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Abstract 

This paper describes the architecture fo r  the distributed 
CAPS system (DCAPS). The system accomplishes distrib- 
uted software prototyping with legacy module reuse. 
Prototype System Description Language (PSDL), the 
prototyping language, is used to describe real-time soft- 
ware in the DCAPS system. PSDL specifies not only real- 
time constraints, but also the connection and interaction 
among software components. Automatic generation of 
software wrappers and glue is applied fo r  the normaliza- 
tion of data transfer between legacy systems. Implementa- 
tion of the DCAPS communication layer is based on the 
JavaSpacesTM library. DCAPS supports collaborative 
prototype design in a distributed environment. 

1 Introduction and objectives 

The value of computer-aided prototyping in software 
development is clearly recognized. It is a very effective 
way to gain understanding of the requirements, reduce the 
complexity of the problem and provide an early validation 
of the system design. Bernstein estimated that for every 
dollar invested in prototyping, one could expect a $1.40 
return within the life cycle of the system development [I] .  
To be effective, prototypes must be constructed and modi- 
fied rapidly, accurately, and cheaply. Computer aid for 
rapidly and inexpensively constructing and modifying 
prototypes makes it  feasible [2]. 

With advances in wide area networks, there is a need for 
methods and tools to produce distributed, heterogeneous, 
and network-based systems that are reliable, flexible and 
cost effective. Many of these systems are COTS based 
(commercial off-the-shelf, including “legacy systems”), 
consisting of a set of subsystems, running on different plat- 

forms that work together via multiple communication links 
and protocols [3][4]. The use of COTS components shifts 
problems from software development to software integra- 
tion and interoperability. Builders of COTS-based systems 
often have no control over the network on which compo- 
nents communicate. They have to work with available in- 
frastructure and need tools and methods to assist them in 
making correct design decisions to integrate COTS com- 
ponents into a distributed network based system. 

Furthermore, as software development has evolved into 
national and even global cooperative efforts with the ex- 
plosion of the Internet and World Wide Web, the need for 
an effective distributed development environment to sup- 
port such geographically dispersed enterprises became 
critical. The support is needed both for the distributed 
design and demonstration of real time system prototypes. 

This paper addresses distributed rapid prototyping sup- 
port for heterogeneous and network-based systems. It pres- 
ents the underlying architecture to support the specification 
and automatic generation of codes to integrate and execute 
COTS components across a heterogeneous network. 

2 Motivation and related work 

2.1 Prototyping 

The demand for large, high quality systems has in- 
creased to the point where a quantum change in software 
technology is needed [5]. Requirements and specification 
errors are a major cause of faults in  complex systems. 
Rapid prototyping is one of the most promising solutions to 
this problem. Completely automated generation of proto- 
types from a very high-level language is feasible and gen- 
eration of skeleton programming structures is currently 
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common in the computer world. One major advantage of 
the automatic generation of codes is that it frees the devel- 
opers from the implementation details by executing speci- 
fications via reusable components [5] .  

CAPS prototypes a software system in the following 
steps. First, the user selects software components from the 
reusable component libraries to construct the prototype in a 
graphic editor. This prototype is saved as a plain text file 

An integrated software development environment, 
named Computer Aided Prototyping System (CAPS) [6] 
has been developed at the Naval Postgraduate School for 
rapid prototyping of hard real-time embedded software 
systems, such as missile guidance systems, space shuttle 
avionics systems, software controllers for a variety of con- 
sumer appliances and military Command, Control, Com- 
munication and Intelligence (C3I) systems [7]. Rapidly 
constructed prototypes are used to help both the developers 
and their customers visualize the proposed system and as- 
sess its properties in an iterative process. The heart of 
CAPS is the Prototyping System Description Language 
(PSDL). It serves as an executable prototyping language at 
the software architecture level and has special features for 
real-time system design. Building on the success of the 
Computer Aided Prototyping System (CAPS), the DCAPS 
model also uses PSDL for specification of distributed sys- 
tems and automates the generation of interface codes with 
the objective of making the network transparent from the 
developer’s point of view. 

