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Abstract This study examines large oceangoing ships as a source of giant cloud condensation nuclei
(Dp> 2μm) due to wake and stack emissions off the California coast. Observed particle number concentrations
behind 10 ships exceeded those in “control” areas, exhibiting number concentration enhancement ratios
(ERs) for minimum threshold diameters of ~2, ~10, and ~20μm as high as 2.7, 5.5, and 7.5, respectively. ER
decreases with increasing downwind distance and altitude. ER becomes better correlated with ship size
variables (gross tonnage, length, and beam) as the minimum size threshold increases from 2 to 20μm, whereas
ship speed has a less distinct relationship with ER. One case study of a container ship shows that there are
higher concentrations of sea-salt tracer species behind it relative to adjacent control areas. These results have
implications for cloud properties and precipitation in marine boundary layers exposed to ship traffic.

1. Introduction

Oceangoing ships are a source of aerosol particles due to both their wake and stack emissions. Ship stack
emissions have received the majority of the attention owing to their influence on air quality, radiative forcing,
and microphysical properties of aerosol particles and clouds [e.g., Capaldo et al., 1999; Corbett et al., 2007;
Fuglestvedt et al., 2009; Eyring et al., 2010; Partanen et al., 2013]. The increase in the number of cloud
condensation nuclei (CCN) from ship exhaust is linked to brightened clouds (“ship tracks”) and suppression
of warm rain (at fixed cloud liquid water content) [e.g., Ferek et al., 2000; Lu et al., 2009]. Giant CCN (GCCN),
commonly defined as being particles with diameters exceeding 2μm [Yin et al., 2000], are thought to have a
contrasting effect on warm clouds as they can accelerate the broadening of the cloud drop distribution and
production of precipitation in boundary layer clouds [e.g., Johnson, 1982; Szumowski et al., 1999; Rudich et al.,
2002; Jensen and Lee, 2008; L’Ecuyer et al., 2009; Kogan et al., 2012; Sorooshian et al., 2013a; Jung et al., 2015] with
their largest influence being in cases with high CCN concentrations [e.g., Feingold et al., 1999]. The potential
of aerosol particles to affect cloud properties, and thereby impact climate, is especially important in the case of
stratocumulus clouds that have bases close to the ocean surface and ships. Additionally, cloud water influenced
by emissions associated with ships exhibits enhanced levels of species that can alter chemical kinetics
in droplets and affect ecosystems after wet deposition [e.g., Coggon et al., 2012;Hassellov et al., 2013; Sorooshian
et al., 2013b; Prabhakar et al., 2014; Wang et al., 2014].

Most observational studies have focused on particulate emissions with diameters below roughly 1–2μm
from marine vessels [e.g., Petzold et al., 2008, 2010; Juwono et al., 2013; Russell et al., 2013; Cappa et al., 2014].
One field experiment examining larger particles, the Monterey Area Ship Track (MAST) experiment in June
1994, identified no recognizable signature of water-wake particles via both size distribution and chemical
analysis and concluded that wake particles do not contribute to ship track formation [Durkee et al., 2000].
Alternatively, Feingold et al. [1999] suggested that while the number concentration of small particles emitted
in the wake of ships is too low to increase cloud albedo, even very low concentrations of larger GCCN emitted
in the wake can reduce cloud albedo by enhancing collision-coalescence.

The goal of this study is to revisit the question of whether giant particles are emitted by the action of ships
(i.e., stack and wake emissions) using measurements on an airborne platform that conducted strategic
flight patterns at low altitude andwithin close proximity to 10 different ships of varying dimensions and speeds.
This study also aims to identify factors influencing potential GCCN number concentration enhancements
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behind ships. In contrast to MAST, the relevance of the results of this study shifts from being focused on
ship track formation to the effects on expedited drop collision-coalescence and precipitation production in
low-level stratocumulus clouds.

2. Experimental Methods

Data are analyzed from three flight campaigns using the Center for Interdisciplinary Remotely-Piloted
Aircraft Studies Twin Otter off the California coast. The second Marine Stratus/Stratocumulus Experiment
(MASE II) [Lu et al., 2009] included 16 research flights in July 2007, the Eastern Pacific Emitted Aerosol
Cloud Experiment (E-PEACE) [Russell et al., 2013] included 30 flights between July and August in 2011, and
the Nucleation in California Experiment (NiCE) included 23 flights between July and August in 2013
[Coggon et al., 2014].

