hand rule guidance: X axis is vehicle direction,
Y axis is up, and Z axis is right (starboard) side of vehicle.

This can be addressed by both convention and by including meta
information in the X3D model. Conventions may include
agreements about where to place the object local coordinate
system—for example at the center of the object, rather than at one
end. Some of the model assumptions can be encoded in the X3D
file itself. Since X3D includes strictly typed metadata, developers
can easily include metadata that describe each model’s
assumptions and the parameters necessary to integrate the object
into a larger scene. The Savage Model Analysis Library (SMAL)
conventions provides one such approach.

3 Implementation

3.1 Networking

We chose to use the Websockets standard to implement the
transport layer of DIS networking for X3D. This requires that a

Figure 2: DIS and scene coordinate systems

Figure 3: Flat earth issues

27

Websocket standards-compliant server be present to accept client
connections. We implemented a central server in Jetty, a Java-
based modular web application container. Clients specify a
connection point URL, the websocket client/server handshake is
performed, and an underlying TCP socket is established to the
websocket server.

The Websocket server implementation acts as a central hub for
message distributon; the server repeats a copy of each message
sent by a client to any other client that has established a
connection to the server. The Websocket server can also act as a
conventional web server to provide HTML, JavaScript, and
X3DOM files to clients via HTTP or HTTPS requests.

The JavaScript implementation of X3DOM uses information
specified in the X3D file to establish a connection to the
Websocket server at the time the page is loaded in the client
browser. All data on the client web page is loaded from the
webserver: HTML pages, including the JavaScript X3DOM
implementation, the X3D models, and the DIS implementation.

3.2 Implementing X3D DIS Component Nodes

X3DOM is a partial implementation of the X3D standard
[ISO/IEC 2013] and is written entirely in JavaScript and WebGL.
This means that X3DOM can be downloaded from a web server,
run in a web browser, and display X3D content without a plugin.
The optional DIS X3D profile, documented in Chapter 28 of the
X3D standard, is not implemented by X3DOM. We have
implemented the most important nodes described in the X3D DIS
Component as a proof of concept extension to X3DOM, with
further completion of remaining nodes expected to follow.

The DISEntityManager node in the X3D DIS profile is
responsible for network communications and managing all entities
added from the network. When a state update from the network
comes in this node is responsible for decoding the message and
sending the state update to a corresponding EspduTransform node.

DIS uses the concept of an “entity type” record, which consists of
several numbers that, taken together, are a descriptor of a
particular piece of military or civilian hardware, as shown in
Figure 4.

[kind:1, domain:1, country:224, category:1,
subcategory:1, specific: 1, extra:0]

Figure 4: Entity type settings

By prior agreement these numbers in the Entity Type record
describe a particular type of vehicle, person, or other entity. The
field values are arbitrary, but need to be agreed upon by all
applications cooperating in a NVE. A mapping between the
values and the semantic meaning—the particular type of entity
described by the numbers—is specified in the Enumerated and Bit
Values (EBV) document from the Simulation Interoperability
Standards Organization (SISO). Different mappings between the
Entity Type record values and objects may be created other than
the EBV document, but for the sake of consistency with existing
simulations this is strongly discouraged.

DIS state update messages are sent every few seconds for every
entity in the world and contain the entity’s position, orientation,
and speed. Also included are a unique identifier for that entity and
an EntityType record. An application listening to DIS state update

messages can, over a period of a few seconds, build a picture of
the position, orientation, and type of all the entities in the scene.

The DISEntityTypeMapping node contains EntityType records,
and in addition a link to a URL where an X3D model
corresponding to the values of the Entity Type record can be
found. Thus a simulation can, at runtime, find a 3D model that
corresponds to a given Entity Type record and load it into the
scene.

The EspduTransform node represents one entity in the world. If
this X3D document creates and controls the entity the
EspduTransform node instance will send periodic state updates to
the network. If the X3D scene receives an update for an entity it
has not encountered before, a new EspduTransform node will be
created at runtime and added to the DOM tree. Subsequent
updates will modify that same EspduTransform node—for
example, position and orientation values change as it moves.

A simple scene fragment is shown below in Figure 5.