2.2 PSDL and CAPS 
PSDL, a prototype description language [ 81, to describe 

the real-time software has an open structure so that the user 
is able to define new properties for software components, 
such as newly added network configurations. PSDL allows 
the specification of both input and output guards to provide 
conditional execution of an operator and conditional output 
of data. Guards can include conditions on timers that 
measure duration of system states, and can allow operators 
to execute only when fresh data has been written to an in- 
put stream. Real-time applications, design flexibility, and 
code reuse motivate the timing and non-procedural control 
constraints of PSDL. Each time critical operator has a 
maximum execution time constraint, representing the 
maximum time the operator may need to complete execu- 
tion after it is fired, given access to all required resources. 
In addition, each periodic operator has a period and a 
deadline. The period is the interval between triggering 
times for the operator and the deadline is the maximum 
duration from the triggering of the operator to the comple- 
tion of its operation. Each sporadic operator has a maxi- 
mum response time and a minimum calling period. The 
minimum calling period is the smallest interval allowed 
between two successive triggering of a sporadic operator. 
The maximum response time is the maximum duration al- 
lowed from the triggering of the sporadic operator to the 
completion of its operation. To  model distributed systems, 
PSDL also provides the option of specifying the maximum 
delay associated with any data stream. 

in PSDL format. The user may also use the graphical user 
interface (CUI) generator provided by CAPS to create a 
new GUI for demonstrating and observing the behavior of 
the prototype. Then, the translator and scheduler work on 
this PSDL file to generate the wrapper/glue code [9] and 
dynamichtatic schedules [ 101 respectively. Both the 
source code of reusable components and automatically 
generated source code will be compiled together to get the, 
executable. It will be run in the DCAPS environment in 
order to check both execution correctness and the real-time 
requirements. As described above, CAPS consists of vari- 
ous prototyping tools to provide all these functionalities. 
They play different roles during the prototyping process., 
For example, the scheduler just needs the timing con- 
straints and execution order for every component, while the 
translator does not care about information other than the 
network configurations and data type definitions. 

In order to automate the integration of COTS in a dis- 
tributed environment, we need to enhance the modeling 
capability of PSDL to describe the special operating re- 
quirements of the COTS components and the quality-of- 
service characteristics for the target networks. The en- 
hancement is done via the open syntax provided by the 
vertex property and edge property of the PSDL graph. Fig- 
ure 1 shows an example where the monitor- environment 
and the temperature-control operators are realized by 
COTS components that must run on a Windows NTTM op- 
erating system and the valve-control operator is realized 
by a COTS component that must run on a SunOSTM oper- 
ating system. Furthermore, the valve-adjustment data must 
be transmitted via network links with high security and low 
latency while the temperature data can be transmitted via 
network links with low security and higher latency. When 
new properties are introduced in the PSDL descriptions of 
a prototype, for instance to prototype networked software, 
some tools must be updated while the rest stay the same. 
Therefore, the architecture of CAPS must consider the 
evolution of its own components. 

CAPS tools were originally developed in the SunOS 
operating system for components located on one processor. 
To avoid the complexity of migrating the whole system to 
a new operating system, CAPS now has to work in a dis- 
tributed and heterogeneous environment 

2.3 Transaction handling in distributed systems 

Building a networked application is entirely different 
from building a stand-alone system in the sense that many 
additional issues need to be addressed for smooth func- 
tioning of a networked application. Networked systems are 
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MET = 100 ms 
PERIOD = 500 ms 

environment 

temperature : Celsius 
LATENCY = 10oO nis 
PROPERTY security =low 

fuel : gallons 
MET= 200 ms 
MRT = 20oO ms 
MCP = 500 ms 
TRIGGERED BY ALL temperature 
OUTPUT valve-adjustment 

IF Ivalve-adjustment1 > 0.01 
PROPERTY os = NT 

valve-adjustment : real 
LATENCY = 500 ms 
PROPERTY security = high 

M € T = 2 0 0 m s  
MRT = 20oO ms 

TRIGGERED BY ALL valve-adjustment 
PROPERTY = SunOS 
PROPERTY mem 3= 128 MB 

Figure 1. PSDL specification with additional properties 

also susceptible to partial failures of computation, which 
can leave the system in an inconsistent state. 