The Twin Otter carried a nearly identical assembly of instruments in these experiments measuring physical
and chemical properties of particles and clouds. This study focuses on aerosol measurements below cloud
base or in clear air on cloud-free days. Clear air is identified as having liquid water content values below
0.01 gm�3, as detected by a PVM-100 probe [Gerber et al., 1994]; relative humidities in our cases were
below 97.5% (Table 1). Particle number concentrations in the different size ranges were observed with a
condensation particle counter (CPC 3010; TSI Inc.; Dp> 10 nm), passive cavity aerosol spectrometer probe
(PCASP; Dp~0.1–2.6μm), and cloud aerosol spectrometer (CAS; Dp~0.6–60μm). These data have 1 s time
resolution, which corresponds to 50m spatial resolution as the Twin Otter typically flew at 50m s�1. Three
minimum size thresholds used for grouping GCCN are approximately 2, 10, and 20 μm. GCCN data are
obtained only from the CAS in this study, whereas the CPC and PCASP are used as plumemarkers. Threshold
sizes exceeding 20μm (such as 30 and 40μm) are not used since number concentrations were zero for at least
half of the cases examined above those sizes. Water-soluble PM2.5 composition data are reported for a case
study in MASE II using a particle-into-liquid sampler (PILS, Brechtel Manufacturing Inc.) coupled to ion
chromatography [Sorooshian et al., 2006].

Ten cases are studied from nine research flights (RFs), which offer sufficient statistics behind ships at low
altitudes (<150m) both in areas affected by ships and those unaffected (control areas). Ship-influenced areas
are identified based on the number concentration data from the PCASP and CPC, which usually increased by
an order of magnitude in the plume relative to outside of the plume where concentrations were usually
below 500 cm�3 as measured by both instruments. In relation to each other, control and ship-influenced
areas were typically within 5m altitude, 1.5m s�1 of wind speed, and 2% relative humidity (Table 1). The
influence of potential ship wake emissions is expected to be found within the plumemeasurements (and not
in control areas) at the close distances flown behind the ships, as will be chemically supported subsequently.
Information about the ships’ physical dimensions and speeds were obtained from a marine traffic source
(https://www.marinetraffic.com/en/). Each of the RFs tracked a moving ship either in straight legs in
the plume (“racetracks”) or in crosswind transects behind the ship (“zigzags”) as illustrated in Figure 1.
The measurements were made within approximately 5 km (most within ~1 km) behind the ships.

3. Results and Discussion
3.1. GCCN Enhancement Behind Ships

The 10 ships examined are categorized as container (7), tanker (2), and bulk carrier (1), with gross tonnage
(GT) ranging from 19,707 to 131,332 and speeds reported between 6.6 and 11.8m s�1 (Table 1). GT is
positively correlated (r2) with the other physical ship variables for the 10 cases: length (0.80), beam (0.78),
deadweight tonnage (0.73), and draught (0.45). While numerous passes were made behind ships in some
flights, Table 1 reports particle concentration data for only the strongest signature of the plume in each
flight, as represented by average PCASP concentrations behind ships. (Note that the CPC was often saturated
in ship plumes and thus comparing average concentrations is not meaningful.) Each case was characterized
by enhanced GCCN concentrations behind ships for the 2μm diameter threshold, with an enhancement ratio
(ER = ship:control number concentration ratio) ranging from 1.02 to 2.71 (average = 1.50). The average
ERs for the 10 and 20 μm thresholds were 2.12 and 3.03, respectively. The difference between the mean
GCCN concentration behind ships and control areas was statistically significant to 95% confidence (using a
two-sample t test) for between four and six ships for the three size thresholds; many of the other cases did

Geophysical Research Letters 10.1002/2015GL063179

SOROOSHIAN ET AL. ©2015. American Geophysical Union. All Rights Reserved. 2025

https://www.marinetraffic.com/en/


Ta
b
le

1.
Su

m
m
ar
y
of

C
ha

ra
ct
er
is
tic
s
fo
r
10

Sh
ip
s
St
ud

ie
d
in

N
in
e
Re

se
ar
ch

Fl
ig
ht
sa

Sh
ip
s

Tw
in

O
tt
er

C
as
e

Ty
pe

Le
ng

th
(m

)
Be

am
(m

)
D
ea
dw

ei
gh

t
To

nn
ag

e
G
ro
ss

To
nn

ag
e

D
ra
ug

ht
(m

)
Sp

ee
d

(m
s�

1
)

A
ir
Ty
pe

A
lt

(m
)

W
in
d

(m
s�

1
)