<DisEntityManager
websocketUrl="ws://10.1.1.100:80"
localCoordinateSystemOrigin="36.6 -121.9
1.0" applicationID="23">
 <DISEntityTypeMapping
 url="https://savage.nps.edu/tank.x3d"
 category="1" country="225" domain="1"
 kind="1" specific="3"
 subcategory="1" extra="0">
 </DISEntityTypeMapping>
</DisEntityManager>
<EspduTransform marking="X3D Entity"
entityID="42" siteID="2" entityKind="1"
entityDomain="1" entityCountry ="225"
entityCategory="1" entitySubCategory="1"
entitySpecific ="1" entityExtra="1"
networkMode="networkWriter" writeInterval =
"2000"> <!-- times in milliseconds -->
 <!-- no child shapes/models needed -->
</EspduTransform>

Figure 5. Scene Fragment Using a Modified X3D DIS Profile

The DISEntityManager element in Figure 5 declares that the
server it will be sending and receiving DIS messages from is at
the IP 10.1.1.100 on TCP port 80. A DISEntityTypeMapping is
declared between a entity type record and a URL from which a
model corresponding to that entity type can be retrieved.

This differs from the approved X3D DIS Profile in several ways.
First of all, the DisEntityManager node specifies a “websocketUrl”
attribute, with a value corresponding to the websocket server
address. This attribute is not specified in the X3D DIS profile; the
semantics of Websockets demanded that slightly different terms
be used. Second, there is a “localCoordinateSystemOrigin”
attribute. The attribute specifies the geo-referenced location of the
X3D scene’s coordinate system origin. DIS location coordinates
from the network state updates are converted to local scene
coordinates. Likewise a local entity informing the NVE of its
position has its location converted to DIS coordinates before a
state update is sent to the network. In the current example, an
entity describing its position in earth-centered coordinates such as
(-2678632, -4371130, 3781849) had its position converted to the
scene’s X3D flat, rectilinear coordinate system with an origin at
latitude 36.6, longitude -121.9, and altitude 1 meter. Note that for

28

simplicity of the initial implementation, the demonstration X3D
scene assumes a flat earth. This is an approximation that is
certainly not true over large distances.

The modifications the authors made to X3DOM do not yet
completely implement the X3DOM DIS profile. The
developmental source code is available online at
http://github.com/mcgredonps/x3dom. Included in the source code
is an implementation of DIS in JavaScript, utilities for converting
between an earth-centric coordinate system and a local, scene-
based, rectilinear coordinate system, and a sample HTML file.
The Jetty websocket server is also available at
http://sourceforge.net/open-dis.

3.3 Demonstration

The sample HTML file demonstrates some of the DIS
functionality described above. In this naval scenario, civilian
vessels and friendly warships are threatened by terrorist craft,
which look like civilian vessels, as well as small pirate skiffs. For
convenience, the training scenario uses the San Francisco bay area
as its geographic location. When a user follows a link to the scene,
the browser displays a 3D-navigable window into the running
simulation in real-time (minus network latency). The user can pan
and zoom into different parts of the map to watch the ships as they
sail around the bay and interact with each other. The models are
smoothly animated from point to point and oriented in the correct
direction.

The HTML page is mostly comprised of an X3D scene with a
DisEntityManager node. The scene includes no static entity
nodes; all entities are created dynamically by the X3DOM module
as the browser receives DIS traffic on the Websocket. All model
URLs used in these DISEntityTypeMapping nodes are from the
freely available SAVAGE X3D model repository found at
https://savage.nps.edu/Savage. The only static object explicitly
defined in the scene is the “terrain”—which in this simple
example is just a satellite map image placed on a rectangle. The
purely naval scenario avoids some of the difficulty of serving
detailed ground elevation, but does not resolve the curvature of
the earth problem discussed above. We use the simplest approach
for this early prototype, clamping all models to sea level in local
coordinates. If the DIS source is from a spheroid (that is, not flat)
earth model, entities far from the center of the map appear to
move a bit more slowly in the browser.

4 Performance

Hsiao Chen-Fu [2014] investigated performance of NVEs using
the Three.js Javascript 3D framework, along with Websockets and
WebRTC sockets. He used broadly similar technology, including
the same implementation of DIS for JavaScript over websockets
and WebRTC, but primarily used Three.js along with some X3D
exemplars to implement the 3D portion. Benchmarking showed
the ability to send over 5,000 DIS entity state updates per second.