Proper transaction handling is essential to control and 
maintain concurrency and consistency within the system. 
Yang [ I  I ]  has examined the limitation of hard-wiring 
concurrency control into either the client or the server. He 
found that the scalability and flexibility of these configura- 
tions is greatly limited. Hence, he presented a middleware 
approach: an external transaction server, which carries out 
the concurrency control policies in the process of obtaining 
the data. Advantages of this approach are: 1) The transac- 
tion server can be easily tailored to apply the desired 
concurrency control policies of specific client applications. 
2) The approach does not require any changes to the serv- 
ers or clients in order to support the standard transaction 
model. 3) Coordination among the clients that share data 
but have different concurrency control policies is possible 
if all of the clients use the same transaction server. PSDL 
already has a very simple and effective transaction model 
[12][13] . Transactions are determined by the simple rule 
that the effect of firing a composite operator must always 
be equivalent to executing it  as a simple atomic action. 
Optimizations may introduce concurrency and interleave 
substeps only if that can be done consistently with this rule. 

The DCAPS implementation architecture uses the same 
approach, by using an external transaction manager such as 

the one provided by SUN in the JiniTM [I41 model. All 
transactions used by the clients and servers are created and 
overseen by the manager. 

2.4 JavaSpaces model 
JavaSpaces [14] is a mechanism based upon the Tuple 

Space model [ 151 to support coordination among a loosely 
coupled collection of distributed software systems. Tuples 
are typed data structures. Collections of tuples exist in a 
shared repository called a tuple space. Communication 
takes place in a tuple space shared among several proc- 
esses; each process can access the tuple space by inserting, 
reading or withdrawing tuples. 

When taking or reading objects, processes use a simple 
value-matching lookup to find the objects that matter to 
them. If a matching object is not found immediately, then a 
process can wait until one arrives. Unlike conventional 
object stores, processes do not modify objects in the space 
or invoke their methods directly. To  modify an object, a 
process must explicitly remove it ,  update it, and reinsert i t  
into the space. During the period of updating, other proc- 
esses requesting for the object will wait until the process 
writes the object back to the space. This protocol for modi- 
fication ensures synchronization, as there can be no way 
for more than one process to modify an object at the same 
time. However, i t  is possible for many processes to read 
the same object at the same time. 

The main benefits of JavaSpaces from the point of view 
of DCAPS are: 

Spaces are persistent: Spaces provide reliable storage 
for objects. Once stored in the space, an object will 
remain there until a process explicitly removes it. This 
allows a system to perform communication with other 
systems which may not have begun running yet. 

Spaces are transactionally secure: The JavaSpaces 
technology provides a transaction model that ensures 
that an operation on a space is atomic. Transactions 
are supported for single operations on a single space, 
as well as multiple operations over one or more 
spaces. 

Spaces allow exchange of executable content: While 
in the space, objects are just passive data, however, 
when we read or take an object from a space, a local 
copy of the object is created. Like any other local ob- 
ject, we can modify its public fields as well as invoke 
its methods. 
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Spaces transcend network topologies: Not only do 
senders and receivers of messages not need to know 
each others identities, they also may be located any- 
where on the network as long as both have access to 
the common space. 

Spaces support for time-outs for data. 

These properties greatly facilitate the communication 
layer to be inserted by DCAPS between the various legacy 
systems being integrated, and ensure the interoperability of 
these systems. 

3 Architecture 

3.1 
The design phase in the DCAPS environment empha- 

sizes the retrieval of PSDL specifications, legacy code 
(when needed) and distributed resource configuration de- 
scriptions both from the server’s Project repository and 
client side directories (Figure 2). DCAPS allow users to 
model, develop, execute and evaluate prototypes of the 
proposed systems from different hardware platforms with 
different operating environments via a web interface shown 
in Figure 3 ,  where the hyperlinks on the left side of the 
web-page allow visitors to access information about CAPS, 
PSDL and request accounts, while the hyperlinks on the 
right are password protected and can only be accessed by 
authorized users. 