RH (%
)

PC
A
SP

(c
m
�3

)
C
A
S-
2

(c
m
�3

)
C
A
S-
10

(c
m
�3

)
C
A
S-
20

(c
m
�3

)

M
A
SE

II
RF

6
C
on

ta
in
er

34
7

43
11

0,
38

7
91

,6
90

12
.4

11
.3

Sh
ip

28
9.
7

93
.6

4,
39

4
3.
72

0.
27

0.
04

C
on

tr
ol

32
10

.5
93

.2
31

7
2.
18

0.
09

0.
00

E-
PE

A
C
E
RF

5
Ta
nk

er
22

8
33

63
,5
89

38
,9
97

9.
7

7.
2

Sh
ip

91
4.
8

96
.0

1,
51

9
1.
12

0.
07

0.
02

C
on

tr
ol

88
5.
1

97
.4

22
0.
76

0.
10

0.
02

E-
PE

A
C
E
RF

11
C
on

ta
in
er

27
6

32
47

,5
39

48
,3
05

8.
0

8.
5

Sh
ip

82
4.
0

89
.9

1,
57

1
4.
49

0.
19

0.
04

C
on

tr
ol

71
3.
9

90
.4

32
7

4.
40

0.
13

0.
02

E-
PE

A
C
E
RF

12
Bu

lk
C
ar
rie

r
17

1
27

13
,9
49

19
,7
07

7.
8

6.
6

Sh
ip

42
1.
9

84
.9

1,
16

3
0.
91

0.
01

0.
00

C
on

tr
ol

37
2.
3

82
.9

33
8

0.
72

0.
02

0.
00

E-
PE

A
C
E
RF

13
Ta
nk

er
27

4
48

15
8,
07

0
84

,0
29

13
.2

7.
0

Sh
ip

77
10

.6
93

.2
2,
95

5
3.
32

0.
31

0.
13

C
on

tr
ol

79
11

.8
92

.6
90

2.
48

0.
16

0.
05

E-
PE

A
C
E
RF

24
C
on

ta
in
er

29
4

32
63

,2
92

54
,0
05

13
.5

11
.6

Sh
ip

75
6.
1

88
.1

1,
08

9
5.
37

0.
16

0.
03

C
on

tr
ol

74
5.
0

88
.4

19
4

4.
74

0.
11

0.
02

E-
PE

A
C
E
RF

25
C
on

ta
in
er

30
0

40
81

,1
71

75
,4
84

11
.7

11
.8

Sh
ip

62
7.
6

94
.8

4,
44

4
0.
93

0.
25

0.
13

C
on

tr
ol

59
7.
6

95
.3

29
0.
34

0.
09

0.
08

N
iC
E
RF

2
C
on

ta
in
er

36
3

46
12

8,
55

0
13

1,
33

2
12

.2
7.
7

Sh
ip

52
6.
7

95
.4

2,
59

8
1.
77

0.
08

0.
03

C
on

tr
ol

50
6.
4

95
.5

30
2

1.
10

0.
01

0.
00

N
iC
E
RF

11
A

C
on

ta
in
er

26
7

35
52

,1
84

44
,2
34

11
.0

10
.7

Sh
ip

80
3.
1

96
.0

2,
02

2
2.
15

0.
12

0.
00

C
on

tr
ol

81
4.
8

96
.0

12
4

1.
58

0.
04

0.
00

N
iC
E
RF

11
B

C
on

ta
in
er

22
1

35
45

,3
49

37
,1
99

8.
9

11
.3

Sh
ip

87
5.
2

96
.0

2,
07

8
1.
35

0.
03

0.
00

C
on

tr
ol

85
3.
8

96
.7

80
1.
00

0.
02

0.
01

a T
o
th
e
rig

ht
is
a
su
m
m
ar
y
of

en
vi
ro
nm

en
ta
lp

ro
pe

rt
ie
s
an

d
av
er
ag

e
nu

m
be

r
co
nc
en

tr
at
io
ns

of
G
CC

N
(D

p
>
2,
10

,a
nd

20
μm

),
m
ea
su
re
d
by

th
e
C
A
S
pr
ob

e,
be

hi
nd

ea
ch

sh
ip

(“
sh
ip
”)
an

d
in

ad
ja
ce
nt

“c
on

tr
ol
”
ar
ea
s.
Va
lu
es

in
bo

ld
in
di
ca
te

w
he

n
th
e
di
ff
er
en

ce
of

th
e
m
ea
n
be

tw
ee
n
th
e
sh
ip

an
d
co
nt
ro
la
re
as

is
st
at
is
tic
al
ly
si
gn

ifi
ca
nt

at
th
e
95

%
co
nfi

de
nc
e
le
ve
lu

si
ng

a
tw

o-
sa
m
pl
e

t
te
st
.