DIS JavaScript decoding benchmarks are available at
http://jsperf.com/JavaScript-dis-native-vs-json/2. The results
showed significant differences depending on the browser
implementation and version, a result that reflects varying
performance of the different JavaScript engines. For example
Firefox version 33 is several times faster than Firefox version 32
when performing the same message decoding task.

Ultimately performance is gated more by 3D scene size and
complexity than by the ability to send and receive messages.
Small to medium NVE scenes can be implemented in the web
browser.

5 Conclusions and Future Work

The X3D DIS profile should be extended to handle different
methods of message transport. At the time the standard was
developed the only options for transport were conventional
sockets accessed by plugins, a fact that resulted in simplifications
in the specification. Recent technology changes have increased
the number of transport options, and the DIS profile should reflect
the new choices available to implementers.

More support is needed for different terrain projections and
formats, perhaps including support for KML and other features.
Curvature of the earth issues in scenes larger than a few
kilometers can be avoided through proper implementation and
integration of the X3D Geospatial Component.

There are many practical scalability issues to be investigated,
including cloud deployments and using the server as a filter to
forward only the state update messages that can be used by a
particular client, instead of all messages.

We have shown the feasibility of enabling X3DOM to support
NVEs, a challenge that has become achievable due to today’s
improved web browser 3D capabilities. NVEs come with several
technical challenges, including heterogeneous models,
asynchronous messaging with real-time demand, prohibitive
security policies, and competing geographical representations, but
these are not insurmountable.

The prime use case for our work is the addition of nodes into an
NVE without need for any traditional client software
deployment—not even browser plug-ins. With a websocket server
in support of the NVE, a user needs only a typical modern web
browser, a URL, and login credentials to join. For example, an
unanticipated visitor to a military simulation-based exercise could
be provided immediate access to view the action in real-time,
even from halfway across the world.

With enough development of the downloadable (i.e. JavaScript)
client software, the browser-based clients could begin to replace
traditional thick client nodes altogether, not only viewing but
injecting own entity actions. This would result in significant
savings in software configuration management, and it suggests a
powerful tradeoff between the thick client and thin client models:
changes are deployed only to the servers, but all of the costly
graphics processing happens on the client side.

An interesting view of this approach to NVEs is that it begins to
separate modeling from simulation, with regard to both entity
visualization and terrain representation. Since these models are
loaded from URLs, and could be hosted anywhere, there is an
opportunity to break the coupling of graphical representation,
behavior logic, and geography—all three of which are bound
together in a single application in today’s systems. Perhaps this
kind of modularity will someday lead us to employing NVEs as
the norm, rather than NVEs that are painfully strapped together
for single-use applications. Important future work continues.

29

http://jsperf.com/javascript-dis-native-vs-json/2

References

BHER, J., JUNG, Y., DRVENSEK, T., ADERHOLD, A., “Dynamic and
Interactive Aspects of X3DOM,” Proceedings of the 16th
International Conference on 3D Web Technology, ACM, 2011.

BRUTZMAN, D., AND DALY, L., X3D: Extensible 3D Graphics for
Web Authors, Morgan Kaufmann Publishing, 2007. Course
resources, slides, videos and example scenes available at
http://www.x3dgraphics.com

BRUTZMAN, D., “X3D Graphics and Distributed Interactive
Simulation (DIS) Networking,” tutorial slides, 2014. Available at
http://x3dgraphics.com/slidesets/X3dForAdvancedModeling/Distr
ibutedInteractiveSimulation.pdf

BRUTZMAN, D., X3D Basic Examples for Distributed Interactive
Simulation (DIS), model archive and documentation,
http://www.web3d.org/x3d/content/examples/Basic/DistributedInt
eractiveSimulation

BRUTZMAN, D., X3D Scene Authoring Hints: Coordinate Systems,
authoring guidance. Available at
http://www.web3d.org/x3d/content/examples/X3dSceneAuthoring
Hints.html

HSIAO, CHEN-FU, Development of a web-based distributed
interactive simulation (DIS) environment using JavaScript,
Masters Thesis, Naval Postgraduate School (NPS), Monterey
California, September 2014. Available at
https://calhoun.nps.edu/handle/10945/43928

ISO/IEC, 2013. ISO/IEC 19775-1:2013: Extensible 3D (X3D)
Standard. Geneva, Switzerland. Available at
http://www.web3d.org/standards

JOHNSTON, A.B., AND BURNETT, D. C., WebRTC: APIs and
RTCWEB Protocols of the HTML5 Real-Time Web, Third Edition,
Digital Codex LLC, 2014.