Design time slice of the architecture 

Client Side Server Side I- PSDL editor / static 
checker 

Project repository 
- software base 
- project files 
- individual 

accounts 
- log files 

I User help and on-line 
documents I 

1 I 

Figure 2. Design Time Slice of Architecture 
The JavaTM-based user GUI ensures that the basic de- 

sign time tools, such as the graphical PSDL editor, static 
checker, user help and on-line documentation, and demos 
are available for clients to run on heterogeneous platforms. 
An integral part of the Project repository is also individual 
account information and log files from previous 
prototyping sessions. 

3.2 Compile time slice of the architecture 

In the compilation phase of DCAPS, the client-side leg- 
acy system and PSDL specification of that system, its inter- 
face to the external environment, and the distributed re- 

DISTRIBUTED COMF’LerER AIDED I PROTOTYPING SYSTEM 
1 1 

CAPS Oven iew 

PSDL Overview 

Ediilirmr Overview 

Conrarf 1 ; ~  

- & &  

I Trarislure 
‘omoilc 

Schedule 

Figure 3 .  The DCAPS Web Interface 

source configuration under which that system is to be run, 
will be input to the compiling tools residing on the server 
side (Figure 4). In actuality, these compilation tools may be 
downloaded to the client side, e.g. using a Java applet, to 
achieve the compilation. 

Client Side 

Legacy 
code 

specification and 
distributed resource 

configuration 
description 

I - r Y +  tarxet code 

Instantiated 
JavaSpaces library 

objects 

I I  Target program 

Server Side 

i2LJ translator 

generator 

Scheduler 

Figure 4. Compile Time Slice of Architecture 

Several subsystems that generate source code at various 
levels are involved in PSDL compilation. The PSDL 
translator itself produces PSDL target code and wrapper 
and glue code to connect the PSDL target code to other 
distributed components. In this process the objects from 
the JavaSpaces library are instantiated and integrated with 
the target code. The DCAPS GUI generator produces run- 
time GUI code which serves as the user interface wrapper 
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for the legacy system. Finally, the static scheduler auto- 
matically generates the schedule code component that en- 
sures the target program observes the real-time constraints 
specified by the PSDL specification. 

The existing PSDL data streams are encapsulated as ge- 
neric AdaTM objects that provide the basic read and write 
operations. The actual behavior of the read and write op- 
erations varies depending on whether the data is a FIFO 
buffer or Sampled buffer. Such encapsulation makes the 
extension of PSDL data streams to JavaSpaces objects 
transparent. The only modification is to invoke the 
JavaSpaces service registration operation during the in- 
stantiation and initialization of the data objects, and to use 
the read, write and take JavaSpaces library operations to 
implement the read and write PSDL operations. 

3.3 Run time slice of the architecture 
The current principle of the DCAPS run time architec- 

ture is to delegate the inter-process communication layer 
and scheduling mechanism to the server side (Figure 5) .  
The prototyping session starts at the client side by notify- 
ing the server and other clients (by remote login). 

The process instances running on one or several client 
sites use wrappers and instantiated JavaSpaces library ob- 
jects to send and receive messages. The JavaSpaces library 
via the underlying tuple space provides the environment for 
message flow between processes. 

The server side also maintains the global logical clock 
used by the run time scheduler to synchronize process 
communication and to activate process instances according 
to PSDL semantics. 

Another set of Java-based wrappers for user GUI's gen- 
erated by DCAPS at compile time provides platform- 
independent process VO. Execution traces, i.e. message 
transaction logs, could be created and stored at the server 
side for future analysis of the prototyping session. 