Geophysical Research Letters 10.1002/2015GL063179

SOROOSHIAN ET AL. ©2015. American Geophysical Union. All Rights Reserved. 2026



not reach this criteria owing to limited data points in close proximity to the rear of ships and thus suffered
from the nature of the measurements.

GCCN emitted by ships have the potential to impact cloud properties if entrained into cloud base. For
instance, Jung et al. [2015] show that salt particles (Dp ~ 1–10 μm) with concentrations on the order of 10�2

to 10�4 cm�3 are sufficient to promote a fourfold increase in cloud base rainfall rate in the same study
region. The average differences between ship and control areas for the 2, 10, and 20μm size thresholds were
0.58 cm�3, 0.07 cm�3, and 0.02 cm�3, respectively. These enhancements are especially significant since the
ability of GCCN to enhance the collision-coalescence process is greatest when CCN concentrations are already
high [Feingold et al., 1999], as is the case downwind of ships. It is cautioned though that the measured
concentrations likely are an overestimate of those expected to reach cloud base height and future work is
needed to more directly make the link with clouds.

3.2. MASE II Case Study

RF6 fromMASE II was a special case that allowed two hypotheses to be tested, specifically (i) that ER decreases
with increasing altitude and downwind distance from ships and (ii) that concentrations of sea-salt tracer species
are higher behind a ship relative to control areas due to wake emissions. This day involved one of the largest
ships studied (GT= 91,690) moving at one of the fastest speeds (11.3m s�1) resulting in wide plume that
could easily be followed by theTwin Otter (flightmap in Figure S1 in the supporting information). This particular
ship operated with a two-stroke, slow-speed diesel engine that was operated as 57% of maximum power using
heavy fuel oil with properties discussed by Murphy et al. [2009]. PCASP and CAS number concentrations
decreased with downwind distance (up to ~40 km away from ship) during a representative level leg at ~30m
altitude in the plume, regardless of the minimum size threshold (Figure S2 in the supporting information).
Particle number concentrations also decreased with altitude, with the greatest reductions for the 20 μm
minimum size threshold, which reached zero starting at ~60m with its maximum value being 0.04 cm�3 at
~30m, which was the lowest altitude reached in flight (Figure S3 in the supporting information).

The PILS-IC method (~4.5min time resolution, this flight) was used to identify if water-soluble species known to
be associated with sea-salt GCCN in the marine boundary layer (i.e., sodium and chloride) were enhanced
behind the ship relative to control areas. Since at the lowest altitude (~30m), there were no samples completely
uninfluenced by the plume, samples in racetrack legs behind the ship are compared to samples in crosswind
transects that represent far less time in ship-influenced areas. The average mass concentrations (μgm�3) of
Cl�, Na+, and SO4

2� were as follows (ship/control): 0.81/0.15μgm�3, 1.77/0.25μgm�3, and 54.33/3.10. The
enhancements in Cl� and Na+ exceeded a factor of 5, due most likely to wake emissions. The reduced Cl�:Na+

mass ratio as compared to natural sea salt (1.8) is most likely due to chloride depletion from acidic species
derived from precursors in ship exhaust such as nitric and sulfuric acids. While wake emissions are shown to
enhance GCCN concentrations, this is likely concomitant with contributions from stack emissions since ship

Figure 1. Representative flight paths during E-PEACE RF25 for the two main strategies used to study ship emissions:
(a) racetrack patterns and (b) zigzag patterns. “Ship path” corresponds to the container ship being studied (details in
Table 1) that was moving toward the San Francisco area. GOES-15 visible satellite imagery during the flight shows the
presence of low-lying stratocumulus clouds.
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engine exhaust studies have shown that coarse-sized particles are emitted [e.g., Lyyranen et al., 1999;
Winnes and Fridell, 2009]. Such GCCN are sufficiently large to activate into drops regardless of their
chemical and hygroscopic nature in the marine boundary layer [Russell et al., 2013;Wonaschütz et al., 2013].