KAPENAKIS, K., PANAGIOTAKIS, S., AND MALMOS, A.G., “HTML5
and WebSockets; Challenges in Networked 3D Collaboration,”
Proceedings of the 17th Panhellenic Conference on Informatics,
pp. 33-38, 2013.

MCGREGOR, D., AND BRUTZMAN, D., Open-DIS Open-Source
software implementation of the Distributed Interactive Simulation
(IEEE-1278) standard in C++, C-Sharp, Objective-C, Java,
Javascript and XML. Available at
https://sourceforge.net/projects/open-dis

MCGREGOR, D., BRUTZMAN, D., AND JOHN GRANT, S., “Open-DIS:
An Open Source Implementation of the DIS Protocol for C++ and
Java,” Simulation Interoperability Workshop (SIW) of Simulation
Interoperability Standards Organization (SISO), paper 08F-SIW-
051, Orlando Florida, 15-19 September 2008.

MCGREGOR, D., 2012, “WebSockets for Networked Virtual
Environments (NVEs),” presentation, Fall 2012 Simulation
Interoperability Workshop (SIW) of Simulation Interoperability
Standards Organization (SISO). Available at
http://hdl.handle.net/10945/44385

MCGREGOR, D., BRUTZMAN, D., ARNOLD, A., BLAIS, C. L.,
FALASH, M. AND POLLACK, E., “DIS-XML: Moving DIS to Open
Data Exchange Standards,” Proceedings of the Fall Simulation
Interoperability Workshop (SIW), paper 06S-SIW-132, Orlando
Florida, 2006. Available at
http://calhoun.nps.edu/bitstream/handle/10945/31188/06S-SIW-
132-PDF.pdf

RAUCH, T., Savage Modeling and Analysis Language (SMAL)
metadata for tactical simulations and X3D visualizations,
Masters Thesis, Naval Postgraduate School (NPS), Monterey
California, March 2006. Available at
http://calhoun.nps.edu/handle/10945/2971

RAUCH, T., BLAIS, C., AND BRUTZMAN, D., Savage Modeling and
Analysis Language (SMAL) Resources, online support, available
at https://savage.nps.edu/Savage/Tools/SMAL/SMAL.html

SIMULATION INTEROPERABILITY STANDARDS ORGANIZATION
(SISO), Reference for Enumerations for Simulation
Interoperability, SISO-REF-010-2015 Version 21, 17 March 2015.
Also referred to as Enumeration Byte Values (EBV) document.
Available at
http://www.sisostds.org/ProductsPublications/ReferenceDocumen
ts.aspx

SWAN, P., “WebLVC—An Emerging Standard and New
Technology for Live, Virtual, and Constructive Simulation on the
Web,” Proceedings of the 2014 Winter Simulation Conference,
IEEE, pp. 4217-4218, 2014.

WANG, V., SALIM, F., AND MOSKOVITS, P., The Definitive Guide
to HTML5 WebSockets, Apress, 2013.

WIKIPEDIA, “Automatic Identification System (AIS),” reference
article, available at
 https://en.wikipedia.org/wiki/Automatic_Identification_System

30

http://www.x3dgraphics.com/
http://www.web3d.org/x3d/content/examples/X3dSceneAuthoringHints.html
http://www.web3d.org/x3d/content/examples/X3dSceneAuthoringHints.html
http://www.web3d.org/standards
https://sourceforge.net/projects/open-dis
http://calhoun.nps.edu/handle/10945/2971
https://savage.nps.edu/Savage/Tools/SMAL/SMAL.html
http://www.sisostds.org/ProductsPublications/ReferenceDocuments.aspx
http://www.sisostds.org/ProductsPublications/ReferenceDocuments.aspx
https://en.wikipedia.org/wiki/Automatic_Identification_System