3.3. I Synchronization and  Logical  Clock 

The formal real-time model of PSDL is based on the 
notion of a global clock [12][13]. When operators allo- 
cated to different hardware nodes must communicate 
within strict deadlines, we must account for network delays 
and imperfect clock synchronization. Our architecture uses 
local clocks and time reference signals that are broadcast 
once per iteration of a cyclic schedule to approximate a 
global clock. Each processor has one such schedule, and all 
schedules cover the same length of time. The time refer- 
ence signals determine the local time for the beginning of 
the schedule at each node. Periodic re-calibration of these 
time references prevents divergence of the local clocks 
over long periods of time. 

I 
I 

Comn 
Layer 

Client Side Server Side 

User GUI wrapper 

- 
~ Trace 

Process 

Local 
Wrapper schedule 

Instantiated 
JavaSpaces 

Library Objects 

A 

- 
I: . d, Instantiated 

I JavaSpaces 
i i c a t i o n ',G'ue Library 

3 V  Objects 
Instantiated 
JavaSpaces 

Library Objects 

schedule 

User GUI wrapper 

Global 
schedules 

and 
local 

schedules 
for 

clients 

Libraries a 
Figure 5. Run Time Slice of Architecture 

The worst-case point-to-point network delay bounds initial 
differences between local clocks. Hardware clocks with 
stable rates are available and relative drift rates are typi- 
cally small. The product of the worst-case clock drift rate 
and the length of the schedule bounds clock drift error. The 
schedule must account for worst-case clock differences and 
worst-case clock drift error in addition to worst-case net- 
work latency between two nodes when scheduling two op- 
erations with a data flow precedence constraint [ 12][ 131. 

3.3.2 Accurate  Simulations on Impe$ect Networks 

Absolute guarantees of real-time constraints are clearly 
impossible when designers have no control over the net- 
work. In order to simulate a network with guaranteed real 
time service on an imperfect network, we need the notion 
of simulated time and supporting mechanisms in the form 
O f  

Time stamps attached to all communicated data 
values, 

A time-out period attached to every data communi- 
cation to work around unbounded delays in the 
network, 

The mechanism for logical clock synchronization, 

Message buffering for sampled streams based on 
time-stamp order. 

All this results in an accurate approximation of the behav- 
ior of a PSDL prototype on a target network with real time 
service guarantees in a prototyping environment whose 
networks have no such guarantees. 
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4 Current state and future work 

A Java-based prototype editor has been implemented 
for the DCAPS. It has been tested in Windows NT, Linux, 
and SolarisTM environments. Different native interfaces 
have been implemented as the language wrappers for the 
Java Spaces-based communication library so that it can be 
called , from applications implemented in different lan- 
guages. Java Native InterfaceTM (JNI) makes the library 
available for C programs, while ActiveXTM wrappers en- 
able Visual BasicTM (VB) programs to call the functions 
directly. The JNI wrapper makes it possible to create an 
interface between Ada and C so that programs in Ada can 
use JavaSpaces services. 

The use of centralized control imposes extra communi- 
cation overhead and creates potential bottleneck on the 
target heterogeneous system. We plan to conduct empirical 
studies to analyze the performance of such an approach in 
support of real-time systems, and investigate ways to relax 
centralized control by allowing bounded clock drifts 
among local clocks while still adhering to the constraints 
imposed by the PSDL timing model. 

The current DCAPS scheduler generates a static as- 
signment of the operators of the distributed prototype to 
the target network. In order to improve the global perform- 
ance and efficiency of the distributed system, the runtime 
environment may require a dynamic scheduler to perform 
runtime load balance and operator reassignment. The mo- 
bility provided by the JavaSpaces-based library will sup- 
port such requirement. 

The DCAPS system provides a useful tool for distrib- 
uted real-time software rapid prototyping in a distributed 
environment. The wrapper/glue method used in DCAPS 
can be generalized to system construction and interconnec- 
tion of legacy systems. By automatically generating the 
codes for the “wrappers and glue” and providing a power- 
ful environment, DCAPS allows the designers to concen- 
trate on the interoperability problems and issues, freeing 
them from implementation details. It also enables easy 
reconfiguration of software and network properties to ex- 
plore design alternatives. DCAPS is an on-going research 
project for the development and refinement of its 
prototyping tools. 
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