3.3. Factors Influencing GCCN Concentrations Behind Ships

Previous work has studied the sensitivity of physicochemical properties of particles to fuel sulfur content,
engine type, and vessel activity, but mainly for the submicrometer size range [e.g., Lack et al., 2009; Jonsson
et al., 2011; Buffaloe et al., 2014; Cappa et al., 2014; Anderson et al., 2015]. Table 2 reports correlation matrices for

size-dependent ERs versus influential factors both for all
ships and for only container ships as an attempt to hold
ship type fixed. The strongest correlative factor with ER for
the 2μm threshold is PCASP concentration (r=0.79 for
all ships and r=0.85 for container ships), due to some
combination of stack emissions or small sea-salt generation
in wakes. Aircraft altitude was negatively correlated with ER,
with the strongest antirelationship for the 20μm size
threshold (r=�0.86 for all ships), due likely to the difficulty
for the largest particles to be lofted to higher altitudes. For
the two larger-diameter thresholds, ER is generally best
correlated with ship physical characteristics such as length,
beam, and GT. The ships with the lowest GT (19,707–44,234),
which include the bulk carrier, the smallest tanker, and
the two smallest container ships, exhibited ERs close to or
below unity for the 20μm threshold. Thus, larger ships are
linked with greater emissions of larger GCCN. Ship speed
exhibited a weak correlation with ER for all size thresholds
presumably due to the small range of speeds encountered
and the dominating effect of other factors examined such
as GT, plume strength (i.e., PCASP concentration), and
aircraft altitude (Figure 2).

In terms of ship type, container ships exhibited the highest
ERs for all size thresholds, followed by tankers and finally
the bulk carrier ship. However, the comparison of ship
types cannot be untangled from other factors since the
container (bulk carrier) ships also coincided with the
highest (lowest) GTs, speeds, and PCASP concentrations.

4. Conclusions

This study uses airborne data off the California coast to
show that there is an enhancement in GCCN number

Figure 2. GCCN number concentration enhancement
ratio (ship:control) for three minimum size thresholds
as a function of ship type, ship gross tonnage, ship
speed, and plume strength (marker size ~ PCASP
concentration, range: 1089–4444 cm�3). Markers
missing in the top two panels indicate no particles
detected behind the ship above that particular
minimum diameter threshold.

Table 2. Correlation (r) Matrix Between the GCCN Number Concentration Enhancement Ratio (Ship:Control) and
Influential Factorsa

Ships Twin Otter

Ship Type Dp (μm) Threshold Length Beam DWT GT Draught Speed Altitude PCASP

All 2 0.33 0.39 0.25 0.37 0.28 0.37 �0.31 0.79
10 0.86 0.74 0.63 0.90 0.55 0.17 �0.37 0.59
20 0.87 0.60 0.52 0.80 0.27 0.04 �0.86 0.50

Container 2 0.30 0.56 0.41 0.38 0.31 0.34 �0.44 0.85
10 0.79 0.88 0.87 0.91 0.44 �0.51 �0.61 0.48
20 0.90 0.78 0.84 0.78 0.21 �0.36 �0.82 0.42

aDWT = deadweight tonnage, GT = gross tonnage. Values in bold are statistically significant at 95% with a two-tailed
student’s t test.
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concentration behind oceangoing ships. At the point closest to each ship, the average number concentration
difference between ship-affected and unaffected control areas for the 2, 10, and 20μm minimum diameter
thresholds was 0.58, 0.07, and 0.02 cm�3 (corresponding ER: 1.50, 2.12, and 3.03), respectively, which is sufficient
to potentially impact cloud properties if entrained into cloud base. Factors leading to higher enhancements
include lower altitudes, closer proximity to ships, stronger plumes (i.e., higher PCASP concentrations), and larger
ships (e.g., length, beam, and gross tonnage), the latter of which is observed to be more important for the
larger minimum threshold diameters (10 μm and 20 μm). Ship speed is not observed to be as strong a
factor due to some likely combination of too narrow of a range of speeds encountered (6.6–11.8m s�1) and
the dominant influence of other factors. A case study of one of the larger ships provides evidence for
enhanced levels of sea-salt tracer species behind the ship relative to less perturbed control areas. Wake and
stack emissions likely both contribute to the observed GCCN enhancements behind the ships studied, but
future work should build more statistics to address the relative importance of wake versus stack emissions
in contributing to GCCN as a function of aerosol size. Furthermore, studying more ships can help address
the sensitivity of GCCN emissions to individual ship-related factors such as ship type, gross tonnage, engine
type, and speed.

The results have implications for treatment of boundary layer clouds since the presence of GCCN emissions
from ships can potentially affect cloud albedo and the timing of precipitation onset.
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